1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/ConstantRange.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/NoFolder.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/ValueMapper.h" 49 #include <algorithm> 50 #include <map> 51 #include <set> 52 using namespace llvm; 53 using namespace PatternMatch; 54 55 #define DEBUG_TYPE "simplifycfg" 56 57 // Chosen as 2 so as to be cheap, but still to have enough power to fold 58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 59 // To catch this, we need to fold a compare and a select, hence '2' being the 60 // minimum reasonable default. 61 static cl::opt<unsigned> 62 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2), 63 cl::desc("Control the amount of phi node folding to perform (default = 2)")); 64 65 static cl::opt<bool> 66 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 67 cl::desc("Duplicate return instructions into unconditional branches")); 68 69 static cl::opt<bool> 70 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 71 cl::desc("Sink common instructions down to the end block")); 72 73 static cl::opt<bool> HoistCondStores( 74 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 75 cl::desc("Hoist conditional stores if an unconditional store precedes")); 76 77 static cl::opt<bool> MergeCondStores( 78 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 79 cl::desc("Hoist conditional stores even if an unconditional store does not " 80 "precede - hoist multiple conditional stores into a single " 81 "predicated store")); 82 83 static cl::opt<bool> MergeCondStoresAggressively( 84 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 85 cl::desc("When merging conditional stores, do so even if the resultant " 86 "basic blocks are unlikely to be if-converted as a result")); 87 88 static cl::opt<bool> SpeculateOneExpensiveInst( 89 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 90 cl::desc("Allow exactly one expensive instruction to be speculatively " 91 "executed")); 92 93 static cl::opt<unsigned> MaxSpeculationDepth( 94 "max-speculation-depth", cl::Hidden, cl::init(10), 95 cl::desc("Limit maximum recursion depth when calculating costs of " 96 "speculatively executed instructions")); 97 98 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 99 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping"); 100 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 101 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 102 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 103 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 104 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 105 106 namespace { 107 // The first field contains the value that the switch produces when a certain 108 // case group is selected, and the second field is a vector containing the 109 // cases composing the case group. 110 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 111 SwitchCaseResultVectorTy; 112 // The first field contains the phi node that generates a result of the switch 113 // and the second field contains the value generated for a certain case in the 114 // switch for that PHI. 115 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 116 117 /// ValueEqualityComparisonCase - Represents a case of a switch. 118 struct ValueEqualityComparisonCase { 119 ConstantInt *Value; 120 BasicBlock *Dest; 121 122 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 123 : Value(Value), Dest(Dest) {} 124 125 bool operator<(ValueEqualityComparisonCase RHS) const { 126 // Comparing pointers is ok as we only rely on the order for uniquing. 127 return Value < RHS.Value; 128 } 129 130 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 131 }; 132 133 class SimplifyCFGOpt { 134 const TargetTransformInfo &TTI; 135 const DataLayout &DL; 136 unsigned BonusInstThreshold; 137 AssumptionCache *AC; 138 Value *isValueEqualityComparison(TerminatorInst *TI); 139 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 140 std::vector<ValueEqualityComparisonCase> &Cases); 141 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 142 BasicBlock *Pred, 143 IRBuilder<> &Builder); 144 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 145 IRBuilder<> &Builder); 146 147 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 148 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 149 bool SimplifySingleResume(ResumeInst *RI); 150 bool SimplifyCommonResume(ResumeInst *RI); 151 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 152 bool SimplifyUnreachable(UnreachableInst *UI); 153 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 154 bool SimplifyIndirectBr(IndirectBrInst *IBI); 155 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 156 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 157 158 public: 159 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 160 unsigned BonusInstThreshold, AssumptionCache *AC) 161 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {} 162 bool run(BasicBlock *BB); 163 }; 164 } 165 166 /// Return true if it is safe to merge these two 167 /// terminator instructions together. 168 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 169 if (SI1 == SI2) return false; // Can't merge with self! 170 171 // It is not safe to merge these two switch instructions if they have a common 172 // successor, and if that successor has a PHI node, and if *that* PHI node has 173 // conflicting incoming values from the two switch blocks. 174 BasicBlock *SI1BB = SI1->getParent(); 175 BasicBlock *SI2BB = SI2->getParent(); 176 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 177 178 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 179 if (SI1Succs.count(*I)) 180 for (BasicBlock::iterator BBI = (*I)->begin(); 181 isa<PHINode>(BBI); ++BBI) { 182 PHINode *PN = cast<PHINode>(BBI); 183 if (PN->getIncomingValueForBlock(SI1BB) != 184 PN->getIncomingValueForBlock(SI2BB)) 185 return false; 186 } 187 188 return true; 189 } 190 191 /// Return true if it is safe and profitable to merge these two terminator 192 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 193 /// store all PHI nodes in common successors. 194 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 195 BranchInst *SI2, 196 Instruction *Cond, 197 SmallVectorImpl<PHINode*> &PhiNodes) { 198 if (SI1 == SI2) return false; // Can't merge with self! 199 assert(SI1->isUnconditional() && SI2->isConditional()); 200 201 // We fold the unconditional branch if we can easily update all PHI nodes in 202 // common successors: 203 // 1> We have a constant incoming value for the conditional branch; 204 // 2> We have "Cond" as the incoming value for the unconditional branch; 205 // 3> SI2->getCondition() and Cond have same operands. 206 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 207 if (!Ci2) return false; 208 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 209 Cond->getOperand(1) == Ci2->getOperand(1)) && 210 !(Cond->getOperand(0) == Ci2->getOperand(1) && 211 Cond->getOperand(1) == Ci2->getOperand(0))) 212 return false; 213 214 BasicBlock *SI1BB = SI1->getParent(); 215 BasicBlock *SI2BB = SI2->getParent(); 216 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 217 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 218 if (SI1Succs.count(*I)) 219 for (BasicBlock::iterator BBI = (*I)->begin(); 220 isa<PHINode>(BBI); ++BBI) { 221 PHINode *PN = cast<PHINode>(BBI); 222 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 223 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 224 return false; 225 PhiNodes.push_back(PN); 226 } 227 return true; 228 } 229 230 /// Update PHI nodes in Succ to indicate that there will now be entries in it 231 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 232 /// will be the same as those coming in from ExistPred, an existing predecessor 233 /// of Succ. 234 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 235 BasicBlock *ExistPred) { 236 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 237 238 PHINode *PN; 239 for (BasicBlock::iterator I = Succ->begin(); 240 (PN = dyn_cast<PHINode>(I)); ++I) 241 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 242 } 243 244 /// Compute an abstract "cost" of speculating the given instruction, 245 /// which is assumed to be safe to speculate. TCC_Free means cheap, 246 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 247 /// expensive. 248 static unsigned ComputeSpeculationCost(const User *I, 249 const TargetTransformInfo &TTI) { 250 assert(isSafeToSpeculativelyExecute(I) && 251 "Instruction is not safe to speculatively execute!"); 252 return TTI.getUserCost(I); 253 } 254 255 /// If we have a merge point of an "if condition" as accepted above, 256 /// return true if the specified value dominates the block. We 257 /// don't handle the true generality of domination here, just a special case 258 /// which works well enough for us. 259 /// 260 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 261 /// see if V (which must be an instruction) and its recursive operands 262 /// that do not dominate BB have a combined cost lower than CostRemaining and 263 /// are non-trapping. If both are true, the instruction is inserted into the 264 /// set and true is returned. 265 /// 266 /// The cost for most non-trapping instructions is defined as 1 except for 267 /// Select whose cost is 2. 268 /// 269 /// After this function returns, CostRemaining is decreased by the cost of 270 /// V plus its non-dominating operands. If that cost is greater than 271 /// CostRemaining, false is returned and CostRemaining is undefined. 272 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 273 SmallPtrSetImpl<Instruction*> *AggressiveInsts, 274 unsigned &CostRemaining, 275 const TargetTransformInfo &TTI, 276 unsigned Depth = 0) { 277 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 278 // so limit the recursion depth. 279 // TODO: While this recursion limit does prevent pathological behavior, it 280 // would be better to track visited instructions to avoid cycles. 281 if (Depth == MaxSpeculationDepth) 282 return false; 283 284 Instruction *I = dyn_cast<Instruction>(V); 285 if (!I) { 286 // Non-instructions all dominate instructions, but not all constantexprs 287 // can be executed unconditionally. 288 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 289 if (C->canTrap()) 290 return false; 291 return true; 292 } 293 BasicBlock *PBB = I->getParent(); 294 295 // We don't want to allow weird loops that might have the "if condition" in 296 // the bottom of this block. 297 if (PBB == BB) return false; 298 299 // If this instruction is defined in a block that contains an unconditional 300 // branch to BB, then it must be in the 'conditional' part of the "if 301 // statement". If not, it definitely dominates the region. 302 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 303 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 304 return true; 305 306 // If we aren't allowing aggressive promotion anymore, then don't consider 307 // instructions in the 'if region'. 308 if (!AggressiveInsts) return false; 309 310 // If we have seen this instruction before, don't count it again. 311 if (AggressiveInsts->count(I)) return true; 312 313 // Okay, it looks like the instruction IS in the "condition". Check to 314 // see if it's a cheap instruction to unconditionally compute, and if it 315 // only uses stuff defined outside of the condition. If so, hoist it out. 316 if (!isSafeToSpeculativelyExecute(I)) 317 return false; 318 319 unsigned Cost = ComputeSpeculationCost(I, TTI); 320 321 // Allow exactly one instruction to be speculated regardless of its cost 322 // (as long as it is safe to do so). 323 // This is intended to flatten the CFG even if the instruction is a division 324 // or other expensive operation. The speculation of an expensive instruction 325 // is expected to be undone in CodeGenPrepare if the speculation has not 326 // enabled further IR optimizations. 327 if (Cost > CostRemaining && 328 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 329 return false; 330 331 // Avoid unsigned wrap. 332 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 333 334 // Okay, we can only really hoist these out if their operands do 335 // not take us over the cost threshold. 336 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 337 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 338 Depth + 1)) 339 return false; 340 // Okay, it's safe to do this! Remember this instruction. 341 AggressiveInsts->insert(I); 342 return true; 343 } 344 345 /// Extract ConstantInt from value, looking through IntToPtr 346 /// and PointerNullValue. Return NULL if value is not a constant int. 347 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 348 // Normal constant int. 349 ConstantInt *CI = dyn_cast<ConstantInt>(V); 350 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 351 return CI; 352 353 // This is some kind of pointer constant. Turn it into a pointer-sized 354 // ConstantInt if possible. 355 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 356 357 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 358 if (isa<ConstantPointerNull>(V)) 359 return ConstantInt::get(PtrTy, 0); 360 361 // IntToPtr const int. 362 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 363 if (CE->getOpcode() == Instruction::IntToPtr) 364 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 365 // The constant is very likely to have the right type already. 366 if (CI->getType() == PtrTy) 367 return CI; 368 else 369 return cast<ConstantInt> 370 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 371 } 372 return nullptr; 373 } 374 375 namespace { 376 377 /// Given a chain of or (||) or and (&&) comparison of a value against a 378 /// constant, this will try to recover the information required for a switch 379 /// structure. 380 /// It will depth-first traverse the chain of comparison, seeking for patterns 381 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 382 /// representing the different cases for the switch. 383 /// Note that if the chain is composed of '||' it will build the set of elements 384 /// that matches the comparisons (i.e. any of this value validate the chain) 385 /// while for a chain of '&&' it will build the set elements that make the test 386 /// fail. 387 struct ConstantComparesGatherer { 388 const DataLayout &DL; 389 Value *CompValue; /// Value found for the switch comparison 390 Value *Extra; /// Extra clause to be checked before the switch 391 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 392 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 393 394 /// Construct and compute the result for the comparison instruction Cond 395 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 396 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 397 gather(Cond); 398 } 399 400 /// Prevent copy 401 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 402 ConstantComparesGatherer & 403 operator=(const ConstantComparesGatherer &) = delete; 404 405 private: 406 407 /// Try to set the current value used for the comparison, it succeeds only if 408 /// it wasn't set before or if the new value is the same as the old one 409 bool setValueOnce(Value *NewVal) { 410 if(CompValue && CompValue != NewVal) return false; 411 CompValue = NewVal; 412 return (CompValue != nullptr); 413 } 414 415 /// Try to match Instruction "I" as a comparison against a constant and 416 /// populates the array Vals with the set of values that match (or do not 417 /// match depending on isEQ). 418 /// Return false on failure. On success, the Value the comparison matched 419 /// against is placed in CompValue. 420 /// If CompValue is already set, the function is expected to fail if a match 421 /// is found but the value compared to is different. 422 bool matchInstruction(Instruction *I, bool isEQ) { 423 // If this is an icmp against a constant, handle this as one of the cases. 424 ICmpInst *ICI; 425 ConstantInt *C; 426 if (!((ICI = dyn_cast<ICmpInst>(I)) && 427 (C = GetConstantInt(I->getOperand(1), DL)))) { 428 return false; 429 } 430 431 Value *RHSVal; 432 ConstantInt *RHSC; 433 434 // Pattern match a special case 435 // (x & ~2^x) == y --> x == y || x == y|2^x 436 // This undoes a transformation done by instcombine to fuse 2 compares. 437 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 438 if (match(ICI->getOperand(0), 439 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 440 APInt Not = ~RHSC->getValue(); 441 if (Not.isPowerOf2()) { 442 // If we already have a value for the switch, it has to match! 443 if(!setValueOnce(RHSVal)) 444 return false; 445 446 Vals.push_back(C); 447 Vals.push_back(ConstantInt::get(C->getContext(), 448 C->getValue() | Not)); 449 UsedICmps++; 450 return true; 451 } 452 } 453 454 // If we already have a value for the switch, it has to match! 455 if(!setValueOnce(ICI->getOperand(0))) 456 return false; 457 458 UsedICmps++; 459 Vals.push_back(C); 460 return ICI->getOperand(0); 461 } 462 463 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 464 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 465 ICI->getPredicate(), C->getValue()); 466 467 // Shift the range if the compare is fed by an add. This is the range 468 // compare idiom as emitted by instcombine. 469 Value *CandidateVal = I->getOperand(0); 470 if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 471 Span = Span.subtract(RHSC->getValue()); 472 CandidateVal = RHSVal; 473 } 474 475 // If this is an and/!= check, then we are looking to build the set of 476 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 477 // x != 0 && x != 1. 478 if (!isEQ) 479 Span = Span.inverse(); 480 481 // If there are a ton of values, we don't want to make a ginormous switch. 482 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 483 return false; 484 } 485 486 // If we already have a value for the switch, it has to match! 487 if(!setValueOnce(CandidateVal)) 488 return false; 489 490 // Add all values from the range to the set 491 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 492 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 493 494 UsedICmps++; 495 return true; 496 497 } 498 499 /// Given a potentially 'or'd or 'and'd together collection of icmp 500 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 501 /// the value being compared, and stick the list constants into the Vals 502 /// vector. 503 /// One "Extra" case is allowed to differ from the other. 504 void gather(Value *V) { 505 Instruction *I = dyn_cast<Instruction>(V); 506 bool isEQ = (I->getOpcode() == Instruction::Or); 507 508 // Keep a stack (SmallVector for efficiency) for depth-first traversal 509 SmallVector<Value *, 8> DFT; 510 511 // Initialize 512 DFT.push_back(V); 513 514 while(!DFT.empty()) { 515 V = DFT.pop_back_val(); 516 517 if (Instruction *I = dyn_cast<Instruction>(V)) { 518 // If it is a || (or && depending on isEQ), process the operands. 519 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 520 DFT.push_back(I->getOperand(1)); 521 DFT.push_back(I->getOperand(0)); 522 continue; 523 } 524 525 // Try to match the current instruction 526 if (matchInstruction(I, isEQ)) 527 // Match succeed, continue the loop 528 continue; 529 } 530 531 // One element of the sequence of || (or &&) could not be match as a 532 // comparison against the same value as the others. 533 // We allow only one "Extra" case to be checked before the switch 534 if (!Extra) { 535 Extra = V; 536 continue; 537 } 538 // Failed to parse a proper sequence, abort now 539 CompValue = nullptr; 540 break; 541 } 542 } 543 }; 544 545 } 546 547 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 548 Instruction *Cond = nullptr; 549 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 550 Cond = dyn_cast<Instruction>(SI->getCondition()); 551 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 552 if (BI->isConditional()) 553 Cond = dyn_cast<Instruction>(BI->getCondition()); 554 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 555 Cond = dyn_cast<Instruction>(IBI->getAddress()); 556 } 557 558 TI->eraseFromParent(); 559 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 560 } 561 562 /// Return true if the specified terminator checks 563 /// to see if a value is equal to constant integer value. 564 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 565 Value *CV = nullptr; 566 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 567 // Do not permit merging of large switch instructions into their 568 // predecessors unless there is only one predecessor. 569 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 570 pred_end(SI->getParent())) <= 128) 571 CV = SI->getCondition(); 572 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 573 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 574 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 575 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 576 CV = ICI->getOperand(0); 577 } 578 579 // Unwrap any lossless ptrtoint cast. 580 if (CV) { 581 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 582 Value *Ptr = PTII->getPointerOperand(); 583 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 584 CV = Ptr; 585 } 586 } 587 return CV; 588 } 589 590 /// Given a value comparison instruction, 591 /// decode all of the 'cases' that it represents and return the 'default' block. 592 BasicBlock *SimplifyCFGOpt:: 593 GetValueEqualityComparisonCases(TerminatorInst *TI, 594 std::vector<ValueEqualityComparisonCase> 595 &Cases) { 596 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 597 Cases.reserve(SI->getNumCases()); 598 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 599 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 600 i.getCaseSuccessor())); 601 return SI->getDefaultDest(); 602 } 603 604 BranchInst *BI = cast<BranchInst>(TI); 605 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 606 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 607 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 608 DL), 609 Succ)); 610 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 611 } 612 613 614 /// Given a vector of bb/value pairs, remove any entries 615 /// in the list that match the specified block. 616 static void EliminateBlockCases(BasicBlock *BB, 617 std::vector<ValueEqualityComparisonCase> &Cases) { 618 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 619 } 620 621 /// Return true if there are any keys in C1 that exist in C2 as well. 622 static bool 623 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 624 std::vector<ValueEqualityComparisonCase > &C2) { 625 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 626 627 // Make V1 be smaller than V2. 628 if (V1->size() > V2->size()) 629 std::swap(V1, V2); 630 631 if (V1->size() == 0) return false; 632 if (V1->size() == 1) { 633 // Just scan V2. 634 ConstantInt *TheVal = (*V1)[0].Value; 635 for (unsigned i = 0, e = V2->size(); i != e; ++i) 636 if (TheVal == (*V2)[i].Value) 637 return true; 638 } 639 640 // Otherwise, just sort both lists and compare element by element. 641 array_pod_sort(V1->begin(), V1->end()); 642 array_pod_sort(V2->begin(), V2->end()); 643 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 644 while (i1 != e1 && i2 != e2) { 645 if ((*V1)[i1].Value == (*V2)[i2].Value) 646 return true; 647 if ((*V1)[i1].Value < (*V2)[i2].Value) 648 ++i1; 649 else 650 ++i2; 651 } 652 return false; 653 } 654 655 /// If TI is known to be a terminator instruction and its block is known to 656 /// only have a single predecessor block, check to see if that predecessor is 657 /// also a value comparison with the same value, and if that comparison 658 /// determines the outcome of this comparison. If so, simplify TI. This does a 659 /// very limited form of jump threading. 660 bool SimplifyCFGOpt:: 661 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 662 BasicBlock *Pred, 663 IRBuilder<> &Builder) { 664 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 665 if (!PredVal) return false; // Not a value comparison in predecessor. 666 667 Value *ThisVal = isValueEqualityComparison(TI); 668 assert(ThisVal && "This isn't a value comparison!!"); 669 if (ThisVal != PredVal) return false; // Different predicates. 670 671 // TODO: Preserve branch weight metadata, similarly to how 672 // FoldValueComparisonIntoPredecessors preserves it. 673 674 // Find out information about when control will move from Pred to TI's block. 675 std::vector<ValueEqualityComparisonCase> PredCases; 676 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 677 PredCases); 678 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 679 680 // Find information about how control leaves this block. 681 std::vector<ValueEqualityComparisonCase> ThisCases; 682 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 683 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 684 685 // If TI's block is the default block from Pred's comparison, potentially 686 // simplify TI based on this knowledge. 687 if (PredDef == TI->getParent()) { 688 // If we are here, we know that the value is none of those cases listed in 689 // PredCases. If there are any cases in ThisCases that are in PredCases, we 690 // can simplify TI. 691 if (!ValuesOverlap(PredCases, ThisCases)) 692 return false; 693 694 if (isa<BranchInst>(TI)) { 695 // Okay, one of the successors of this condbr is dead. Convert it to a 696 // uncond br. 697 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 698 // Insert the new branch. 699 Instruction *NI = Builder.CreateBr(ThisDef); 700 (void) NI; 701 702 // Remove PHI node entries for the dead edge. 703 ThisCases[0].Dest->removePredecessor(TI->getParent()); 704 705 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 706 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 707 708 EraseTerminatorInstAndDCECond(TI); 709 return true; 710 } 711 712 SwitchInst *SI = cast<SwitchInst>(TI); 713 // Okay, TI has cases that are statically dead, prune them away. 714 SmallPtrSet<Constant*, 16> DeadCases; 715 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 716 DeadCases.insert(PredCases[i].Value); 717 718 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 719 << "Through successor TI: " << *TI); 720 721 // Collect branch weights into a vector. 722 SmallVector<uint32_t, 8> Weights; 723 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 724 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 725 if (HasWeight) 726 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 727 ++MD_i) { 728 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 729 Weights.push_back(CI->getValue().getZExtValue()); 730 } 731 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 732 --i; 733 if (DeadCases.count(i.getCaseValue())) { 734 if (HasWeight) { 735 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 736 Weights.pop_back(); 737 } 738 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 739 SI->removeCase(i); 740 } 741 } 742 if (HasWeight && Weights.size() >= 2) 743 SI->setMetadata(LLVMContext::MD_prof, 744 MDBuilder(SI->getParent()->getContext()). 745 createBranchWeights(Weights)); 746 747 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 748 return true; 749 } 750 751 // Otherwise, TI's block must correspond to some matched value. Find out 752 // which value (or set of values) this is. 753 ConstantInt *TIV = nullptr; 754 BasicBlock *TIBB = TI->getParent(); 755 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 756 if (PredCases[i].Dest == TIBB) { 757 if (TIV) 758 return false; // Cannot handle multiple values coming to this block. 759 TIV = PredCases[i].Value; 760 } 761 assert(TIV && "No edge from pred to succ?"); 762 763 // Okay, we found the one constant that our value can be if we get into TI's 764 // BB. Find out which successor will unconditionally be branched to. 765 BasicBlock *TheRealDest = nullptr; 766 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 767 if (ThisCases[i].Value == TIV) { 768 TheRealDest = ThisCases[i].Dest; 769 break; 770 } 771 772 // If not handled by any explicit cases, it is handled by the default case. 773 if (!TheRealDest) TheRealDest = ThisDef; 774 775 // Remove PHI node entries for dead edges. 776 BasicBlock *CheckEdge = TheRealDest; 777 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 778 if (*SI != CheckEdge) 779 (*SI)->removePredecessor(TIBB); 780 else 781 CheckEdge = nullptr; 782 783 // Insert the new branch. 784 Instruction *NI = Builder.CreateBr(TheRealDest); 785 (void) NI; 786 787 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 788 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 789 790 EraseTerminatorInstAndDCECond(TI); 791 return true; 792 } 793 794 namespace { 795 /// This class implements a stable ordering of constant 796 /// integers that does not depend on their address. This is important for 797 /// applications that sort ConstantInt's to ensure uniqueness. 798 struct ConstantIntOrdering { 799 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 800 return LHS->getValue().ult(RHS->getValue()); 801 } 802 }; 803 } 804 805 static int ConstantIntSortPredicate(ConstantInt *const *P1, 806 ConstantInt *const *P2) { 807 const ConstantInt *LHS = *P1; 808 const ConstantInt *RHS = *P2; 809 if (LHS->getValue().ult(RHS->getValue())) 810 return 1; 811 if (LHS->getValue() == RHS->getValue()) 812 return 0; 813 return -1; 814 } 815 816 static inline bool HasBranchWeights(const Instruction* I) { 817 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 818 if (ProfMD && ProfMD->getOperand(0)) 819 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 820 return MDS->getString().equals("branch_weights"); 821 822 return false; 823 } 824 825 /// Get Weights of a given TerminatorInst, the default weight is at the front 826 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 827 /// metadata. 828 static void GetBranchWeights(TerminatorInst *TI, 829 SmallVectorImpl<uint64_t> &Weights) { 830 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 831 assert(MD); 832 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 833 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 834 Weights.push_back(CI->getValue().getZExtValue()); 835 } 836 837 // If TI is a conditional eq, the default case is the false case, 838 // and the corresponding branch-weight data is at index 2. We swap the 839 // default weight to be the first entry. 840 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 841 assert(Weights.size() == 2); 842 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 843 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 844 std::swap(Weights.front(), Weights.back()); 845 } 846 } 847 848 /// Keep halving the weights until all can fit in uint32_t. 849 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 850 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 851 if (Max > UINT_MAX) { 852 unsigned Offset = 32 - countLeadingZeros(Max); 853 for (uint64_t &I : Weights) 854 I >>= Offset; 855 } 856 } 857 858 /// The specified terminator is a value equality comparison instruction 859 /// (either a switch or a branch on "X == c"). 860 /// See if any of the predecessors of the terminator block are value comparisons 861 /// on the same value. If so, and if safe to do so, fold them together. 862 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 863 IRBuilder<> &Builder) { 864 BasicBlock *BB = TI->getParent(); 865 Value *CV = isValueEqualityComparison(TI); // CondVal 866 assert(CV && "Not a comparison?"); 867 bool Changed = false; 868 869 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 870 while (!Preds.empty()) { 871 BasicBlock *Pred = Preds.pop_back_val(); 872 873 // See if the predecessor is a comparison with the same value. 874 TerminatorInst *PTI = Pred->getTerminator(); 875 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 876 877 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 878 // Figure out which 'cases' to copy from SI to PSI. 879 std::vector<ValueEqualityComparisonCase> BBCases; 880 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 881 882 std::vector<ValueEqualityComparisonCase> PredCases; 883 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 884 885 // Based on whether the default edge from PTI goes to BB or not, fill in 886 // PredCases and PredDefault with the new switch cases we would like to 887 // build. 888 SmallVector<BasicBlock*, 8> NewSuccessors; 889 890 // Update the branch weight metadata along the way 891 SmallVector<uint64_t, 8> Weights; 892 bool PredHasWeights = HasBranchWeights(PTI); 893 bool SuccHasWeights = HasBranchWeights(TI); 894 895 if (PredHasWeights) { 896 GetBranchWeights(PTI, Weights); 897 // branch-weight metadata is inconsistent here. 898 if (Weights.size() != 1 + PredCases.size()) 899 PredHasWeights = SuccHasWeights = false; 900 } else if (SuccHasWeights) 901 // If there are no predecessor weights but there are successor weights, 902 // populate Weights with 1, which will later be scaled to the sum of 903 // successor's weights 904 Weights.assign(1 + PredCases.size(), 1); 905 906 SmallVector<uint64_t, 8> SuccWeights; 907 if (SuccHasWeights) { 908 GetBranchWeights(TI, SuccWeights); 909 // branch-weight metadata is inconsistent here. 910 if (SuccWeights.size() != 1 + BBCases.size()) 911 PredHasWeights = SuccHasWeights = false; 912 } else if (PredHasWeights) 913 SuccWeights.assign(1 + BBCases.size(), 1); 914 915 if (PredDefault == BB) { 916 // If this is the default destination from PTI, only the edges in TI 917 // that don't occur in PTI, or that branch to BB will be activated. 918 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 919 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 920 if (PredCases[i].Dest != BB) 921 PTIHandled.insert(PredCases[i].Value); 922 else { 923 // The default destination is BB, we don't need explicit targets. 924 std::swap(PredCases[i], PredCases.back()); 925 926 if (PredHasWeights || SuccHasWeights) { 927 // Increase weight for the default case. 928 Weights[0] += Weights[i+1]; 929 std::swap(Weights[i+1], Weights.back()); 930 Weights.pop_back(); 931 } 932 933 PredCases.pop_back(); 934 --i; --e; 935 } 936 937 // Reconstruct the new switch statement we will be building. 938 if (PredDefault != BBDefault) { 939 PredDefault->removePredecessor(Pred); 940 PredDefault = BBDefault; 941 NewSuccessors.push_back(BBDefault); 942 } 943 944 unsigned CasesFromPred = Weights.size(); 945 uint64_t ValidTotalSuccWeight = 0; 946 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 947 if (!PTIHandled.count(BBCases[i].Value) && 948 BBCases[i].Dest != BBDefault) { 949 PredCases.push_back(BBCases[i]); 950 NewSuccessors.push_back(BBCases[i].Dest); 951 if (SuccHasWeights || PredHasWeights) { 952 // The default weight is at index 0, so weight for the ith case 953 // should be at index i+1. Scale the cases from successor by 954 // PredDefaultWeight (Weights[0]). 955 Weights.push_back(Weights[0] * SuccWeights[i+1]); 956 ValidTotalSuccWeight += SuccWeights[i+1]; 957 } 958 } 959 960 if (SuccHasWeights || PredHasWeights) { 961 ValidTotalSuccWeight += SuccWeights[0]; 962 // Scale the cases from predecessor by ValidTotalSuccWeight. 963 for (unsigned i = 1; i < CasesFromPred; ++i) 964 Weights[i] *= ValidTotalSuccWeight; 965 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 966 Weights[0] *= SuccWeights[0]; 967 } 968 } else { 969 // If this is not the default destination from PSI, only the edges 970 // in SI that occur in PSI with a destination of BB will be 971 // activated. 972 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 973 std::map<ConstantInt*, uint64_t> WeightsForHandled; 974 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 975 if (PredCases[i].Dest == BB) { 976 PTIHandled.insert(PredCases[i].Value); 977 978 if (PredHasWeights || SuccHasWeights) { 979 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 980 std::swap(Weights[i+1], Weights.back()); 981 Weights.pop_back(); 982 } 983 984 std::swap(PredCases[i], PredCases.back()); 985 PredCases.pop_back(); 986 --i; --e; 987 } 988 989 // Okay, now we know which constants were sent to BB from the 990 // predecessor. Figure out where they will all go now. 991 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 992 if (PTIHandled.count(BBCases[i].Value)) { 993 // If this is one we are capable of getting... 994 if (PredHasWeights || SuccHasWeights) 995 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 996 PredCases.push_back(BBCases[i]); 997 NewSuccessors.push_back(BBCases[i].Dest); 998 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 999 } 1000 1001 // If there are any constants vectored to BB that TI doesn't handle, 1002 // they must go to the default destination of TI. 1003 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 1004 PTIHandled.begin(), 1005 E = PTIHandled.end(); I != E; ++I) { 1006 if (PredHasWeights || SuccHasWeights) 1007 Weights.push_back(WeightsForHandled[*I]); 1008 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 1009 NewSuccessors.push_back(BBDefault); 1010 } 1011 } 1012 1013 // Okay, at this point, we know which new successor Pred will get. Make 1014 // sure we update the number of entries in the PHI nodes for these 1015 // successors. 1016 for (BasicBlock *NewSuccessor : NewSuccessors) 1017 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1018 1019 Builder.SetInsertPoint(PTI); 1020 // Convert pointer to int before we switch. 1021 if (CV->getType()->isPointerTy()) { 1022 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1023 "magicptr"); 1024 } 1025 1026 // Now that the successors are updated, create the new Switch instruction. 1027 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 1028 PredCases.size()); 1029 NewSI->setDebugLoc(PTI->getDebugLoc()); 1030 for (ValueEqualityComparisonCase &V : PredCases) 1031 NewSI->addCase(V.Value, V.Dest); 1032 1033 if (PredHasWeights || SuccHasWeights) { 1034 // Halve the weights if any of them cannot fit in an uint32_t 1035 FitWeights(Weights); 1036 1037 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1038 1039 NewSI->setMetadata(LLVMContext::MD_prof, 1040 MDBuilder(BB->getContext()). 1041 createBranchWeights(MDWeights)); 1042 } 1043 1044 EraseTerminatorInstAndDCECond(PTI); 1045 1046 // Okay, last check. If BB is still a successor of PSI, then we must 1047 // have an infinite loop case. If so, add an infinitely looping block 1048 // to handle the case to preserve the behavior of the code. 1049 BasicBlock *InfLoopBlock = nullptr; 1050 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1051 if (NewSI->getSuccessor(i) == BB) { 1052 if (!InfLoopBlock) { 1053 // Insert it at the end of the function, because it's either code, 1054 // or it won't matter if it's hot. :) 1055 InfLoopBlock = BasicBlock::Create(BB->getContext(), 1056 "infloop", BB->getParent()); 1057 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1058 } 1059 NewSI->setSuccessor(i, InfLoopBlock); 1060 } 1061 1062 Changed = true; 1063 } 1064 } 1065 return Changed; 1066 } 1067 1068 // If we would need to insert a select that uses the value of this invoke 1069 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1070 // can't hoist the invoke, as there is nowhere to put the select in this case. 1071 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1072 Instruction *I1, Instruction *I2) { 1073 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1074 PHINode *PN; 1075 for (BasicBlock::iterator BBI = SI->begin(); 1076 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1077 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1078 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1079 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1080 return false; 1081 } 1082 } 1083 } 1084 return true; 1085 } 1086 1087 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1088 1089 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1090 /// in the two blocks up into the branch block. The caller of this function 1091 /// guarantees that BI's block dominates BB1 and BB2. 1092 static bool HoistThenElseCodeToIf(BranchInst *BI, 1093 const TargetTransformInfo &TTI) { 1094 // This does very trivial matching, with limited scanning, to find identical 1095 // instructions in the two blocks. In particular, we don't want to get into 1096 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1097 // such, we currently just scan for obviously identical instructions in an 1098 // identical order. 1099 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1100 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1101 1102 BasicBlock::iterator BB1_Itr = BB1->begin(); 1103 BasicBlock::iterator BB2_Itr = BB2->begin(); 1104 1105 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1106 // Skip debug info if it is not identical. 1107 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1108 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1109 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1110 while (isa<DbgInfoIntrinsic>(I1)) 1111 I1 = &*BB1_Itr++; 1112 while (isa<DbgInfoIntrinsic>(I2)) 1113 I2 = &*BB2_Itr++; 1114 } 1115 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1116 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1117 return false; 1118 1119 BasicBlock *BIParent = BI->getParent(); 1120 1121 bool Changed = false; 1122 do { 1123 // If we are hoisting the terminator instruction, don't move one (making a 1124 // broken BB), instead clone it, and remove BI. 1125 if (isa<TerminatorInst>(I1)) 1126 goto HoistTerminator; 1127 1128 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1129 return Changed; 1130 1131 // For a normal instruction, we just move one to right before the branch, 1132 // then replace all uses of the other with the first. Finally, we remove 1133 // the now redundant second instruction. 1134 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1135 if (!I2->use_empty()) 1136 I2->replaceAllUsesWith(I1); 1137 I1->intersectOptionalDataWith(I2); 1138 unsigned KnownIDs[] = { 1139 LLVMContext::MD_tbaa, LLVMContext::MD_range, 1140 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 1141 LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group, 1142 LLVMContext::MD_align, LLVMContext::MD_dereferenceable, 1143 LLVMContext::MD_dereferenceable_or_null}; 1144 combineMetadata(I1, I2, KnownIDs); 1145 I2->eraseFromParent(); 1146 Changed = true; 1147 1148 I1 = &*BB1_Itr++; 1149 I2 = &*BB2_Itr++; 1150 // Skip debug info if it is not identical. 1151 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1152 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1153 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1154 while (isa<DbgInfoIntrinsic>(I1)) 1155 I1 = &*BB1_Itr++; 1156 while (isa<DbgInfoIntrinsic>(I2)) 1157 I2 = &*BB2_Itr++; 1158 } 1159 } while (I1->isIdenticalToWhenDefined(I2)); 1160 1161 return true; 1162 1163 HoistTerminator: 1164 // It may not be possible to hoist an invoke. 1165 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1166 return Changed; 1167 1168 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1169 PHINode *PN; 1170 for (BasicBlock::iterator BBI = SI->begin(); 1171 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1172 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1173 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1174 if (BB1V == BB2V) 1175 continue; 1176 1177 // Check for passingValueIsAlwaysUndefined here because we would rather 1178 // eliminate undefined control flow then converting it to a select. 1179 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1180 passingValueIsAlwaysUndefined(BB2V, PN)) 1181 return Changed; 1182 1183 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1184 return Changed; 1185 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1186 return Changed; 1187 } 1188 } 1189 1190 // Okay, it is safe to hoist the terminator. 1191 Instruction *NT = I1->clone(); 1192 BIParent->getInstList().insert(BI->getIterator(), NT); 1193 if (!NT->getType()->isVoidTy()) { 1194 I1->replaceAllUsesWith(NT); 1195 I2->replaceAllUsesWith(NT); 1196 NT->takeName(I1); 1197 } 1198 1199 IRBuilder<true, NoFolder> Builder(NT); 1200 // Hoisting one of the terminators from our successor is a great thing. 1201 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1202 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1203 // nodes, so we insert select instruction to compute the final result. 1204 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1205 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1206 PHINode *PN; 1207 for (BasicBlock::iterator BBI = SI->begin(); 1208 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1209 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1210 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1211 if (BB1V == BB2V) continue; 1212 1213 // These values do not agree. Insert a select instruction before NT 1214 // that determines the right value. 1215 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1216 if (!SI) 1217 SI = cast<SelectInst> 1218 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1219 BB1V->getName()+"."+BB2V->getName())); 1220 1221 // Make the PHI node use the select for all incoming values for BB1/BB2 1222 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1223 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1224 PN->setIncomingValue(i, SI); 1225 } 1226 } 1227 1228 // Update any PHI nodes in our new successors. 1229 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1230 AddPredecessorToBlock(*SI, BIParent, BB1); 1231 1232 EraseTerminatorInstAndDCECond(BI); 1233 return true; 1234 } 1235 1236 /// Given an unconditional branch that goes to BBEnd, 1237 /// check whether BBEnd has only two predecessors and the other predecessor 1238 /// ends with an unconditional branch. If it is true, sink any common code 1239 /// in the two predecessors to BBEnd. 1240 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1241 assert(BI1->isUnconditional()); 1242 BasicBlock *BB1 = BI1->getParent(); 1243 BasicBlock *BBEnd = BI1->getSuccessor(0); 1244 1245 // Check that BBEnd has two predecessors and the other predecessor ends with 1246 // an unconditional branch. 1247 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1248 BasicBlock *Pred0 = *PI++; 1249 if (PI == PE) // Only one predecessor. 1250 return false; 1251 BasicBlock *Pred1 = *PI++; 1252 if (PI != PE) // More than two predecessors. 1253 return false; 1254 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1255 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1256 if (!BI2 || !BI2->isUnconditional()) 1257 return false; 1258 1259 // Gather the PHI nodes in BBEnd. 1260 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap; 1261 Instruction *FirstNonPhiInBBEnd = nullptr; 1262 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) { 1263 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1264 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1265 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1266 JointValueMap[std::make_pair(BB1V, BB2V)] = PN; 1267 } else { 1268 FirstNonPhiInBBEnd = &*I; 1269 break; 1270 } 1271 } 1272 if (!FirstNonPhiInBBEnd) 1273 return false; 1274 1275 // This does very trivial matching, with limited scanning, to find identical 1276 // instructions in the two blocks. We scan backward for obviously identical 1277 // instructions in an identical order. 1278 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1279 RE1 = BB1->getInstList().rend(), 1280 RI2 = BB2->getInstList().rbegin(), 1281 RE2 = BB2->getInstList().rend(); 1282 // Skip debug info. 1283 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1284 if (RI1 == RE1) 1285 return false; 1286 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1287 if (RI2 == RE2) 1288 return false; 1289 // Skip the unconditional branches. 1290 ++RI1; 1291 ++RI2; 1292 1293 bool Changed = false; 1294 while (RI1 != RE1 && RI2 != RE2) { 1295 // Skip debug info. 1296 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1297 if (RI1 == RE1) 1298 return Changed; 1299 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1300 if (RI2 == RE2) 1301 return Changed; 1302 1303 Instruction *I1 = &*RI1, *I2 = &*RI2; 1304 auto InstPair = std::make_pair(I1, I2); 1305 // I1 and I2 should have a single use in the same PHI node, and they 1306 // perform the same operation. 1307 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1308 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1309 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1310 I1->isEHPad() || I2->isEHPad() || 1311 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1312 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1313 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1314 !I1->hasOneUse() || !I2->hasOneUse() || 1315 !JointValueMap.count(InstPair)) 1316 return Changed; 1317 1318 // Check whether we should swap the operands of ICmpInst. 1319 // TODO: Add support of communativity. 1320 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1321 bool SwapOpnds = false; 1322 if (ICmp1 && ICmp2 && 1323 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1324 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1325 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1326 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1327 ICmp2->swapOperands(); 1328 SwapOpnds = true; 1329 } 1330 if (!I1->isSameOperationAs(I2)) { 1331 if (SwapOpnds) 1332 ICmp2->swapOperands(); 1333 return Changed; 1334 } 1335 1336 // The operands should be either the same or they need to be generated 1337 // with a PHI node after sinking. We only handle the case where there is 1338 // a single pair of different operands. 1339 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1340 unsigned Op1Idx = ~0U; 1341 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1342 if (I1->getOperand(I) == I2->getOperand(I)) 1343 continue; 1344 // Early exit if we have more-than one pair of different operands or if 1345 // we need a PHI node to replace a constant. 1346 if (Op1Idx != ~0U || 1347 isa<Constant>(I1->getOperand(I)) || 1348 isa<Constant>(I2->getOperand(I))) { 1349 // If we can't sink the instructions, undo the swapping. 1350 if (SwapOpnds) 1351 ICmp2->swapOperands(); 1352 return Changed; 1353 } 1354 DifferentOp1 = I1->getOperand(I); 1355 Op1Idx = I; 1356 DifferentOp2 = I2->getOperand(I); 1357 } 1358 1359 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n"); 1360 DEBUG(dbgs() << " " << *I2 << "\n"); 1361 1362 // We insert the pair of different operands to JointValueMap and 1363 // remove (I1, I2) from JointValueMap. 1364 if (Op1Idx != ~0U) { 1365 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)]; 1366 if (!NewPN) { 1367 NewPN = 1368 PHINode::Create(DifferentOp1->getType(), 2, 1369 DifferentOp1->getName() + ".sink", &BBEnd->front()); 1370 NewPN->addIncoming(DifferentOp1, BB1); 1371 NewPN->addIncoming(DifferentOp2, BB2); 1372 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1373 } 1374 // I1 should use NewPN instead of DifferentOp1. 1375 I1->setOperand(Op1Idx, NewPN); 1376 } 1377 PHINode *OldPN = JointValueMap[InstPair]; 1378 JointValueMap.erase(InstPair); 1379 1380 // We need to update RE1 and RE2 if we are going to sink the first 1381 // instruction in the basic block down. 1382 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1383 // Sink the instruction. 1384 BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(), 1385 BB1->getInstList(), I1); 1386 if (!OldPN->use_empty()) 1387 OldPN->replaceAllUsesWith(I1); 1388 OldPN->eraseFromParent(); 1389 1390 if (!I2->use_empty()) 1391 I2->replaceAllUsesWith(I1); 1392 I1->intersectOptionalDataWith(I2); 1393 // TODO: Use combineMetadata here to preserve what metadata we can 1394 // (analogous to the hoisting case above). 1395 I2->eraseFromParent(); 1396 1397 if (UpdateRE1) 1398 RE1 = BB1->getInstList().rend(); 1399 if (UpdateRE2) 1400 RE2 = BB2->getInstList().rend(); 1401 FirstNonPhiInBBEnd = &*I1; 1402 NumSinkCommons++; 1403 Changed = true; 1404 } 1405 return Changed; 1406 } 1407 1408 /// \brief Determine if we can hoist sink a sole store instruction out of a 1409 /// conditional block. 1410 /// 1411 /// We are looking for code like the following: 1412 /// BrBB: 1413 /// store i32 %add, i32* %arrayidx2 1414 /// ... // No other stores or function calls (we could be calling a memory 1415 /// ... // function). 1416 /// %cmp = icmp ult %x, %y 1417 /// br i1 %cmp, label %EndBB, label %ThenBB 1418 /// ThenBB: 1419 /// store i32 %add5, i32* %arrayidx2 1420 /// br label EndBB 1421 /// EndBB: 1422 /// ... 1423 /// We are going to transform this into: 1424 /// BrBB: 1425 /// store i32 %add, i32* %arrayidx2 1426 /// ... // 1427 /// %cmp = icmp ult %x, %y 1428 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1429 /// store i32 %add.add5, i32* %arrayidx2 1430 /// ... 1431 /// 1432 /// \return The pointer to the value of the previous store if the store can be 1433 /// hoisted into the predecessor block. 0 otherwise. 1434 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1435 BasicBlock *StoreBB, BasicBlock *EndBB) { 1436 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1437 if (!StoreToHoist) 1438 return nullptr; 1439 1440 // Volatile or atomic. 1441 if (!StoreToHoist->isSimple()) 1442 return nullptr; 1443 1444 Value *StorePtr = StoreToHoist->getPointerOperand(); 1445 1446 // Look for a store to the same pointer in BrBB. 1447 unsigned MaxNumInstToLookAt = 10; 1448 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1449 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1450 Instruction *CurI = &*RI; 1451 1452 // Could be calling an instruction that effects memory like free(). 1453 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1454 return nullptr; 1455 1456 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1457 // Found the previous store make sure it stores to the same location. 1458 if (SI && SI->getPointerOperand() == StorePtr) 1459 // Found the previous store, return its value operand. 1460 return SI->getValueOperand(); 1461 else if (SI) 1462 return nullptr; // Unknown store. 1463 } 1464 1465 return nullptr; 1466 } 1467 1468 /// \brief Speculate a conditional basic block flattening the CFG. 1469 /// 1470 /// Note that this is a very risky transform currently. Speculating 1471 /// instructions like this is most often not desirable. Instead, there is an MI 1472 /// pass which can do it with full awareness of the resource constraints. 1473 /// However, some cases are "obvious" and we should do directly. An example of 1474 /// this is speculating a single, reasonably cheap instruction. 1475 /// 1476 /// There is only one distinct advantage to flattening the CFG at the IR level: 1477 /// it makes very common but simplistic optimizations such as are common in 1478 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1479 /// modeling their effects with easier to reason about SSA value graphs. 1480 /// 1481 /// 1482 /// An illustration of this transform is turning this IR: 1483 /// \code 1484 /// BB: 1485 /// %cmp = icmp ult %x, %y 1486 /// br i1 %cmp, label %EndBB, label %ThenBB 1487 /// ThenBB: 1488 /// %sub = sub %x, %y 1489 /// br label BB2 1490 /// EndBB: 1491 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1492 /// ... 1493 /// \endcode 1494 /// 1495 /// Into this IR: 1496 /// \code 1497 /// BB: 1498 /// %cmp = icmp ult %x, %y 1499 /// %sub = sub %x, %y 1500 /// %cond = select i1 %cmp, 0, %sub 1501 /// ... 1502 /// \endcode 1503 /// 1504 /// \returns true if the conditional block is removed. 1505 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1506 const TargetTransformInfo &TTI) { 1507 // Be conservative for now. FP select instruction can often be expensive. 1508 Value *BrCond = BI->getCondition(); 1509 if (isa<FCmpInst>(BrCond)) 1510 return false; 1511 1512 BasicBlock *BB = BI->getParent(); 1513 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1514 1515 // If ThenBB is actually on the false edge of the conditional branch, remember 1516 // to swap the select operands later. 1517 bool Invert = false; 1518 if (ThenBB != BI->getSuccessor(0)) { 1519 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1520 Invert = true; 1521 } 1522 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1523 1524 // Keep a count of how many times instructions are used within CondBB when 1525 // they are candidates for sinking into CondBB. Specifically: 1526 // - They are defined in BB, and 1527 // - They have no side effects, and 1528 // - All of their uses are in CondBB. 1529 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1530 1531 unsigned SpeculationCost = 0; 1532 Value *SpeculatedStoreValue = nullptr; 1533 StoreInst *SpeculatedStore = nullptr; 1534 for (BasicBlock::iterator BBI = ThenBB->begin(), 1535 BBE = std::prev(ThenBB->end()); 1536 BBI != BBE; ++BBI) { 1537 Instruction *I = &*BBI; 1538 // Skip debug info. 1539 if (isa<DbgInfoIntrinsic>(I)) 1540 continue; 1541 1542 // Only speculatively execute a single instruction (not counting the 1543 // terminator) for now. 1544 ++SpeculationCost; 1545 if (SpeculationCost > 1) 1546 return false; 1547 1548 // Don't hoist the instruction if it's unsafe or expensive. 1549 if (!isSafeToSpeculativelyExecute(I) && 1550 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1551 I, BB, ThenBB, EndBB)))) 1552 return false; 1553 if (!SpeculatedStoreValue && 1554 ComputeSpeculationCost(I, TTI) > 1555 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1556 return false; 1557 1558 // Store the store speculation candidate. 1559 if (SpeculatedStoreValue) 1560 SpeculatedStore = cast<StoreInst>(I); 1561 1562 // Do not hoist the instruction if any of its operands are defined but not 1563 // used in BB. The transformation will prevent the operand from 1564 // being sunk into the use block. 1565 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1566 i != e; ++i) { 1567 Instruction *OpI = dyn_cast<Instruction>(*i); 1568 if (!OpI || OpI->getParent() != BB || 1569 OpI->mayHaveSideEffects()) 1570 continue; // Not a candidate for sinking. 1571 1572 ++SinkCandidateUseCounts[OpI]; 1573 } 1574 } 1575 1576 // Consider any sink candidates which are only used in CondBB as costs for 1577 // speculation. Note, while we iterate over a DenseMap here, we are summing 1578 // and so iteration order isn't significant. 1579 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1580 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1581 I != E; ++I) 1582 if (I->first->getNumUses() == I->second) { 1583 ++SpeculationCost; 1584 if (SpeculationCost > 1) 1585 return false; 1586 } 1587 1588 // Check that the PHI nodes can be converted to selects. 1589 bool HaveRewritablePHIs = false; 1590 for (BasicBlock::iterator I = EndBB->begin(); 1591 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1592 Value *OrigV = PN->getIncomingValueForBlock(BB); 1593 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1594 1595 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1596 // Skip PHIs which are trivial. 1597 if (ThenV == OrigV) 1598 continue; 1599 1600 // Don't convert to selects if we could remove undefined behavior instead. 1601 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1602 passingValueIsAlwaysUndefined(ThenV, PN)) 1603 return false; 1604 1605 HaveRewritablePHIs = true; 1606 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1607 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1608 if (!OrigCE && !ThenCE) 1609 continue; // Known safe and cheap. 1610 1611 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1612 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1613 return false; 1614 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1615 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 1616 unsigned MaxCost = 2 * PHINodeFoldingThreshold * 1617 TargetTransformInfo::TCC_Basic; 1618 if (OrigCost + ThenCost > MaxCost) 1619 return false; 1620 1621 // Account for the cost of an unfolded ConstantExpr which could end up 1622 // getting expanded into Instructions. 1623 // FIXME: This doesn't account for how many operations are combined in the 1624 // constant expression. 1625 ++SpeculationCost; 1626 if (SpeculationCost > 1) 1627 return false; 1628 } 1629 1630 // If there are no PHIs to process, bail early. This helps ensure idempotence 1631 // as well. 1632 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1633 return false; 1634 1635 // If we get here, we can hoist the instruction and if-convert. 1636 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1637 1638 // Insert a select of the value of the speculated store. 1639 if (SpeculatedStoreValue) { 1640 IRBuilder<true, NoFolder> Builder(BI); 1641 Value *TrueV = SpeculatedStore->getValueOperand(); 1642 Value *FalseV = SpeculatedStoreValue; 1643 if (Invert) 1644 std::swap(TrueV, FalseV); 1645 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1646 "." + FalseV->getName()); 1647 SpeculatedStore->setOperand(0, S); 1648 } 1649 1650 // Metadata can be dependent on the condition we are hoisting above. 1651 // Conservatively strip all metadata on the instruction. 1652 for (auto &I: *ThenBB) 1653 I.dropUnknownNonDebugMetadata(); 1654 1655 // Hoist the instructions. 1656 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 1657 ThenBB->begin(), std::prev(ThenBB->end())); 1658 1659 // Insert selects and rewrite the PHI operands. 1660 IRBuilder<true, NoFolder> Builder(BI); 1661 for (BasicBlock::iterator I = EndBB->begin(); 1662 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1663 unsigned OrigI = PN->getBasicBlockIndex(BB); 1664 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1665 Value *OrigV = PN->getIncomingValue(OrigI); 1666 Value *ThenV = PN->getIncomingValue(ThenI); 1667 1668 // Skip PHIs which are trivial. 1669 if (OrigV == ThenV) 1670 continue; 1671 1672 // Create a select whose true value is the speculatively executed value and 1673 // false value is the preexisting value. Swap them if the branch 1674 // destinations were inverted. 1675 Value *TrueV = ThenV, *FalseV = OrigV; 1676 if (Invert) 1677 std::swap(TrueV, FalseV); 1678 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1679 TrueV->getName() + "." + FalseV->getName()); 1680 PN->setIncomingValue(OrigI, V); 1681 PN->setIncomingValue(ThenI, V); 1682 } 1683 1684 ++NumSpeculations; 1685 return true; 1686 } 1687 1688 /// \returns True if this block contains a CallInst with the NoDuplicate 1689 /// attribute. 1690 static bool HasNoDuplicateCall(const BasicBlock *BB) { 1691 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1692 const CallInst *CI = dyn_cast<CallInst>(I); 1693 if (!CI) 1694 continue; 1695 if (CI->cannotDuplicate()) 1696 return true; 1697 } 1698 return false; 1699 } 1700 1701 /// Return true if we can thread a branch across this block. 1702 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1703 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1704 unsigned Size = 0; 1705 1706 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1707 if (isa<DbgInfoIntrinsic>(BBI)) 1708 continue; 1709 if (Size > 10) return false; // Don't clone large BB's. 1710 ++Size; 1711 1712 // We can only support instructions that do not define values that are 1713 // live outside of the current basic block. 1714 for (User *U : BBI->users()) { 1715 Instruction *UI = cast<Instruction>(U); 1716 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1717 } 1718 1719 // Looks ok, continue checking. 1720 } 1721 1722 return true; 1723 } 1724 1725 /// If we have a conditional branch on a PHI node value that is defined in the 1726 /// same block as the branch and if any PHI entries are constants, thread edges 1727 /// corresponding to that entry to be branches to their ultimate destination. 1728 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 1729 BasicBlock *BB = BI->getParent(); 1730 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1731 // NOTE: we currently cannot transform this case if the PHI node is used 1732 // outside of the block. 1733 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1734 return false; 1735 1736 // Degenerate case of a single entry PHI. 1737 if (PN->getNumIncomingValues() == 1) { 1738 FoldSingleEntryPHINodes(PN->getParent()); 1739 return true; 1740 } 1741 1742 // Now we know that this block has multiple preds and two succs. 1743 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1744 1745 if (HasNoDuplicateCall(BB)) return false; 1746 1747 // Okay, this is a simple enough basic block. See if any phi values are 1748 // constants. 1749 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1750 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1751 if (!CB || !CB->getType()->isIntegerTy(1)) continue; 1752 1753 // Okay, we now know that all edges from PredBB should be revectored to 1754 // branch to RealDest. 1755 BasicBlock *PredBB = PN->getIncomingBlock(i); 1756 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1757 1758 if (RealDest == BB) continue; // Skip self loops. 1759 // Skip if the predecessor's terminator is an indirect branch. 1760 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1761 1762 // The dest block might have PHI nodes, other predecessors and other 1763 // difficult cases. Instead of being smart about this, just insert a new 1764 // block that jumps to the destination block, effectively splitting 1765 // the edge we are about to create. 1766 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1767 RealDest->getName()+".critedge", 1768 RealDest->getParent(), RealDest); 1769 BranchInst::Create(RealDest, EdgeBB); 1770 1771 // Update PHI nodes. 1772 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1773 1774 // BB may have instructions that are being threaded over. Clone these 1775 // instructions into EdgeBB. We know that there will be no uses of the 1776 // cloned instructions outside of EdgeBB. 1777 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1778 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1779 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1780 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1781 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1782 continue; 1783 } 1784 // Clone the instruction. 1785 Instruction *N = BBI->clone(); 1786 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1787 1788 // Update operands due to translation. 1789 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1790 i != e; ++i) { 1791 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1792 if (PI != TranslateMap.end()) 1793 *i = PI->second; 1794 } 1795 1796 // Check for trivial simplification. 1797 if (Value *V = SimplifyInstruction(N, DL)) { 1798 TranslateMap[&*BBI] = V; 1799 delete N; // Instruction folded away, don't need actual inst 1800 } else { 1801 // Insert the new instruction into its new home. 1802 EdgeBB->getInstList().insert(InsertPt, N); 1803 if (!BBI->use_empty()) 1804 TranslateMap[&*BBI] = N; 1805 } 1806 } 1807 1808 // Loop over all of the edges from PredBB to BB, changing them to branch 1809 // to EdgeBB instead. 1810 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1811 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1812 if (PredBBTI->getSuccessor(i) == BB) { 1813 BB->removePredecessor(PredBB); 1814 PredBBTI->setSuccessor(i, EdgeBB); 1815 } 1816 1817 // Recurse, simplifying any other constants. 1818 return FoldCondBranchOnPHI(BI, DL) | true; 1819 } 1820 1821 return false; 1822 } 1823 1824 /// Given a BB that starts with the specified two-entry PHI node, 1825 /// see if we can eliminate it. 1826 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 1827 const DataLayout &DL) { 1828 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1829 // statement", which has a very simple dominance structure. Basically, we 1830 // are trying to find the condition that is being branched on, which 1831 // subsequently causes this merge to happen. We really want control 1832 // dependence information for this check, but simplifycfg can't keep it up 1833 // to date, and this catches most of the cases we care about anyway. 1834 BasicBlock *BB = PN->getParent(); 1835 BasicBlock *IfTrue, *IfFalse; 1836 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1837 if (!IfCond || 1838 // Don't bother if the branch will be constant folded trivially. 1839 isa<ConstantInt>(IfCond)) 1840 return false; 1841 1842 // Okay, we found that we can merge this two-entry phi node into a select. 1843 // Doing so would require us to fold *all* two entry phi nodes in this block. 1844 // At some point this becomes non-profitable (particularly if the target 1845 // doesn't support cmov's). Only do this transformation if there are two or 1846 // fewer PHI nodes in this block. 1847 unsigned NumPhis = 0; 1848 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1849 if (NumPhis > 2) 1850 return false; 1851 1852 // Loop over the PHI's seeing if we can promote them all to select 1853 // instructions. While we are at it, keep track of the instructions 1854 // that need to be moved to the dominating block. 1855 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1856 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1857 MaxCostVal1 = PHINodeFoldingThreshold; 1858 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 1859 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 1860 1861 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1862 PHINode *PN = cast<PHINode>(II++); 1863 if (Value *V = SimplifyInstruction(PN, DL)) { 1864 PN->replaceAllUsesWith(V); 1865 PN->eraseFromParent(); 1866 continue; 1867 } 1868 1869 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1870 MaxCostVal0, TTI) || 1871 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1872 MaxCostVal1, TTI)) 1873 return false; 1874 } 1875 1876 // If we folded the first phi, PN dangles at this point. Refresh it. If 1877 // we ran out of PHIs then we simplified them all. 1878 PN = dyn_cast<PHINode>(BB->begin()); 1879 if (!PN) return true; 1880 1881 // Don't fold i1 branches on PHIs which contain binary operators. These can 1882 // often be turned into switches and other things. 1883 if (PN->getType()->isIntegerTy(1) && 1884 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1885 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1886 isa<BinaryOperator>(IfCond))) 1887 return false; 1888 1889 // If we all PHI nodes are promotable, check to make sure that all 1890 // instructions in the predecessor blocks can be promoted as well. If 1891 // not, we won't be able to get rid of the control flow, so it's not 1892 // worth promoting to select instructions. 1893 BasicBlock *DomBlock = nullptr; 1894 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1895 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1896 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1897 IfBlock1 = nullptr; 1898 } else { 1899 DomBlock = *pred_begin(IfBlock1); 1900 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1901 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1902 // This is not an aggressive instruction that we can promote. 1903 // Because of this, we won't be able to get rid of the control 1904 // flow, so the xform is not worth it. 1905 return false; 1906 } 1907 } 1908 1909 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1910 IfBlock2 = nullptr; 1911 } else { 1912 DomBlock = *pred_begin(IfBlock2); 1913 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1914 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1915 // This is not an aggressive instruction that we can promote. 1916 // Because of this, we won't be able to get rid of the control 1917 // flow, so the xform is not worth it. 1918 return false; 1919 } 1920 } 1921 1922 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1923 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1924 1925 // If we can still promote the PHI nodes after this gauntlet of tests, 1926 // do all of the PHI's now. 1927 Instruction *InsertPt = DomBlock->getTerminator(); 1928 IRBuilder<true, NoFolder> Builder(InsertPt); 1929 1930 // Move all 'aggressive' instructions, which are defined in the 1931 // conditional parts of the if's up to the dominating block. 1932 if (IfBlock1) 1933 DomBlock->getInstList().splice(InsertPt->getIterator(), 1934 IfBlock1->getInstList(), IfBlock1->begin(), 1935 IfBlock1->getTerminator()->getIterator()); 1936 if (IfBlock2) 1937 DomBlock->getInstList().splice(InsertPt->getIterator(), 1938 IfBlock2->getInstList(), IfBlock2->begin(), 1939 IfBlock2->getTerminator()->getIterator()); 1940 1941 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1942 // Change the PHI node into a select instruction. 1943 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1944 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1945 1946 SelectInst *NV = 1947 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1948 PN->replaceAllUsesWith(NV); 1949 NV->takeName(PN); 1950 PN->eraseFromParent(); 1951 } 1952 1953 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1954 // has been flattened. Change DomBlock to jump directly to our new block to 1955 // avoid other simplifycfg's kicking in on the diamond. 1956 TerminatorInst *OldTI = DomBlock->getTerminator(); 1957 Builder.SetInsertPoint(OldTI); 1958 Builder.CreateBr(BB); 1959 OldTI->eraseFromParent(); 1960 return true; 1961 } 1962 1963 /// If we found a conditional branch that goes to two returning blocks, 1964 /// try to merge them together into one return, 1965 /// introducing a select if the return values disagree. 1966 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1967 IRBuilder<> &Builder) { 1968 assert(BI->isConditional() && "Must be a conditional branch"); 1969 BasicBlock *TrueSucc = BI->getSuccessor(0); 1970 BasicBlock *FalseSucc = BI->getSuccessor(1); 1971 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1972 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1973 1974 // Check to ensure both blocks are empty (just a return) or optionally empty 1975 // with PHI nodes. If there are other instructions, merging would cause extra 1976 // computation on one path or the other. 1977 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1978 return false; 1979 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1980 return false; 1981 1982 Builder.SetInsertPoint(BI); 1983 // Okay, we found a branch that is going to two return nodes. If 1984 // there is no return value for this function, just change the 1985 // branch into a return. 1986 if (FalseRet->getNumOperands() == 0) { 1987 TrueSucc->removePredecessor(BI->getParent()); 1988 FalseSucc->removePredecessor(BI->getParent()); 1989 Builder.CreateRetVoid(); 1990 EraseTerminatorInstAndDCECond(BI); 1991 return true; 1992 } 1993 1994 // Otherwise, figure out what the true and false return values are 1995 // so we can insert a new select instruction. 1996 Value *TrueValue = TrueRet->getReturnValue(); 1997 Value *FalseValue = FalseRet->getReturnValue(); 1998 1999 // Unwrap any PHI nodes in the return blocks. 2000 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2001 if (TVPN->getParent() == TrueSucc) 2002 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2003 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2004 if (FVPN->getParent() == FalseSucc) 2005 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2006 2007 // In order for this transformation to be safe, we must be able to 2008 // unconditionally execute both operands to the return. This is 2009 // normally the case, but we could have a potentially-trapping 2010 // constant expression that prevents this transformation from being 2011 // safe. 2012 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2013 if (TCV->canTrap()) 2014 return false; 2015 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2016 if (FCV->canTrap()) 2017 return false; 2018 2019 // Okay, we collected all the mapped values and checked them for sanity, and 2020 // defined to really do this transformation. First, update the CFG. 2021 TrueSucc->removePredecessor(BI->getParent()); 2022 FalseSucc->removePredecessor(BI->getParent()); 2023 2024 // Insert select instructions where needed. 2025 Value *BrCond = BI->getCondition(); 2026 if (TrueValue) { 2027 // Insert a select if the results differ. 2028 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2029 } else if (isa<UndefValue>(TrueValue)) { 2030 TrueValue = FalseValue; 2031 } else { 2032 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 2033 FalseValue, "retval"); 2034 } 2035 } 2036 2037 Value *RI = !TrueValue ? 2038 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2039 2040 (void) RI; 2041 2042 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2043 << "\n " << *BI << "NewRet = " << *RI 2044 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 2045 2046 EraseTerminatorInstAndDCECond(BI); 2047 2048 return true; 2049 } 2050 2051 /// Given a conditional BranchInstruction, retrieve the probabilities of the 2052 /// branch taking each edge. Fills in the two APInt parameters and returns true, 2053 /// or returns false if no or invalid metadata was found. 2054 static bool ExtractBranchMetadata(BranchInst *BI, 2055 uint64_t &ProbTrue, uint64_t &ProbFalse) { 2056 assert(BI->isConditional() && 2057 "Looking for probabilities on unconditional branch?"); 2058 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 2059 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 2060 ConstantInt *CITrue = 2061 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 2062 ConstantInt *CIFalse = 2063 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 2064 if (!CITrue || !CIFalse) return false; 2065 ProbTrue = CITrue->getValue().getZExtValue(); 2066 ProbFalse = CIFalse->getValue().getZExtValue(); 2067 return true; 2068 } 2069 2070 /// Return true if the given instruction is available 2071 /// in its predecessor block. If yes, the instruction will be removed. 2072 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2073 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2074 return false; 2075 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 2076 Instruction *PBI = &*I; 2077 // Check whether Inst and PBI generate the same value. 2078 if (Inst->isIdenticalTo(PBI)) { 2079 Inst->replaceAllUsesWith(PBI); 2080 Inst->eraseFromParent(); 2081 return true; 2082 } 2083 } 2084 return false; 2085 } 2086 2087 /// If this basic block is simple enough, and if a predecessor branches to us 2088 /// and one of our successors, fold the block into the predecessor and use 2089 /// logical operations to pick the right destination. 2090 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2091 BasicBlock *BB = BI->getParent(); 2092 2093 Instruction *Cond = nullptr; 2094 if (BI->isConditional()) 2095 Cond = dyn_cast<Instruction>(BI->getCondition()); 2096 else { 2097 // For unconditional branch, check for a simple CFG pattern, where 2098 // BB has a single predecessor and BB's successor is also its predecessor's 2099 // successor. If such pattern exisits, check for CSE between BB and its 2100 // predecessor. 2101 if (BasicBlock *PB = BB->getSinglePredecessor()) 2102 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2103 if (PBI->isConditional() && 2104 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2105 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2106 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 2107 I != E; ) { 2108 Instruction *Curr = &*I++; 2109 if (isa<CmpInst>(Curr)) { 2110 Cond = Curr; 2111 break; 2112 } 2113 // Quit if we can't remove this instruction. 2114 if (!checkCSEInPredecessor(Curr, PB)) 2115 return false; 2116 } 2117 } 2118 2119 if (!Cond) 2120 return false; 2121 } 2122 2123 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2124 Cond->getParent() != BB || !Cond->hasOneUse()) 2125 return false; 2126 2127 // Make sure the instruction after the condition is the cond branch. 2128 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2129 2130 // Ignore dbg intrinsics. 2131 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2132 2133 if (&*CondIt != BI) 2134 return false; 2135 2136 // Only allow this transformation if computing the condition doesn't involve 2137 // too many instructions and these involved instructions can be executed 2138 // unconditionally. We denote all involved instructions except the condition 2139 // as "bonus instructions", and only allow this transformation when the 2140 // number of the bonus instructions does not exceed a certain threshold. 2141 unsigned NumBonusInsts = 0; 2142 for (auto I = BB->begin(); Cond != I; ++I) { 2143 // Ignore dbg intrinsics. 2144 if (isa<DbgInfoIntrinsic>(I)) 2145 continue; 2146 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2147 return false; 2148 // I has only one use and can be executed unconditionally. 2149 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2150 if (User == nullptr || User->getParent() != BB) 2151 return false; 2152 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2153 // to use any other instruction, User must be an instruction between next(I) 2154 // and Cond. 2155 ++NumBonusInsts; 2156 // Early exits once we reach the limit. 2157 if (NumBonusInsts > BonusInstThreshold) 2158 return false; 2159 } 2160 2161 // Cond is known to be a compare or binary operator. Check to make sure that 2162 // neither operand is a potentially-trapping constant expression. 2163 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2164 if (CE->canTrap()) 2165 return false; 2166 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2167 if (CE->canTrap()) 2168 return false; 2169 2170 // Finally, don't infinitely unroll conditional loops. 2171 BasicBlock *TrueDest = BI->getSuccessor(0); 2172 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2173 if (TrueDest == BB || FalseDest == BB) 2174 return false; 2175 2176 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2177 BasicBlock *PredBlock = *PI; 2178 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2179 2180 // Check that we have two conditional branches. If there is a PHI node in 2181 // the common successor, verify that the same value flows in from both 2182 // blocks. 2183 SmallVector<PHINode*, 4> PHIs; 2184 if (!PBI || PBI->isUnconditional() || 2185 (BI->isConditional() && 2186 !SafeToMergeTerminators(BI, PBI)) || 2187 (!BI->isConditional() && 2188 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2189 continue; 2190 2191 // Determine if the two branches share a common destination. 2192 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2193 bool InvertPredCond = false; 2194 2195 if (BI->isConditional()) { 2196 if (PBI->getSuccessor(0) == TrueDest) 2197 Opc = Instruction::Or; 2198 else if (PBI->getSuccessor(1) == FalseDest) 2199 Opc = Instruction::And; 2200 else if (PBI->getSuccessor(0) == FalseDest) 2201 Opc = Instruction::And, InvertPredCond = true; 2202 else if (PBI->getSuccessor(1) == TrueDest) 2203 Opc = Instruction::Or, InvertPredCond = true; 2204 else 2205 continue; 2206 } else { 2207 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2208 continue; 2209 } 2210 2211 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2212 IRBuilder<> Builder(PBI); 2213 2214 // If we need to invert the condition in the pred block to match, do so now. 2215 if (InvertPredCond) { 2216 Value *NewCond = PBI->getCondition(); 2217 2218 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2219 CmpInst *CI = cast<CmpInst>(NewCond); 2220 CI->setPredicate(CI->getInversePredicate()); 2221 } else { 2222 NewCond = Builder.CreateNot(NewCond, 2223 PBI->getCondition()->getName()+".not"); 2224 } 2225 2226 PBI->setCondition(NewCond); 2227 PBI->swapSuccessors(); 2228 } 2229 2230 // If we have bonus instructions, clone them into the predecessor block. 2231 // Note that there may be multiple predecessor blocks, so we cannot move 2232 // bonus instructions to a predecessor block. 2233 ValueToValueMapTy VMap; // maps original values to cloned values 2234 // We already make sure Cond is the last instruction before BI. Therefore, 2235 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2236 // instructions. 2237 for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) { 2238 if (isa<DbgInfoIntrinsic>(BonusInst)) 2239 continue; 2240 Instruction *NewBonusInst = BonusInst->clone(); 2241 RemapInstruction(NewBonusInst, VMap, 2242 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2243 VMap[&*BonusInst] = NewBonusInst; 2244 2245 // If we moved a load, we cannot any longer claim any knowledge about 2246 // its potential value. The previous information might have been valid 2247 // only given the branch precondition. 2248 // For an analogous reason, we must also drop all the metadata whose 2249 // semantics we don't understand. 2250 NewBonusInst->dropUnknownNonDebugMetadata(); 2251 2252 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2253 NewBonusInst->takeName(&*BonusInst); 2254 BonusInst->setName(BonusInst->getName() + ".old"); 2255 } 2256 2257 // Clone Cond into the predecessor basic block, and or/and the 2258 // two conditions together. 2259 Instruction *New = Cond->clone(); 2260 RemapInstruction(New, VMap, 2261 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2262 PredBlock->getInstList().insert(PBI->getIterator(), New); 2263 New->takeName(Cond); 2264 Cond->setName(New->getName() + ".old"); 2265 2266 if (BI->isConditional()) { 2267 Instruction *NewCond = 2268 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2269 New, "or.cond")); 2270 PBI->setCondition(NewCond); 2271 2272 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2273 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2274 PredFalseWeight); 2275 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2276 SuccFalseWeight); 2277 SmallVector<uint64_t, 8> NewWeights; 2278 2279 if (PBI->getSuccessor(0) == BB) { 2280 if (PredHasWeights && SuccHasWeights) { 2281 // PBI: br i1 %x, BB, FalseDest 2282 // BI: br i1 %y, TrueDest, FalseDest 2283 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2284 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2285 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2286 // TrueWeight for PBI * FalseWeight for BI. 2287 // We assume that total weights of a BranchInst can fit into 32 bits. 2288 // Therefore, we will not have overflow using 64-bit arithmetic. 2289 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2290 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2291 } 2292 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2293 PBI->setSuccessor(0, TrueDest); 2294 } 2295 if (PBI->getSuccessor(1) == BB) { 2296 if (PredHasWeights && SuccHasWeights) { 2297 // PBI: br i1 %x, TrueDest, BB 2298 // BI: br i1 %y, TrueDest, FalseDest 2299 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2300 // FalseWeight for PBI * TrueWeight for BI. 2301 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2302 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2303 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2304 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2305 } 2306 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2307 PBI->setSuccessor(1, FalseDest); 2308 } 2309 if (NewWeights.size() == 2) { 2310 // Halve the weights if any of them cannot fit in an uint32_t 2311 FitWeights(NewWeights); 2312 2313 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2314 PBI->setMetadata(LLVMContext::MD_prof, 2315 MDBuilder(BI->getContext()). 2316 createBranchWeights(MDWeights)); 2317 } else 2318 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2319 } else { 2320 // Update PHI nodes in the common successors. 2321 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2322 ConstantInt *PBI_C = cast<ConstantInt>( 2323 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2324 assert(PBI_C->getType()->isIntegerTy(1)); 2325 Instruction *MergedCond = nullptr; 2326 if (PBI->getSuccessor(0) == TrueDest) { 2327 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2328 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2329 // is false: !PBI_Cond and BI_Value 2330 Instruction *NotCond = 2331 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2332 "not.cond")); 2333 MergedCond = 2334 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2335 NotCond, New, 2336 "and.cond")); 2337 if (PBI_C->isOne()) 2338 MergedCond = 2339 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2340 PBI->getCondition(), MergedCond, 2341 "or.cond")); 2342 } else { 2343 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2344 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2345 // is false: PBI_Cond and BI_Value 2346 MergedCond = 2347 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2348 PBI->getCondition(), New, 2349 "and.cond")); 2350 if (PBI_C->isOne()) { 2351 Instruction *NotCond = 2352 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2353 "not.cond")); 2354 MergedCond = 2355 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2356 NotCond, MergedCond, 2357 "or.cond")); 2358 } 2359 } 2360 // Update PHI Node. 2361 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2362 MergedCond); 2363 } 2364 // Change PBI from Conditional to Unconditional. 2365 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2366 EraseTerminatorInstAndDCECond(PBI); 2367 PBI = New_PBI; 2368 } 2369 2370 // TODO: If BB is reachable from all paths through PredBlock, then we 2371 // could replace PBI's branch probabilities with BI's. 2372 2373 // Copy any debug value intrinsics into the end of PredBlock. 2374 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2375 if (isa<DbgInfoIntrinsic>(*I)) 2376 I->clone()->insertBefore(PBI); 2377 2378 return true; 2379 } 2380 return false; 2381 } 2382 2383 // If there is only one store in BB1 and BB2, return it, otherwise return 2384 // nullptr. 2385 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2386 StoreInst *S = nullptr; 2387 for (auto *BB : {BB1, BB2}) { 2388 if (!BB) 2389 continue; 2390 for (auto &I : *BB) 2391 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2392 if (S) 2393 // Multiple stores seen. 2394 return nullptr; 2395 else 2396 S = SI; 2397 } 2398 } 2399 return S; 2400 } 2401 2402 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2403 Value *AlternativeV = nullptr) { 2404 // PHI is going to be a PHI node that allows the value V that is defined in 2405 // BB to be referenced in BB's only successor. 2406 // 2407 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2408 // doesn't matter to us what the other operand is (it'll never get used). We 2409 // could just create a new PHI with an undef incoming value, but that could 2410 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2411 // other PHI. So here we directly look for some PHI in BB's successor with V 2412 // as an incoming operand. If we find one, we use it, else we create a new 2413 // one. 2414 // 2415 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2416 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2417 // where OtherBB is the single other predecessor of BB's only successor. 2418 PHINode *PHI = nullptr; 2419 BasicBlock *Succ = BB->getSingleSuccessor(); 2420 2421 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2422 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2423 PHI = cast<PHINode>(I); 2424 if (!AlternativeV) 2425 break; 2426 2427 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2428 auto PredI = pred_begin(Succ); 2429 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2430 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2431 break; 2432 PHI = nullptr; 2433 } 2434 if (PHI) 2435 return PHI; 2436 2437 // If V is not an instruction defined in BB, just return it. 2438 if (!AlternativeV && 2439 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2440 return V; 2441 2442 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2443 PHI->addIncoming(V, BB); 2444 for (BasicBlock *PredBB : predecessors(Succ)) 2445 if (PredBB != BB) 2446 PHI->addIncoming(AlternativeV ? AlternativeV : UndefValue::get(V->getType()), 2447 PredBB); 2448 return PHI; 2449 } 2450 2451 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2452 BasicBlock *QTB, BasicBlock *QFB, 2453 BasicBlock *PostBB, Value *Address, 2454 bool InvertPCond, bool InvertQCond) { 2455 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2456 return Operator::getOpcode(&I) == Instruction::BitCast && 2457 I.getType()->isPointerTy(); 2458 }; 2459 2460 // If we're not in aggressive mode, we only optimize if we have some 2461 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2462 auto IsWorthwhile = [&](BasicBlock *BB) { 2463 if (!BB) 2464 return true; 2465 // Heuristic: if the block can be if-converted/phi-folded and the 2466 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2467 // thread this store. 2468 unsigned N = 0; 2469 for (auto &I : *BB) { 2470 // Cheap instructions viable for folding. 2471 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2472 isa<StoreInst>(I)) 2473 ++N; 2474 // Free instructions. 2475 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2476 IsaBitcastOfPointerType(I)) 2477 continue; 2478 else 2479 return false; 2480 } 2481 return N <= PHINodeFoldingThreshold; 2482 }; 2483 2484 if (!MergeCondStoresAggressively && (!IsWorthwhile(PTB) || 2485 !IsWorthwhile(PFB) || 2486 !IsWorthwhile(QTB) || 2487 !IsWorthwhile(QFB))) 2488 return false; 2489 2490 // For every pointer, there must be exactly two stores, one coming from 2491 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2492 // store (to any address) in PTB,PFB or QTB,QFB. 2493 // FIXME: We could relax this restriction with a bit more work and performance 2494 // testing. 2495 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2496 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2497 if (!PStore || !QStore) 2498 return false; 2499 2500 // Now check the stores are compatible. 2501 if (!QStore->isUnordered() || !PStore->isUnordered()) 2502 return false; 2503 2504 // Check that sinking the store won't cause program behavior changes. Sinking 2505 // the store out of the Q blocks won't change any behavior as we're sinking 2506 // from a block to its unconditional successor. But we're moving a store from 2507 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2508 // So we need to check that there are no aliasing loads or stores in 2509 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2510 // operations between PStore and the end of its parent block. 2511 // 2512 // The ideal way to do this is to query AliasAnalysis, but we don't 2513 // preserve AA currently so that is dangerous. Be super safe and just 2514 // check there are no other memory operations at all. 2515 for (auto &I : *QFB->getSinglePredecessor()) 2516 if (I.mayReadOrWriteMemory()) 2517 return false; 2518 for (auto &I : *QFB) 2519 if (&I != QStore && I.mayReadOrWriteMemory()) 2520 return false; 2521 if (QTB) 2522 for (auto &I : *QTB) 2523 if (&I != QStore && I.mayReadOrWriteMemory()) 2524 return false; 2525 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2526 I != E; ++I) 2527 if (&*I != PStore && I->mayReadOrWriteMemory()) 2528 return false; 2529 2530 // OK, we're going to sink the stores to PostBB. The store has to be 2531 // conditional though, so first create the predicate. 2532 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2533 ->getCondition(); 2534 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2535 ->getCondition(); 2536 2537 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2538 PStore->getParent()); 2539 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2540 QStore->getParent(), PPHI); 2541 2542 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2543 2544 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2545 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2546 2547 if (InvertPCond) 2548 PPred = QB.CreateNot(PPred); 2549 if (InvertQCond) 2550 QPred = QB.CreateNot(QPred); 2551 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2552 2553 auto *T = 2554 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2555 QB.SetInsertPoint(T); 2556 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2557 AAMDNodes AAMD; 2558 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2559 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2560 SI->setAAMetadata(AAMD); 2561 2562 QStore->eraseFromParent(); 2563 PStore->eraseFromParent(); 2564 2565 return true; 2566 } 2567 2568 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2569 // The intention here is to find diamonds or triangles (see below) where each 2570 // conditional block contains a store to the same address. Both of these 2571 // stores are conditional, so they can't be unconditionally sunk. But it may 2572 // be profitable to speculatively sink the stores into one merged store at the 2573 // end, and predicate the merged store on the union of the two conditions of 2574 // PBI and QBI. 2575 // 2576 // This can reduce the number of stores executed if both of the conditions are 2577 // true, and can allow the blocks to become small enough to be if-converted. 2578 // This optimization will also chain, so that ladders of test-and-set 2579 // sequences can be if-converted away. 2580 // 2581 // We only deal with simple diamonds or triangles: 2582 // 2583 // PBI or PBI or a combination of the two 2584 // / \ | \ 2585 // PTB PFB | PFB 2586 // \ / | / 2587 // QBI QBI 2588 // / \ | \ 2589 // QTB QFB | QFB 2590 // \ / | / 2591 // PostBB PostBB 2592 // 2593 // We model triangles as a type of diamond with a nullptr "true" block. 2594 // Triangles are canonicalized so that the fallthrough edge is represented by 2595 // a true condition, as in the diagram above. 2596 // 2597 BasicBlock *PTB = PBI->getSuccessor(0); 2598 BasicBlock *PFB = PBI->getSuccessor(1); 2599 BasicBlock *QTB = QBI->getSuccessor(0); 2600 BasicBlock *QFB = QBI->getSuccessor(1); 2601 BasicBlock *PostBB = QFB->getSingleSuccessor(); 2602 2603 bool InvertPCond = false, InvertQCond = false; 2604 // Canonicalize fallthroughs to the true branches. 2605 if (PFB == QBI->getParent()) { 2606 std::swap(PFB, PTB); 2607 InvertPCond = true; 2608 } 2609 if (QFB == PostBB) { 2610 std::swap(QFB, QTB); 2611 InvertQCond = true; 2612 } 2613 2614 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 2615 // and QFB may not. Model fallthroughs as a nullptr block. 2616 if (PTB == QBI->getParent()) 2617 PTB = nullptr; 2618 if (QTB == PostBB) 2619 QTB = nullptr; 2620 2621 // Legality bailouts. We must have at least the non-fallthrough blocks and 2622 // the post-dominating block, and the non-fallthroughs must only have one 2623 // predecessor. 2624 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 2625 return BB->getSinglePredecessor() == P && 2626 BB->getSingleSuccessor() == S; 2627 }; 2628 if (!PostBB || 2629 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 2630 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 2631 return false; 2632 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 2633 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 2634 return false; 2635 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 2636 return false; 2637 2638 // OK, this is a sequence of two diamonds or triangles. 2639 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 2640 SmallPtrSet<Value *,4> PStoreAddresses, QStoreAddresses; 2641 for (auto *BB : {PTB, PFB}) { 2642 if (!BB) 2643 continue; 2644 for (auto &I : *BB) 2645 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2646 PStoreAddresses.insert(SI->getPointerOperand()); 2647 } 2648 for (auto *BB : {QTB, QFB}) { 2649 if (!BB) 2650 continue; 2651 for (auto &I : *BB) 2652 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2653 QStoreAddresses.insert(SI->getPointerOperand()); 2654 } 2655 2656 set_intersect(PStoreAddresses, QStoreAddresses); 2657 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 2658 // clear what it contains. 2659 auto &CommonAddresses = PStoreAddresses; 2660 2661 bool Changed = false; 2662 for (auto *Address : CommonAddresses) 2663 Changed |= mergeConditionalStoreToAddress( 2664 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 2665 return Changed; 2666 } 2667 2668 /// If we have a conditional branch as a predecessor of another block, 2669 /// this function tries to simplify it. We know 2670 /// that PBI and BI are both conditional branches, and BI is in one of the 2671 /// successor blocks of PBI - PBI branches to BI. 2672 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 2673 const DataLayout &DL) { 2674 assert(PBI->isConditional() && BI->isConditional()); 2675 BasicBlock *BB = BI->getParent(); 2676 2677 // If this block ends with a branch instruction, and if there is a 2678 // predecessor that ends on a branch of the same condition, make 2679 // this conditional branch redundant. 2680 if (PBI->getCondition() == BI->getCondition() && 2681 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2682 // Okay, the outcome of this conditional branch is statically 2683 // knowable. If this block had a single pred, handle specially. 2684 if (BB->getSinglePredecessor()) { 2685 // Turn this into a branch on constant. 2686 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2687 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2688 CondIsTrue)); 2689 return true; // Nuke the branch on constant. 2690 } 2691 2692 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2693 // in the constant and simplify the block result. Subsequent passes of 2694 // simplifycfg will thread the block. 2695 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2696 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2697 PHINode *NewPN = PHINode::Create( 2698 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 2699 BI->getCondition()->getName() + ".pr", &BB->front()); 2700 // Okay, we're going to insert the PHI node. Since PBI is not the only 2701 // predecessor, compute the PHI'd conditional value for all of the preds. 2702 // Any predecessor where the condition is not computable we keep symbolic. 2703 for (pred_iterator PI = PB; PI != PE; ++PI) { 2704 BasicBlock *P = *PI; 2705 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2706 PBI != BI && PBI->isConditional() && 2707 PBI->getCondition() == BI->getCondition() && 2708 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2709 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2710 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2711 CondIsTrue), P); 2712 } else { 2713 NewPN->addIncoming(BI->getCondition(), P); 2714 } 2715 } 2716 2717 BI->setCondition(NewPN); 2718 return true; 2719 } 2720 } 2721 2722 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2723 if (CE->canTrap()) 2724 return false; 2725 2726 // If BI is reached from the true path of PBI and PBI's condition implies 2727 // BI's condition, we know the direction of the BI branch. 2728 if (PBI->getSuccessor(0) == BI->getParent() && 2729 isImpliedCondition(PBI->getCondition(), BI->getCondition(), DL) && 2730 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 2731 BB->getSinglePredecessor()) { 2732 // Turn this into a branch on constant. 2733 auto *OldCond = BI->getCondition(); 2734 BI->setCondition(ConstantInt::getTrue(BB->getContext())); 2735 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 2736 return true; // Nuke the branch on constant. 2737 } 2738 2739 // If both branches are conditional and both contain stores to the same 2740 // address, remove the stores from the conditionals and create a conditional 2741 // merged store at the end. 2742 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 2743 return true; 2744 2745 // If this is a conditional branch in an empty block, and if any 2746 // predecessors are a conditional branch to one of our destinations, 2747 // fold the conditions into logical ops and one cond br. 2748 BasicBlock::iterator BBI = BB->begin(); 2749 // Ignore dbg intrinsics. 2750 while (isa<DbgInfoIntrinsic>(BBI)) 2751 ++BBI; 2752 if (&*BBI != BI) 2753 return false; 2754 2755 int PBIOp, BIOp; 2756 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2757 PBIOp = BIOp = 0; 2758 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2759 PBIOp = 0, BIOp = 1; 2760 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2761 PBIOp = 1, BIOp = 0; 2762 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2763 PBIOp = BIOp = 1; 2764 else 2765 return false; 2766 2767 // Check to make sure that the other destination of this branch 2768 // isn't BB itself. If so, this is an infinite loop that will 2769 // keep getting unwound. 2770 if (PBI->getSuccessor(PBIOp) == BB) 2771 return false; 2772 2773 // Do not perform this transformation if it would require 2774 // insertion of a large number of select instructions. For targets 2775 // without predication/cmovs, this is a big pessimization. 2776 2777 // Also do not perform this transformation if any phi node in the common 2778 // destination block can trap when reached by BB or PBB (PR17073). In that 2779 // case, it would be unsafe to hoist the operation into a select instruction. 2780 2781 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2782 unsigned NumPhis = 0; 2783 for (BasicBlock::iterator II = CommonDest->begin(); 2784 isa<PHINode>(II); ++II, ++NumPhis) { 2785 if (NumPhis > 2) // Disable this xform. 2786 return false; 2787 2788 PHINode *PN = cast<PHINode>(II); 2789 Value *BIV = PN->getIncomingValueForBlock(BB); 2790 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2791 if (CE->canTrap()) 2792 return false; 2793 2794 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2795 Value *PBIV = PN->getIncomingValue(PBBIdx); 2796 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2797 if (CE->canTrap()) 2798 return false; 2799 } 2800 2801 // Finally, if everything is ok, fold the branches to logical ops. 2802 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2803 2804 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2805 << "AND: " << *BI->getParent()); 2806 2807 2808 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2809 // branch in it, where one edge (OtherDest) goes back to itself but the other 2810 // exits. We don't *know* that the program avoids the infinite loop 2811 // (even though that seems likely). If we do this xform naively, we'll end up 2812 // recursively unpeeling the loop. Since we know that (after the xform is 2813 // done) that the block *is* infinite if reached, we just make it an obviously 2814 // infinite loop with no cond branch. 2815 if (OtherDest == BB) { 2816 // Insert it at the end of the function, because it's either code, 2817 // or it won't matter if it's hot. :) 2818 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2819 "infloop", BB->getParent()); 2820 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2821 OtherDest = InfLoopBlock; 2822 } 2823 2824 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2825 2826 // BI may have other predecessors. Because of this, we leave 2827 // it alone, but modify PBI. 2828 2829 // Make sure we get to CommonDest on True&True directions. 2830 Value *PBICond = PBI->getCondition(); 2831 IRBuilder<true, NoFolder> Builder(PBI); 2832 if (PBIOp) 2833 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2834 2835 Value *BICond = BI->getCondition(); 2836 if (BIOp) 2837 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2838 2839 // Merge the conditions. 2840 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2841 2842 // Modify PBI to branch on the new condition to the new dests. 2843 PBI->setCondition(Cond); 2844 PBI->setSuccessor(0, CommonDest); 2845 PBI->setSuccessor(1, OtherDest); 2846 2847 // Update branch weight for PBI. 2848 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2849 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2850 PredFalseWeight); 2851 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2852 SuccFalseWeight); 2853 if (PredHasWeights && SuccHasWeights) { 2854 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2855 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2856 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2857 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2858 // The weight to CommonDest should be PredCommon * SuccTotal + 2859 // PredOther * SuccCommon. 2860 // The weight to OtherDest should be PredOther * SuccOther. 2861 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 2862 PredOther * SuccCommon, 2863 PredOther * SuccOther}; 2864 // Halve the weights if any of them cannot fit in an uint32_t 2865 FitWeights(NewWeights); 2866 2867 PBI->setMetadata(LLVMContext::MD_prof, 2868 MDBuilder(BI->getContext()) 2869 .createBranchWeights(NewWeights[0], NewWeights[1])); 2870 } 2871 2872 // OtherDest may have phi nodes. If so, add an entry from PBI's 2873 // block that are identical to the entries for BI's block. 2874 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2875 2876 // We know that the CommonDest already had an edge from PBI to 2877 // it. If it has PHIs though, the PHIs may have different 2878 // entries for BB and PBI's BB. If so, insert a select to make 2879 // them agree. 2880 PHINode *PN; 2881 for (BasicBlock::iterator II = CommonDest->begin(); 2882 (PN = dyn_cast<PHINode>(II)); ++II) { 2883 Value *BIV = PN->getIncomingValueForBlock(BB); 2884 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2885 Value *PBIV = PN->getIncomingValue(PBBIdx); 2886 if (BIV != PBIV) { 2887 // Insert a select in PBI to pick the right value. 2888 Value *NV = cast<SelectInst> 2889 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2890 PN->setIncomingValue(PBBIdx, NV); 2891 } 2892 } 2893 2894 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2895 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2896 2897 // This basic block is probably dead. We know it has at least 2898 // one fewer predecessor. 2899 return true; 2900 } 2901 2902 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 2903 // true or to FalseBB if Cond is false. 2904 // Takes care of updating the successors and removing the old terminator. 2905 // Also makes sure not to introduce new successors by assuming that edges to 2906 // non-successor TrueBBs and FalseBBs aren't reachable. 2907 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2908 BasicBlock *TrueBB, BasicBlock *FalseBB, 2909 uint32_t TrueWeight, 2910 uint32_t FalseWeight){ 2911 // Remove any superfluous successor edges from the CFG. 2912 // First, figure out which successors to preserve. 2913 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2914 // successor. 2915 BasicBlock *KeepEdge1 = TrueBB; 2916 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2917 2918 // Then remove the rest. 2919 for (BasicBlock *Succ : OldTerm->successors()) { 2920 // Make sure only to keep exactly one copy of each edge. 2921 if (Succ == KeepEdge1) 2922 KeepEdge1 = nullptr; 2923 else if (Succ == KeepEdge2) 2924 KeepEdge2 = nullptr; 2925 else 2926 Succ->removePredecessor(OldTerm->getParent(), 2927 /*DontDeleteUselessPHIs=*/true); 2928 } 2929 2930 IRBuilder<> Builder(OldTerm); 2931 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2932 2933 // Insert an appropriate new terminator. 2934 if (!KeepEdge1 && !KeepEdge2) { 2935 if (TrueBB == FalseBB) 2936 // We were only looking for one successor, and it was present. 2937 // Create an unconditional branch to it. 2938 Builder.CreateBr(TrueBB); 2939 else { 2940 // We found both of the successors we were looking for. 2941 // Create a conditional branch sharing the condition of the select. 2942 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2943 if (TrueWeight != FalseWeight) 2944 NewBI->setMetadata(LLVMContext::MD_prof, 2945 MDBuilder(OldTerm->getContext()). 2946 createBranchWeights(TrueWeight, FalseWeight)); 2947 } 2948 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2949 // Neither of the selected blocks were successors, so this 2950 // terminator must be unreachable. 2951 new UnreachableInst(OldTerm->getContext(), OldTerm); 2952 } else { 2953 // One of the selected values was a successor, but the other wasn't. 2954 // Insert an unconditional branch to the one that was found; 2955 // the edge to the one that wasn't must be unreachable. 2956 if (!KeepEdge1) 2957 // Only TrueBB was found. 2958 Builder.CreateBr(TrueBB); 2959 else 2960 // Only FalseBB was found. 2961 Builder.CreateBr(FalseBB); 2962 } 2963 2964 EraseTerminatorInstAndDCECond(OldTerm); 2965 return true; 2966 } 2967 2968 // Replaces 2969 // (switch (select cond, X, Y)) on constant X, Y 2970 // with a branch - conditional if X and Y lead to distinct BBs, 2971 // unconditional otherwise. 2972 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2973 // Check for constant integer values in the select. 2974 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2975 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2976 if (!TrueVal || !FalseVal) 2977 return false; 2978 2979 // Find the relevant condition and destinations. 2980 Value *Condition = Select->getCondition(); 2981 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2982 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2983 2984 // Get weight for TrueBB and FalseBB. 2985 uint32_t TrueWeight = 0, FalseWeight = 0; 2986 SmallVector<uint64_t, 8> Weights; 2987 bool HasWeights = HasBranchWeights(SI); 2988 if (HasWeights) { 2989 GetBranchWeights(SI, Weights); 2990 if (Weights.size() == 1 + SI->getNumCases()) { 2991 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2992 getSuccessorIndex()]; 2993 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2994 getSuccessorIndex()]; 2995 } 2996 } 2997 2998 // Perform the actual simplification. 2999 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 3000 TrueWeight, FalseWeight); 3001 } 3002 3003 // Replaces 3004 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3005 // blockaddress(@fn, BlockB))) 3006 // with 3007 // (br cond, BlockA, BlockB). 3008 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3009 // Check that both operands of the select are block addresses. 3010 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3011 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3012 if (!TBA || !FBA) 3013 return false; 3014 3015 // Extract the actual blocks. 3016 BasicBlock *TrueBB = TBA->getBasicBlock(); 3017 BasicBlock *FalseBB = FBA->getBasicBlock(); 3018 3019 // Perform the actual simplification. 3020 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 3021 0, 0); 3022 } 3023 3024 /// This is called when we find an icmp instruction 3025 /// (a seteq/setne with a constant) as the only instruction in a 3026 /// block that ends with an uncond branch. We are looking for a very specific 3027 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3028 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3029 /// default value goes to an uncond block with a seteq in it, we get something 3030 /// like: 3031 /// 3032 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3033 /// DEFAULT: 3034 /// %tmp = icmp eq i8 %A, 92 3035 /// br label %end 3036 /// end: 3037 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3038 /// 3039 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3040 /// the PHI, merging the third icmp into the switch. 3041 static bool TryToSimplifyUncondBranchWithICmpInIt( 3042 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3043 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3044 AssumptionCache *AC) { 3045 BasicBlock *BB = ICI->getParent(); 3046 3047 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3048 // complex. 3049 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 3050 3051 Value *V = ICI->getOperand(0); 3052 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3053 3054 // The pattern we're looking for is where our only predecessor is a switch on 3055 // 'V' and this block is the default case for the switch. In this case we can 3056 // fold the compared value into the switch to simplify things. 3057 BasicBlock *Pred = BB->getSinglePredecessor(); 3058 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false; 3059 3060 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3061 if (SI->getCondition() != V) 3062 return false; 3063 3064 // If BB is reachable on a non-default case, then we simply know the value of 3065 // V in this block. Substitute it and constant fold the icmp instruction 3066 // away. 3067 if (SI->getDefaultDest() != BB) { 3068 ConstantInt *VVal = SI->findCaseDest(BB); 3069 assert(VVal && "Should have a unique destination value"); 3070 ICI->setOperand(0, VVal); 3071 3072 if (Value *V = SimplifyInstruction(ICI, DL)) { 3073 ICI->replaceAllUsesWith(V); 3074 ICI->eraseFromParent(); 3075 } 3076 // BB is now empty, so it is likely to simplify away. 3077 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3078 } 3079 3080 // Ok, the block is reachable from the default dest. If the constant we're 3081 // comparing exists in one of the other edges, then we can constant fold ICI 3082 // and zap it. 3083 if (SI->findCaseValue(Cst) != SI->case_default()) { 3084 Value *V; 3085 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3086 V = ConstantInt::getFalse(BB->getContext()); 3087 else 3088 V = ConstantInt::getTrue(BB->getContext()); 3089 3090 ICI->replaceAllUsesWith(V); 3091 ICI->eraseFromParent(); 3092 // BB is now empty, so it is likely to simplify away. 3093 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3094 } 3095 3096 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3097 // the block. 3098 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3099 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3100 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3101 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3102 return false; 3103 3104 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3105 // true in the PHI. 3106 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3107 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3108 3109 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3110 std::swap(DefaultCst, NewCst); 3111 3112 // Replace ICI (which is used by the PHI for the default value) with true or 3113 // false depending on if it is EQ or NE. 3114 ICI->replaceAllUsesWith(DefaultCst); 3115 ICI->eraseFromParent(); 3116 3117 // Okay, the switch goes to this block on a default value. Add an edge from 3118 // the switch to the merge point on the compared value. 3119 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 3120 BB->getParent(), BB); 3121 SmallVector<uint64_t, 8> Weights; 3122 bool HasWeights = HasBranchWeights(SI); 3123 if (HasWeights) { 3124 GetBranchWeights(SI, Weights); 3125 if (Weights.size() == 1 + SI->getNumCases()) { 3126 // Split weight for default case to case for "Cst". 3127 Weights[0] = (Weights[0]+1) >> 1; 3128 Weights.push_back(Weights[0]); 3129 3130 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3131 SI->setMetadata(LLVMContext::MD_prof, 3132 MDBuilder(SI->getContext()). 3133 createBranchWeights(MDWeights)); 3134 } 3135 } 3136 SI->addCase(Cst, NewBB); 3137 3138 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3139 Builder.SetInsertPoint(NewBB); 3140 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3141 Builder.CreateBr(SuccBlock); 3142 PHIUse->addIncoming(NewCst, NewBB); 3143 return true; 3144 } 3145 3146 /// The specified branch is a conditional branch. 3147 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3148 /// fold it into a switch instruction if so. 3149 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3150 const DataLayout &DL) { 3151 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3152 if (!Cond) return false; 3153 3154 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3155 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3156 // 'setne's and'ed together, collect them. 3157 3158 // Try to gather values from a chain of and/or to be turned into a switch 3159 ConstantComparesGatherer ConstantCompare(Cond, DL); 3160 // Unpack the result 3161 SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals; 3162 Value *CompVal = ConstantCompare.CompValue; 3163 unsigned UsedICmps = ConstantCompare.UsedICmps; 3164 Value *ExtraCase = ConstantCompare.Extra; 3165 3166 // If we didn't have a multiply compared value, fail. 3167 if (!CompVal) return false; 3168 3169 // Avoid turning single icmps into a switch. 3170 if (UsedICmps <= 1) 3171 return false; 3172 3173 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3174 3175 // There might be duplicate constants in the list, which the switch 3176 // instruction can't handle, remove them now. 3177 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3178 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3179 3180 // If Extra was used, we require at least two switch values to do the 3181 // transformation. A switch with one value is just a conditional branch. 3182 if (ExtraCase && Values.size() < 2) return false; 3183 3184 // TODO: Preserve branch weight metadata, similarly to how 3185 // FoldValueComparisonIntoPredecessors preserves it. 3186 3187 // Figure out which block is which destination. 3188 BasicBlock *DefaultBB = BI->getSuccessor(1); 3189 BasicBlock *EdgeBB = BI->getSuccessor(0); 3190 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 3191 3192 BasicBlock *BB = BI->getParent(); 3193 3194 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3195 << " cases into SWITCH. BB is:\n" << *BB); 3196 3197 // If there are any extra values that couldn't be folded into the switch 3198 // then we evaluate them with an explicit branch first. Split the block 3199 // right before the condbr to handle it. 3200 if (ExtraCase) { 3201 BasicBlock *NewBB = 3202 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3203 // Remove the uncond branch added to the old block. 3204 TerminatorInst *OldTI = BB->getTerminator(); 3205 Builder.SetInsertPoint(OldTI); 3206 3207 if (TrueWhenEqual) 3208 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3209 else 3210 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3211 3212 OldTI->eraseFromParent(); 3213 3214 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3215 // for the edge we just added. 3216 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3217 3218 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3219 << "\nEXTRABB = " << *BB); 3220 BB = NewBB; 3221 } 3222 3223 Builder.SetInsertPoint(BI); 3224 // Convert pointer to int before we switch. 3225 if (CompVal->getType()->isPointerTy()) { 3226 CompVal = Builder.CreatePtrToInt( 3227 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3228 } 3229 3230 // Create the new switch instruction now. 3231 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3232 3233 // Add all of the 'cases' to the switch instruction. 3234 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3235 New->addCase(Values[i], EdgeBB); 3236 3237 // We added edges from PI to the EdgeBB. As such, if there were any 3238 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3239 // the number of edges added. 3240 for (BasicBlock::iterator BBI = EdgeBB->begin(); 3241 isa<PHINode>(BBI); ++BBI) { 3242 PHINode *PN = cast<PHINode>(BBI); 3243 Value *InVal = PN->getIncomingValueForBlock(BB); 3244 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 3245 PN->addIncoming(InVal, BB); 3246 } 3247 3248 // Erase the old branch instruction. 3249 EraseTerminatorInstAndDCECond(BI); 3250 3251 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3252 return true; 3253 } 3254 3255 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3256 if (isa<PHINode>(RI->getValue())) 3257 return SimplifyCommonResume(RI); 3258 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3259 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3260 // The resume must unwind the exception that caused control to branch here. 3261 return SimplifySingleResume(RI); 3262 3263 return false; 3264 } 3265 3266 // Simplify resume that is shared by several landing pads (phi of landing pad). 3267 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3268 BasicBlock *BB = RI->getParent(); 3269 3270 // Check that there are no other instructions except for debug intrinsics 3271 // between the phi of landing pads (RI->getValue()) and resume instruction. 3272 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3273 E = RI->getIterator(); 3274 while (++I != E) 3275 if (!isa<DbgInfoIntrinsic>(I)) 3276 return false; 3277 3278 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3279 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3280 3281 // Check incoming blocks to see if any of them are trivial. 3282 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); 3283 Idx != End; Idx++) { 3284 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3285 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3286 3287 // If the block has other successors, we can not delete it because 3288 // it has other dependents. 3289 if (IncomingBB->getUniqueSuccessor() != BB) 3290 continue; 3291 3292 auto *LandingPad = 3293 dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3294 // Not the landing pad that caused the control to branch here. 3295 if (IncomingValue != LandingPad) 3296 continue; 3297 3298 bool isTrivial = true; 3299 3300 I = IncomingBB->getFirstNonPHI()->getIterator(); 3301 E = IncomingBB->getTerminator()->getIterator(); 3302 while (++I != E) 3303 if (!isa<DbgInfoIntrinsic>(I)) { 3304 isTrivial = false; 3305 break; 3306 } 3307 3308 if (isTrivial) 3309 TrivialUnwindBlocks.insert(IncomingBB); 3310 } 3311 3312 // If no trivial unwind blocks, don't do any simplifications. 3313 if (TrivialUnwindBlocks.empty()) return false; 3314 3315 // Turn all invokes that unwind here into calls. 3316 for (auto *TrivialBB : TrivialUnwindBlocks) { 3317 // Blocks that will be simplified should be removed from the phi node. 3318 // Note there could be multiple edges to the resume block, and we need 3319 // to remove them all. 3320 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3321 BB->removePredecessor(TrivialBB, true); 3322 3323 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3324 PI != PE;) { 3325 BasicBlock *Pred = *PI++; 3326 removeUnwindEdge(Pred); 3327 } 3328 3329 // In each SimplifyCFG run, only the current processed block can be erased. 3330 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3331 // of erasing TrivialBB, we only remove the branch to the common resume 3332 // block so that we can later erase the resume block since it has no 3333 // predecessors. 3334 TrivialBB->getTerminator()->eraseFromParent(); 3335 new UnreachableInst(RI->getContext(), TrivialBB); 3336 } 3337 3338 // Delete the resume block if all its predecessors have been removed. 3339 if (pred_empty(BB)) 3340 BB->eraseFromParent(); 3341 3342 return !TrivialUnwindBlocks.empty(); 3343 } 3344 3345 // Simplify resume that is only used by a single (non-phi) landing pad. 3346 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3347 BasicBlock *BB = RI->getParent(); 3348 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3349 assert (RI->getValue() == LPInst && 3350 "Resume must unwind the exception that caused control to here"); 3351 3352 // Check that there are no other instructions except for debug intrinsics. 3353 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3354 while (++I != E) 3355 if (!isa<DbgInfoIntrinsic>(I)) 3356 return false; 3357 3358 // Turn all invokes that unwind here into calls and delete the basic block. 3359 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3360 BasicBlock *Pred = *PI++; 3361 removeUnwindEdge(Pred); 3362 } 3363 3364 // The landingpad is now unreachable. Zap it. 3365 BB->eraseFromParent(); 3366 return true; 3367 } 3368 3369 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3370 // If this is a trivial cleanup pad that executes no instructions, it can be 3371 // eliminated. If the cleanup pad continues to the caller, any predecessor 3372 // that is an EH pad will be updated to continue to the caller and any 3373 // predecessor that terminates with an invoke instruction will have its invoke 3374 // instruction converted to a call instruction. If the cleanup pad being 3375 // simplified does not continue to the caller, each predecessor will be 3376 // updated to continue to the unwind destination of the cleanup pad being 3377 // simplified. 3378 BasicBlock *BB = RI->getParent(); 3379 CleanupPadInst *CPInst = RI->getCleanupPad(); 3380 if (CPInst->getParent() != BB) 3381 // This isn't an empty cleanup. 3382 return false; 3383 3384 // Check that there are no other instructions except for debug intrinsics. 3385 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3386 while (++I != E) 3387 if (!isa<DbgInfoIntrinsic>(I)) 3388 return false; 3389 3390 // If the cleanup return we are simplifying unwinds to the caller, this will 3391 // set UnwindDest to nullptr. 3392 BasicBlock *UnwindDest = RI->getUnwindDest(); 3393 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3394 3395 // We're about to remove BB from the control flow. Before we do, sink any 3396 // PHINodes into the unwind destination. Doing this before changing the 3397 // control flow avoids some potentially slow checks, since we can currently 3398 // be certain that UnwindDest and BB have no common predecessors (since they 3399 // are both EH pads). 3400 if (UnwindDest) { 3401 // First, go through the PHI nodes in UnwindDest and update any nodes that 3402 // reference the block we are removing 3403 for (BasicBlock::iterator I = UnwindDest->begin(), 3404 IE = DestEHPad->getIterator(); 3405 I != IE; ++I) { 3406 PHINode *DestPN = cast<PHINode>(I); 3407 3408 int Idx = DestPN->getBasicBlockIndex(BB); 3409 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3410 assert(Idx != -1); 3411 // This PHI node has an incoming value that corresponds to a control 3412 // path through the cleanup pad we are removing. If the incoming 3413 // value is in the cleanup pad, it must be a PHINode (because we 3414 // verified above that the block is otherwise empty). Otherwise, the 3415 // value is either a constant or a value that dominates the cleanup 3416 // pad being removed. 3417 // 3418 // Because BB and UnwindDest are both EH pads, all of their 3419 // predecessors must unwind to these blocks, and since no instruction 3420 // can have multiple unwind destinations, there will be no overlap in 3421 // incoming blocks between SrcPN and DestPN. 3422 Value *SrcVal = DestPN->getIncomingValue(Idx); 3423 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3424 3425 // Remove the entry for the block we are deleting. 3426 DestPN->removeIncomingValue(Idx, false); 3427 3428 if (SrcPN && SrcPN->getParent() == BB) { 3429 // If the incoming value was a PHI node in the cleanup pad we are 3430 // removing, we need to merge that PHI node's incoming values into 3431 // DestPN. 3432 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3433 SrcIdx != SrcE; ++SrcIdx) { 3434 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3435 SrcPN->getIncomingBlock(SrcIdx)); 3436 } 3437 } else { 3438 // Otherwise, the incoming value came from above BB and 3439 // so we can just reuse it. We must associate all of BB's 3440 // predecessors with this value. 3441 for (auto *pred : predecessors(BB)) { 3442 DestPN->addIncoming(SrcVal, pred); 3443 } 3444 } 3445 } 3446 3447 // Sink any remaining PHI nodes directly into UnwindDest. 3448 Instruction *InsertPt = DestEHPad; 3449 for (BasicBlock::iterator I = BB->begin(), 3450 IE = BB->getFirstNonPHI()->getIterator(); 3451 I != IE;) { 3452 // The iterator must be incremented here because the instructions are 3453 // being moved to another block. 3454 PHINode *PN = cast<PHINode>(I++); 3455 if (PN->use_empty()) 3456 // If the PHI node has no uses, just leave it. It will be erased 3457 // when we erase BB below. 3458 continue; 3459 3460 // Otherwise, sink this PHI node into UnwindDest. 3461 // Any predecessors to UnwindDest which are not already represented 3462 // must be back edges which inherit the value from the path through 3463 // BB. In this case, the PHI value must reference itself. 3464 for (auto *pred : predecessors(UnwindDest)) 3465 if (pred != BB) 3466 PN->addIncoming(PN, pred); 3467 PN->moveBefore(InsertPt); 3468 } 3469 } 3470 3471 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3472 // The iterator must be updated here because we are removing this pred. 3473 BasicBlock *PredBB = *PI++; 3474 if (UnwindDest == nullptr) { 3475 removeUnwindEdge(PredBB); 3476 } else { 3477 TerminatorInst *TI = PredBB->getTerminator(); 3478 TI->replaceUsesOfWith(BB, UnwindDest); 3479 } 3480 } 3481 3482 // The cleanup pad is now unreachable. Zap it. 3483 BB->eraseFromParent(); 3484 return true; 3485 } 3486 3487 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3488 BasicBlock *BB = RI->getParent(); 3489 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 3490 3491 // Find predecessors that end with branches. 3492 SmallVector<BasicBlock*, 8> UncondBranchPreds; 3493 SmallVector<BranchInst*, 8> CondBranchPreds; 3494 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3495 BasicBlock *P = *PI; 3496 TerminatorInst *PTI = P->getTerminator(); 3497 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3498 if (BI->isUnconditional()) 3499 UncondBranchPreds.push_back(P); 3500 else 3501 CondBranchPreds.push_back(BI); 3502 } 3503 } 3504 3505 // If we found some, do the transformation! 3506 if (!UncondBranchPreds.empty() && DupRet) { 3507 while (!UncondBranchPreds.empty()) { 3508 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3509 DEBUG(dbgs() << "FOLDING: " << *BB 3510 << "INTO UNCOND BRANCH PRED: " << *Pred); 3511 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3512 } 3513 3514 // If we eliminated all predecessors of the block, delete the block now. 3515 if (pred_empty(BB)) 3516 // We know there are no successors, so just nuke the block. 3517 BB->eraseFromParent(); 3518 3519 return true; 3520 } 3521 3522 // Check out all of the conditional branches going to this return 3523 // instruction. If any of them just select between returns, change the 3524 // branch itself into a select/return pair. 3525 while (!CondBranchPreds.empty()) { 3526 BranchInst *BI = CondBranchPreds.pop_back_val(); 3527 3528 // Check to see if the non-BB successor is also a return block. 3529 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3530 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3531 SimplifyCondBranchToTwoReturns(BI, Builder)) 3532 return true; 3533 } 3534 return false; 3535 } 3536 3537 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3538 BasicBlock *BB = UI->getParent(); 3539 3540 bool Changed = false; 3541 3542 // If there are any instructions immediately before the unreachable that can 3543 // be removed, do so. 3544 while (UI->getIterator() != BB->begin()) { 3545 BasicBlock::iterator BBI = UI->getIterator(); 3546 --BBI; 3547 // Do not delete instructions that can have side effects which might cause 3548 // the unreachable to not be reachable; specifically, calls and volatile 3549 // operations may have this effect. 3550 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 3551 3552 if (BBI->mayHaveSideEffects()) { 3553 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 3554 if (SI->isVolatile()) 3555 break; 3556 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 3557 if (LI->isVolatile()) 3558 break; 3559 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3560 if (RMWI->isVolatile()) 3561 break; 3562 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3563 if (CXI->isVolatile()) 3564 break; 3565 } else if (isa<CatchPadInst>(BBI)) { 3566 // A catchpad may invoke exception object constructors and such, which 3567 // in some languages can be arbitrary code, so be conservative by 3568 // default. 3569 // For CoreCLR, it just involves a type test, so can be removed. 3570 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 3571 EHPersonality::CoreCLR) 3572 break; 3573 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3574 !isa<LandingPadInst>(BBI)) { 3575 break; 3576 } 3577 // Note that deleting LandingPad's here is in fact okay, although it 3578 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3579 // all the predecessors of this block will be the unwind edges of Invokes, 3580 // and we can therefore guarantee this block will be erased. 3581 } 3582 3583 // Delete this instruction (any uses are guaranteed to be dead) 3584 if (!BBI->use_empty()) 3585 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3586 BBI->eraseFromParent(); 3587 Changed = true; 3588 } 3589 3590 // If the unreachable instruction is the first in the block, take a gander 3591 // at all of the predecessors of this instruction, and simplify them. 3592 if (&BB->front() != UI) return Changed; 3593 3594 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3595 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3596 TerminatorInst *TI = Preds[i]->getTerminator(); 3597 IRBuilder<> Builder(TI); 3598 if (auto *BI = dyn_cast<BranchInst>(TI)) { 3599 if (BI->isUnconditional()) { 3600 if (BI->getSuccessor(0) == BB) { 3601 new UnreachableInst(TI->getContext(), TI); 3602 TI->eraseFromParent(); 3603 Changed = true; 3604 } 3605 } else { 3606 if (BI->getSuccessor(0) == BB) { 3607 Builder.CreateBr(BI->getSuccessor(1)); 3608 EraseTerminatorInstAndDCECond(BI); 3609 } else if (BI->getSuccessor(1) == BB) { 3610 Builder.CreateBr(BI->getSuccessor(0)); 3611 EraseTerminatorInstAndDCECond(BI); 3612 Changed = true; 3613 } 3614 } 3615 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 3616 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3617 i != e; ++i) 3618 if (i.getCaseSuccessor() == BB) { 3619 BB->removePredecessor(SI->getParent()); 3620 SI->removeCase(i); 3621 --i; --e; 3622 Changed = true; 3623 } 3624 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 3625 if (II->getUnwindDest() == BB) { 3626 removeUnwindEdge(TI->getParent()); 3627 Changed = true; 3628 } 3629 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3630 if (CSI->getUnwindDest() == BB) { 3631 removeUnwindEdge(TI->getParent()); 3632 Changed = true; 3633 continue; 3634 } 3635 3636 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 3637 E = CSI->handler_end(); 3638 I != E; ++I) { 3639 if (*I == BB) { 3640 CSI->removeHandler(I); 3641 --I; 3642 --E; 3643 Changed = true; 3644 } 3645 } 3646 if (CSI->getNumHandlers() == 0) { 3647 BasicBlock *CatchSwitchBB = CSI->getParent(); 3648 if (CSI->hasUnwindDest()) { 3649 // Redirect preds to the unwind dest 3650 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 3651 } else { 3652 // Rewrite all preds to unwind to caller (or from invoke to call). 3653 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 3654 for (BasicBlock *EHPred : EHPreds) 3655 removeUnwindEdge(EHPred); 3656 } 3657 // The catchswitch is no longer reachable. 3658 new UnreachableInst(CSI->getContext(), CSI); 3659 CSI->eraseFromParent(); 3660 Changed = true; 3661 } 3662 } else if (isa<CleanupReturnInst>(TI)) { 3663 new UnreachableInst(TI->getContext(), TI); 3664 TI->eraseFromParent(); 3665 Changed = true; 3666 } 3667 } 3668 3669 // If this block is now dead, remove it. 3670 if (pred_empty(BB) && 3671 BB != &BB->getParent()->getEntryBlock()) { 3672 // We know there are no successors, so just nuke the block. 3673 BB->eraseFromParent(); 3674 return true; 3675 } 3676 3677 return Changed; 3678 } 3679 3680 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 3681 assert(Cases.size() >= 1); 3682 3683 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3684 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 3685 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 3686 return false; 3687 } 3688 return true; 3689 } 3690 3691 /// Turn a switch with two reachable destinations into an integer range 3692 /// comparison and branch. 3693 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3694 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3695 3696 bool HasDefault = 3697 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3698 3699 // Partition the cases into two sets with different destinations. 3700 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 3701 BasicBlock *DestB = nullptr; 3702 SmallVector <ConstantInt *, 16> CasesA; 3703 SmallVector <ConstantInt *, 16> CasesB; 3704 3705 for (SwitchInst::CaseIt I : SI->cases()) { 3706 BasicBlock *Dest = I.getCaseSuccessor(); 3707 if (!DestA) DestA = Dest; 3708 if (Dest == DestA) { 3709 CasesA.push_back(I.getCaseValue()); 3710 continue; 3711 } 3712 if (!DestB) DestB = Dest; 3713 if (Dest == DestB) { 3714 CasesB.push_back(I.getCaseValue()); 3715 continue; 3716 } 3717 return false; // More than two destinations. 3718 } 3719 3720 assert(DestA && DestB && "Single-destination switch should have been folded."); 3721 assert(DestA != DestB); 3722 assert(DestB != SI->getDefaultDest()); 3723 assert(!CasesB.empty() && "There must be non-default cases."); 3724 assert(!CasesA.empty() || HasDefault); 3725 3726 // Figure out if one of the sets of cases form a contiguous range. 3727 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 3728 BasicBlock *ContiguousDest = nullptr; 3729 BasicBlock *OtherDest = nullptr; 3730 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 3731 ContiguousCases = &CasesA; 3732 ContiguousDest = DestA; 3733 OtherDest = DestB; 3734 } else if (CasesAreContiguous(CasesB)) { 3735 ContiguousCases = &CasesB; 3736 ContiguousDest = DestB; 3737 OtherDest = DestA; 3738 } else 3739 return false; 3740 3741 // Start building the compare and branch. 3742 3743 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 3744 Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size()); 3745 3746 Value *Sub = SI->getCondition(); 3747 if (!Offset->isNullValue()) 3748 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 3749 3750 Value *Cmp; 3751 // If NumCases overflowed, then all possible values jump to the successor. 3752 if (NumCases->isNullValue() && !ContiguousCases->empty()) 3753 Cmp = ConstantInt::getTrue(SI->getContext()); 3754 else 3755 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3756 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 3757 3758 // Update weight for the newly-created conditional branch. 3759 if (HasBranchWeights(SI)) { 3760 SmallVector<uint64_t, 8> Weights; 3761 GetBranchWeights(SI, Weights); 3762 if (Weights.size() == 1 + SI->getNumCases()) { 3763 uint64_t TrueWeight = 0; 3764 uint64_t FalseWeight = 0; 3765 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 3766 if (SI->getSuccessor(I) == ContiguousDest) 3767 TrueWeight += Weights[I]; 3768 else 3769 FalseWeight += Weights[I]; 3770 } 3771 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 3772 TrueWeight /= 2; 3773 FalseWeight /= 2; 3774 } 3775 NewBI->setMetadata(LLVMContext::MD_prof, 3776 MDBuilder(SI->getContext()).createBranchWeights( 3777 (uint32_t)TrueWeight, (uint32_t)FalseWeight)); 3778 } 3779 } 3780 3781 // Prune obsolete incoming values off the successors' PHI nodes. 3782 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 3783 unsigned PreviousEdges = ContiguousCases->size(); 3784 if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges; 3785 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3786 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3787 } 3788 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 3789 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 3790 if (OtherDest == SI->getDefaultDest()) ++PreviousEdges; 3791 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3792 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3793 } 3794 3795 // Drop the switch. 3796 SI->eraseFromParent(); 3797 3798 return true; 3799 } 3800 3801 /// Compute masked bits for the condition of a switch 3802 /// and use it to remove dead cases. 3803 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 3804 const DataLayout &DL) { 3805 Value *Cond = SI->getCondition(); 3806 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3807 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3808 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 3809 3810 // Gather dead cases. 3811 SmallVector<ConstantInt*, 8> DeadCases; 3812 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3813 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3814 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3815 DeadCases.push_back(I.getCaseValue()); 3816 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3817 << I.getCaseValue() << "' is dead.\n"); 3818 } 3819 } 3820 3821 // If we can prove that the cases must cover all possible values, the 3822 // default destination becomes dead and we can remove it. If we know some 3823 // of the bits in the value, we can use that to more precisely compute the 3824 // number of possible unique case values. 3825 bool HasDefault = 3826 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3827 const unsigned NumUnknownBits = Bits - 3828 (KnownZero.Or(KnownOne)).countPopulation(); 3829 assert(NumUnknownBits <= Bits); 3830 if (HasDefault && DeadCases.empty() && 3831 NumUnknownBits < 64 /* avoid overflow */ && 3832 SI->getNumCases() == (1ULL << NumUnknownBits)) { 3833 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 3834 BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(), 3835 SI->getParent(), ""); 3836 SI->setDefaultDest(&*NewDefault); 3837 SplitBlock(&*NewDefault, &NewDefault->front()); 3838 auto *OldTI = NewDefault->getTerminator(); 3839 new UnreachableInst(SI->getContext(), OldTI); 3840 EraseTerminatorInstAndDCECond(OldTI); 3841 return true; 3842 } 3843 3844 SmallVector<uint64_t, 8> Weights; 3845 bool HasWeight = HasBranchWeights(SI); 3846 if (HasWeight) { 3847 GetBranchWeights(SI, Weights); 3848 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3849 } 3850 3851 // Remove dead cases from the switch. 3852 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3853 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3854 assert(Case != SI->case_default() && 3855 "Case was not found. Probably mistake in DeadCases forming."); 3856 if (HasWeight) { 3857 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3858 Weights.pop_back(); 3859 } 3860 3861 // Prune unused values from PHI nodes. 3862 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3863 SI->removeCase(Case); 3864 } 3865 if (HasWeight && Weights.size() >= 2) { 3866 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3867 SI->setMetadata(LLVMContext::MD_prof, 3868 MDBuilder(SI->getParent()->getContext()). 3869 createBranchWeights(MDWeights)); 3870 } 3871 3872 return !DeadCases.empty(); 3873 } 3874 3875 /// If BB would be eligible for simplification by 3876 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3877 /// by an unconditional branch), look at the phi node for BB in the successor 3878 /// block and see if the incoming value is equal to CaseValue. If so, return 3879 /// the phi node, and set PhiIndex to BB's index in the phi node. 3880 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3881 BasicBlock *BB, 3882 int *PhiIndex) { 3883 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3884 return nullptr; // BB must be empty to be a candidate for simplification. 3885 if (!BB->getSinglePredecessor()) 3886 return nullptr; // BB must be dominated by the switch. 3887 3888 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3889 if (!Branch || !Branch->isUnconditional()) 3890 return nullptr; // Terminator must be unconditional branch. 3891 3892 BasicBlock *Succ = Branch->getSuccessor(0); 3893 3894 BasicBlock::iterator I = Succ->begin(); 3895 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3896 int Idx = PHI->getBasicBlockIndex(BB); 3897 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3898 3899 Value *InValue = PHI->getIncomingValue(Idx); 3900 if (InValue != CaseValue) continue; 3901 3902 *PhiIndex = Idx; 3903 return PHI; 3904 } 3905 3906 return nullptr; 3907 } 3908 3909 /// Try to forward the condition of a switch instruction to a phi node 3910 /// dominated by the switch, if that would mean that some of the destination 3911 /// blocks of the switch can be folded away. 3912 /// Returns true if a change is made. 3913 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3914 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3915 ForwardingNodesMap ForwardingNodes; 3916 3917 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3918 ConstantInt *CaseValue = I.getCaseValue(); 3919 BasicBlock *CaseDest = I.getCaseSuccessor(); 3920 3921 int PhiIndex; 3922 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3923 &PhiIndex); 3924 if (!PHI) continue; 3925 3926 ForwardingNodes[PHI].push_back(PhiIndex); 3927 } 3928 3929 bool Changed = false; 3930 3931 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3932 E = ForwardingNodes.end(); I != E; ++I) { 3933 PHINode *Phi = I->first; 3934 SmallVectorImpl<int> &Indexes = I->second; 3935 3936 if (Indexes.size() < 2) continue; 3937 3938 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3939 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3940 Changed = true; 3941 } 3942 3943 return Changed; 3944 } 3945 3946 /// Return true if the backend will be able to handle 3947 /// initializing an array of constants like C. 3948 static bool ValidLookupTableConstant(Constant *C) { 3949 if (C->isThreadDependent()) 3950 return false; 3951 if (C->isDLLImportDependent()) 3952 return false; 3953 3954 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3955 return CE->isGEPWithNoNotionalOverIndexing(); 3956 3957 return isa<ConstantFP>(C) || 3958 isa<ConstantInt>(C) || 3959 isa<ConstantPointerNull>(C) || 3960 isa<GlobalValue>(C) || 3961 isa<UndefValue>(C); 3962 } 3963 3964 /// If V is a Constant, return it. Otherwise, try to look up 3965 /// its constant value in ConstantPool, returning 0 if it's not there. 3966 static Constant *LookupConstant(Value *V, 3967 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3968 if (Constant *C = dyn_cast<Constant>(V)) 3969 return C; 3970 return ConstantPool.lookup(V); 3971 } 3972 3973 /// Try to fold instruction I into a constant. This works for 3974 /// simple instructions such as binary operations where both operands are 3975 /// constant or can be replaced by constants from the ConstantPool. Returns the 3976 /// resulting constant on success, 0 otherwise. 3977 static Constant * 3978 ConstantFold(Instruction *I, const DataLayout &DL, 3979 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 3980 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3981 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3982 if (!A) 3983 return nullptr; 3984 if (A->isAllOnesValue()) 3985 return LookupConstant(Select->getTrueValue(), ConstantPool); 3986 if (A->isNullValue()) 3987 return LookupConstant(Select->getFalseValue(), ConstantPool); 3988 return nullptr; 3989 } 3990 3991 SmallVector<Constant *, 4> COps; 3992 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 3993 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 3994 COps.push_back(A); 3995 else 3996 return nullptr; 3997 } 3998 3999 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4000 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4001 COps[1], DL); 4002 } 4003 4004 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL); 4005 } 4006 4007 /// Try to determine the resulting constant values in phi nodes 4008 /// at the common destination basic block, *CommonDest, for one of the case 4009 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4010 /// case), of a switch instruction SI. 4011 static bool 4012 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4013 BasicBlock **CommonDest, 4014 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4015 const DataLayout &DL) { 4016 // The block from which we enter the common destination. 4017 BasicBlock *Pred = SI->getParent(); 4018 4019 // If CaseDest is empty except for some side-effect free instructions through 4020 // which we can constant-propagate the CaseVal, continue to its successor. 4021 SmallDenseMap<Value*, Constant*> ConstantPool; 4022 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4023 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4024 ++I) { 4025 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4026 // If the terminator is a simple branch, continue to the next block. 4027 if (T->getNumSuccessors() != 1) 4028 return false; 4029 Pred = CaseDest; 4030 CaseDest = T->getSuccessor(0); 4031 } else if (isa<DbgInfoIntrinsic>(I)) { 4032 // Skip debug intrinsic. 4033 continue; 4034 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4035 // Instruction is side-effect free and constant. 4036 4037 // If the instruction has uses outside this block or a phi node slot for 4038 // the block, it is not safe to bypass the instruction since it would then 4039 // no longer dominate all its uses. 4040 for (auto &Use : I->uses()) { 4041 User *User = Use.getUser(); 4042 if (Instruction *I = dyn_cast<Instruction>(User)) 4043 if (I->getParent() == CaseDest) 4044 continue; 4045 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4046 if (Phi->getIncomingBlock(Use) == CaseDest) 4047 continue; 4048 return false; 4049 } 4050 4051 ConstantPool.insert(std::make_pair(&*I, C)); 4052 } else { 4053 break; 4054 } 4055 } 4056 4057 // If we did not have a CommonDest before, use the current one. 4058 if (!*CommonDest) 4059 *CommonDest = CaseDest; 4060 // If the destination isn't the common one, abort. 4061 if (CaseDest != *CommonDest) 4062 return false; 4063 4064 // Get the values for this case from phi nodes in the destination block. 4065 BasicBlock::iterator I = (*CommonDest)->begin(); 4066 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4067 int Idx = PHI->getBasicBlockIndex(Pred); 4068 if (Idx == -1) 4069 continue; 4070 4071 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 4072 ConstantPool); 4073 if (!ConstVal) 4074 return false; 4075 4076 // Be conservative about which kinds of constants we support. 4077 if (!ValidLookupTableConstant(ConstVal)) 4078 return false; 4079 4080 Res.push_back(std::make_pair(PHI, ConstVal)); 4081 } 4082 4083 return Res.size() > 0; 4084 } 4085 4086 // Helper function used to add CaseVal to the list of cases that generate 4087 // Result. 4088 static void MapCaseToResult(ConstantInt *CaseVal, 4089 SwitchCaseResultVectorTy &UniqueResults, 4090 Constant *Result) { 4091 for (auto &I : UniqueResults) { 4092 if (I.first == Result) { 4093 I.second.push_back(CaseVal); 4094 return; 4095 } 4096 } 4097 UniqueResults.push_back(std::make_pair(Result, 4098 SmallVector<ConstantInt*, 4>(1, CaseVal))); 4099 } 4100 4101 // Helper function that initializes a map containing 4102 // results for the PHI node of the common destination block for a switch 4103 // instruction. Returns false if multiple PHI nodes have been found or if 4104 // there is not a common destination block for the switch. 4105 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4106 BasicBlock *&CommonDest, 4107 SwitchCaseResultVectorTy &UniqueResults, 4108 Constant *&DefaultResult, 4109 const DataLayout &DL) { 4110 for (auto &I : SI->cases()) { 4111 ConstantInt *CaseVal = I.getCaseValue(); 4112 4113 // Resulting value at phi nodes for this case value. 4114 SwitchCaseResultsTy Results; 4115 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4116 DL)) 4117 return false; 4118 4119 // Only one value per case is permitted 4120 if (Results.size() > 1) 4121 return false; 4122 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4123 4124 // Check the PHI consistency. 4125 if (!PHI) 4126 PHI = Results[0].first; 4127 else if (PHI != Results[0].first) 4128 return false; 4129 } 4130 // Find the default result value. 4131 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4132 BasicBlock *DefaultDest = SI->getDefaultDest(); 4133 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4134 DL); 4135 // If the default value is not found abort unless the default destination 4136 // is unreachable. 4137 DefaultResult = 4138 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4139 if ((!DefaultResult && 4140 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4141 return false; 4142 4143 return true; 4144 } 4145 4146 // Helper function that checks if it is possible to transform a switch with only 4147 // two cases (or two cases + default) that produces a result into a select. 4148 // Example: 4149 // switch (a) { 4150 // case 10: %0 = icmp eq i32 %a, 10 4151 // return 10; %1 = select i1 %0, i32 10, i32 4 4152 // case 20: ----> %2 = icmp eq i32 %a, 20 4153 // return 2; %3 = select i1 %2, i32 2, i32 %1 4154 // default: 4155 // return 4; 4156 // } 4157 static Value * 4158 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4159 Constant *DefaultResult, Value *Condition, 4160 IRBuilder<> &Builder) { 4161 assert(ResultVector.size() == 2 && 4162 "We should have exactly two unique results at this point"); 4163 // If we are selecting between only two cases transform into a simple 4164 // select or a two-way select if default is possible. 4165 if (ResultVector[0].second.size() == 1 && 4166 ResultVector[1].second.size() == 1) { 4167 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4168 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4169 4170 bool DefaultCanTrigger = DefaultResult; 4171 Value *SelectValue = ResultVector[1].first; 4172 if (DefaultCanTrigger) { 4173 Value *const ValueCompare = 4174 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4175 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4176 DefaultResult, "switch.select"); 4177 } 4178 Value *const ValueCompare = 4179 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4180 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue, 4181 "switch.select"); 4182 } 4183 4184 return nullptr; 4185 } 4186 4187 // Helper function to cleanup a switch instruction that has been converted into 4188 // a select, fixing up PHI nodes and basic blocks. 4189 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4190 Value *SelectValue, 4191 IRBuilder<> &Builder) { 4192 BasicBlock *SelectBB = SI->getParent(); 4193 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4194 PHI->removeIncomingValue(SelectBB); 4195 PHI->addIncoming(SelectValue, SelectBB); 4196 4197 Builder.CreateBr(PHI->getParent()); 4198 4199 // Remove the switch. 4200 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4201 BasicBlock *Succ = SI->getSuccessor(i); 4202 4203 if (Succ == PHI->getParent()) 4204 continue; 4205 Succ->removePredecessor(SelectBB); 4206 } 4207 SI->eraseFromParent(); 4208 } 4209 4210 /// If the switch is only used to initialize one or more 4211 /// phi nodes in a common successor block with only two different 4212 /// constant values, replace the switch with select. 4213 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4214 AssumptionCache *AC, const DataLayout &DL) { 4215 Value *const Cond = SI->getCondition(); 4216 PHINode *PHI = nullptr; 4217 BasicBlock *CommonDest = nullptr; 4218 Constant *DefaultResult; 4219 SwitchCaseResultVectorTy UniqueResults; 4220 // Collect all the cases that will deliver the same value from the switch. 4221 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4222 DL)) 4223 return false; 4224 // Selects choose between maximum two values. 4225 if (UniqueResults.size() != 2) 4226 return false; 4227 assert(PHI != nullptr && "PHI for value select not found"); 4228 4229 Builder.SetInsertPoint(SI); 4230 Value *SelectValue = ConvertTwoCaseSwitch( 4231 UniqueResults, 4232 DefaultResult, Cond, Builder); 4233 if (SelectValue) { 4234 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4235 return true; 4236 } 4237 // The switch couldn't be converted into a select. 4238 return false; 4239 } 4240 4241 namespace { 4242 /// This class represents a lookup table that can be used to replace a switch. 4243 class SwitchLookupTable { 4244 public: 4245 /// Create a lookup table to use as a switch replacement with the contents 4246 /// of Values, using DefaultValue to fill any holes in the table. 4247 SwitchLookupTable( 4248 Module &M, uint64_t TableSize, ConstantInt *Offset, 4249 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4250 Constant *DefaultValue, const DataLayout &DL); 4251 4252 /// Build instructions with Builder to retrieve the value at 4253 /// the position given by Index in the lookup table. 4254 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4255 4256 /// Return true if a table with TableSize elements of 4257 /// type ElementType would fit in a target-legal register. 4258 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4259 Type *ElementType); 4260 4261 private: 4262 // Depending on the contents of the table, it can be represented in 4263 // different ways. 4264 enum { 4265 // For tables where each element contains the same value, we just have to 4266 // store that single value and return it for each lookup. 4267 SingleValueKind, 4268 4269 // For tables where there is a linear relationship between table index 4270 // and values. We calculate the result with a simple multiplication 4271 // and addition instead of a table lookup. 4272 LinearMapKind, 4273 4274 // For small tables with integer elements, we can pack them into a bitmap 4275 // that fits into a target-legal register. Values are retrieved by 4276 // shift and mask operations. 4277 BitMapKind, 4278 4279 // The table is stored as an array of values. Values are retrieved by load 4280 // instructions from the table. 4281 ArrayKind 4282 } Kind; 4283 4284 // For SingleValueKind, this is the single value. 4285 Constant *SingleValue; 4286 4287 // For BitMapKind, this is the bitmap. 4288 ConstantInt *BitMap; 4289 IntegerType *BitMapElementTy; 4290 4291 // For LinearMapKind, these are the constants used to derive the value. 4292 ConstantInt *LinearOffset; 4293 ConstantInt *LinearMultiplier; 4294 4295 // For ArrayKind, this is the array. 4296 GlobalVariable *Array; 4297 }; 4298 } 4299 4300 SwitchLookupTable::SwitchLookupTable( 4301 Module &M, uint64_t TableSize, ConstantInt *Offset, 4302 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4303 Constant *DefaultValue, const DataLayout &DL) 4304 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4305 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4306 assert(Values.size() && "Can't build lookup table without values!"); 4307 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4308 4309 // If all values in the table are equal, this is that value. 4310 SingleValue = Values.begin()->second; 4311 4312 Type *ValueType = Values.begin()->second->getType(); 4313 4314 // Build up the table contents. 4315 SmallVector<Constant*, 64> TableContents(TableSize); 4316 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4317 ConstantInt *CaseVal = Values[I].first; 4318 Constant *CaseRes = Values[I].second; 4319 assert(CaseRes->getType() == ValueType); 4320 4321 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 4322 .getLimitedValue(); 4323 TableContents[Idx] = CaseRes; 4324 4325 if (CaseRes != SingleValue) 4326 SingleValue = nullptr; 4327 } 4328 4329 // Fill in any holes in the table with the default result. 4330 if (Values.size() < TableSize) { 4331 assert(DefaultValue && 4332 "Need a default value to fill the lookup table holes."); 4333 assert(DefaultValue->getType() == ValueType); 4334 for (uint64_t I = 0; I < TableSize; ++I) { 4335 if (!TableContents[I]) 4336 TableContents[I] = DefaultValue; 4337 } 4338 4339 if (DefaultValue != SingleValue) 4340 SingleValue = nullptr; 4341 } 4342 4343 // If each element in the table contains the same value, we only need to store 4344 // that single value. 4345 if (SingleValue) { 4346 Kind = SingleValueKind; 4347 return; 4348 } 4349 4350 // Check if we can derive the value with a linear transformation from the 4351 // table index. 4352 if (isa<IntegerType>(ValueType)) { 4353 bool LinearMappingPossible = true; 4354 APInt PrevVal; 4355 APInt DistToPrev; 4356 assert(TableSize >= 2 && "Should be a SingleValue table."); 4357 // Check if there is the same distance between two consecutive values. 4358 for (uint64_t I = 0; I < TableSize; ++I) { 4359 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4360 if (!ConstVal) { 4361 // This is an undef. We could deal with it, but undefs in lookup tables 4362 // are very seldom. It's probably not worth the additional complexity. 4363 LinearMappingPossible = false; 4364 break; 4365 } 4366 APInt Val = ConstVal->getValue(); 4367 if (I != 0) { 4368 APInt Dist = Val - PrevVal; 4369 if (I == 1) { 4370 DistToPrev = Dist; 4371 } else if (Dist != DistToPrev) { 4372 LinearMappingPossible = false; 4373 break; 4374 } 4375 } 4376 PrevVal = Val; 4377 } 4378 if (LinearMappingPossible) { 4379 LinearOffset = cast<ConstantInt>(TableContents[0]); 4380 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4381 Kind = LinearMapKind; 4382 ++NumLinearMaps; 4383 return; 4384 } 4385 } 4386 4387 // If the type is integer and the table fits in a register, build a bitmap. 4388 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4389 IntegerType *IT = cast<IntegerType>(ValueType); 4390 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4391 for (uint64_t I = TableSize; I > 0; --I) { 4392 TableInt <<= IT->getBitWidth(); 4393 // Insert values into the bitmap. Undef values are set to zero. 4394 if (!isa<UndefValue>(TableContents[I - 1])) { 4395 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4396 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4397 } 4398 } 4399 BitMap = ConstantInt::get(M.getContext(), TableInt); 4400 BitMapElementTy = IT; 4401 Kind = BitMapKind; 4402 ++NumBitMaps; 4403 return; 4404 } 4405 4406 // Store the table in an array. 4407 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4408 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4409 4410 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 4411 GlobalVariable::PrivateLinkage, 4412 Initializer, 4413 "switch.table"); 4414 Array->setUnnamedAddr(true); 4415 Kind = ArrayKind; 4416 } 4417 4418 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4419 switch (Kind) { 4420 case SingleValueKind: 4421 return SingleValue; 4422 case LinearMapKind: { 4423 // Derive the result value from the input value. 4424 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4425 false, "switch.idx.cast"); 4426 if (!LinearMultiplier->isOne()) 4427 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4428 if (!LinearOffset->isZero()) 4429 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4430 return Result; 4431 } 4432 case BitMapKind: { 4433 // Type of the bitmap (e.g. i59). 4434 IntegerType *MapTy = BitMap->getType(); 4435 4436 // Cast Index to the same type as the bitmap. 4437 // Note: The Index is <= the number of elements in the table, so 4438 // truncating it to the width of the bitmask is safe. 4439 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4440 4441 // Multiply the shift amount by the element width. 4442 ShiftAmt = Builder.CreateMul(ShiftAmt, 4443 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4444 "switch.shiftamt"); 4445 4446 // Shift down. 4447 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 4448 "switch.downshift"); 4449 // Mask off. 4450 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 4451 "switch.masked"); 4452 } 4453 case ArrayKind: { 4454 // Make sure the table index will not overflow when treated as signed. 4455 IntegerType *IT = cast<IntegerType>(Index->getType()); 4456 uint64_t TableSize = Array->getInitializer()->getType() 4457 ->getArrayNumElements(); 4458 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 4459 Index = Builder.CreateZExt(Index, 4460 IntegerType::get(IT->getContext(), 4461 IT->getBitWidth() + 1), 4462 "switch.tableidx.zext"); 4463 4464 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 4465 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 4466 GEPIndices, "switch.gep"); 4467 return Builder.CreateLoad(GEP, "switch.load"); 4468 } 4469 } 4470 llvm_unreachable("Unknown lookup table kind!"); 4471 } 4472 4473 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 4474 uint64_t TableSize, 4475 Type *ElementType) { 4476 auto *IT = dyn_cast<IntegerType>(ElementType); 4477 if (!IT) 4478 return false; 4479 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4480 // are <= 15, we could try to narrow the type. 4481 4482 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4483 if (TableSize >= UINT_MAX/IT->getBitWidth()) 4484 return false; 4485 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4486 } 4487 4488 /// Determine whether a lookup table should be built for this switch, based on 4489 /// the number of cases, size of the table, and the types of the results. 4490 static bool 4491 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4492 const TargetTransformInfo &TTI, const DataLayout &DL, 4493 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4494 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 4495 return false; // TableSize overflowed, or mul below might overflow. 4496 4497 bool AllTablesFitInRegister = true; 4498 bool HasIllegalType = false; 4499 for (const auto &I : ResultTypes) { 4500 Type *Ty = I.second; 4501 4502 // Saturate this flag to true. 4503 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 4504 4505 // Saturate this flag to false. 4506 AllTablesFitInRegister = AllTablesFitInRegister && 4507 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 4508 4509 // If both flags saturate, we're done. NOTE: This *only* works with 4510 // saturating flags, and all flags have to saturate first due to the 4511 // non-deterministic behavior of iterating over a dense map. 4512 if (HasIllegalType && !AllTablesFitInRegister) 4513 break; 4514 } 4515 4516 // If each table would fit in a register, we should build it anyway. 4517 if (AllTablesFitInRegister) 4518 return true; 4519 4520 // Don't build a table that doesn't fit in-register if it has illegal types. 4521 if (HasIllegalType) 4522 return false; 4523 4524 // The table density should be at least 40%. This is the same criterion as for 4525 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 4526 // FIXME: Find the best cut-off. 4527 return SI->getNumCases() * 10 >= TableSize * 4; 4528 } 4529 4530 /// Try to reuse the switch table index compare. Following pattern: 4531 /// \code 4532 /// if (idx < tablesize) 4533 /// r = table[idx]; // table does not contain default_value 4534 /// else 4535 /// r = default_value; 4536 /// if (r != default_value) 4537 /// ... 4538 /// \endcode 4539 /// Is optimized to: 4540 /// \code 4541 /// cond = idx < tablesize; 4542 /// if (cond) 4543 /// r = table[idx]; 4544 /// else 4545 /// r = default_value; 4546 /// if (cond) 4547 /// ... 4548 /// \endcode 4549 /// Jump threading will then eliminate the second if(cond). 4550 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock, 4551 BranchInst *RangeCheckBranch, Constant *DefaultValue, 4552 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) { 4553 4554 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 4555 if (!CmpInst) 4556 return; 4557 4558 // We require that the compare is in the same block as the phi so that jump 4559 // threading can do its work afterwards. 4560 if (CmpInst->getParent() != PhiBlock) 4561 return; 4562 4563 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 4564 if (!CmpOp1) 4565 return; 4566 4567 Value *RangeCmp = RangeCheckBranch->getCondition(); 4568 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 4569 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 4570 4571 // Check if the compare with the default value is constant true or false. 4572 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4573 DefaultValue, CmpOp1, true); 4574 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 4575 return; 4576 4577 // Check if the compare with the case values is distinct from the default 4578 // compare result. 4579 for (auto ValuePair : Values) { 4580 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4581 ValuePair.second, CmpOp1, true); 4582 if (!CaseConst || CaseConst == DefaultConst) 4583 return; 4584 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 4585 "Expect true or false as compare result."); 4586 } 4587 4588 // Check if the branch instruction dominates the phi node. It's a simple 4589 // dominance check, but sufficient for our needs. 4590 // Although this check is invariant in the calling loops, it's better to do it 4591 // at this late stage. Practically we do it at most once for a switch. 4592 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 4593 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 4594 BasicBlock *Pred = *PI; 4595 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 4596 return; 4597 } 4598 4599 if (DefaultConst == FalseConst) { 4600 // The compare yields the same result. We can replace it. 4601 CmpInst->replaceAllUsesWith(RangeCmp); 4602 ++NumTableCmpReuses; 4603 } else { 4604 // The compare yields the same result, just inverted. We can replace it. 4605 Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp, 4606 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 4607 RangeCheckBranch); 4608 CmpInst->replaceAllUsesWith(InvertedTableCmp); 4609 ++NumTableCmpReuses; 4610 } 4611 } 4612 4613 /// If the switch is only used to initialize one or more phi nodes in a common 4614 /// successor block with different constant values, replace the switch with 4615 /// lookup tables. 4616 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 4617 const DataLayout &DL, 4618 const TargetTransformInfo &TTI) { 4619 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4620 4621 // Only build lookup table when we have a target that supports it. 4622 if (!TTI.shouldBuildLookupTables()) 4623 return false; 4624 4625 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 4626 // split off a dense part and build a lookup table for that. 4627 4628 // FIXME: This creates arrays of GEPs to constant strings, which means each 4629 // GEP needs a runtime relocation in PIC code. We should just build one big 4630 // string and lookup indices into that. 4631 4632 // Ignore switches with less than three cases. Lookup tables will not make them 4633 // faster, so we don't analyze them. 4634 if (SI->getNumCases() < 3) 4635 return false; 4636 4637 // Figure out the corresponding result for each case value and phi node in the 4638 // common destination, as well as the min and max case values. 4639 assert(SI->case_begin() != SI->case_end()); 4640 SwitchInst::CaseIt CI = SI->case_begin(); 4641 ConstantInt *MinCaseVal = CI.getCaseValue(); 4642 ConstantInt *MaxCaseVal = CI.getCaseValue(); 4643 4644 BasicBlock *CommonDest = nullptr; 4645 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 4646 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 4647 SmallDenseMap<PHINode*, Constant*> DefaultResults; 4648 SmallDenseMap<PHINode*, Type*> ResultTypes; 4649 SmallVector<PHINode*, 4> PHIs; 4650 4651 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 4652 ConstantInt *CaseVal = CI.getCaseValue(); 4653 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 4654 MinCaseVal = CaseVal; 4655 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 4656 MaxCaseVal = CaseVal; 4657 4658 // Resulting value at phi nodes for this case value. 4659 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 4660 ResultsTy Results; 4661 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 4662 Results, DL)) 4663 return false; 4664 4665 // Append the result from this case to the list for each phi. 4666 for (const auto &I : Results) { 4667 PHINode *PHI = I.first; 4668 Constant *Value = I.second; 4669 if (!ResultLists.count(PHI)) 4670 PHIs.push_back(PHI); 4671 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 4672 } 4673 } 4674 4675 // Keep track of the result types. 4676 for (PHINode *PHI : PHIs) { 4677 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 4678 } 4679 4680 uint64_t NumResults = ResultLists[PHIs[0]].size(); 4681 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 4682 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 4683 bool TableHasHoles = (NumResults < TableSize); 4684 4685 // If the table has holes, we need a constant result for the default case 4686 // or a bitmask that fits in a register. 4687 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 4688 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 4689 &CommonDest, DefaultResultsList, DL); 4690 4691 bool NeedMask = (TableHasHoles && !HasDefaultResults); 4692 if (NeedMask) { 4693 // As an extra penalty for the validity test we require more cases. 4694 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 4695 return false; 4696 if (!DL.fitsInLegalInteger(TableSize)) 4697 return false; 4698 } 4699 4700 for (const auto &I : DefaultResultsList) { 4701 PHINode *PHI = I.first; 4702 Constant *Result = I.second; 4703 DefaultResults[PHI] = Result; 4704 } 4705 4706 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 4707 return false; 4708 4709 // Create the BB that does the lookups. 4710 Module &Mod = *CommonDest->getParent()->getParent(); 4711 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 4712 "switch.lookup", 4713 CommonDest->getParent(), 4714 CommonDest); 4715 4716 // Compute the table index value. 4717 Builder.SetInsertPoint(SI); 4718 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 4719 "switch.tableidx"); 4720 4721 // Compute the maximum table size representable by the integer type we are 4722 // switching upon. 4723 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 4724 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 4725 assert(MaxTableSize >= TableSize && 4726 "It is impossible for a switch to have more entries than the max " 4727 "representable value of its input integer type's size."); 4728 4729 // If the default destination is unreachable, or if the lookup table covers 4730 // all values of the conditional variable, branch directly to the lookup table 4731 // BB. Otherwise, check that the condition is within the case range. 4732 const bool DefaultIsReachable = 4733 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4734 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 4735 BranchInst *RangeCheckBranch = nullptr; 4736 4737 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4738 Builder.CreateBr(LookupBB); 4739 // Note: We call removeProdecessor later since we need to be able to get the 4740 // PHI value for the default case in case we're using a bit mask. 4741 } else { 4742 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 4743 MinCaseVal->getType(), TableSize)); 4744 RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 4745 } 4746 4747 // Populate the BB that does the lookups. 4748 Builder.SetInsertPoint(LookupBB); 4749 4750 if (NeedMask) { 4751 // Before doing the lookup we do the hole check. 4752 // The LookupBB is therefore re-purposed to do the hole check 4753 // and we create a new LookupBB. 4754 BasicBlock *MaskBB = LookupBB; 4755 MaskBB->setName("switch.hole_check"); 4756 LookupBB = BasicBlock::Create(Mod.getContext(), 4757 "switch.lookup", 4758 CommonDest->getParent(), 4759 CommonDest); 4760 4761 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 4762 // unnecessary illegal types. 4763 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 4764 APInt MaskInt(TableSizePowOf2, 0); 4765 APInt One(TableSizePowOf2, 1); 4766 // Build bitmask; fill in a 1 bit for every case. 4767 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 4768 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 4769 uint64_t Idx = (ResultList[I].first->getValue() - 4770 MinCaseVal->getValue()).getLimitedValue(); 4771 MaskInt |= One << Idx; 4772 } 4773 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 4774 4775 // Get the TableIndex'th bit of the bitmask. 4776 // If this bit is 0 (meaning hole) jump to the default destination, 4777 // else continue with table lookup. 4778 IntegerType *MapTy = TableMask->getType(); 4779 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 4780 "switch.maskindex"); 4781 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 4782 "switch.shifted"); 4783 Value *LoBit = Builder.CreateTrunc(Shifted, 4784 Type::getInt1Ty(Mod.getContext()), 4785 "switch.lobit"); 4786 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 4787 4788 Builder.SetInsertPoint(LookupBB); 4789 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 4790 } 4791 4792 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4793 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 4794 // do not delete PHINodes here. 4795 SI->getDefaultDest()->removePredecessor(SI->getParent(), 4796 /*DontDeleteUselessPHIs=*/true); 4797 } 4798 4799 bool ReturnedEarly = false; 4800 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 4801 PHINode *PHI = PHIs[I]; 4802 const ResultListTy &ResultList = ResultLists[PHI]; 4803 4804 // If using a bitmask, use any value to fill the lookup table holes. 4805 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 4806 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 4807 4808 Value *Result = Table.BuildLookup(TableIndex, Builder); 4809 4810 // If the result is used to return immediately from the function, we want to 4811 // do that right here. 4812 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 4813 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 4814 Builder.CreateRet(Result); 4815 ReturnedEarly = true; 4816 break; 4817 } 4818 4819 // Do a small peephole optimization: re-use the switch table compare if 4820 // possible. 4821 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 4822 BasicBlock *PhiBlock = PHI->getParent(); 4823 // Search for compare instructions which use the phi. 4824 for (auto *User : PHI->users()) { 4825 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 4826 } 4827 } 4828 4829 PHI->addIncoming(Result, LookupBB); 4830 } 4831 4832 if (!ReturnedEarly) 4833 Builder.CreateBr(CommonDest); 4834 4835 // Remove the switch. 4836 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4837 BasicBlock *Succ = SI->getSuccessor(i); 4838 4839 if (Succ == SI->getDefaultDest()) 4840 continue; 4841 Succ->removePredecessor(SI->getParent()); 4842 } 4843 SI->eraseFromParent(); 4844 4845 ++NumLookupTables; 4846 if (NeedMask) 4847 ++NumLookupTablesHoles; 4848 return true; 4849 } 4850 4851 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 4852 BasicBlock *BB = SI->getParent(); 4853 4854 if (isValueEqualityComparison(SI)) { 4855 // If we only have one predecessor, and if it is a branch on this value, 4856 // see if that predecessor totally determines the outcome of this switch. 4857 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4858 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 4859 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4860 4861 Value *Cond = SI->getCondition(); 4862 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 4863 if (SimplifySwitchOnSelect(SI, Select)) 4864 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4865 4866 // If the block only contains the switch, see if we can fold the block 4867 // away into any preds. 4868 BasicBlock::iterator BBI = BB->begin(); 4869 // Ignore dbg intrinsics. 4870 while (isa<DbgInfoIntrinsic>(BBI)) 4871 ++BBI; 4872 if (SI == &*BBI) 4873 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 4874 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4875 } 4876 4877 // Try to transform the switch into an icmp and a branch. 4878 if (TurnSwitchRangeIntoICmp(SI, Builder)) 4879 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4880 4881 // Remove unreachable cases. 4882 if (EliminateDeadSwitchCases(SI, AC, DL)) 4883 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4884 4885 if (SwitchToSelect(SI, Builder, AC, DL)) 4886 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4887 4888 if (ForwardSwitchConditionToPHI(SI)) 4889 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4890 4891 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 4892 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4893 4894 return false; 4895 } 4896 4897 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 4898 BasicBlock *BB = IBI->getParent(); 4899 bool Changed = false; 4900 4901 // Eliminate redundant destinations. 4902 SmallPtrSet<Value *, 8> Succs; 4903 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 4904 BasicBlock *Dest = IBI->getDestination(i); 4905 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 4906 Dest->removePredecessor(BB); 4907 IBI->removeDestination(i); 4908 --i; --e; 4909 Changed = true; 4910 } 4911 } 4912 4913 if (IBI->getNumDestinations() == 0) { 4914 // If the indirectbr has no successors, change it to unreachable. 4915 new UnreachableInst(IBI->getContext(), IBI); 4916 EraseTerminatorInstAndDCECond(IBI); 4917 return true; 4918 } 4919 4920 if (IBI->getNumDestinations() == 1) { 4921 // If the indirectbr has one successor, change it to a direct branch. 4922 BranchInst::Create(IBI->getDestination(0), IBI); 4923 EraseTerminatorInstAndDCECond(IBI); 4924 return true; 4925 } 4926 4927 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 4928 if (SimplifyIndirectBrOnSelect(IBI, SI)) 4929 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4930 } 4931 return Changed; 4932 } 4933 4934 /// Given an block with only a single landing pad and a unconditional branch 4935 /// try to find another basic block which this one can be merged with. This 4936 /// handles cases where we have multiple invokes with unique landing pads, but 4937 /// a shared handler. 4938 /// 4939 /// We specifically choose to not worry about merging non-empty blocks 4940 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 4941 /// practice, the optimizer produces empty landing pad blocks quite frequently 4942 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 4943 /// sinking in this file) 4944 /// 4945 /// This is primarily a code size optimization. We need to avoid performing 4946 /// any transform which might inhibit optimization (such as our ability to 4947 /// specialize a particular handler via tail commoning). We do this by not 4948 /// merging any blocks which require us to introduce a phi. Since the same 4949 /// values are flowing through both blocks, we don't loose any ability to 4950 /// specialize. If anything, we make such specialization more likely. 4951 /// 4952 /// TODO - This transformation could remove entries from a phi in the target 4953 /// block when the inputs in the phi are the same for the two blocks being 4954 /// merged. In some cases, this could result in removal of the PHI entirely. 4955 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 4956 BasicBlock *BB) { 4957 auto Succ = BB->getUniqueSuccessor(); 4958 assert(Succ); 4959 // If there's a phi in the successor block, we'd likely have to introduce 4960 // a phi into the merged landing pad block. 4961 if (isa<PHINode>(*Succ->begin())) 4962 return false; 4963 4964 for (BasicBlock *OtherPred : predecessors(Succ)) { 4965 if (BB == OtherPred) 4966 continue; 4967 BasicBlock::iterator I = OtherPred->begin(); 4968 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 4969 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 4970 continue; 4971 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 4972 BranchInst *BI2 = dyn_cast<BranchInst>(I); 4973 if (!BI2 || !BI2->isIdenticalTo(BI)) 4974 continue; 4975 4976 // We've found an identical block. Update our predeccessors to take that 4977 // path instead and make ourselves dead. 4978 SmallSet<BasicBlock *, 16> Preds; 4979 Preds.insert(pred_begin(BB), pred_end(BB)); 4980 for (BasicBlock *Pred : Preds) { 4981 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 4982 assert(II->getNormalDest() != BB && 4983 II->getUnwindDest() == BB && "unexpected successor"); 4984 II->setUnwindDest(OtherPred); 4985 } 4986 4987 // The debug info in OtherPred doesn't cover the merged control flow that 4988 // used to go through BB. We need to delete it or update it. 4989 for (auto I = OtherPred->begin(), E = OtherPred->end(); 4990 I != E;) { 4991 Instruction &Inst = *I; I++; 4992 if (isa<DbgInfoIntrinsic>(Inst)) 4993 Inst.eraseFromParent(); 4994 } 4995 4996 SmallSet<BasicBlock *, 16> Succs; 4997 Succs.insert(succ_begin(BB), succ_end(BB)); 4998 for (BasicBlock *Succ : Succs) { 4999 Succ->removePredecessor(BB); 5000 } 5001 5002 IRBuilder<> Builder(BI); 5003 Builder.CreateUnreachable(); 5004 BI->eraseFromParent(); 5005 return true; 5006 } 5007 return false; 5008 } 5009 5010 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 5011 BasicBlock *BB = BI->getParent(); 5012 5013 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5014 return true; 5015 5016 // If the Terminator is the only non-phi instruction, simplify the block. 5017 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5018 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5019 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5020 return true; 5021 5022 // If the only instruction in the block is a seteq/setne comparison 5023 // against a constant, try to simplify the block. 5024 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5025 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5026 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5027 ; 5028 if (I->isTerminator() && 5029 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5030 BonusInstThreshold, AC)) 5031 return true; 5032 } 5033 5034 // See if we can merge an empty landing pad block with another which is 5035 // equivalent. 5036 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5037 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 5038 if (I->isTerminator() && 5039 TryToMergeLandingPad(LPad, BI, BB)) 5040 return true; 5041 } 5042 5043 // If this basic block is ONLY a compare and a branch, and if a predecessor 5044 // branches to us and our successor, fold the comparison into the 5045 // predecessor and use logical operations to update the incoming value 5046 // for PHI nodes in common successor. 5047 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5048 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5049 return false; 5050 } 5051 5052 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5053 BasicBlock *PredPred = nullptr; 5054 for (auto *P : predecessors(BB)) { 5055 BasicBlock *PPred = P->getSinglePredecessor(); 5056 if (!PPred || (PredPred && PredPred != PPred)) 5057 return nullptr; 5058 PredPred = PPred; 5059 } 5060 return PredPred; 5061 } 5062 5063 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5064 BasicBlock *BB = BI->getParent(); 5065 5066 // Conditional branch 5067 if (isValueEqualityComparison(BI)) { 5068 // If we only have one predecessor, and if it is a branch on this value, 5069 // see if that predecessor totally determines the outcome of this 5070 // switch. 5071 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5072 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5073 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5074 5075 // This block must be empty, except for the setcond inst, if it exists. 5076 // Ignore dbg intrinsics. 5077 BasicBlock::iterator I = BB->begin(); 5078 // Ignore dbg intrinsics. 5079 while (isa<DbgInfoIntrinsic>(I)) 5080 ++I; 5081 if (&*I == BI) { 5082 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5083 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5084 } else if (&*I == cast<Instruction>(BI->getCondition())){ 5085 ++I; 5086 // Ignore dbg intrinsics. 5087 while (isa<DbgInfoIntrinsic>(I)) 5088 ++I; 5089 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5090 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5091 } 5092 } 5093 5094 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5095 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5096 return true; 5097 5098 // If this basic block is ONLY a compare and a branch, and if a predecessor 5099 // branches to us and one of our successors, fold the comparison into the 5100 // predecessor and use logical operations to pick the right destination. 5101 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5102 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5103 5104 // We have a conditional branch to two blocks that are only reachable 5105 // from BI. We know that the condbr dominates the two blocks, so see if 5106 // there is any identical code in the "then" and "else" blocks. If so, we 5107 // can hoist it up to the branching block. 5108 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5109 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5110 if (HoistThenElseCodeToIf(BI, TTI)) 5111 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5112 } else { 5113 // If Successor #1 has multiple preds, we may be able to conditionally 5114 // execute Successor #0 if it branches to Successor #1. 5115 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5116 if (Succ0TI->getNumSuccessors() == 1 && 5117 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5118 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5119 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5120 } 5121 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5122 // If Successor #0 has multiple preds, we may be able to conditionally 5123 // execute Successor #1 if it branches to Successor #0. 5124 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5125 if (Succ1TI->getNumSuccessors() == 1 && 5126 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5127 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5128 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5129 } 5130 5131 // If this is a branch on a phi node in the current block, thread control 5132 // through this block if any PHI node entries are constants. 5133 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5134 if (PN->getParent() == BI->getParent()) 5135 if (FoldCondBranchOnPHI(BI, DL)) 5136 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5137 5138 // Scan predecessor blocks for conditional branches. 5139 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5140 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5141 if (PBI != BI && PBI->isConditional()) 5142 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5143 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5144 5145 // Look for diamond patterns. 5146 if (MergeCondStores) 5147 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5148 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5149 if (PBI != BI && PBI->isConditional()) 5150 if (mergeConditionalStores(PBI, BI)) 5151 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5152 5153 return false; 5154 } 5155 5156 /// Check if passing a value to an instruction will cause undefined behavior. 5157 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5158 Constant *C = dyn_cast<Constant>(V); 5159 if (!C) 5160 return false; 5161 5162 if (I->use_empty()) 5163 return false; 5164 5165 if (C->isNullValue()) { 5166 // Only look at the first use, avoid hurting compile time with long uselists 5167 User *Use = *I->user_begin(); 5168 5169 // Now make sure that there are no instructions in between that can alter 5170 // control flow (eg. calls) 5171 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 5172 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5173 return false; 5174 5175 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5176 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5177 if (GEP->getPointerOperand() == I) 5178 return passingValueIsAlwaysUndefined(V, GEP); 5179 5180 // Look through bitcasts. 5181 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5182 return passingValueIsAlwaysUndefined(V, BC); 5183 5184 // Load from null is undefined. 5185 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5186 if (!LI->isVolatile()) 5187 return LI->getPointerAddressSpace() == 0; 5188 5189 // Store to null is undefined. 5190 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5191 if (!SI->isVolatile()) 5192 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 5193 } 5194 return false; 5195 } 5196 5197 /// If BB has an incoming value that will always trigger undefined behavior 5198 /// (eg. null pointer dereference), remove the branch leading here. 5199 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5200 for (BasicBlock::iterator i = BB->begin(); 5201 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5202 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5203 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5204 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5205 IRBuilder<> Builder(T); 5206 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5207 BB->removePredecessor(PHI->getIncomingBlock(i)); 5208 // Turn uncoditional branches into unreachables and remove the dead 5209 // destination from conditional branches. 5210 if (BI->isUnconditional()) 5211 Builder.CreateUnreachable(); 5212 else 5213 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 5214 BI->getSuccessor(0)); 5215 BI->eraseFromParent(); 5216 return true; 5217 } 5218 // TODO: SwitchInst. 5219 } 5220 5221 return false; 5222 } 5223 5224 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5225 bool Changed = false; 5226 5227 assert(BB && BB->getParent() && "Block not embedded in function!"); 5228 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5229 5230 // Remove basic blocks that have no predecessors (except the entry block)... 5231 // or that just have themself as a predecessor. These are unreachable. 5232 if ((pred_empty(BB) && 5233 BB != &BB->getParent()->getEntryBlock()) || 5234 BB->getSinglePredecessor() == BB) { 5235 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5236 DeleteDeadBlock(BB); 5237 return true; 5238 } 5239 5240 // Check to see if we can constant propagate this terminator instruction 5241 // away... 5242 Changed |= ConstantFoldTerminator(BB, true); 5243 5244 // Check for and eliminate duplicate PHI nodes in this block. 5245 Changed |= EliminateDuplicatePHINodes(BB); 5246 5247 // Check for and remove branches that will always cause undefined behavior. 5248 Changed |= removeUndefIntroducingPredecessor(BB); 5249 5250 // Merge basic blocks into their predecessor if there is only one distinct 5251 // pred, and if there is only one distinct successor of the predecessor, and 5252 // if there are no PHI nodes. 5253 // 5254 if (MergeBlockIntoPredecessor(BB)) 5255 return true; 5256 5257 IRBuilder<> Builder(BB); 5258 5259 // If there is a trivial two-entry PHI node in this basic block, and we can 5260 // eliminate it, do so now. 5261 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5262 if (PN->getNumIncomingValues() == 2) 5263 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5264 5265 Builder.SetInsertPoint(BB->getTerminator()); 5266 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5267 if (BI->isUnconditional()) { 5268 if (SimplifyUncondBranch(BI, Builder)) return true; 5269 } else { 5270 if (SimplifyCondBranch(BI, Builder)) return true; 5271 } 5272 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5273 if (SimplifyReturn(RI, Builder)) return true; 5274 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5275 if (SimplifyResume(RI, Builder)) return true; 5276 } else if (CleanupReturnInst *RI = 5277 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5278 if (SimplifyCleanupReturn(RI)) return true; 5279 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5280 if (SimplifySwitch(SI, Builder)) return true; 5281 } else if (UnreachableInst *UI = 5282 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5283 if (SimplifyUnreachable(UI)) return true; 5284 } else if (IndirectBrInst *IBI = 5285 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5286 if (SimplifyIndirectBr(IBI)) return true; 5287 } 5288 5289 return Changed; 5290 } 5291 5292 /// This function is used to do simplification of a CFG. 5293 /// For example, it adjusts branches to branches to eliminate the extra hop, 5294 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5295 /// of the CFG. It returns true if a modification was made. 5296 /// 5297 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5298 unsigned BonusInstThreshold, AssumptionCache *AC) { 5299 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 5300 BonusInstThreshold, AC).run(BB); 5301 } 5302