1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/NoFolder.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/KnownBits.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <climits> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <set> 78 #include <tuple> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 using namespace PatternMatch; 84 85 #define DEBUG_TYPE "simplifycfg" 86 87 // Chosen as 2 so as to be cheap, but still to have enough power to fold 88 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 89 // To catch this, we need to fold a compare and a select, hence '2' being the 90 // minimum reasonable default. 91 static cl::opt<unsigned> PHINodeFoldingThreshold( 92 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 93 cl::desc( 94 "Control the amount of phi node folding to perform (default = 2)")); 95 96 static cl::opt<bool> DupRet( 97 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 98 cl::desc("Duplicate return instructions into unconditional branches")); 99 100 static cl::opt<bool> 101 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 102 cl::desc("Sink common instructions down to the end block")); 103 104 static cl::opt<bool> HoistCondStores( 105 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 106 cl::desc("Hoist conditional stores if an unconditional store precedes")); 107 108 static cl::opt<bool> MergeCondStores( 109 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 110 cl::desc("Hoist conditional stores even if an unconditional store does not " 111 "precede - hoist multiple conditional stores into a single " 112 "predicated store")); 113 114 static cl::opt<bool> MergeCondStoresAggressively( 115 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 116 cl::desc("When merging conditional stores, do so even if the resultant " 117 "basic blocks are unlikely to be if-converted as a result")); 118 119 static cl::opt<bool> SpeculateOneExpensiveInst( 120 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 121 cl::desc("Allow exactly one expensive instruction to be speculatively " 122 "executed")); 123 124 static cl::opt<unsigned> MaxSpeculationDepth( 125 "max-speculation-depth", cl::Hidden, cl::init(10), 126 cl::desc("Limit maximum recursion depth when calculating costs of " 127 "speculatively executed instructions")); 128 129 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 130 STATISTIC(NumLinearMaps, 131 "Number of switch instructions turned into linear mapping"); 132 STATISTIC(NumLookupTables, 133 "Number of switch instructions turned into lookup tables"); 134 STATISTIC( 135 NumLookupTablesHoles, 136 "Number of switch instructions turned into lookup tables (holes checked)"); 137 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 138 STATISTIC(NumSinkCommons, 139 "Number of common instructions sunk down to the end block"); 140 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 141 142 namespace { 143 144 // The first field contains the value that the switch produces when a certain 145 // case group is selected, and the second field is a vector containing the 146 // cases composing the case group. 147 using SwitchCaseResultVectorTy = 148 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 149 150 // The first field contains the phi node that generates a result of the switch 151 // and the second field contains the value generated for a certain case in the 152 // switch for that PHI. 153 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 154 155 /// ValueEqualityComparisonCase - Represents a case of a switch. 156 struct ValueEqualityComparisonCase { 157 ConstantInt *Value; 158 BasicBlock *Dest; 159 160 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 161 : Value(Value), Dest(Dest) {} 162 163 bool operator<(ValueEqualityComparisonCase RHS) const { 164 // Comparing pointers is ok as we only rely on the order for uniquing. 165 return Value < RHS.Value; 166 } 167 168 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 169 }; 170 171 class SimplifyCFGOpt { 172 const TargetTransformInfo &TTI; 173 const DataLayout &DL; 174 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 175 const SimplifyCFGOptions &Options; 176 bool Resimplify; 177 178 Value *isValueEqualityComparison(Instruction *TI); 179 BasicBlock *GetValueEqualityComparisonCases( 180 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 181 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 182 BasicBlock *Pred, 183 IRBuilder<> &Builder); 184 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 185 IRBuilder<> &Builder); 186 187 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 188 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 189 bool SimplifySingleResume(ResumeInst *RI); 190 bool SimplifyCommonResume(ResumeInst *RI); 191 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 192 bool SimplifyUnreachable(UnreachableInst *UI); 193 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 194 bool SimplifyIndirectBr(IndirectBrInst *IBI); 195 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 196 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 197 198 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 199 IRBuilder<> &Builder); 200 201 public: 202 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 203 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 204 const SimplifyCFGOptions &Opts) 205 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 206 207 bool run(BasicBlock *BB); 208 bool simplifyOnce(BasicBlock *BB); 209 210 // Helper to set Resimplify and return change indication. 211 bool requestResimplify() { 212 Resimplify = true; 213 return true; 214 } 215 }; 216 217 } // end anonymous namespace 218 219 /// Return true if it is safe to merge these two 220 /// terminator instructions together. 221 static bool 222 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 223 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 224 if (SI1 == SI2) 225 return false; // Can't merge with self! 226 227 // It is not safe to merge these two switch instructions if they have a common 228 // successor, and if that successor has a PHI node, and if *that* PHI node has 229 // conflicting incoming values from the two switch blocks. 230 BasicBlock *SI1BB = SI1->getParent(); 231 BasicBlock *SI2BB = SI2->getParent(); 232 233 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 234 bool Fail = false; 235 for (BasicBlock *Succ : successors(SI2BB)) 236 if (SI1Succs.count(Succ)) 237 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 238 PHINode *PN = cast<PHINode>(BBI); 239 if (PN->getIncomingValueForBlock(SI1BB) != 240 PN->getIncomingValueForBlock(SI2BB)) { 241 if (FailBlocks) 242 FailBlocks->insert(Succ); 243 Fail = true; 244 } 245 } 246 247 return !Fail; 248 } 249 250 /// Return true if it is safe and profitable to merge these two terminator 251 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 252 /// store all PHI nodes in common successors. 253 static bool 254 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 255 Instruction *Cond, 256 SmallVectorImpl<PHINode *> &PhiNodes) { 257 if (SI1 == SI2) 258 return false; // Can't merge with self! 259 assert(SI1->isUnconditional() && SI2->isConditional()); 260 261 // We fold the unconditional branch if we can easily update all PHI nodes in 262 // common successors: 263 // 1> We have a constant incoming value for the conditional branch; 264 // 2> We have "Cond" as the incoming value for the unconditional branch; 265 // 3> SI2->getCondition() and Cond have same operands. 266 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 267 if (!Ci2) 268 return false; 269 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 270 Cond->getOperand(1) == Ci2->getOperand(1)) && 271 !(Cond->getOperand(0) == Ci2->getOperand(1) && 272 Cond->getOperand(1) == Ci2->getOperand(0))) 273 return false; 274 275 BasicBlock *SI1BB = SI1->getParent(); 276 BasicBlock *SI2BB = SI2->getParent(); 277 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 278 for (BasicBlock *Succ : successors(SI2BB)) 279 if (SI1Succs.count(Succ)) 280 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 281 PHINode *PN = cast<PHINode>(BBI); 282 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 283 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 284 return false; 285 PhiNodes.push_back(PN); 286 } 287 return true; 288 } 289 290 /// Update PHI nodes in Succ to indicate that there will now be entries in it 291 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 292 /// will be the same as those coming in from ExistPred, an existing predecessor 293 /// of Succ. 294 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 295 BasicBlock *ExistPred) { 296 for (PHINode &PN : Succ->phis()) 297 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 298 } 299 300 /// Compute an abstract "cost" of speculating the given instruction, 301 /// which is assumed to be safe to speculate. TCC_Free means cheap, 302 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 303 /// expensive. 304 static unsigned ComputeSpeculationCost(const User *I, 305 const TargetTransformInfo &TTI) { 306 assert(isSafeToSpeculativelyExecute(I) && 307 "Instruction is not safe to speculatively execute!"); 308 return TTI.getUserCost(I); 309 } 310 311 /// If we have a merge point of an "if condition" as accepted above, 312 /// return true if the specified value dominates the block. We 313 /// don't handle the true generality of domination here, just a special case 314 /// which works well enough for us. 315 /// 316 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 317 /// see if V (which must be an instruction) and its recursive operands 318 /// that do not dominate BB have a combined cost lower than CostRemaining and 319 /// are non-trapping. If both are true, the instruction is inserted into the 320 /// set and true is returned. 321 /// 322 /// The cost for most non-trapping instructions is defined as 1 except for 323 /// Select whose cost is 2. 324 /// 325 /// After this function returns, CostRemaining is decreased by the cost of 326 /// V plus its non-dominating operands. If that cost is greater than 327 /// CostRemaining, false is returned and CostRemaining is undefined. 328 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 329 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 330 unsigned &CostRemaining, 331 const TargetTransformInfo &TTI, 332 unsigned Depth = 0) { 333 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 334 // so limit the recursion depth. 335 // TODO: While this recursion limit does prevent pathological behavior, it 336 // would be better to track visited instructions to avoid cycles. 337 if (Depth == MaxSpeculationDepth) 338 return false; 339 340 Instruction *I = dyn_cast<Instruction>(V); 341 if (!I) { 342 // Non-instructions all dominate instructions, but not all constantexprs 343 // can be executed unconditionally. 344 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 345 if (C->canTrap()) 346 return false; 347 return true; 348 } 349 BasicBlock *PBB = I->getParent(); 350 351 // We don't want to allow weird loops that might have the "if condition" in 352 // the bottom of this block. 353 if (PBB == BB) 354 return false; 355 356 // If this instruction is defined in a block that contains an unconditional 357 // branch to BB, then it must be in the 'conditional' part of the "if 358 // statement". If not, it definitely dominates the region. 359 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 360 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 361 return true; 362 363 // If we have seen this instruction before, don't count it again. 364 if (AggressiveInsts.count(I)) 365 return true; 366 367 // Okay, it looks like the instruction IS in the "condition". Check to 368 // see if it's a cheap instruction to unconditionally compute, and if it 369 // only uses stuff defined outside of the condition. If so, hoist it out. 370 if (!isSafeToSpeculativelyExecute(I)) 371 return false; 372 373 unsigned Cost = ComputeSpeculationCost(I, TTI); 374 375 // Allow exactly one instruction to be speculated regardless of its cost 376 // (as long as it is safe to do so). 377 // This is intended to flatten the CFG even if the instruction is a division 378 // or other expensive operation. The speculation of an expensive instruction 379 // is expected to be undone in CodeGenPrepare if the speculation has not 380 // enabled further IR optimizations. 381 if (Cost > CostRemaining && 382 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 383 return false; 384 385 // Avoid unsigned wrap. 386 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 387 388 // Okay, we can only really hoist these out if their operands do 389 // not take us over the cost threshold. 390 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 391 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 392 Depth + 1)) 393 return false; 394 // Okay, it's safe to do this! Remember this instruction. 395 AggressiveInsts.insert(I); 396 return true; 397 } 398 399 /// Extract ConstantInt from value, looking through IntToPtr 400 /// and PointerNullValue. Return NULL if value is not a constant int. 401 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 402 // Normal constant int. 403 ConstantInt *CI = dyn_cast<ConstantInt>(V); 404 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 405 return CI; 406 407 // This is some kind of pointer constant. Turn it into a pointer-sized 408 // ConstantInt if possible. 409 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 410 411 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 412 if (isa<ConstantPointerNull>(V)) 413 return ConstantInt::get(PtrTy, 0); 414 415 // IntToPtr const int. 416 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 417 if (CE->getOpcode() == Instruction::IntToPtr) 418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 419 // The constant is very likely to have the right type already. 420 if (CI->getType() == PtrTy) 421 return CI; 422 else 423 return cast<ConstantInt>( 424 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 425 } 426 return nullptr; 427 } 428 429 namespace { 430 431 /// Given a chain of or (||) or and (&&) comparison of a value against a 432 /// constant, this will try to recover the information required for a switch 433 /// structure. 434 /// It will depth-first traverse the chain of comparison, seeking for patterns 435 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 436 /// representing the different cases for the switch. 437 /// Note that if the chain is composed of '||' it will build the set of elements 438 /// that matches the comparisons (i.e. any of this value validate the chain) 439 /// while for a chain of '&&' it will build the set elements that make the test 440 /// fail. 441 struct ConstantComparesGatherer { 442 const DataLayout &DL; 443 444 /// Value found for the switch comparison 445 Value *CompValue = nullptr; 446 447 /// Extra clause to be checked before the switch 448 Value *Extra = nullptr; 449 450 /// Set of integers to match in switch 451 SmallVector<ConstantInt *, 8> Vals; 452 453 /// Number of comparisons matched in the and/or chain 454 unsigned UsedICmps = 0; 455 456 /// Construct and compute the result for the comparison instruction Cond 457 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 458 gather(Cond); 459 } 460 461 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 462 ConstantComparesGatherer & 463 operator=(const ConstantComparesGatherer &) = delete; 464 465 private: 466 /// Try to set the current value used for the comparison, it succeeds only if 467 /// it wasn't set before or if the new value is the same as the old one 468 bool setValueOnce(Value *NewVal) { 469 if (CompValue && CompValue != NewVal) 470 return false; 471 CompValue = NewVal; 472 return (CompValue != nullptr); 473 } 474 475 /// Try to match Instruction "I" as a comparison against a constant and 476 /// populates the array Vals with the set of values that match (or do not 477 /// match depending on isEQ). 478 /// Return false on failure. On success, the Value the comparison matched 479 /// against is placed in CompValue. 480 /// If CompValue is already set, the function is expected to fail if a match 481 /// is found but the value compared to is different. 482 bool matchInstruction(Instruction *I, bool isEQ) { 483 // If this is an icmp against a constant, handle this as one of the cases. 484 ICmpInst *ICI; 485 ConstantInt *C; 486 if (!((ICI = dyn_cast<ICmpInst>(I)) && 487 (C = GetConstantInt(I->getOperand(1), DL)))) { 488 return false; 489 } 490 491 Value *RHSVal; 492 const APInt *RHSC; 493 494 // Pattern match a special case 495 // (x & ~2^z) == y --> x == y || x == y|2^z 496 // This undoes a transformation done by instcombine to fuse 2 compares. 497 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 498 // It's a little bit hard to see why the following transformations are 499 // correct. Here is a CVC3 program to verify them for 64-bit values: 500 501 /* 502 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 503 x : BITVECTOR(64); 504 y : BITVECTOR(64); 505 z : BITVECTOR(64); 506 mask : BITVECTOR(64) = BVSHL(ONE, z); 507 QUERY( (y & ~mask = y) => 508 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 509 ); 510 QUERY( (y | mask = y) => 511 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 512 ); 513 */ 514 515 // Please note that each pattern must be a dual implication (<--> or 516 // iff). One directional implication can create spurious matches. If the 517 // implication is only one-way, an unsatisfiable condition on the left 518 // side can imply a satisfiable condition on the right side. Dual 519 // implication ensures that satisfiable conditions are transformed to 520 // other satisfiable conditions and unsatisfiable conditions are 521 // transformed to other unsatisfiable conditions. 522 523 // Here is a concrete example of a unsatisfiable condition on the left 524 // implying a satisfiable condition on the right: 525 // 526 // mask = (1 << z) 527 // (x & ~mask) == y --> (x == y || x == (y | mask)) 528 // 529 // Substituting y = 3, z = 0 yields: 530 // (x & -2) == 3 --> (x == 3 || x == 2) 531 532 // Pattern match a special case: 533 /* 534 QUERY( (y & ~mask = y) => 535 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 536 ); 537 */ 538 if (match(ICI->getOperand(0), 539 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 540 APInt Mask = ~*RHSC; 541 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 542 // If we already have a value for the switch, it has to match! 543 if (!setValueOnce(RHSVal)) 544 return false; 545 546 Vals.push_back(C); 547 Vals.push_back( 548 ConstantInt::get(C->getContext(), 549 C->getValue() | Mask)); 550 UsedICmps++; 551 return true; 552 } 553 } 554 555 // Pattern match a special case: 556 /* 557 QUERY( (y | mask = y) => 558 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 559 ); 560 */ 561 if (match(ICI->getOperand(0), 562 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 563 APInt Mask = *RHSC; 564 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 565 // If we already have a value for the switch, it has to match! 566 if (!setValueOnce(RHSVal)) 567 return false; 568 569 Vals.push_back(C); 570 Vals.push_back(ConstantInt::get(C->getContext(), 571 C->getValue() & ~Mask)); 572 UsedICmps++; 573 return true; 574 } 575 } 576 577 // If we already have a value for the switch, it has to match! 578 if (!setValueOnce(ICI->getOperand(0))) 579 return false; 580 581 UsedICmps++; 582 Vals.push_back(C); 583 return ICI->getOperand(0); 584 } 585 586 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 587 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 588 ICI->getPredicate(), C->getValue()); 589 590 // Shift the range if the compare is fed by an add. This is the range 591 // compare idiom as emitted by instcombine. 592 Value *CandidateVal = I->getOperand(0); 593 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 594 Span = Span.subtract(*RHSC); 595 CandidateVal = RHSVal; 596 } 597 598 // If this is an and/!= check, then we are looking to build the set of 599 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 600 // x != 0 && x != 1. 601 if (!isEQ) 602 Span = Span.inverse(); 603 604 // If there are a ton of values, we don't want to make a ginormous switch. 605 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 606 return false; 607 } 608 609 // If we already have a value for the switch, it has to match! 610 if (!setValueOnce(CandidateVal)) 611 return false; 612 613 // Add all values from the range to the set 614 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 615 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 616 617 UsedICmps++; 618 return true; 619 } 620 621 /// Given a potentially 'or'd or 'and'd together collection of icmp 622 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 623 /// the value being compared, and stick the list constants into the Vals 624 /// vector. 625 /// One "Extra" case is allowed to differ from the other. 626 void gather(Value *V) { 627 Instruction *I = dyn_cast<Instruction>(V); 628 bool isEQ = (I->getOpcode() == Instruction::Or); 629 630 // Keep a stack (SmallVector for efficiency) for depth-first traversal 631 SmallVector<Value *, 8> DFT; 632 SmallPtrSet<Value *, 8> Visited; 633 634 // Initialize 635 Visited.insert(V); 636 DFT.push_back(V); 637 638 while (!DFT.empty()) { 639 V = DFT.pop_back_val(); 640 641 if (Instruction *I = dyn_cast<Instruction>(V)) { 642 // If it is a || (or && depending on isEQ), process the operands. 643 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 644 if (Visited.insert(I->getOperand(1)).second) 645 DFT.push_back(I->getOperand(1)); 646 if (Visited.insert(I->getOperand(0)).second) 647 DFT.push_back(I->getOperand(0)); 648 continue; 649 } 650 651 // Try to match the current instruction 652 if (matchInstruction(I, isEQ)) 653 // Match succeed, continue the loop 654 continue; 655 } 656 657 // One element of the sequence of || (or &&) could not be match as a 658 // comparison against the same value as the others. 659 // We allow only one "Extra" case to be checked before the switch 660 if (!Extra) { 661 Extra = V; 662 continue; 663 } 664 // Failed to parse a proper sequence, abort now 665 CompValue = nullptr; 666 break; 667 } 668 } 669 }; 670 671 } // end anonymous namespace 672 673 static void EraseTerminatorAndDCECond(Instruction *TI) { 674 Instruction *Cond = nullptr; 675 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 676 Cond = dyn_cast<Instruction>(SI->getCondition()); 677 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 678 if (BI->isConditional()) 679 Cond = dyn_cast<Instruction>(BI->getCondition()); 680 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 681 Cond = dyn_cast<Instruction>(IBI->getAddress()); 682 } 683 684 TI->eraseFromParent(); 685 if (Cond) 686 RecursivelyDeleteTriviallyDeadInstructions(Cond); 687 } 688 689 /// Return true if the specified terminator checks 690 /// to see if a value is equal to constant integer value. 691 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 692 Value *CV = nullptr; 693 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 694 // Do not permit merging of large switch instructions into their 695 // predecessors unless there is only one predecessor. 696 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 697 CV = SI->getCondition(); 698 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 699 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 700 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 701 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 702 CV = ICI->getOperand(0); 703 } 704 705 // Unwrap any lossless ptrtoint cast. 706 if (CV) { 707 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 708 Value *Ptr = PTII->getPointerOperand(); 709 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 710 CV = Ptr; 711 } 712 } 713 return CV; 714 } 715 716 /// Given a value comparison instruction, 717 /// decode all of the 'cases' that it represents and return the 'default' block. 718 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 719 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 720 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 721 Cases.reserve(SI->getNumCases()); 722 for (auto Case : SI->cases()) 723 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 724 Case.getCaseSuccessor())); 725 return SI->getDefaultDest(); 726 } 727 728 BranchInst *BI = cast<BranchInst>(TI); 729 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 730 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 731 Cases.push_back(ValueEqualityComparisonCase( 732 GetConstantInt(ICI->getOperand(1), DL), Succ)); 733 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 734 } 735 736 /// Given a vector of bb/value pairs, remove any entries 737 /// in the list that match the specified block. 738 static void 739 EliminateBlockCases(BasicBlock *BB, 740 std::vector<ValueEqualityComparisonCase> &Cases) { 741 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 742 } 743 744 /// Return true if there are any keys in C1 that exist in C2 as well. 745 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 746 std::vector<ValueEqualityComparisonCase> &C2) { 747 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 748 749 // Make V1 be smaller than V2. 750 if (V1->size() > V2->size()) 751 std::swap(V1, V2); 752 753 if (V1->empty()) 754 return false; 755 if (V1->size() == 1) { 756 // Just scan V2. 757 ConstantInt *TheVal = (*V1)[0].Value; 758 for (unsigned i = 0, e = V2->size(); i != e; ++i) 759 if (TheVal == (*V2)[i].Value) 760 return true; 761 } 762 763 // Otherwise, just sort both lists and compare element by element. 764 array_pod_sort(V1->begin(), V1->end()); 765 array_pod_sort(V2->begin(), V2->end()); 766 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 767 while (i1 != e1 && i2 != e2) { 768 if ((*V1)[i1].Value == (*V2)[i2].Value) 769 return true; 770 if ((*V1)[i1].Value < (*V2)[i2].Value) 771 ++i1; 772 else 773 ++i2; 774 } 775 return false; 776 } 777 778 // Set branch weights on SwitchInst. This sets the metadata if there is at 779 // least one non-zero weight. 780 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 781 // Check that there is at least one non-zero weight. Otherwise, pass 782 // nullptr to setMetadata which will erase the existing metadata. 783 MDNode *N = nullptr; 784 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 785 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 786 SI->setMetadata(LLVMContext::MD_prof, N); 787 } 788 789 // Similar to the above, but for branch and select instructions that take 790 // exactly 2 weights. 791 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 792 uint32_t FalseWeight) { 793 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 794 // Check that there is at least one non-zero weight. Otherwise, pass 795 // nullptr to setMetadata which will erase the existing metadata. 796 MDNode *N = nullptr; 797 if (TrueWeight || FalseWeight) 798 N = MDBuilder(I->getParent()->getContext()) 799 .createBranchWeights(TrueWeight, FalseWeight); 800 I->setMetadata(LLVMContext::MD_prof, N); 801 } 802 803 /// If TI is known to be a terminator instruction and its block is known to 804 /// only have a single predecessor block, check to see if that predecessor is 805 /// also a value comparison with the same value, and if that comparison 806 /// determines the outcome of this comparison. If so, simplify TI. This does a 807 /// very limited form of jump threading. 808 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 809 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 810 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 811 if (!PredVal) 812 return false; // Not a value comparison in predecessor. 813 814 Value *ThisVal = isValueEqualityComparison(TI); 815 assert(ThisVal && "This isn't a value comparison!!"); 816 if (ThisVal != PredVal) 817 return false; // Different predicates. 818 819 // TODO: Preserve branch weight metadata, similarly to how 820 // FoldValueComparisonIntoPredecessors preserves it. 821 822 // Find out information about when control will move from Pred to TI's block. 823 std::vector<ValueEqualityComparisonCase> PredCases; 824 BasicBlock *PredDef = 825 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 826 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 827 828 // Find information about how control leaves this block. 829 std::vector<ValueEqualityComparisonCase> ThisCases; 830 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 831 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 832 833 // If TI's block is the default block from Pred's comparison, potentially 834 // simplify TI based on this knowledge. 835 if (PredDef == TI->getParent()) { 836 // If we are here, we know that the value is none of those cases listed in 837 // PredCases. If there are any cases in ThisCases that are in PredCases, we 838 // can simplify TI. 839 if (!ValuesOverlap(PredCases, ThisCases)) 840 return false; 841 842 if (isa<BranchInst>(TI)) { 843 // Okay, one of the successors of this condbr is dead. Convert it to a 844 // uncond br. 845 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 846 // Insert the new branch. 847 Instruction *NI = Builder.CreateBr(ThisDef); 848 (void)NI; 849 850 // Remove PHI node entries for the dead edge. 851 ThisCases[0].Dest->removePredecessor(TI->getParent()); 852 853 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 854 << "Through successor TI: " << *TI << "Leaving: " << *NI 855 << "\n"); 856 857 EraseTerminatorAndDCECond(TI); 858 return true; 859 } 860 861 SwitchInst *SI = cast<SwitchInst>(TI); 862 // Okay, TI has cases that are statically dead, prune them away. 863 SmallPtrSet<Constant *, 16> DeadCases; 864 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 865 DeadCases.insert(PredCases[i].Value); 866 867 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 868 << "Through successor TI: " << *TI); 869 870 // Collect branch weights into a vector. 871 SmallVector<uint32_t, 8> Weights; 872 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 873 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 874 if (HasWeight) 875 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 876 ++MD_i) { 877 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 878 Weights.push_back(CI->getValue().getZExtValue()); 879 } 880 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 881 --i; 882 if (DeadCases.count(i->getCaseValue())) { 883 if (HasWeight) { 884 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 885 Weights.pop_back(); 886 } 887 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 888 SI->removeCase(i); 889 } 890 } 891 if (HasWeight && Weights.size() >= 2) 892 setBranchWeights(SI, Weights); 893 894 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 895 return true; 896 } 897 898 // Otherwise, TI's block must correspond to some matched value. Find out 899 // which value (or set of values) this is. 900 ConstantInt *TIV = nullptr; 901 BasicBlock *TIBB = TI->getParent(); 902 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 903 if (PredCases[i].Dest == TIBB) { 904 if (TIV) 905 return false; // Cannot handle multiple values coming to this block. 906 TIV = PredCases[i].Value; 907 } 908 assert(TIV && "No edge from pred to succ?"); 909 910 // Okay, we found the one constant that our value can be if we get into TI's 911 // BB. Find out which successor will unconditionally be branched to. 912 BasicBlock *TheRealDest = nullptr; 913 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 914 if (ThisCases[i].Value == TIV) { 915 TheRealDest = ThisCases[i].Dest; 916 break; 917 } 918 919 // If not handled by any explicit cases, it is handled by the default case. 920 if (!TheRealDest) 921 TheRealDest = ThisDef; 922 923 // Remove PHI node entries for dead edges. 924 BasicBlock *CheckEdge = TheRealDest; 925 for (BasicBlock *Succ : successors(TIBB)) 926 if (Succ != CheckEdge) 927 Succ->removePredecessor(TIBB); 928 else 929 CheckEdge = nullptr; 930 931 // Insert the new branch. 932 Instruction *NI = Builder.CreateBr(TheRealDest); 933 (void)NI; 934 935 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 936 << "Through successor TI: " << *TI << "Leaving: " << *NI 937 << "\n"); 938 939 EraseTerminatorAndDCECond(TI); 940 return true; 941 } 942 943 namespace { 944 945 /// This class implements a stable ordering of constant 946 /// integers that does not depend on their address. This is important for 947 /// applications that sort ConstantInt's to ensure uniqueness. 948 struct ConstantIntOrdering { 949 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 950 return LHS->getValue().ult(RHS->getValue()); 951 } 952 }; 953 954 } // end anonymous namespace 955 956 static int ConstantIntSortPredicate(ConstantInt *const *P1, 957 ConstantInt *const *P2) { 958 const ConstantInt *LHS = *P1; 959 const ConstantInt *RHS = *P2; 960 if (LHS == RHS) 961 return 0; 962 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 963 } 964 965 static inline bool HasBranchWeights(const Instruction *I) { 966 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 967 if (ProfMD && ProfMD->getOperand(0)) 968 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 969 return MDS->getString().equals("branch_weights"); 970 971 return false; 972 } 973 974 /// Get Weights of a given terminator, the default weight is at the front 975 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 976 /// metadata. 977 static void GetBranchWeights(Instruction *TI, 978 SmallVectorImpl<uint64_t> &Weights) { 979 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 980 assert(MD); 981 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 982 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 983 Weights.push_back(CI->getValue().getZExtValue()); 984 } 985 986 // If TI is a conditional eq, the default case is the false case, 987 // and the corresponding branch-weight data is at index 2. We swap the 988 // default weight to be the first entry. 989 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 990 assert(Weights.size() == 2); 991 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 992 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 993 std::swap(Weights.front(), Weights.back()); 994 } 995 } 996 997 /// Keep halving the weights until all can fit in uint32_t. 998 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 999 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1000 if (Max > UINT_MAX) { 1001 unsigned Offset = 32 - countLeadingZeros(Max); 1002 for (uint64_t &I : Weights) 1003 I >>= Offset; 1004 } 1005 } 1006 1007 /// The specified terminator is a value equality comparison instruction 1008 /// (either a switch or a branch on "X == c"). 1009 /// See if any of the predecessors of the terminator block are value comparisons 1010 /// on the same value. If so, and if safe to do so, fold them together. 1011 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1012 IRBuilder<> &Builder) { 1013 BasicBlock *BB = TI->getParent(); 1014 Value *CV = isValueEqualityComparison(TI); // CondVal 1015 assert(CV && "Not a comparison?"); 1016 bool Changed = false; 1017 1018 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1019 while (!Preds.empty()) { 1020 BasicBlock *Pred = Preds.pop_back_val(); 1021 1022 // See if the predecessor is a comparison with the same value. 1023 Instruction *PTI = Pred->getTerminator(); 1024 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1025 1026 if (PCV == CV && TI != PTI) { 1027 SmallSetVector<BasicBlock*, 4> FailBlocks; 1028 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1029 for (auto *Succ : FailBlocks) { 1030 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1031 return false; 1032 } 1033 } 1034 1035 // Figure out which 'cases' to copy from SI to PSI. 1036 std::vector<ValueEqualityComparisonCase> BBCases; 1037 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1038 1039 std::vector<ValueEqualityComparisonCase> PredCases; 1040 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1041 1042 // Based on whether the default edge from PTI goes to BB or not, fill in 1043 // PredCases and PredDefault with the new switch cases we would like to 1044 // build. 1045 SmallVector<BasicBlock *, 8> NewSuccessors; 1046 1047 // Update the branch weight metadata along the way 1048 SmallVector<uint64_t, 8> Weights; 1049 bool PredHasWeights = HasBranchWeights(PTI); 1050 bool SuccHasWeights = HasBranchWeights(TI); 1051 1052 if (PredHasWeights) { 1053 GetBranchWeights(PTI, Weights); 1054 // branch-weight metadata is inconsistent here. 1055 if (Weights.size() != 1 + PredCases.size()) 1056 PredHasWeights = SuccHasWeights = false; 1057 } else if (SuccHasWeights) 1058 // If there are no predecessor weights but there are successor weights, 1059 // populate Weights with 1, which will later be scaled to the sum of 1060 // successor's weights 1061 Weights.assign(1 + PredCases.size(), 1); 1062 1063 SmallVector<uint64_t, 8> SuccWeights; 1064 if (SuccHasWeights) { 1065 GetBranchWeights(TI, SuccWeights); 1066 // branch-weight metadata is inconsistent here. 1067 if (SuccWeights.size() != 1 + BBCases.size()) 1068 PredHasWeights = SuccHasWeights = false; 1069 } else if (PredHasWeights) 1070 SuccWeights.assign(1 + BBCases.size(), 1); 1071 1072 if (PredDefault == BB) { 1073 // If this is the default destination from PTI, only the edges in TI 1074 // that don't occur in PTI, or that branch to BB will be activated. 1075 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1076 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1077 if (PredCases[i].Dest != BB) 1078 PTIHandled.insert(PredCases[i].Value); 1079 else { 1080 // The default destination is BB, we don't need explicit targets. 1081 std::swap(PredCases[i], PredCases.back()); 1082 1083 if (PredHasWeights || SuccHasWeights) { 1084 // Increase weight for the default case. 1085 Weights[0] += Weights[i + 1]; 1086 std::swap(Weights[i + 1], Weights.back()); 1087 Weights.pop_back(); 1088 } 1089 1090 PredCases.pop_back(); 1091 --i; 1092 --e; 1093 } 1094 1095 // Reconstruct the new switch statement we will be building. 1096 if (PredDefault != BBDefault) { 1097 PredDefault->removePredecessor(Pred); 1098 PredDefault = BBDefault; 1099 NewSuccessors.push_back(BBDefault); 1100 } 1101 1102 unsigned CasesFromPred = Weights.size(); 1103 uint64_t ValidTotalSuccWeight = 0; 1104 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1105 if (!PTIHandled.count(BBCases[i].Value) && 1106 BBCases[i].Dest != BBDefault) { 1107 PredCases.push_back(BBCases[i]); 1108 NewSuccessors.push_back(BBCases[i].Dest); 1109 if (SuccHasWeights || PredHasWeights) { 1110 // The default weight is at index 0, so weight for the ith case 1111 // should be at index i+1. Scale the cases from successor by 1112 // PredDefaultWeight (Weights[0]). 1113 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1114 ValidTotalSuccWeight += SuccWeights[i + 1]; 1115 } 1116 } 1117 1118 if (SuccHasWeights || PredHasWeights) { 1119 ValidTotalSuccWeight += SuccWeights[0]; 1120 // Scale the cases from predecessor by ValidTotalSuccWeight. 1121 for (unsigned i = 1; i < CasesFromPred; ++i) 1122 Weights[i] *= ValidTotalSuccWeight; 1123 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1124 Weights[0] *= SuccWeights[0]; 1125 } 1126 } else { 1127 // If this is not the default destination from PSI, only the edges 1128 // in SI that occur in PSI with a destination of BB will be 1129 // activated. 1130 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1131 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1132 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1133 if (PredCases[i].Dest == BB) { 1134 PTIHandled.insert(PredCases[i].Value); 1135 1136 if (PredHasWeights || SuccHasWeights) { 1137 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1138 std::swap(Weights[i + 1], Weights.back()); 1139 Weights.pop_back(); 1140 } 1141 1142 std::swap(PredCases[i], PredCases.back()); 1143 PredCases.pop_back(); 1144 --i; 1145 --e; 1146 } 1147 1148 // Okay, now we know which constants were sent to BB from the 1149 // predecessor. Figure out where they will all go now. 1150 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1151 if (PTIHandled.count(BBCases[i].Value)) { 1152 // If this is one we are capable of getting... 1153 if (PredHasWeights || SuccHasWeights) 1154 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1155 PredCases.push_back(BBCases[i]); 1156 NewSuccessors.push_back(BBCases[i].Dest); 1157 PTIHandled.erase( 1158 BBCases[i].Value); // This constant is taken care of 1159 } 1160 1161 // If there are any constants vectored to BB that TI doesn't handle, 1162 // they must go to the default destination of TI. 1163 for (ConstantInt *I : PTIHandled) { 1164 if (PredHasWeights || SuccHasWeights) 1165 Weights.push_back(WeightsForHandled[I]); 1166 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1167 NewSuccessors.push_back(BBDefault); 1168 } 1169 } 1170 1171 // Okay, at this point, we know which new successor Pred will get. Make 1172 // sure we update the number of entries in the PHI nodes for these 1173 // successors. 1174 for (BasicBlock *NewSuccessor : NewSuccessors) 1175 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1176 1177 Builder.SetInsertPoint(PTI); 1178 // Convert pointer to int before we switch. 1179 if (CV->getType()->isPointerTy()) { 1180 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1181 "magicptr"); 1182 } 1183 1184 // Now that the successors are updated, create the new Switch instruction. 1185 SwitchInst *NewSI = 1186 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1187 NewSI->setDebugLoc(PTI->getDebugLoc()); 1188 for (ValueEqualityComparisonCase &V : PredCases) 1189 NewSI->addCase(V.Value, V.Dest); 1190 1191 if (PredHasWeights || SuccHasWeights) { 1192 // Halve the weights if any of them cannot fit in an uint32_t 1193 FitWeights(Weights); 1194 1195 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1196 1197 setBranchWeights(NewSI, MDWeights); 1198 } 1199 1200 EraseTerminatorAndDCECond(PTI); 1201 1202 // Okay, last check. If BB is still a successor of PSI, then we must 1203 // have an infinite loop case. If so, add an infinitely looping block 1204 // to handle the case to preserve the behavior of the code. 1205 BasicBlock *InfLoopBlock = nullptr; 1206 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1207 if (NewSI->getSuccessor(i) == BB) { 1208 if (!InfLoopBlock) { 1209 // Insert it at the end of the function, because it's either code, 1210 // or it won't matter if it's hot. :) 1211 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1212 BB->getParent()); 1213 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1214 } 1215 NewSI->setSuccessor(i, InfLoopBlock); 1216 } 1217 1218 Changed = true; 1219 } 1220 } 1221 return Changed; 1222 } 1223 1224 // If we would need to insert a select that uses the value of this invoke 1225 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1226 // can't hoist the invoke, as there is nowhere to put the select in this case. 1227 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1228 Instruction *I1, Instruction *I2) { 1229 for (BasicBlock *Succ : successors(BB1)) { 1230 for (const PHINode &PN : Succ->phis()) { 1231 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1232 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1233 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1234 return false; 1235 } 1236 } 1237 } 1238 return true; 1239 } 1240 1241 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1242 1243 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1244 /// in the two blocks up into the branch block. The caller of this function 1245 /// guarantees that BI's block dominates BB1 and BB2. 1246 static bool HoistThenElseCodeToIf(BranchInst *BI, 1247 const TargetTransformInfo &TTI) { 1248 // This does very trivial matching, with limited scanning, to find identical 1249 // instructions in the two blocks. In particular, we don't want to get into 1250 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1251 // such, we currently just scan for obviously identical instructions in an 1252 // identical order. 1253 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1254 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1255 1256 BasicBlock::iterator BB1_Itr = BB1->begin(); 1257 BasicBlock::iterator BB2_Itr = BB2->begin(); 1258 1259 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1260 // Skip debug info if it is not identical. 1261 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1262 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1263 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1264 while (isa<DbgInfoIntrinsic>(I1)) 1265 I1 = &*BB1_Itr++; 1266 while (isa<DbgInfoIntrinsic>(I2)) 1267 I2 = &*BB2_Itr++; 1268 } 1269 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1270 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1271 return false; 1272 1273 BasicBlock *BIParent = BI->getParent(); 1274 1275 bool Changed = false; 1276 do { 1277 // If we are hoisting the terminator instruction, don't move one (making a 1278 // broken BB), instead clone it, and remove BI. 1279 if (I1->isTerminator()) 1280 goto HoistTerminator; 1281 1282 // If we're going to hoist a call, make sure that the two instructions we're 1283 // commoning/hoisting are both marked with musttail, or neither of them is 1284 // marked as such. Otherwise, we might end up in a situation where we hoist 1285 // from a block where the terminator is a `ret` to a block where the terminator 1286 // is a `br`, and `musttail` calls expect to be followed by a return. 1287 auto *C1 = dyn_cast<CallInst>(I1); 1288 auto *C2 = dyn_cast<CallInst>(I2); 1289 if (C1 && C2) 1290 if (C1->isMustTailCall() != C2->isMustTailCall()) 1291 return Changed; 1292 1293 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1294 return Changed; 1295 1296 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1297 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1298 // The debug location is an integral part of a debug info intrinsic 1299 // and can't be separated from it or replaced. Instead of attempting 1300 // to merge locations, simply hoist both copies of the intrinsic. 1301 BIParent->getInstList().splice(BI->getIterator(), 1302 BB1->getInstList(), I1); 1303 BIParent->getInstList().splice(BI->getIterator(), 1304 BB2->getInstList(), I2); 1305 Changed = true; 1306 } else { 1307 // For a normal instruction, we just move one to right before the branch, 1308 // then replace all uses of the other with the first. Finally, we remove 1309 // the now redundant second instruction. 1310 BIParent->getInstList().splice(BI->getIterator(), 1311 BB1->getInstList(), I1); 1312 if (!I2->use_empty()) 1313 I2->replaceAllUsesWith(I1); 1314 I1->andIRFlags(I2); 1315 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1316 LLVMContext::MD_range, 1317 LLVMContext::MD_fpmath, 1318 LLVMContext::MD_invariant_load, 1319 LLVMContext::MD_nonnull, 1320 LLVMContext::MD_invariant_group, 1321 LLVMContext::MD_align, 1322 LLVMContext::MD_dereferenceable, 1323 LLVMContext::MD_dereferenceable_or_null, 1324 LLVMContext::MD_mem_parallel_loop_access, 1325 LLVMContext::MD_access_group}; 1326 combineMetadata(I1, I2, KnownIDs, true); 1327 1328 // I1 and I2 are being combined into a single instruction. Its debug 1329 // location is the merged locations of the original instructions. 1330 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1331 1332 I2->eraseFromParent(); 1333 Changed = true; 1334 } 1335 1336 I1 = &*BB1_Itr++; 1337 I2 = &*BB2_Itr++; 1338 // Skip debug info if it is not identical. 1339 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1340 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1341 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1342 while (isa<DbgInfoIntrinsic>(I1)) 1343 I1 = &*BB1_Itr++; 1344 while (isa<DbgInfoIntrinsic>(I2)) 1345 I2 = &*BB2_Itr++; 1346 } 1347 } while (I1->isIdenticalToWhenDefined(I2)); 1348 1349 return true; 1350 1351 HoistTerminator: 1352 // It may not be possible to hoist an invoke. 1353 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1354 return Changed; 1355 1356 for (BasicBlock *Succ : successors(BB1)) { 1357 for (PHINode &PN : Succ->phis()) { 1358 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1359 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1360 if (BB1V == BB2V) 1361 continue; 1362 1363 // Check for passingValueIsAlwaysUndefined here because we would rather 1364 // eliminate undefined control flow then converting it to a select. 1365 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1366 passingValueIsAlwaysUndefined(BB2V, &PN)) 1367 return Changed; 1368 1369 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1370 return Changed; 1371 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1372 return Changed; 1373 } 1374 } 1375 1376 // Okay, it is safe to hoist the terminator. 1377 Instruction *NT = I1->clone(); 1378 BIParent->getInstList().insert(BI->getIterator(), NT); 1379 if (!NT->getType()->isVoidTy()) { 1380 I1->replaceAllUsesWith(NT); 1381 I2->replaceAllUsesWith(NT); 1382 NT->takeName(I1); 1383 } 1384 1385 // Ensure terminator gets a debug location, even an unknown one, in case 1386 // it involves inlinable calls. 1387 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1388 1389 // PHIs created below will adopt NT's merged DebugLoc. 1390 IRBuilder<NoFolder> Builder(NT); 1391 1392 // Hoisting one of the terminators from our successor is a great thing. 1393 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1394 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1395 // nodes, so we insert select instruction to compute the final result. 1396 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1397 for (BasicBlock *Succ : successors(BB1)) { 1398 for (PHINode &PN : Succ->phis()) { 1399 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1400 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1401 if (BB1V == BB2V) 1402 continue; 1403 1404 // These values do not agree. Insert a select instruction before NT 1405 // that determines the right value. 1406 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1407 if (!SI) 1408 SI = cast<SelectInst>( 1409 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1410 BB1V->getName() + "." + BB2V->getName(), BI)); 1411 1412 // Make the PHI node use the select for all incoming values for BB1/BB2 1413 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1414 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1415 PN.setIncomingValue(i, SI); 1416 } 1417 } 1418 1419 // Update any PHI nodes in our new successors. 1420 for (BasicBlock *Succ : successors(BB1)) 1421 AddPredecessorToBlock(Succ, BIParent, BB1); 1422 1423 EraseTerminatorAndDCECond(BI); 1424 return true; 1425 } 1426 1427 // All instructions in Insts belong to different blocks that all unconditionally 1428 // branch to a common successor. Analyze each instruction and return true if it 1429 // would be possible to sink them into their successor, creating one common 1430 // instruction instead. For every value that would be required to be provided by 1431 // PHI node (because an operand varies in each input block), add to PHIOperands. 1432 static bool canSinkInstructions( 1433 ArrayRef<Instruction *> Insts, 1434 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1435 // Prune out obviously bad instructions to move. Any non-store instruction 1436 // must have exactly one use, and we check later that use is by a single, 1437 // common PHI instruction in the successor. 1438 for (auto *I : Insts) { 1439 // These instructions may change or break semantics if moved. 1440 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1441 I->getType()->isTokenTy()) 1442 return false; 1443 1444 // Conservatively return false if I is an inline-asm instruction. Sinking 1445 // and merging inline-asm instructions can potentially create arguments 1446 // that cannot satisfy the inline-asm constraints. 1447 if (const auto *C = dyn_cast<CallInst>(I)) 1448 if (C->isInlineAsm()) 1449 return false; 1450 1451 // Everything must have only one use too, apart from stores which 1452 // have no uses. 1453 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1454 return false; 1455 } 1456 1457 const Instruction *I0 = Insts.front(); 1458 for (auto *I : Insts) 1459 if (!I->isSameOperationAs(I0)) 1460 return false; 1461 1462 // All instructions in Insts are known to be the same opcode. If they aren't 1463 // stores, check the only user of each is a PHI or in the same block as the 1464 // instruction, because if a user is in the same block as an instruction 1465 // we're contemplating sinking, it must already be determined to be sinkable. 1466 if (!isa<StoreInst>(I0)) { 1467 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1468 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1469 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1470 auto *U = cast<Instruction>(*I->user_begin()); 1471 return (PNUse && 1472 PNUse->getParent() == Succ && 1473 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1474 U->getParent() == I->getParent(); 1475 })) 1476 return false; 1477 } 1478 1479 // Because SROA can't handle speculating stores of selects, try not 1480 // to sink loads or stores of allocas when we'd have to create a PHI for 1481 // the address operand. Also, because it is likely that loads or stores 1482 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1483 // This can cause code churn which can have unintended consequences down 1484 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1485 // FIXME: This is a workaround for a deficiency in SROA - see 1486 // https://llvm.org/bugs/show_bug.cgi?id=30188 1487 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1488 return isa<AllocaInst>(I->getOperand(1)); 1489 })) 1490 return false; 1491 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1492 return isa<AllocaInst>(I->getOperand(0)); 1493 })) 1494 return false; 1495 1496 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1497 if (I0->getOperand(OI)->getType()->isTokenTy()) 1498 // Don't touch any operand of token type. 1499 return false; 1500 1501 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1502 assert(I->getNumOperands() == I0->getNumOperands()); 1503 return I->getOperand(OI) == I0->getOperand(OI); 1504 }; 1505 if (!all_of(Insts, SameAsI0)) { 1506 if (!canReplaceOperandWithVariable(I0, OI)) 1507 // We can't create a PHI from this GEP. 1508 return false; 1509 // Don't create indirect calls! The called value is the final operand. 1510 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1511 // FIXME: if the call was *already* indirect, we should do this. 1512 return false; 1513 } 1514 for (auto *I : Insts) 1515 PHIOperands[I].push_back(I->getOperand(OI)); 1516 } 1517 } 1518 return true; 1519 } 1520 1521 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1522 // instruction of every block in Blocks to their common successor, commoning 1523 // into one instruction. 1524 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1525 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1526 1527 // canSinkLastInstruction returning true guarantees that every block has at 1528 // least one non-terminator instruction. 1529 SmallVector<Instruction*,4> Insts; 1530 for (auto *BB : Blocks) { 1531 Instruction *I = BB->getTerminator(); 1532 do { 1533 I = I->getPrevNode(); 1534 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1535 if (!isa<DbgInfoIntrinsic>(I)) 1536 Insts.push_back(I); 1537 } 1538 1539 // The only checking we need to do now is that all users of all instructions 1540 // are the same PHI node. canSinkLastInstruction should have checked this but 1541 // it is slightly over-aggressive - it gets confused by commutative instructions 1542 // so double-check it here. 1543 Instruction *I0 = Insts.front(); 1544 if (!isa<StoreInst>(I0)) { 1545 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1546 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1547 auto *U = cast<Instruction>(*I->user_begin()); 1548 return U == PNUse; 1549 })) 1550 return false; 1551 } 1552 1553 // We don't need to do any more checking here; canSinkLastInstruction should 1554 // have done it all for us. 1555 SmallVector<Value*, 4> NewOperands; 1556 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1557 // This check is different to that in canSinkLastInstruction. There, we 1558 // cared about the global view once simplifycfg (and instcombine) have 1559 // completed - it takes into account PHIs that become trivially 1560 // simplifiable. However here we need a more local view; if an operand 1561 // differs we create a PHI and rely on instcombine to clean up the very 1562 // small mess we may make. 1563 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1564 return I->getOperand(O) != I0->getOperand(O); 1565 }); 1566 if (!NeedPHI) { 1567 NewOperands.push_back(I0->getOperand(O)); 1568 continue; 1569 } 1570 1571 // Create a new PHI in the successor block and populate it. 1572 auto *Op = I0->getOperand(O); 1573 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1574 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1575 Op->getName() + ".sink", &BBEnd->front()); 1576 for (auto *I : Insts) 1577 PN->addIncoming(I->getOperand(O), I->getParent()); 1578 NewOperands.push_back(PN); 1579 } 1580 1581 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1582 // and move it to the start of the successor block. 1583 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1584 I0->getOperandUse(O).set(NewOperands[O]); 1585 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1586 1587 // Update metadata and IR flags, and merge debug locations. 1588 for (auto *I : Insts) 1589 if (I != I0) { 1590 // The debug location for the "common" instruction is the merged locations 1591 // of all the commoned instructions. We start with the original location 1592 // of the "common" instruction and iteratively merge each location in the 1593 // loop below. 1594 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1595 // However, as N-way merge for CallInst is rare, so we use simplified API 1596 // instead of using complex API for N-way merge. 1597 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1598 combineMetadataForCSE(I0, I, true); 1599 I0->andIRFlags(I); 1600 } 1601 1602 if (!isa<StoreInst>(I0)) { 1603 // canSinkLastInstruction checked that all instructions were used by 1604 // one and only one PHI node. Find that now, RAUW it to our common 1605 // instruction and nuke it. 1606 assert(I0->hasOneUse()); 1607 auto *PN = cast<PHINode>(*I0->user_begin()); 1608 PN->replaceAllUsesWith(I0); 1609 PN->eraseFromParent(); 1610 } 1611 1612 // Finally nuke all instructions apart from the common instruction. 1613 for (auto *I : Insts) 1614 if (I != I0) 1615 I->eraseFromParent(); 1616 1617 return true; 1618 } 1619 1620 namespace { 1621 1622 // LockstepReverseIterator - Iterates through instructions 1623 // in a set of blocks in reverse order from the first non-terminator. 1624 // For example (assume all blocks have size n): 1625 // LockstepReverseIterator I([B1, B2, B3]); 1626 // *I-- = [B1[n], B2[n], B3[n]]; 1627 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1628 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1629 // ... 1630 class LockstepReverseIterator { 1631 ArrayRef<BasicBlock*> Blocks; 1632 SmallVector<Instruction*,4> Insts; 1633 bool Fail; 1634 1635 public: 1636 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1637 reset(); 1638 } 1639 1640 void reset() { 1641 Fail = false; 1642 Insts.clear(); 1643 for (auto *BB : Blocks) { 1644 Instruction *Inst = BB->getTerminator(); 1645 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1646 Inst = Inst->getPrevNode(); 1647 if (!Inst) { 1648 // Block wasn't big enough. 1649 Fail = true; 1650 return; 1651 } 1652 Insts.push_back(Inst); 1653 } 1654 } 1655 1656 bool isValid() const { 1657 return !Fail; 1658 } 1659 1660 void operator--() { 1661 if (Fail) 1662 return; 1663 for (auto *&Inst : Insts) { 1664 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1665 Inst = Inst->getPrevNode(); 1666 // Already at beginning of block. 1667 if (!Inst) { 1668 Fail = true; 1669 return; 1670 } 1671 } 1672 } 1673 1674 ArrayRef<Instruction*> operator * () const { 1675 return Insts; 1676 } 1677 }; 1678 1679 } // end anonymous namespace 1680 1681 /// Check whether BB's predecessors end with unconditional branches. If it is 1682 /// true, sink any common code from the predecessors to BB. 1683 /// We also allow one predecessor to end with conditional branch (but no more 1684 /// than one). 1685 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1686 // We support two situations: 1687 // (1) all incoming arcs are unconditional 1688 // (2) one incoming arc is conditional 1689 // 1690 // (2) is very common in switch defaults and 1691 // else-if patterns; 1692 // 1693 // if (a) f(1); 1694 // else if (b) f(2); 1695 // 1696 // produces: 1697 // 1698 // [if] 1699 // / \ 1700 // [f(1)] [if] 1701 // | | \ 1702 // | | | 1703 // | [f(2)]| 1704 // \ | / 1705 // [ end ] 1706 // 1707 // [end] has two unconditional predecessor arcs and one conditional. The 1708 // conditional refers to the implicit empty 'else' arc. This conditional 1709 // arc can also be caused by an empty default block in a switch. 1710 // 1711 // In this case, we attempt to sink code from all *unconditional* arcs. 1712 // If we can sink instructions from these arcs (determined during the scan 1713 // phase below) we insert a common successor for all unconditional arcs and 1714 // connect that to [end], to enable sinking: 1715 // 1716 // [if] 1717 // / \ 1718 // [x(1)] [if] 1719 // | | \ 1720 // | | \ 1721 // | [x(2)] | 1722 // \ / | 1723 // [sink.split] | 1724 // \ / 1725 // [ end ] 1726 // 1727 SmallVector<BasicBlock*,4> UnconditionalPreds; 1728 Instruction *Cond = nullptr; 1729 for (auto *B : predecessors(BB)) { 1730 auto *T = B->getTerminator(); 1731 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1732 UnconditionalPreds.push_back(B); 1733 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1734 Cond = T; 1735 else 1736 return false; 1737 } 1738 if (UnconditionalPreds.size() < 2) 1739 return false; 1740 1741 bool Changed = false; 1742 // We take a two-step approach to tail sinking. First we scan from the end of 1743 // each block upwards in lockstep. If the n'th instruction from the end of each 1744 // block can be sunk, those instructions are added to ValuesToSink and we 1745 // carry on. If we can sink an instruction but need to PHI-merge some operands 1746 // (because they're not identical in each instruction) we add these to 1747 // PHIOperands. 1748 unsigned ScanIdx = 0; 1749 SmallPtrSet<Value*,4> InstructionsToSink; 1750 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1751 LockstepReverseIterator LRI(UnconditionalPreds); 1752 while (LRI.isValid() && 1753 canSinkInstructions(*LRI, PHIOperands)) { 1754 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1755 << "\n"); 1756 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1757 ++ScanIdx; 1758 --LRI; 1759 } 1760 1761 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1762 unsigned NumPHIdValues = 0; 1763 for (auto *I : *LRI) 1764 for (auto *V : PHIOperands[I]) 1765 if (InstructionsToSink.count(V) == 0) 1766 ++NumPHIdValues; 1767 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1768 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1769 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1770 NumPHIInsts++; 1771 1772 return NumPHIInsts <= 1; 1773 }; 1774 1775 if (ScanIdx > 0 && Cond) { 1776 // Check if we would actually sink anything first! This mutates the CFG and 1777 // adds an extra block. The goal in doing this is to allow instructions that 1778 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1779 // (such as trunc, add) can be sunk and predicated already. So we check that 1780 // we're going to sink at least one non-speculatable instruction. 1781 LRI.reset(); 1782 unsigned Idx = 0; 1783 bool Profitable = false; 1784 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1785 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1786 Profitable = true; 1787 break; 1788 } 1789 --LRI; 1790 ++Idx; 1791 } 1792 if (!Profitable) 1793 return false; 1794 1795 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1796 // We have a conditional edge and we're going to sink some instructions. 1797 // Insert a new block postdominating all blocks we're going to sink from. 1798 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1799 // Edges couldn't be split. 1800 return false; 1801 Changed = true; 1802 } 1803 1804 // Now that we've analyzed all potential sinking candidates, perform the 1805 // actual sink. We iteratively sink the last non-terminator of the source 1806 // blocks into their common successor unless doing so would require too 1807 // many PHI instructions to be generated (currently only one PHI is allowed 1808 // per sunk instruction). 1809 // 1810 // We can use InstructionsToSink to discount values needing PHI-merging that will 1811 // actually be sunk in a later iteration. This allows us to be more 1812 // aggressive in what we sink. This does allow a false positive where we 1813 // sink presuming a later value will also be sunk, but stop half way through 1814 // and never actually sink it which means we produce more PHIs than intended. 1815 // This is unlikely in practice though. 1816 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1817 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1818 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1819 << "\n"); 1820 1821 // Because we've sunk every instruction in turn, the current instruction to 1822 // sink is always at index 0. 1823 LRI.reset(); 1824 if (!ProfitableToSinkInstruction(LRI)) { 1825 // Too many PHIs would be created. 1826 LLVM_DEBUG( 1827 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1828 break; 1829 } 1830 1831 if (!sinkLastInstruction(UnconditionalPreds)) 1832 return Changed; 1833 NumSinkCommons++; 1834 Changed = true; 1835 } 1836 return Changed; 1837 } 1838 1839 /// Determine if we can hoist sink a sole store instruction out of a 1840 /// conditional block. 1841 /// 1842 /// We are looking for code like the following: 1843 /// BrBB: 1844 /// store i32 %add, i32* %arrayidx2 1845 /// ... // No other stores or function calls (we could be calling a memory 1846 /// ... // function). 1847 /// %cmp = icmp ult %x, %y 1848 /// br i1 %cmp, label %EndBB, label %ThenBB 1849 /// ThenBB: 1850 /// store i32 %add5, i32* %arrayidx2 1851 /// br label EndBB 1852 /// EndBB: 1853 /// ... 1854 /// We are going to transform this into: 1855 /// BrBB: 1856 /// store i32 %add, i32* %arrayidx2 1857 /// ... // 1858 /// %cmp = icmp ult %x, %y 1859 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1860 /// store i32 %add.add5, i32* %arrayidx2 1861 /// ... 1862 /// 1863 /// \return The pointer to the value of the previous store if the store can be 1864 /// hoisted into the predecessor block. 0 otherwise. 1865 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1866 BasicBlock *StoreBB, BasicBlock *EndBB) { 1867 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1868 if (!StoreToHoist) 1869 return nullptr; 1870 1871 // Volatile or atomic. 1872 if (!StoreToHoist->isSimple()) 1873 return nullptr; 1874 1875 Value *StorePtr = StoreToHoist->getPointerOperand(); 1876 1877 // Look for a store to the same pointer in BrBB. 1878 unsigned MaxNumInstToLookAt = 9; 1879 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1880 if (!MaxNumInstToLookAt) 1881 break; 1882 --MaxNumInstToLookAt; 1883 1884 // Could be calling an instruction that affects memory like free(). 1885 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1886 return nullptr; 1887 1888 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1889 // Found the previous store make sure it stores to the same location. 1890 if (SI->getPointerOperand() == StorePtr) 1891 // Found the previous store, return its value operand. 1892 return SI->getValueOperand(); 1893 return nullptr; // Unknown store. 1894 } 1895 } 1896 1897 return nullptr; 1898 } 1899 1900 /// Speculate a conditional basic block flattening the CFG. 1901 /// 1902 /// Note that this is a very risky transform currently. Speculating 1903 /// instructions like this is most often not desirable. Instead, there is an MI 1904 /// pass which can do it with full awareness of the resource constraints. 1905 /// However, some cases are "obvious" and we should do directly. An example of 1906 /// this is speculating a single, reasonably cheap instruction. 1907 /// 1908 /// There is only one distinct advantage to flattening the CFG at the IR level: 1909 /// it makes very common but simplistic optimizations such as are common in 1910 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1911 /// modeling their effects with easier to reason about SSA value graphs. 1912 /// 1913 /// 1914 /// An illustration of this transform is turning this IR: 1915 /// \code 1916 /// BB: 1917 /// %cmp = icmp ult %x, %y 1918 /// br i1 %cmp, label %EndBB, label %ThenBB 1919 /// ThenBB: 1920 /// %sub = sub %x, %y 1921 /// br label BB2 1922 /// EndBB: 1923 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1924 /// ... 1925 /// \endcode 1926 /// 1927 /// Into this IR: 1928 /// \code 1929 /// BB: 1930 /// %cmp = icmp ult %x, %y 1931 /// %sub = sub %x, %y 1932 /// %cond = select i1 %cmp, 0, %sub 1933 /// ... 1934 /// \endcode 1935 /// 1936 /// \returns true if the conditional block is removed. 1937 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1938 const TargetTransformInfo &TTI) { 1939 // Be conservative for now. FP select instruction can often be expensive. 1940 Value *BrCond = BI->getCondition(); 1941 if (isa<FCmpInst>(BrCond)) 1942 return false; 1943 1944 BasicBlock *BB = BI->getParent(); 1945 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1946 1947 // If ThenBB is actually on the false edge of the conditional branch, remember 1948 // to swap the select operands later. 1949 bool Invert = false; 1950 if (ThenBB != BI->getSuccessor(0)) { 1951 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1952 Invert = true; 1953 } 1954 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1955 1956 // Keep a count of how many times instructions are used within ThenBB when 1957 // they are candidates for sinking into ThenBB. Specifically: 1958 // - They are defined in BB, and 1959 // - They have no side effects, and 1960 // - All of their uses are in ThenBB. 1961 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1962 1963 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1964 1965 unsigned SpeculationCost = 0; 1966 Value *SpeculatedStoreValue = nullptr; 1967 StoreInst *SpeculatedStore = nullptr; 1968 for (BasicBlock::iterator BBI = ThenBB->begin(), 1969 BBE = std::prev(ThenBB->end()); 1970 BBI != BBE; ++BBI) { 1971 Instruction *I = &*BBI; 1972 // Skip debug info. 1973 if (isa<DbgInfoIntrinsic>(I)) { 1974 SpeculatedDbgIntrinsics.push_back(I); 1975 continue; 1976 } 1977 1978 // Only speculatively execute a single instruction (not counting the 1979 // terminator) for now. 1980 ++SpeculationCost; 1981 if (SpeculationCost > 1) 1982 return false; 1983 1984 // Don't hoist the instruction if it's unsafe or expensive. 1985 if (!isSafeToSpeculativelyExecute(I) && 1986 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1987 I, BB, ThenBB, EndBB)))) 1988 return false; 1989 if (!SpeculatedStoreValue && 1990 ComputeSpeculationCost(I, TTI) > 1991 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1992 return false; 1993 1994 // Store the store speculation candidate. 1995 if (SpeculatedStoreValue) 1996 SpeculatedStore = cast<StoreInst>(I); 1997 1998 // Do not hoist the instruction if any of its operands are defined but not 1999 // used in BB. The transformation will prevent the operand from 2000 // being sunk into the use block. 2001 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2002 Instruction *OpI = dyn_cast<Instruction>(*i); 2003 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2004 continue; // Not a candidate for sinking. 2005 2006 ++SinkCandidateUseCounts[OpI]; 2007 } 2008 } 2009 2010 // Consider any sink candidates which are only used in ThenBB as costs for 2011 // speculation. Note, while we iterate over a DenseMap here, we are summing 2012 // and so iteration order isn't significant. 2013 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2014 I = SinkCandidateUseCounts.begin(), 2015 E = SinkCandidateUseCounts.end(); 2016 I != E; ++I) 2017 if (I->first->hasNUses(I->second)) { 2018 ++SpeculationCost; 2019 if (SpeculationCost > 1) 2020 return false; 2021 } 2022 2023 // Check that the PHI nodes can be converted to selects. 2024 bool HaveRewritablePHIs = false; 2025 for (PHINode &PN : EndBB->phis()) { 2026 Value *OrigV = PN.getIncomingValueForBlock(BB); 2027 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2028 2029 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2030 // Skip PHIs which are trivial. 2031 if (ThenV == OrigV) 2032 continue; 2033 2034 // Don't convert to selects if we could remove undefined behavior instead. 2035 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2036 passingValueIsAlwaysUndefined(ThenV, &PN)) 2037 return false; 2038 2039 HaveRewritablePHIs = true; 2040 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2041 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2042 if (!OrigCE && !ThenCE) 2043 continue; // Known safe and cheap. 2044 2045 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2046 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2047 return false; 2048 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2049 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2050 unsigned MaxCost = 2051 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2052 if (OrigCost + ThenCost > MaxCost) 2053 return false; 2054 2055 // Account for the cost of an unfolded ConstantExpr which could end up 2056 // getting expanded into Instructions. 2057 // FIXME: This doesn't account for how many operations are combined in the 2058 // constant expression. 2059 ++SpeculationCost; 2060 if (SpeculationCost > 1) 2061 return false; 2062 } 2063 2064 // If there are no PHIs to process, bail early. This helps ensure idempotence 2065 // as well. 2066 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2067 return false; 2068 2069 // If we get here, we can hoist the instruction and if-convert. 2070 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2071 2072 // Insert a select of the value of the speculated store. 2073 if (SpeculatedStoreValue) { 2074 IRBuilder<NoFolder> Builder(BI); 2075 Value *TrueV = SpeculatedStore->getValueOperand(); 2076 Value *FalseV = SpeculatedStoreValue; 2077 if (Invert) 2078 std::swap(TrueV, FalseV); 2079 Value *S = Builder.CreateSelect( 2080 BrCond, TrueV, FalseV, "spec.store.select", BI); 2081 SpeculatedStore->setOperand(0, S); 2082 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2083 SpeculatedStore->getDebugLoc()); 2084 } 2085 2086 // Metadata can be dependent on the condition we are hoisting above. 2087 // Conservatively strip all metadata on the instruction. 2088 for (auto &I : *ThenBB) 2089 I.dropUnknownNonDebugMetadata(); 2090 2091 // Hoist the instructions. 2092 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2093 ThenBB->begin(), std::prev(ThenBB->end())); 2094 2095 // Insert selects and rewrite the PHI operands. 2096 IRBuilder<NoFolder> Builder(BI); 2097 for (PHINode &PN : EndBB->phis()) { 2098 unsigned OrigI = PN.getBasicBlockIndex(BB); 2099 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2100 Value *OrigV = PN.getIncomingValue(OrigI); 2101 Value *ThenV = PN.getIncomingValue(ThenI); 2102 2103 // Skip PHIs which are trivial. 2104 if (OrigV == ThenV) 2105 continue; 2106 2107 // Create a select whose true value is the speculatively executed value and 2108 // false value is the preexisting value. Swap them if the branch 2109 // destinations were inverted. 2110 Value *TrueV = ThenV, *FalseV = OrigV; 2111 if (Invert) 2112 std::swap(TrueV, FalseV); 2113 Value *V = Builder.CreateSelect( 2114 BrCond, TrueV, FalseV, "spec.select", BI); 2115 PN.setIncomingValue(OrigI, V); 2116 PN.setIncomingValue(ThenI, V); 2117 } 2118 2119 // Remove speculated dbg intrinsics. 2120 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2121 // dbg value for the different flows and inserting it after the select. 2122 for (Instruction *I : SpeculatedDbgIntrinsics) 2123 I->eraseFromParent(); 2124 2125 ++NumSpeculations; 2126 return true; 2127 } 2128 2129 /// Return true if we can thread a branch across this block. 2130 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2131 unsigned Size = 0; 2132 2133 for (Instruction &I : BB->instructionsWithoutDebug()) { 2134 if (Size > 10) 2135 return false; // Don't clone large BB's. 2136 ++Size; 2137 2138 // We can only support instructions that do not define values that are 2139 // live outside of the current basic block. 2140 for (User *U : I.users()) { 2141 Instruction *UI = cast<Instruction>(U); 2142 if (UI->getParent() != BB || isa<PHINode>(UI)) 2143 return false; 2144 } 2145 2146 // Looks ok, continue checking. 2147 } 2148 2149 return true; 2150 } 2151 2152 /// If we have a conditional branch on a PHI node value that is defined in the 2153 /// same block as the branch and if any PHI entries are constants, thread edges 2154 /// corresponding to that entry to be branches to their ultimate destination. 2155 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2156 AssumptionCache *AC) { 2157 BasicBlock *BB = BI->getParent(); 2158 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2159 // NOTE: we currently cannot transform this case if the PHI node is used 2160 // outside of the block. 2161 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2162 return false; 2163 2164 // Degenerate case of a single entry PHI. 2165 if (PN->getNumIncomingValues() == 1) { 2166 FoldSingleEntryPHINodes(PN->getParent()); 2167 return true; 2168 } 2169 2170 // Now we know that this block has multiple preds and two succs. 2171 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2172 return false; 2173 2174 // Can't fold blocks that contain noduplicate or convergent calls. 2175 if (any_of(*BB, [](const Instruction &I) { 2176 const CallInst *CI = dyn_cast<CallInst>(&I); 2177 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2178 })) 2179 return false; 2180 2181 // Okay, this is a simple enough basic block. See if any phi values are 2182 // constants. 2183 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2184 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2185 if (!CB || !CB->getType()->isIntegerTy(1)) 2186 continue; 2187 2188 // Okay, we now know that all edges from PredBB should be revectored to 2189 // branch to RealDest. 2190 BasicBlock *PredBB = PN->getIncomingBlock(i); 2191 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2192 2193 if (RealDest == BB) 2194 continue; // Skip self loops. 2195 // Skip if the predecessor's terminator is an indirect branch. 2196 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2197 continue; 2198 2199 // The dest block might have PHI nodes, other predecessors and other 2200 // difficult cases. Instead of being smart about this, just insert a new 2201 // block that jumps to the destination block, effectively splitting 2202 // the edge we are about to create. 2203 BasicBlock *EdgeBB = 2204 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2205 RealDest->getParent(), RealDest); 2206 BranchInst::Create(RealDest, EdgeBB); 2207 2208 // Update PHI nodes. 2209 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2210 2211 // BB may have instructions that are being threaded over. Clone these 2212 // instructions into EdgeBB. We know that there will be no uses of the 2213 // cloned instructions outside of EdgeBB. 2214 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2215 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2216 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2217 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2218 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2219 continue; 2220 } 2221 // Clone the instruction. 2222 Instruction *N = BBI->clone(); 2223 if (BBI->hasName()) 2224 N->setName(BBI->getName() + ".c"); 2225 2226 // Update operands due to translation. 2227 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2228 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2229 if (PI != TranslateMap.end()) 2230 *i = PI->second; 2231 } 2232 2233 // Check for trivial simplification. 2234 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2235 if (!BBI->use_empty()) 2236 TranslateMap[&*BBI] = V; 2237 if (!N->mayHaveSideEffects()) { 2238 N->deleteValue(); // Instruction folded away, don't need actual inst 2239 N = nullptr; 2240 } 2241 } else { 2242 if (!BBI->use_empty()) 2243 TranslateMap[&*BBI] = N; 2244 } 2245 // Insert the new instruction into its new home. 2246 if (N) 2247 EdgeBB->getInstList().insert(InsertPt, N); 2248 2249 // Register the new instruction with the assumption cache if necessary. 2250 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2251 if (II->getIntrinsicID() == Intrinsic::assume) 2252 AC->registerAssumption(II); 2253 } 2254 2255 // Loop over all of the edges from PredBB to BB, changing them to branch 2256 // to EdgeBB instead. 2257 Instruction *PredBBTI = PredBB->getTerminator(); 2258 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2259 if (PredBBTI->getSuccessor(i) == BB) { 2260 BB->removePredecessor(PredBB); 2261 PredBBTI->setSuccessor(i, EdgeBB); 2262 } 2263 2264 // Recurse, simplifying any other constants. 2265 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2266 } 2267 2268 return false; 2269 } 2270 2271 /// Given a BB that starts with the specified two-entry PHI node, 2272 /// see if we can eliminate it. 2273 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2274 const DataLayout &DL) { 2275 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2276 // statement", which has a very simple dominance structure. Basically, we 2277 // are trying to find the condition that is being branched on, which 2278 // subsequently causes this merge to happen. We really want control 2279 // dependence information for this check, but simplifycfg can't keep it up 2280 // to date, and this catches most of the cases we care about anyway. 2281 BasicBlock *BB = PN->getParent(); 2282 const Function *Fn = BB->getParent(); 2283 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2284 return false; 2285 2286 BasicBlock *IfTrue, *IfFalse; 2287 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2288 if (!IfCond || 2289 // Don't bother if the branch will be constant folded trivially. 2290 isa<ConstantInt>(IfCond)) 2291 return false; 2292 2293 // Okay, we found that we can merge this two-entry phi node into a select. 2294 // Doing so would require us to fold *all* two entry phi nodes in this block. 2295 // At some point this becomes non-profitable (particularly if the target 2296 // doesn't support cmov's). Only do this transformation if there are two or 2297 // fewer PHI nodes in this block. 2298 unsigned NumPhis = 0; 2299 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2300 if (NumPhis > 2) 2301 return false; 2302 2303 // Loop over the PHI's seeing if we can promote them all to select 2304 // instructions. While we are at it, keep track of the instructions 2305 // that need to be moved to the dominating block. 2306 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2307 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2308 MaxCostVal1 = PHINodeFoldingThreshold; 2309 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2310 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2311 2312 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2313 PHINode *PN = cast<PHINode>(II++); 2314 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2315 PN->replaceAllUsesWith(V); 2316 PN->eraseFromParent(); 2317 continue; 2318 } 2319 2320 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2321 MaxCostVal0, TTI) || 2322 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2323 MaxCostVal1, TTI)) 2324 return false; 2325 } 2326 2327 // If we folded the first phi, PN dangles at this point. Refresh it. If 2328 // we ran out of PHIs then we simplified them all. 2329 PN = dyn_cast<PHINode>(BB->begin()); 2330 if (!PN) 2331 return true; 2332 2333 // Don't fold i1 branches on PHIs which contain binary operators. These can 2334 // often be turned into switches and other things. 2335 if (PN->getType()->isIntegerTy(1) && 2336 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2337 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2338 isa<BinaryOperator>(IfCond))) 2339 return false; 2340 2341 // If all PHI nodes are promotable, check to make sure that all instructions 2342 // in the predecessor blocks can be promoted as well. If not, we won't be able 2343 // to get rid of the control flow, so it's not worth promoting to select 2344 // instructions. 2345 BasicBlock *DomBlock = nullptr; 2346 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2347 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2348 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2349 IfBlock1 = nullptr; 2350 } else { 2351 DomBlock = *pred_begin(IfBlock1); 2352 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2353 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2354 // This is not an aggressive instruction that we can promote. 2355 // Because of this, we won't be able to get rid of the control flow, so 2356 // the xform is not worth it. 2357 return false; 2358 } 2359 } 2360 2361 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2362 IfBlock2 = nullptr; 2363 } else { 2364 DomBlock = *pred_begin(IfBlock2); 2365 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2366 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2367 // This is not an aggressive instruction that we can promote. 2368 // Because of this, we won't be able to get rid of the control flow, so 2369 // the xform is not worth it. 2370 return false; 2371 } 2372 } 2373 2374 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2375 << " T: " << IfTrue->getName() 2376 << " F: " << IfFalse->getName() << "\n"); 2377 2378 // If we can still promote the PHI nodes after this gauntlet of tests, 2379 // do all of the PHI's now. 2380 Instruction *InsertPt = DomBlock->getTerminator(); 2381 IRBuilder<NoFolder> Builder(InsertPt); 2382 2383 // Move all 'aggressive' instructions, which are defined in the 2384 // conditional parts of the if's up to the dominating block. 2385 if (IfBlock1) 2386 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2387 if (IfBlock2) 2388 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2389 2390 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2391 // Change the PHI node into a select instruction. 2392 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2393 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2394 2395 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2396 PN->replaceAllUsesWith(Sel); 2397 Sel->takeName(PN); 2398 PN->eraseFromParent(); 2399 } 2400 2401 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2402 // has been flattened. Change DomBlock to jump directly to our new block to 2403 // avoid other simplifycfg's kicking in on the diamond. 2404 Instruction *OldTI = DomBlock->getTerminator(); 2405 Builder.SetInsertPoint(OldTI); 2406 Builder.CreateBr(BB); 2407 OldTI->eraseFromParent(); 2408 return true; 2409 } 2410 2411 /// If we found a conditional branch that goes to two returning blocks, 2412 /// try to merge them together into one return, 2413 /// introducing a select if the return values disagree. 2414 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2415 IRBuilder<> &Builder) { 2416 assert(BI->isConditional() && "Must be a conditional branch"); 2417 BasicBlock *TrueSucc = BI->getSuccessor(0); 2418 BasicBlock *FalseSucc = BI->getSuccessor(1); 2419 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2420 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2421 2422 // Check to ensure both blocks are empty (just a return) or optionally empty 2423 // with PHI nodes. If there are other instructions, merging would cause extra 2424 // computation on one path or the other. 2425 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2426 return false; 2427 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2428 return false; 2429 2430 Builder.SetInsertPoint(BI); 2431 // Okay, we found a branch that is going to two return nodes. If 2432 // there is no return value for this function, just change the 2433 // branch into a return. 2434 if (FalseRet->getNumOperands() == 0) { 2435 TrueSucc->removePredecessor(BI->getParent()); 2436 FalseSucc->removePredecessor(BI->getParent()); 2437 Builder.CreateRetVoid(); 2438 EraseTerminatorAndDCECond(BI); 2439 return true; 2440 } 2441 2442 // Otherwise, figure out what the true and false return values are 2443 // so we can insert a new select instruction. 2444 Value *TrueValue = TrueRet->getReturnValue(); 2445 Value *FalseValue = FalseRet->getReturnValue(); 2446 2447 // Unwrap any PHI nodes in the return blocks. 2448 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2449 if (TVPN->getParent() == TrueSucc) 2450 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2451 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2452 if (FVPN->getParent() == FalseSucc) 2453 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2454 2455 // In order for this transformation to be safe, we must be able to 2456 // unconditionally execute both operands to the return. This is 2457 // normally the case, but we could have a potentially-trapping 2458 // constant expression that prevents this transformation from being 2459 // safe. 2460 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2461 if (TCV->canTrap()) 2462 return false; 2463 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2464 if (FCV->canTrap()) 2465 return false; 2466 2467 // Okay, we collected all the mapped values and checked them for sanity, and 2468 // defined to really do this transformation. First, update the CFG. 2469 TrueSucc->removePredecessor(BI->getParent()); 2470 FalseSucc->removePredecessor(BI->getParent()); 2471 2472 // Insert select instructions where needed. 2473 Value *BrCond = BI->getCondition(); 2474 if (TrueValue) { 2475 // Insert a select if the results differ. 2476 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2477 } else if (isa<UndefValue>(TrueValue)) { 2478 TrueValue = FalseValue; 2479 } else { 2480 TrueValue = 2481 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2482 } 2483 } 2484 2485 Value *RI = 2486 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2487 2488 (void)RI; 2489 2490 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2491 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2492 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2493 2494 EraseTerminatorAndDCECond(BI); 2495 2496 return true; 2497 } 2498 2499 /// Return true if the given instruction is available 2500 /// in its predecessor block. If yes, the instruction will be removed. 2501 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2502 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2503 return false; 2504 for (Instruction &I : *PB) { 2505 Instruction *PBI = &I; 2506 // Check whether Inst and PBI generate the same value. 2507 if (Inst->isIdenticalTo(PBI)) { 2508 Inst->replaceAllUsesWith(PBI); 2509 Inst->eraseFromParent(); 2510 return true; 2511 } 2512 } 2513 return false; 2514 } 2515 2516 /// Return true if either PBI or BI has branch weight available, and store 2517 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2518 /// not have branch weight, use 1:1 as its weight. 2519 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2520 uint64_t &PredTrueWeight, 2521 uint64_t &PredFalseWeight, 2522 uint64_t &SuccTrueWeight, 2523 uint64_t &SuccFalseWeight) { 2524 bool PredHasWeights = 2525 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2526 bool SuccHasWeights = 2527 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2528 if (PredHasWeights || SuccHasWeights) { 2529 if (!PredHasWeights) 2530 PredTrueWeight = PredFalseWeight = 1; 2531 if (!SuccHasWeights) 2532 SuccTrueWeight = SuccFalseWeight = 1; 2533 return true; 2534 } else { 2535 return false; 2536 } 2537 } 2538 2539 /// If this basic block is simple enough, and if a predecessor branches to us 2540 /// and one of our successors, fold the block into the predecessor and use 2541 /// logical operations to pick the right destination. 2542 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2543 BasicBlock *BB = BI->getParent(); 2544 2545 const unsigned PredCount = pred_size(BB); 2546 2547 Instruction *Cond = nullptr; 2548 if (BI->isConditional()) 2549 Cond = dyn_cast<Instruction>(BI->getCondition()); 2550 else { 2551 // For unconditional branch, check for a simple CFG pattern, where 2552 // BB has a single predecessor and BB's successor is also its predecessor's 2553 // successor. If such pattern exists, check for CSE between BB and its 2554 // predecessor. 2555 if (BasicBlock *PB = BB->getSinglePredecessor()) 2556 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2557 if (PBI->isConditional() && 2558 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2559 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2560 for (auto I = BB->instructionsWithoutDebug().begin(), 2561 E = BB->instructionsWithoutDebug().end(); 2562 I != E;) { 2563 Instruction *Curr = &*I++; 2564 if (isa<CmpInst>(Curr)) { 2565 Cond = Curr; 2566 break; 2567 } 2568 // Quit if we can't remove this instruction. 2569 if (!tryCSEWithPredecessor(Curr, PB)) 2570 return false; 2571 } 2572 } 2573 2574 if (!Cond) 2575 return false; 2576 } 2577 2578 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2579 Cond->getParent() != BB || !Cond->hasOneUse()) 2580 return false; 2581 2582 // Make sure the instruction after the condition is the cond branch. 2583 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2584 2585 // Ignore dbg intrinsics. 2586 while (isa<DbgInfoIntrinsic>(CondIt)) 2587 ++CondIt; 2588 2589 if (&*CondIt != BI) 2590 return false; 2591 2592 // Only allow this transformation if computing the condition doesn't involve 2593 // too many instructions and these involved instructions can be executed 2594 // unconditionally. We denote all involved instructions except the condition 2595 // as "bonus instructions", and only allow this transformation when the 2596 // number of the bonus instructions we'll need to create when cloning into 2597 // each predecessor does not exceed a certain threshold. 2598 unsigned NumBonusInsts = 0; 2599 for (auto I = BB->begin(); Cond != &*I; ++I) { 2600 // Ignore dbg intrinsics. 2601 if (isa<DbgInfoIntrinsic>(I)) 2602 continue; 2603 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2604 return false; 2605 // I has only one use and can be executed unconditionally. 2606 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2607 if (User == nullptr || User->getParent() != BB) 2608 return false; 2609 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2610 // to use any other instruction, User must be an instruction between next(I) 2611 // and Cond. 2612 2613 // Account for the cost of duplicating this instruction into each 2614 // predecessor. 2615 NumBonusInsts += PredCount; 2616 // Early exits once we reach the limit. 2617 if (NumBonusInsts > BonusInstThreshold) 2618 return false; 2619 } 2620 2621 // Cond is known to be a compare or binary operator. Check to make sure that 2622 // neither operand is a potentially-trapping constant expression. 2623 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2624 if (CE->canTrap()) 2625 return false; 2626 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2627 if (CE->canTrap()) 2628 return false; 2629 2630 // Finally, don't infinitely unroll conditional loops. 2631 BasicBlock *TrueDest = BI->getSuccessor(0); 2632 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2633 if (TrueDest == BB || FalseDest == BB) 2634 return false; 2635 2636 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2637 BasicBlock *PredBlock = *PI; 2638 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2639 2640 // Check that we have two conditional branches. If there is a PHI node in 2641 // the common successor, verify that the same value flows in from both 2642 // blocks. 2643 SmallVector<PHINode *, 4> PHIs; 2644 if (!PBI || PBI->isUnconditional() || 2645 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2646 (!BI->isConditional() && 2647 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2648 continue; 2649 2650 // Determine if the two branches share a common destination. 2651 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2652 bool InvertPredCond = false; 2653 2654 if (BI->isConditional()) { 2655 if (PBI->getSuccessor(0) == TrueDest) { 2656 Opc = Instruction::Or; 2657 } else if (PBI->getSuccessor(1) == FalseDest) { 2658 Opc = Instruction::And; 2659 } else if (PBI->getSuccessor(0) == FalseDest) { 2660 Opc = Instruction::And; 2661 InvertPredCond = true; 2662 } else if (PBI->getSuccessor(1) == TrueDest) { 2663 Opc = Instruction::Or; 2664 InvertPredCond = true; 2665 } else { 2666 continue; 2667 } 2668 } else { 2669 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2670 continue; 2671 } 2672 2673 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2674 IRBuilder<> Builder(PBI); 2675 2676 // If we need to invert the condition in the pred block to match, do so now. 2677 if (InvertPredCond) { 2678 Value *NewCond = PBI->getCondition(); 2679 2680 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2681 CmpInst *CI = cast<CmpInst>(NewCond); 2682 CI->setPredicate(CI->getInversePredicate()); 2683 } else { 2684 NewCond = 2685 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2686 } 2687 2688 PBI->setCondition(NewCond); 2689 PBI->swapSuccessors(); 2690 } 2691 2692 // If we have bonus instructions, clone them into the predecessor block. 2693 // Note that there may be multiple predecessor blocks, so we cannot move 2694 // bonus instructions to a predecessor block. 2695 ValueToValueMapTy VMap; // maps original values to cloned values 2696 // We already make sure Cond is the last instruction before BI. Therefore, 2697 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2698 // instructions. 2699 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2700 if (isa<DbgInfoIntrinsic>(BonusInst)) 2701 continue; 2702 Instruction *NewBonusInst = BonusInst->clone(); 2703 RemapInstruction(NewBonusInst, VMap, 2704 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2705 VMap[&*BonusInst] = NewBonusInst; 2706 2707 // If we moved a load, we cannot any longer claim any knowledge about 2708 // its potential value. The previous information might have been valid 2709 // only given the branch precondition. 2710 // For an analogous reason, we must also drop all the metadata whose 2711 // semantics we don't understand. 2712 NewBonusInst->dropUnknownNonDebugMetadata(); 2713 2714 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2715 NewBonusInst->takeName(&*BonusInst); 2716 BonusInst->setName(BonusInst->getName() + ".old"); 2717 } 2718 2719 // Clone Cond into the predecessor basic block, and or/and the 2720 // two conditions together. 2721 Instruction *CondInPred = Cond->clone(); 2722 RemapInstruction(CondInPred, VMap, 2723 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2724 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2725 CondInPred->takeName(Cond); 2726 Cond->setName(CondInPred->getName() + ".old"); 2727 2728 if (BI->isConditional()) { 2729 Instruction *NewCond = cast<Instruction>( 2730 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2731 PBI->setCondition(NewCond); 2732 2733 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2734 bool HasWeights = 2735 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2736 SuccTrueWeight, SuccFalseWeight); 2737 SmallVector<uint64_t, 8> NewWeights; 2738 2739 if (PBI->getSuccessor(0) == BB) { 2740 if (HasWeights) { 2741 // PBI: br i1 %x, BB, FalseDest 2742 // BI: br i1 %y, TrueDest, FalseDest 2743 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2744 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2745 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2746 // TrueWeight for PBI * FalseWeight for BI. 2747 // We assume that total weights of a BranchInst can fit into 32 bits. 2748 // Therefore, we will not have overflow using 64-bit arithmetic. 2749 NewWeights.push_back(PredFalseWeight * 2750 (SuccFalseWeight + SuccTrueWeight) + 2751 PredTrueWeight * SuccFalseWeight); 2752 } 2753 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2754 PBI->setSuccessor(0, TrueDest); 2755 } 2756 if (PBI->getSuccessor(1) == BB) { 2757 if (HasWeights) { 2758 // PBI: br i1 %x, TrueDest, BB 2759 // BI: br i1 %y, TrueDest, FalseDest 2760 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2761 // FalseWeight for PBI * TrueWeight for BI. 2762 NewWeights.push_back(PredTrueWeight * 2763 (SuccFalseWeight + SuccTrueWeight) + 2764 PredFalseWeight * SuccTrueWeight); 2765 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2766 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2767 } 2768 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2769 PBI->setSuccessor(1, FalseDest); 2770 } 2771 if (NewWeights.size() == 2) { 2772 // Halve the weights if any of them cannot fit in an uint32_t 2773 FitWeights(NewWeights); 2774 2775 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2776 NewWeights.end()); 2777 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2778 } else 2779 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2780 } else { 2781 // Update PHI nodes in the common successors. 2782 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2783 ConstantInt *PBI_C = cast<ConstantInt>( 2784 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2785 assert(PBI_C->getType()->isIntegerTy(1)); 2786 Instruction *MergedCond = nullptr; 2787 if (PBI->getSuccessor(0) == TrueDest) { 2788 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2789 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2790 // is false: !PBI_Cond and BI_Value 2791 Instruction *NotCond = cast<Instruction>( 2792 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2793 MergedCond = cast<Instruction>( 2794 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2795 "and.cond")); 2796 if (PBI_C->isOne()) 2797 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2798 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2799 } else { 2800 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2801 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2802 // is false: PBI_Cond and BI_Value 2803 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2804 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2805 if (PBI_C->isOne()) { 2806 Instruction *NotCond = cast<Instruction>( 2807 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2808 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2809 Instruction::Or, NotCond, MergedCond, "or.cond")); 2810 } 2811 } 2812 // Update PHI Node. 2813 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2814 MergedCond); 2815 } 2816 // Change PBI from Conditional to Unconditional. 2817 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2818 EraseTerminatorAndDCECond(PBI); 2819 PBI = New_PBI; 2820 } 2821 2822 // If BI was a loop latch, it may have had associated loop metadata. 2823 // We need to copy it to the new latch, that is, PBI. 2824 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2825 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2826 2827 // TODO: If BB is reachable from all paths through PredBlock, then we 2828 // could replace PBI's branch probabilities with BI's. 2829 2830 // Copy any debug value intrinsics into the end of PredBlock. 2831 for (Instruction &I : *BB) 2832 if (isa<DbgInfoIntrinsic>(I)) 2833 I.clone()->insertBefore(PBI); 2834 2835 return true; 2836 } 2837 return false; 2838 } 2839 2840 // If there is only one store in BB1 and BB2, return it, otherwise return 2841 // nullptr. 2842 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2843 StoreInst *S = nullptr; 2844 for (auto *BB : {BB1, BB2}) { 2845 if (!BB) 2846 continue; 2847 for (auto &I : *BB) 2848 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2849 if (S) 2850 // Multiple stores seen. 2851 return nullptr; 2852 else 2853 S = SI; 2854 } 2855 } 2856 return S; 2857 } 2858 2859 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2860 Value *AlternativeV = nullptr) { 2861 // PHI is going to be a PHI node that allows the value V that is defined in 2862 // BB to be referenced in BB's only successor. 2863 // 2864 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2865 // doesn't matter to us what the other operand is (it'll never get used). We 2866 // could just create a new PHI with an undef incoming value, but that could 2867 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2868 // other PHI. So here we directly look for some PHI in BB's successor with V 2869 // as an incoming operand. If we find one, we use it, else we create a new 2870 // one. 2871 // 2872 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2873 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2874 // where OtherBB is the single other predecessor of BB's only successor. 2875 PHINode *PHI = nullptr; 2876 BasicBlock *Succ = BB->getSingleSuccessor(); 2877 2878 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2879 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2880 PHI = cast<PHINode>(I); 2881 if (!AlternativeV) 2882 break; 2883 2884 assert(Succ->hasNPredecessors(2)); 2885 auto PredI = pred_begin(Succ); 2886 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2887 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2888 break; 2889 PHI = nullptr; 2890 } 2891 if (PHI) 2892 return PHI; 2893 2894 // If V is not an instruction defined in BB, just return it. 2895 if (!AlternativeV && 2896 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2897 return V; 2898 2899 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2900 PHI->addIncoming(V, BB); 2901 for (BasicBlock *PredBB : predecessors(Succ)) 2902 if (PredBB != BB) 2903 PHI->addIncoming( 2904 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2905 return PHI; 2906 } 2907 2908 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2909 BasicBlock *QTB, BasicBlock *QFB, 2910 BasicBlock *PostBB, Value *Address, 2911 bool InvertPCond, bool InvertQCond, 2912 const DataLayout &DL) { 2913 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2914 return Operator::getOpcode(&I) == Instruction::BitCast && 2915 I.getType()->isPointerTy(); 2916 }; 2917 2918 // If we're not in aggressive mode, we only optimize if we have some 2919 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2920 auto IsWorthwhile = [&](BasicBlock *BB) { 2921 if (!BB) 2922 return true; 2923 // Heuristic: if the block can be if-converted/phi-folded and the 2924 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2925 // thread this store. 2926 unsigned N = 0; 2927 for (auto &I : BB->instructionsWithoutDebug()) { 2928 // Cheap instructions viable for folding. 2929 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2930 isa<StoreInst>(I)) 2931 ++N; 2932 // Free instructions. 2933 else if (I.isTerminator() || IsaBitcastOfPointerType(I)) 2934 continue; 2935 else 2936 return false; 2937 } 2938 // The store we want to merge is counted in N, so add 1 to make sure 2939 // we're counting the instructions that would be left. 2940 return N <= (PHINodeFoldingThreshold + 1); 2941 }; 2942 2943 if (!MergeCondStoresAggressively && 2944 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2945 !IsWorthwhile(QFB))) 2946 return false; 2947 2948 // For every pointer, there must be exactly two stores, one coming from 2949 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2950 // store (to any address) in PTB,PFB or QTB,QFB. 2951 // FIXME: We could relax this restriction with a bit more work and performance 2952 // testing. 2953 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2954 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2955 if (!PStore || !QStore) 2956 return false; 2957 2958 // Now check the stores are compatible. 2959 if (!QStore->isUnordered() || !PStore->isUnordered()) 2960 return false; 2961 2962 // Check that sinking the store won't cause program behavior changes. Sinking 2963 // the store out of the Q blocks won't change any behavior as we're sinking 2964 // from a block to its unconditional successor. But we're moving a store from 2965 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2966 // So we need to check that there are no aliasing loads or stores in 2967 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2968 // operations between PStore and the end of its parent block. 2969 // 2970 // The ideal way to do this is to query AliasAnalysis, but we don't 2971 // preserve AA currently so that is dangerous. Be super safe and just 2972 // check there are no other memory operations at all. 2973 for (auto &I : *QFB->getSinglePredecessor()) 2974 if (I.mayReadOrWriteMemory()) 2975 return false; 2976 for (auto &I : *QFB) 2977 if (&I != QStore && I.mayReadOrWriteMemory()) 2978 return false; 2979 if (QTB) 2980 for (auto &I : *QTB) 2981 if (&I != QStore && I.mayReadOrWriteMemory()) 2982 return false; 2983 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2984 I != E; ++I) 2985 if (&*I != PStore && I->mayReadOrWriteMemory()) 2986 return false; 2987 2988 // If PostBB has more than two predecessors, we need to split it so we can 2989 // sink the store. 2990 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 2991 // We know that QFB's only successor is PostBB. And QFB has a single 2992 // predecessor. If QTB exists, then its only successor is also PostBB. 2993 // If QTB does not exist, then QFB's only predecessor has a conditional 2994 // branch to QFB and PostBB. 2995 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 2996 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 2997 "condstore.split"); 2998 if (!NewBB) 2999 return false; 3000 PostBB = NewBB; 3001 } 3002 3003 // OK, we're going to sink the stores to PostBB. The store has to be 3004 // conditional though, so first create the predicate. 3005 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3006 ->getCondition(); 3007 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3008 ->getCondition(); 3009 3010 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3011 PStore->getParent()); 3012 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3013 QStore->getParent(), PPHI); 3014 3015 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3016 3017 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3018 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3019 3020 if (InvertPCond) 3021 PPred = QB.CreateNot(PPred); 3022 if (InvertQCond) 3023 QPred = QB.CreateNot(QPred); 3024 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3025 3026 auto *T = 3027 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3028 QB.SetInsertPoint(T); 3029 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3030 AAMDNodes AAMD; 3031 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3032 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3033 SI->setAAMetadata(AAMD); 3034 unsigned PAlignment = PStore->getAlignment(); 3035 unsigned QAlignment = QStore->getAlignment(); 3036 unsigned TypeAlignment = 3037 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3038 unsigned MinAlignment; 3039 unsigned MaxAlignment; 3040 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3041 // Choose the minimum alignment. If we could prove both stores execute, we 3042 // could use biggest one. In this case, though, we only know that one of the 3043 // stores executes. And we don't know it's safe to take the alignment from a 3044 // store that doesn't execute. 3045 if (MinAlignment != 0) { 3046 // Choose the minimum of all non-zero alignments. 3047 SI->setAlignment(MinAlignment); 3048 } else if (MaxAlignment != 0) { 3049 // Choose the minimal alignment between the non-zero alignment and the ABI 3050 // default alignment for the type of the stored value. 3051 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3052 } else { 3053 // If both alignments are zero, use ABI default alignment for the type of 3054 // the stored value. 3055 SI->setAlignment(TypeAlignment); 3056 } 3057 3058 QStore->eraseFromParent(); 3059 PStore->eraseFromParent(); 3060 3061 return true; 3062 } 3063 3064 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3065 const DataLayout &DL) { 3066 // The intention here is to find diamonds or triangles (see below) where each 3067 // conditional block contains a store to the same address. Both of these 3068 // stores are conditional, so they can't be unconditionally sunk. But it may 3069 // be profitable to speculatively sink the stores into one merged store at the 3070 // end, and predicate the merged store on the union of the two conditions of 3071 // PBI and QBI. 3072 // 3073 // This can reduce the number of stores executed if both of the conditions are 3074 // true, and can allow the blocks to become small enough to be if-converted. 3075 // This optimization will also chain, so that ladders of test-and-set 3076 // sequences can be if-converted away. 3077 // 3078 // We only deal with simple diamonds or triangles: 3079 // 3080 // PBI or PBI or a combination of the two 3081 // / \ | \ 3082 // PTB PFB | PFB 3083 // \ / | / 3084 // QBI QBI 3085 // / \ | \ 3086 // QTB QFB | QFB 3087 // \ / | / 3088 // PostBB PostBB 3089 // 3090 // We model triangles as a type of diamond with a nullptr "true" block. 3091 // Triangles are canonicalized so that the fallthrough edge is represented by 3092 // a true condition, as in the diagram above. 3093 BasicBlock *PTB = PBI->getSuccessor(0); 3094 BasicBlock *PFB = PBI->getSuccessor(1); 3095 BasicBlock *QTB = QBI->getSuccessor(0); 3096 BasicBlock *QFB = QBI->getSuccessor(1); 3097 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3098 3099 // Make sure we have a good guess for PostBB. If QTB's only successor is 3100 // QFB, then QFB is a better PostBB. 3101 if (QTB->getSingleSuccessor() == QFB) 3102 PostBB = QFB; 3103 3104 // If we couldn't find a good PostBB, stop. 3105 if (!PostBB) 3106 return false; 3107 3108 bool InvertPCond = false, InvertQCond = false; 3109 // Canonicalize fallthroughs to the true branches. 3110 if (PFB == QBI->getParent()) { 3111 std::swap(PFB, PTB); 3112 InvertPCond = true; 3113 } 3114 if (QFB == PostBB) { 3115 std::swap(QFB, QTB); 3116 InvertQCond = true; 3117 } 3118 3119 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3120 // and QFB may not. Model fallthroughs as a nullptr block. 3121 if (PTB == QBI->getParent()) 3122 PTB = nullptr; 3123 if (QTB == PostBB) 3124 QTB = nullptr; 3125 3126 // Legality bailouts. We must have at least the non-fallthrough blocks and 3127 // the post-dominating block, and the non-fallthroughs must only have one 3128 // predecessor. 3129 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3130 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3131 }; 3132 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3133 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3134 return false; 3135 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3136 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3137 return false; 3138 if (!QBI->getParent()->hasNUses(2)) 3139 return false; 3140 3141 // OK, this is a sequence of two diamonds or triangles. 3142 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3143 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3144 for (auto *BB : {PTB, PFB}) { 3145 if (!BB) 3146 continue; 3147 for (auto &I : *BB) 3148 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3149 PStoreAddresses.insert(SI->getPointerOperand()); 3150 } 3151 for (auto *BB : {QTB, QFB}) { 3152 if (!BB) 3153 continue; 3154 for (auto &I : *BB) 3155 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3156 QStoreAddresses.insert(SI->getPointerOperand()); 3157 } 3158 3159 set_intersect(PStoreAddresses, QStoreAddresses); 3160 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3161 // clear what it contains. 3162 auto &CommonAddresses = PStoreAddresses; 3163 3164 bool Changed = false; 3165 for (auto *Address : CommonAddresses) 3166 Changed |= mergeConditionalStoreToAddress( 3167 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3168 return Changed; 3169 } 3170 3171 /// If we have a conditional branch as a predecessor of another block, 3172 /// this function tries to simplify it. We know 3173 /// that PBI and BI are both conditional branches, and BI is in one of the 3174 /// successor blocks of PBI - PBI branches to BI. 3175 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3176 const DataLayout &DL) { 3177 assert(PBI->isConditional() && BI->isConditional()); 3178 BasicBlock *BB = BI->getParent(); 3179 3180 // If this block ends with a branch instruction, and if there is a 3181 // predecessor that ends on a branch of the same condition, make 3182 // this conditional branch redundant. 3183 if (PBI->getCondition() == BI->getCondition() && 3184 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3185 // Okay, the outcome of this conditional branch is statically 3186 // knowable. If this block had a single pred, handle specially. 3187 if (BB->getSinglePredecessor()) { 3188 // Turn this into a branch on constant. 3189 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3190 BI->setCondition( 3191 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3192 return true; // Nuke the branch on constant. 3193 } 3194 3195 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3196 // in the constant and simplify the block result. Subsequent passes of 3197 // simplifycfg will thread the block. 3198 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3199 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3200 PHINode *NewPN = PHINode::Create( 3201 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3202 BI->getCondition()->getName() + ".pr", &BB->front()); 3203 // Okay, we're going to insert the PHI node. Since PBI is not the only 3204 // predecessor, compute the PHI'd conditional value for all of the preds. 3205 // Any predecessor where the condition is not computable we keep symbolic. 3206 for (pred_iterator PI = PB; PI != PE; ++PI) { 3207 BasicBlock *P = *PI; 3208 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3209 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3210 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3211 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3212 NewPN->addIncoming( 3213 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3214 P); 3215 } else { 3216 NewPN->addIncoming(BI->getCondition(), P); 3217 } 3218 } 3219 3220 BI->setCondition(NewPN); 3221 return true; 3222 } 3223 } 3224 3225 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3226 if (CE->canTrap()) 3227 return false; 3228 3229 // If both branches are conditional and both contain stores to the same 3230 // address, remove the stores from the conditionals and create a conditional 3231 // merged store at the end. 3232 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3233 return true; 3234 3235 // If this is a conditional branch in an empty block, and if any 3236 // predecessors are a conditional branch to one of our destinations, 3237 // fold the conditions into logical ops and one cond br. 3238 3239 // Ignore dbg intrinsics. 3240 if (&*BB->instructionsWithoutDebug().begin() != BI) 3241 return false; 3242 3243 int PBIOp, BIOp; 3244 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3245 PBIOp = 0; 3246 BIOp = 0; 3247 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3248 PBIOp = 0; 3249 BIOp = 1; 3250 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3251 PBIOp = 1; 3252 BIOp = 0; 3253 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3254 PBIOp = 1; 3255 BIOp = 1; 3256 } else { 3257 return false; 3258 } 3259 3260 // Check to make sure that the other destination of this branch 3261 // isn't BB itself. If so, this is an infinite loop that will 3262 // keep getting unwound. 3263 if (PBI->getSuccessor(PBIOp) == BB) 3264 return false; 3265 3266 // Do not perform this transformation if it would require 3267 // insertion of a large number of select instructions. For targets 3268 // without predication/cmovs, this is a big pessimization. 3269 3270 // Also do not perform this transformation if any phi node in the common 3271 // destination block can trap when reached by BB or PBB (PR17073). In that 3272 // case, it would be unsafe to hoist the operation into a select instruction. 3273 3274 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3275 unsigned NumPhis = 0; 3276 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3277 ++II, ++NumPhis) { 3278 if (NumPhis > 2) // Disable this xform. 3279 return false; 3280 3281 PHINode *PN = cast<PHINode>(II); 3282 Value *BIV = PN->getIncomingValueForBlock(BB); 3283 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3284 if (CE->canTrap()) 3285 return false; 3286 3287 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3288 Value *PBIV = PN->getIncomingValue(PBBIdx); 3289 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3290 if (CE->canTrap()) 3291 return false; 3292 } 3293 3294 // Finally, if everything is ok, fold the branches to logical ops. 3295 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3296 3297 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3298 << "AND: " << *BI->getParent()); 3299 3300 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3301 // branch in it, where one edge (OtherDest) goes back to itself but the other 3302 // exits. We don't *know* that the program avoids the infinite loop 3303 // (even though that seems likely). If we do this xform naively, we'll end up 3304 // recursively unpeeling the loop. Since we know that (after the xform is 3305 // done) that the block *is* infinite if reached, we just make it an obviously 3306 // infinite loop with no cond branch. 3307 if (OtherDest == BB) { 3308 // Insert it at the end of the function, because it's either code, 3309 // or it won't matter if it's hot. :) 3310 BasicBlock *InfLoopBlock = 3311 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3312 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3313 OtherDest = InfLoopBlock; 3314 } 3315 3316 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3317 3318 // BI may have other predecessors. Because of this, we leave 3319 // it alone, but modify PBI. 3320 3321 // Make sure we get to CommonDest on True&True directions. 3322 Value *PBICond = PBI->getCondition(); 3323 IRBuilder<NoFolder> Builder(PBI); 3324 if (PBIOp) 3325 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3326 3327 Value *BICond = BI->getCondition(); 3328 if (BIOp) 3329 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3330 3331 // Merge the conditions. 3332 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3333 3334 // Modify PBI to branch on the new condition to the new dests. 3335 PBI->setCondition(Cond); 3336 PBI->setSuccessor(0, CommonDest); 3337 PBI->setSuccessor(1, OtherDest); 3338 3339 // Update branch weight for PBI. 3340 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3341 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3342 bool HasWeights = 3343 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3344 SuccTrueWeight, SuccFalseWeight); 3345 if (HasWeights) { 3346 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3347 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3348 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3349 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3350 // The weight to CommonDest should be PredCommon * SuccTotal + 3351 // PredOther * SuccCommon. 3352 // The weight to OtherDest should be PredOther * SuccOther. 3353 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3354 PredOther * SuccCommon, 3355 PredOther * SuccOther}; 3356 // Halve the weights if any of them cannot fit in an uint32_t 3357 FitWeights(NewWeights); 3358 3359 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3360 } 3361 3362 // OtherDest may have phi nodes. If so, add an entry from PBI's 3363 // block that are identical to the entries for BI's block. 3364 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3365 3366 // We know that the CommonDest already had an edge from PBI to 3367 // it. If it has PHIs though, the PHIs may have different 3368 // entries for BB and PBI's BB. If so, insert a select to make 3369 // them agree. 3370 for (PHINode &PN : CommonDest->phis()) { 3371 Value *BIV = PN.getIncomingValueForBlock(BB); 3372 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3373 Value *PBIV = PN.getIncomingValue(PBBIdx); 3374 if (BIV != PBIV) { 3375 // Insert a select in PBI to pick the right value. 3376 SelectInst *NV = cast<SelectInst>( 3377 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3378 PN.setIncomingValue(PBBIdx, NV); 3379 // Although the select has the same condition as PBI, the original branch 3380 // weights for PBI do not apply to the new select because the select's 3381 // 'logical' edges are incoming edges of the phi that is eliminated, not 3382 // the outgoing edges of PBI. 3383 if (HasWeights) { 3384 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3385 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3386 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3387 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3388 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3389 // The weight to PredOtherDest should be PredOther * SuccCommon. 3390 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3391 PredOther * SuccCommon}; 3392 3393 FitWeights(NewWeights); 3394 3395 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3396 } 3397 } 3398 } 3399 3400 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3401 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3402 3403 // This basic block is probably dead. We know it has at least 3404 // one fewer predecessor. 3405 return true; 3406 } 3407 3408 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3409 // true or to FalseBB if Cond is false. 3410 // Takes care of updating the successors and removing the old terminator. 3411 // Also makes sure not to introduce new successors by assuming that edges to 3412 // non-successor TrueBBs and FalseBBs aren't reachable. 3413 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 3414 BasicBlock *TrueBB, BasicBlock *FalseBB, 3415 uint32_t TrueWeight, 3416 uint32_t FalseWeight) { 3417 // Remove any superfluous successor edges from the CFG. 3418 // First, figure out which successors to preserve. 3419 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3420 // successor. 3421 BasicBlock *KeepEdge1 = TrueBB; 3422 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3423 3424 // Then remove the rest. 3425 for (BasicBlock *Succ : successors(OldTerm)) { 3426 // Make sure only to keep exactly one copy of each edge. 3427 if (Succ == KeepEdge1) 3428 KeepEdge1 = nullptr; 3429 else if (Succ == KeepEdge2) 3430 KeepEdge2 = nullptr; 3431 else 3432 Succ->removePredecessor(OldTerm->getParent(), 3433 /*DontDeleteUselessPHIs=*/true); 3434 } 3435 3436 IRBuilder<> Builder(OldTerm); 3437 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3438 3439 // Insert an appropriate new terminator. 3440 if (!KeepEdge1 && !KeepEdge2) { 3441 if (TrueBB == FalseBB) 3442 // We were only looking for one successor, and it was present. 3443 // Create an unconditional branch to it. 3444 Builder.CreateBr(TrueBB); 3445 else { 3446 // We found both of the successors we were looking for. 3447 // Create a conditional branch sharing the condition of the select. 3448 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3449 if (TrueWeight != FalseWeight) 3450 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3451 } 3452 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3453 // Neither of the selected blocks were successors, so this 3454 // terminator must be unreachable. 3455 new UnreachableInst(OldTerm->getContext(), OldTerm); 3456 } else { 3457 // One of the selected values was a successor, but the other wasn't. 3458 // Insert an unconditional branch to the one that was found; 3459 // the edge to the one that wasn't must be unreachable. 3460 if (!KeepEdge1) 3461 // Only TrueBB was found. 3462 Builder.CreateBr(TrueBB); 3463 else 3464 // Only FalseBB was found. 3465 Builder.CreateBr(FalseBB); 3466 } 3467 3468 EraseTerminatorAndDCECond(OldTerm); 3469 return true; 3470 } 3471 3472 // Replaces 3473 // (switch (select cond, X, Y)) on constant X, Y 3474 // with a branch - conditional if X and Y lead to distinct BBs, 3475 // unconditional otherwise. 3476 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3477 // Check for constant integer values in the select. 3478 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3479 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3480 if (!TrueVal || !FalseVal) 3481 return false; 3482 3483 // Find the relevant condition and destinations. 3484 Value *Condition = Select->getCondition(); 3485 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3486 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3487 3488 // Get weight for TrueBB and FalseBB. 3489 uint32_t TrueWeight = 0, FalseWeight = 0; 3490 SmallVector<uint64_t, 8> Weights; 3491 bool HasWeights = HasBranchWeights(SI); 3492 if (HasWeights) { 3493 GetBranchWeights(SI, Weights); 3494 if (Weights.size() == 1 + SI->getNumCases()) { 3495 TrueWeight = 3496 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3497 FalseWeight = 3498 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3499 } 3500 } 3501 3502 // Perform the actual simplification. 3503 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3504 FalseWeight); 3505 } 3506 3507 // Replaces 3508 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3509 // blockaddress(@fn, BlockB))) 3510 // with 3511 // (br cond, BlockA, BlockB). 3512 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3513 // Check that both operands of the select are block addresses. 3514 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3515 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3516 if (!TBA || !FBA) 3517 return false; 3518 3519 // Extract the actual blocks. 3520 BasicBlock *TrueBB = TBA->getBasicBlock(); 3521 BasicBlock *FalseBB = FBA->getBasicBlock(); 3522 3523 // Perform the actual simplification. 3524 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3525 0); 3526 } 3527 3528 /// This is called when we find an icmp instruction 3529 /// (a seteq/setne with a constant) as the only instruction in a 3530 /// block that ends with an uncond branch. We are looking for a very specific 3531 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3532 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3533 /// default value goes to an uncond block with a seteq in it, we get something 3534 /// like: 3535 /// 3536 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3537 /// DEFAULT: 3538 /// %tmp = icmp eq i8 %A, 92 3539 /// br label %end 3540 /// end: 3541 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3542 /// 3543 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3544 /// the PHI, merging the third icmp into the switch. 3545 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3546 ICmpInst *ICI, IRBuilder<> &Builder) { 3547 BasicBlock *BB = ICI->getParent(); 3548 3549 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3550 // complex. 3551 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3552 return false; 3553 3554 Value *V = ICI->getOperand(0); 3555 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3556 3557 // The pattern we're looking for is where our only predecessor is a switch on 3558 // 'V' and this block is the default case for the switch. In this case we can 3559 // fold the compared value into the switch to simplify things. 3560 BasicBlock *Pred = BB->getSinglePredecessor(); 3561 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3562 return false; 3563 3564 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3565 if (SI->getCondition() != V) 3566 return false; 3567 3568 // If BB is reachable on a non-default case, then we simply know the value of 3569 // V in this block. Substitute it and constant fold the icmp instruction 3570 // away. 3571 if (SI->getDefaultDest() != BB) { 3572 ConstantInt *VVal = SI->findCaseDest(BB); 3573 assert(VVal && "Should have a unique destination value"); 3574 ICI->setOperand(0, VVal); 3575 3576 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3577 ICI->replaceAllUsesWith(V); 3578 ICI->eraseFromParent(); 3579 } 3580 // BB is now empty, so it is likely to simplify away. 3581 return requestResimplify(); 3582 } 3583 3584 // Ok, the block is reachable from the default dest. If the constant we're 3585 // comparing exists in one of the other edges, then we can constant fold ICI 3586 // and zap it. 3587 if (SI->findCaseValue(Cst) != SI->case_default()) { 3588 Value *V; 3589 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3590 V = ConstantInt::getFalse(BB->getContext()); 3591 else 3592 V = ConstantInt::getTrue(BB->getContext()); 3593 3594 ICI->replaceAllUsesWith(V); 3595 ICI->eraseFromParent(); 3596 // BB is now empty, so it is likely to simplify away. 3597 return requestResimplify(); 3598 } 3599 3600 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3601 // the block. 3602 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3603 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3604 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3605 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3606 return false; 3607 3608 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3609 // true in the PHI. 3610 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3611 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3612 3613 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3614 std::swap(DefaultCst, NewCst); 3615 3616 // Replace ICI (which is used by the PHI for the default value) with true or 3617 // false depending on if it is EQ or NE. 3618 ICI->replaceAllUsesWith(DefaultCst); 3619 ICI->eraseFromParent(); 3620 3621 // Okay, the switch goes to this block on a default value. Add an edge from 3622 // the switch to the merge point on the compared value. 3623 BasicBlock *NewBB = 3624 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3625 SmallVector<uint64_t, 8> Weights; 3626 bool HasWeights = HasBranchWeights(SI); 3627 if (HasWeights) { 3628 GetBranchWeights(SI, Weights); 3629 if (Weights.size() == 1 + SI->getNumCases()) { 3630 // Split weight for default case to case for "Cst". 3631 Weights[0] = (Weights[0] + 1) >> 1; 3632 Weights.push_back(Weights[0]); 3633 3634 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3635 setBranchWeights(SI, MDWeights); 3636 } 3637 } 3638 SI->addCase(Cst, NewBB); 3639 3640 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3641 Builder.SetInsertPoint(NewBB); 3642 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3643 Builder.CreateBr(SuccBlock); 3644 PHIUse->addIncoming(NewCst, NewBB); 3645 return true; 3646 } 3647 3648 /// The specified branch is a conditional branch. 3649 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3650 /// fold it into a switch instruction if so. 3651 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3652 const DataLayout &DL) { 3653 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3654 if (!Cond) 3655 return false; 3656 3657 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3658 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3659 // 'setne's and'ed together, collect them. 3660 3661 // Try to gather values from a chain of and/or to be turned into a switch 3662 ConstantComparesGatherer ConstantCompare(Cond, DL); 3663 // Unpack the result 3664 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3665 Value *CompVal = ConstantCompare.CompValue; 3666 unsigned UsedICmps = ConstantCompare.UsedICmps; 3667 Value *ExtraCase = ConstantCompare.Extra; 3668 3669 // If we didn't have a multiply compared value, fail. 3670 if (!CompVal) 3671 return false; 3672 3673 // Avoid turning single icmps into a switch. 3674 if (UsedICmps <= 1) 3675 return false; 3676 3677 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3678 3679 // There might be duplicate constants in the list, which the switch 3680 // instruction can't handle, remove them now. 3681 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3682 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3683 3684 // If Extra was used, we require at least two switch values to do the 3685 // transformation. A switch with one value is just a conditional branch. 3686 if (ExtraCase && Values.size() < 2) 3687 return false; 3688 3689 // TODO: Preserve branch weight metadata, similarly to how 3690 // FoldValueComparisonIntoPredecessors preserves it. 3691 3692 // Figure out which block is which destination. 3693 BasicBlock *DefaultBB = BI->getSuccessor(1); 3694 BasicBlock *EdgeBB = BI->getSuccessor(0); 3695 if (!TrueWhenEqual) 3696 std::swap(DefaultBB, EdgeBB); 3697 3698 BasicBlock *BB = BI->getParent(); 3699 3700 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3701 << " cases into SWITCH. BB is:\n" 3702 << *BB); 3703 3704 // If there are any extra values that couldn't be folded into the switch 3705 // then we evaluate them with an explicit branch first. Split the block 3706 // right before the condbr to handle it. 3707 if (ExtraCase) { 3708 BasicBlock *NewBB = 3709 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3710 // Remove the uncond branch added to the old block. 3711 Instruction *OldTI = BB->getTerminator(); 3712 Builder.SetInsertPoint(OldTI); 3713 3714 if (TrueWhenEqual) 3715 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3716 else 3717 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3718 3719 OldTI->eraseFromParent(); 3720 3721 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3722 // for the edge we just added. 3723 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3724 3725 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3726 << "\nEXTRABB = " << *BB); 3727 BB = NewBB; 3728 } 3729 3730 Builder.SetInsertPoint(BI); 3731 // Convert pointer to int before we switch. 3732 if (CompVal->getType()->isPointerTy()) { 3733 CompVal = Builder.CreatePtrToInt( 3734 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3735 } 3736 3737 // Create the new switch instruction now. 3738 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3739 3740 // Add all of the 'cases' to the switch instruction. 3741 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3742 New->addCase(Values[i], EdgeBB); 3743 3744 // We added edges from PI to the EdgeBB. As such, if there were any 3745 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3746 // the number of edges added. 3747 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3748 PHINode *PN = cast<PHINode>(BBI); 3749 Value *InVal = PN->getIncomingValueForBlock(BB); 3750 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3751 PN->addIncoming(InVal, BB); 3752 } 3753 3754 // Erase the old branch instruction. 3755 EraseTerminatorAndDCECond(BI); 3756 3757 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3758 return true; 3759 } 3760 3761 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3762 if (isa<PHINode>(RI->getValue())) 3763 return SimplifyCommonResume(RI); 3764 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3765 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3766 // The resume must unwind the exception that caused control to branch here. 3767 return SimplifySingleResume(RI); 3768 3769 return false; 3770 } 3771 3772 // Simplify resume that is shared by several landing pads (phi of landing pad). 3773 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3774 BasicBlock *BB = RI->getParent(); 3775 3776 // Check that there are no other instructions except for debug intrinsics 3777 // between the phi of landing pads (RI->getValue()) and resume instruction. 3778 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3779 E = RI->getIterator(); 3780 while (++I != E) 3781 if (!isa<DbgInfoIntrinsic>(I)) 3782 return false; 3783 3784 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3785 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3786 3787 // Check incoming blocks to see if any of them are trivial. 3788 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3789 Idx++) { 3790 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3791 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3792 3793 // If the block has other successors, we can not delete it because 3794 // it has other dependents. 3795 if (IncomingBB->getUniqueSuccessor() != BB) 3796 continue; 3797 3798 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3799 // Not the landing pad that caused the control to branch here. 3800 if (IncomingValue != LandingPad) 3801 continue; 3802 3803 bool isTrivial = true; 3804 3805 I = IncomingBB->getFirstNonPHI()->getIterator(); 3806 E = IncomingBB->getTerminator()->getIterator(); 3807 while (++I != E) 3808 if (!isa<DbgInfoIntrinsic>(I)) { 3809 isTrivial = false; 3810 break; 3811 } 3812 3813 if (isTrivial) 3814 TrivialUnwindBlocks.insert(IncomingBB); 3815 } 3816 3817 // If no trivial unwind blocks, don't do any simplifications. 3818 if (TrivialUnwindBlocks.empty()) 3819 return false; 3820 3821 // Turn all invokes that unwind here into calls. 3822 for (auto *TrivialBB : TrivialUnwindBlocks) { 3823 // Blocks that will be simplified should be removed from the phi node. 3824 // Note there could be multiple edges to the resume block, and we need 3825 // to remove them all. 3826 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3827 BB->removePredecessor(TrivialBB, true); 3828 3829 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3830 PI != PE;) { 3831 BasicBlock *Pred = *PI++; 3832 removeUnwindEdge(Pred); 3833 } 3834 3835 // In each SimplifyCFG run, only the current processed block can be erased. 3836 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3837 // of erasing TrivialBB, we only remove the branch to the common resume 3838 // block so that we can later erase the resume block since it has no 3839 // predecessors. 3840 TrivialBB->getTerminator()->eraseFromParent(); 3841 new UnreachableInst(RI->getContext(), TrivialBB); 3842 } 3843 3844 // Delete the resume block if all its predecessors have been removed. 3845 if (pred_empty(BB)) 3846 BB->eraseFromParent(); 3847 3848 return !TrivialUnwindBlocks.empty(); 3849 } 3850 3851 // Simplify resume that is only used by a single (non-phi) landing pad. 3852 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3853 BasicBlock *BB = RI->getParent(); 3854 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3855 assert(RI->getValue() == LPInst && 3856 "Resume must unwind the exception that caused control to here"); 3857 3858 // Check that there are no other instructions except for debug intrinsics. 3859 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3860 while (++I != E) 3861 if (!isa<DbgInfoIntrinsic>(I)) 3862 return false; 3863 3864 // Turn all invokes that unwind here into calls and delete the basic block. 3865 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3866 BasicBlock *Pred = *PI++; 3867 removeUnwindEdge(Pred); 3868 } 3869 3870 // The landingpad is now unreachable. Zap it. 3871 if (LoopHeaders) 3872 LoopHeaders->erase(BB); 3873 BB->eraseFromParent(); 3874 return true; 3875 } 3876 3877 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3878 // If this is a trivial cleanup pad that executes no instructions, it can be 3879 // eliminated. If the cleanup pad continues to the caller, any predecessor 3880 // that is an EH pad will be updated to continue to the caller and any 3881 // predecessor that terminates with an invoke instruction will have its invoke 3882 // instruction converted to a call instruction. If the cleanup pad being 3883 // simplified does not continue to the caller, each predecessor will be 3884 // updated to continue to the unwind destination of the cleanup pad being 3885 // simplified. 3886 BasicBlock *BB = RI->getParent(); 3887 CleanupPadInst *CPInst = RI->getCleanupPad(); 3888 if (CPInst->getParent() != BB) 3889 // This isn't an empty cleanup. 3890 return false; 3891 3892 // We cannot kill the pad if it has multiple uses. This typically arises 3893 // from unreachable basic blocks. 3894 if (!CPInst->hasOneUse()) 3895 return false; 3896 3897 // Check that there are no other instructions except for benign intrinsics. 3898 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3899 while (++I != E) { 3900 auto *II = dyn_cast<IntrinsicInst>(I); 3901 if (!II) 3902 return false; 3903 3904 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3905 switch (IntrinsicID) { 3906 case Intrinsic::dbg_declare: 3907 case Intrinsic::dbg_value: 3908 case Intrinsic::dbg_label: 3909 case Intrinsic::lifetime_end: 3910 break; 3911 default: 3912 return false; 3913 } 3914 } 3915 3916 // If the cleanup return we are simplifying unwinds to the caller, this will 3917 // set UnwindDest to nullptr. 3918 BasicBlock *UnwindDest = RI->getUnwindDest(); 3919 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3920 3921 // We're about to remove BB from the control flow. Before we do, sink any 3922 // PHINodes into the unwind destination. Doing this before changing the 3923 // control flow avoids some potentially slow checks, since we can currently 3924 // be certain that UnwindDest and BB have no common predecessors (since they 3925 // are both EH pads). 3926 if (UnwindDest) { 3927 // First, go through the PHI nodes in UnwindDest and update any nodes that 3928 // reference the block we are removing 3929 for (BasicBlock::iterator I = UnwindDest->begin(), 3930 IE = DestEHPad->getIterator(); 3931 I != IE; ++I) { 3932 PHINode *DestPN = cast<PHINode>(I); 3933 3934 int Idx = DestPN->getBasicBlockIndex(BB); 3935 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3936 assert(Idx != -1); 3937 // This PHI node has an incoming value that corresponds to a control 3938 // path through the cleanup pad we are removing. If the incoming 3939 // value is in the cleanup pad, it must be a PHINode (because we 3940 // verified above that the block is otherwise empty). Otherwise, the 3941 // value is either a constant or a value that dominates the cleanup 3942 // pad being removed. 3943 // 3944 // Because BB and UnwindDest are both EH pads, all of their 3945 // predecessors must unwind to these blocks, and since no instruction 3946 // can have multiple unwind destinations, there will be no overlap in 3947 // incoming blocks between SrcPN and DestPN. 3948 Value *SrcVal = DestPN->getIncomingValue(Idx); 3949 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3950 3951 // Remove the entry for the block we are deleting. 3952 DestPN->removeIncomingValue(Idx, false); 3953 3954 if (SrcPN && SrcPN->getParent() == BB) { 3955 // If the incoming value was a PHI node in the cleanup pad we are 3956 // removing, we need to merge that PHI node's incoming values into 3957 // DestPN. 3958 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3959 SrcIdx != SrcE; ++SrcIdx) { 3960 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3961 SrcPN->getIncomingBlock(SrcIdx)); 3962 } 3963 } else { 3964 // Otherwise, the incoming value came from above BB and 3965 // so we can just reuse it. We must associate all of BB's 3966 // predecessors with this value. 3967 for (auto *pred : predecessors(BB)) { 3968 DestPN->addIncoming(SrcVal, pred); 3969 } 3970 } 3971 } 3972 3973 // Sink any remaining PHI nodes directly into UnwindDest. 3974 Instruction *InsertPt = DestEHPad; 3975 for (BasicBlock::iterator I = BB->begin(), 3976 IE = BB->getFirstNonPHI()->getIterator(); 3977 I != IE;) { 3978 // The iterator must be incremented here because the instructions are 3979 // being moved to another block. 3980 PHINode *PN = cast<PHINode>(I++); 3981 if (PN->use_empty()) 3982 // If the PHI node has no uses, just leave it. It will be erased 3983 // when we erase BB below. 3984 continue; 3985 3986 // Otherwise, sink this PHI node into UnwindDest. 3987 // Any predecessors to UnwindDest which are not already represented 3988 // must be back edges which inherit the value from the path through 3989 // BB. In this case, the PHI value must reference itself. 3990 for (auto *pred : predecessors(UnwindDest)) 3991 if (pred != BB) 3992 PN->addIncoming(PN, pred); 3993 PN->moveBefore(InsertPt); 3994 } 3995 } 3996 3997 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3998 // The iterator must be updated here because we are removing this pred. 3999 BasicBlock *PredBB = *PI++; 4000 if (UnwindDest == nullptr) { 4001 removeUnwindEdge(PredBB); 4002 } else { 4003 Instruction *TI = PredBB->getTerminator(); 4004 TI->replaceUsesOfWith(BB, UnwindDest); 4005 } 4006 } 4007 4008 // The cleanup pad is now unreachable. Zap it. 4009 BB->eraseFromParent(); 4010 return true; 4011 } 4012 4013 // Try to merge two cleanuppads together. 4014 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4015 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4016 // with. 4017 BasicBlock *UnwindDest = RI->getUnwindDest(); 4018 if (!UnwindDest) 4019 return false; 4020 4021 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4022 // be safe to merge without code duplication. 4023 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4024 return false; 4025 4026 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4027 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4028 if (!SuccessorCleanupPad) 4029 return false; 4030 4031 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4032 // Replace any uses of the successor cleanupad with the predecessor pad 4033 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4034 // funclet bundle operands. 4035 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4036 // Remove the old cleanuppad. 4037 SuccessorCleanupPad->eraseFromParent(); 4038 // Now, we simply replace the cleanupret with a branch to the unwind 4039 // destination. 4040 BranchInst::Create(UnwindDest, RI->getParent()); 4041 RI->eraseFromParent(); 4042 4043 return true; 4044 } 4045 4046 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4047 // It is possible to transiantly have an undef cleanuppad operand because we 4048 // have deleted some, but not all, dead blocks. 4049 // Eventually, this block will be deleted. 4050 if (isa<UndefValue>(RI->getOperand(0))) 4051 return false; 4052 4053 if (mergeCleanupPad(RI)) 4054 return true; 4055 4056 if (removeEmptyCleanup(RI)) 4057 return true; 4058 4059 return false; 4060 } 4061 4062 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4063 BasicBlock *BB = RI->getParent(); 4064 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4065 return false; 4066 4067 // Find predecessors that end with branches. 4068 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4069 SmallVector<BranchInst *, 8> CondBranchPreds; 4070 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4071 BasicBlock *P = *PI; 4072 Instruction *PTI = P->getTerminator(); 4073 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4074 if (BI->isUnconditional()) 4075 UncondBranchPreds.push_back(P); 4076 else 4077 CondBranchPreds.push_back(BI); 4078 } 4079 } 4080 4081 // If we found some, do the transformation! 4082 if (!UncondBranchPreds.empty() && DupRet) { 4083 while (!UncondBranchPreds.empty()) { 4084 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4085 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4086 << "INTO UNCOND BRANCH PRED: " << *Pred); 4087 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4088 } 4089 4090 // If we eliminated all predecessors of the block, delete the block now. 4091 if (pred_empty(BB)) { 4092 // We know there are no successors, so just nuke the block. 4093 if (LoopHeaders) 4094 LoopHeaders->erase(BB); 4095 BB->eraseFromParent(); 4096 } 4097 4098 return true; 4099 } 4100 4101 // Check out all of the conditional branches going to this return 4102 // instruction. If any of them just select between returns, change the 4103 // branch itself into a select/return pair. 4104 while (!CondBranchPreds.empty()) { 4105 BranchInst *BI = CondBranchPreds.pop_back_val(); 4106 4107 // Check to see if the non-BB successor is also a return block. 4108 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4109 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4110 SimplifyCondBranchToTwoReturns(BI, Builder)) 4111 return true; 4112 } 4113 return false; 4114 } 4115 4116 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4117 BasicBlock *BB = UI->getParent(); 4118 4119 bool Changed = false; 4120 4121 // If there are any instructions immediately before the unreachable that can 4122 // be removed, do so. 4123 while (UI->getIterator() != BB->begin()) { 4124 BasicBlock::iterator BBI = UI->getIterator(); 4125 --BBI; 4126 // Do not delete instructions that can have side effects which might cause 4127 // the unreachable to not be reachable; specifically, calls and volatile 4128 // operations may have this effect. 4129 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4130 break; 4131 4132 if (BBI->mayHaveSideEffects()) { 4133 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4134 if (SI->isVolatile()) 4135 break; 4136 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4137 if (LI->isVolatile()) 4138 break; 4139 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4140 if (RMWI->isVolatile()) 4141 break; 4142 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4143 if (CXI->isVolatile()) 4144 break; 4145 } else if (isa<CatchPadInst>(BBI)) { 4146 // A catchpad may invoke exception object constructors and such, which 4147 // in some languages can be arbitrary code, so be conservative by 4148 // default. 4149 // For CoreCLR, it just involves a type test, so can be removed. 4150 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4151 EHPersonality::CoreCLR) 4152 break; 4153 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4154 !isa<LandingPadInst>(BBI)) { 4155 break; 4156 } 4157 // Note that deleting LandingPad's here is in fact okay, although it 4158 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4159 // all the predecessors of this block will be the unwind edges of Invokes, 4160 // and we can therefore guarantee this block will be erased. 4161 } 4162 4163 // Delete this instruction (any uses are guaranteed to be dead) 4164 if (!BBI->use_empty()) 4165 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4166 BBI->eraseFromParent(); 4167 Changed = true; 4168 } 4169 4170 // If the unreachable instruction is the first in the block, take a gander 4171 // at all of the predecessors of this instruction, and simplify them. 4172 if (&BB->front() != UI) 4173 return Changed; 4174 4175 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4176 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4177 Instruction *TI = Preds[i]->getTerminator(); 4178 IRBuilder<> Builder(TI); 4179 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4180 if (BI->isUnconditional()) { 4181 if (BI->getSuccessor(0) == BB) { 4182 new UnreachableInst(TI->getContext(), TI); 4183 TI->eraseFromParent(); 4184 Changed = true; 4185 } 4186 } else { 4187 if (BI->getSuccessor(0) == BB) { 4188 Builder.CreateBr(BI->getSuccessor(1)); 4189 EraseTerminatorAndDCECond(BI); 4190 } else if (BI->getSuccessor(1) == BB) { 4191 Builder.CreateBr(BI->getSuccessor(0)); 4192 EraseTerminatorAndDCECond(BI); 4193 Changed = true; 4194 } 4195 } 4196 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4197 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4198 if (i->getCaseSuccessor() != BB) { 4199 ++i; 4200 continue; 4201 } 4202 BB->removePredecessor(SI->getParent()); 4203 i = SI->removeCase(i); 4204 e = SI->case_end(); 4205 Changed = true; 4206 } 4207 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4208 if (II->getUnwindDest() == BB) { 4209 removeUnwindEdge(TI->getParent()); 4210 Changed = true; 4211 } 4212 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4213 if (CSI->getUnwindDest() == BB) { 4214 removeUnwindEdge(TI->getParent()); 4215 Changed = true; 4216 continue; 4217 } 4218 4219 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4220 E = CSI->handler_end(); 4221 I != E; ++I) { 4222 if (*I == BB) { 4223 CSI->removeHandler(I); 4224 --I; 4225 --E; 4226 Changed = true; 4227 } 4228 } 4229 if (CSI->getNumHandlers() == 0) { 4230 BasicBlock *CatchSwitchBB = CSI->getParent(); 4231 if (CSI->hasUnwindDest()) { 4232 // Redirect preds to the unwind dest 4233 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4234 } else { 4235 // Rewrite all preds to unwind to caller (or from invoke to call). 4236 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4237 for (BasicBlock *EHPred : EHPreds) 4238 removeUnwindEdge(EHPred); 4239 } 4240 // The catchswitch is no longer reachable. 4241 new UnreachableInst(CSI->getContext(), CSI); 4242 CSI->eraseFromParent(); 4243 Changed = true; 4244 } 4245 } else if (isa<CleanupReturnInst>(TI)) { 4246 new UnreachableInst(TI->getContext(), TI); 4247 TI->eraseFromParent(); 4248 Changed = true; 4249 } 4250 } 4251 4252 // If this block is now dead, remove it. 4253 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4254 // We know there are no successors, so just nuke the block. 4255 if (LoopHeaders) 4256 LoopHeaders->erase(BB); 4257 BB->eraseFromParent(); 4258 return true; 4259 } 4260 4261 return Changed; 4262 } 4263 4264 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4265 assert(Cases.size() >= 1); 4266 4267 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4268 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4269 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4270 return false; 4271 } 4272 return true; 4273 } 4274 4275 /// Turn a switch with two reachable destinations into an integer range 4276 /// comparison and branch. 4277 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4278 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4279 4280 bool HasDefault = 4281 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4282 4283 // Partition the cases into two sets with different destinations. 4284 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4285 BasicBlock *DestB = nullptr; 4286 SmallVector<ConstantInt *, 16> CasesA; 4287 SmallVector<ConstantInt *, 16> CasesB; 4288 4289 for (auto Case : SI->cases()) { 4290 BasicBlock *Dest = Case.getCaseSuccessor(); 4291 if (!DestA) 4292 DestA = Dest; 4293 if (Dest == DestA) { 4294 CasesA.push_back(Case.getCaseValue()); 4295 continue; 4296 } 4297 if (!DestB) 4298 DestB = Dest; 4299 if (Dest == DestB) { 4300 CasesB.push_back(Case.getCaseValue()); 4301 continue; 4302 } 4303 return false; // More than two destinations. 4304 } 4305 4306 assert(DestA && DestB && 4307 "Single-destination switch should have been folded."); 4308 assert(DestA != DestB); 4309 assert(DestB != SI->getDefaultDest()); 4310 assert(!CasesB.empty() && "There must be non-default cases."); 4311 assert(!CasesA.empty() || HasDefault); 4312 4313 // Figure out if one of the sets of cases form a contiguous range. 4314 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4315 BasicBlock *ContiguousDest = nullptr; 4316 BasicBlock *OtherDest = nullptr; 4317 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4318 ContiguousCases = &CasesA; 4319 ContiguousDest = DestA; 4320 OtherDest = DestB; 4321 } else if (CasesAreContiguous(CasesB)) { 4322 ContiguousCases = &CasesB; 4323 ContiguousDest = DestB; 4324 OtherDest = DestA; 4325 } else 4326 return false; 4327 4328 // Start building the compare and branch. 4329 4330 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4331 Constant *NumCases = 4332 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4333 4334 Value *Sub = SI->getCondition(); 4335 if (!Offset->isNullValue()) 4336 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4337 4338 Value *Cmp; 4339 // If NumCases overflowed, then all possible values jump to the successor. 4340 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4341 Cmp = ConstantInt::getTrue(SI->getContext()); 4342 else 4343 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4344 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4345 4346 // Update weight for the newly-created conditional branch. 4347 if (HasBranchWeights(SI)) { 4348 SmallVector<uint64_t, 8> Weights; 4349 GetBranchWeights(SI, Weights); 4350 if (Weights.size() == 1 + SI->getNumCases()) { 4351 uint64_t TrueWeight = 0; 4352 uint64_t FalseWeight = 0; 4353 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4354 if (SI->getSuccessor(I) == ContiguousDest) 4355 TrueWeight += Weights[I]; 4356 else 4357 FalseWeight += Weights[I]; 4358 } 4359 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4360 TrueWeight /= 2; 4361 FalseWeight /= 2; 4362 } 4363 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4364 } 4365 } 4366 4367 // Prune obsolete incoming values off the successors' PHI nodes. 4368 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4369 unsigned PreviousEdges = ContiguousCases->size(); 4370 if (ContiguousDest == SI->getDefaultDest()) 4371 ++PreviousEdges; 4372 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4373 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4374 } 4375 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4376 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4377 if (OtherDest == SI->getDefaultDest()) 4378 ++PreviousEdges; 4379 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4380 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4381 } 4382 4383 // Drop the switch. 4384 SI->eraseFromParent(); 4385 4386 return true; 4387 } 4388 4389 /// Compute masked bits for the condition of a switch 4390 /// and use it to remove dead cases. 4391 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4392 const DataLayout &DL) { 4393 Value *Cond = SI->getCondition(); 4394 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4395 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4396 4397 // We can also eliminate cases by determining that their values are outside of 4398 // the limited range of the condition based on how many significant (non-sign) 4399 // bits are in the condition value. 4400 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4401 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4402 4403 // Gather dead cases. 4404 SmallVector<ConstantInt *, 8> DeadCases; 4405 for (auto &Case : SI->cases()) { 4406 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4407 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4408 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4409 DeadCases.push_back(Case.getCaseValue()); 4410 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4411 << " is dead.\n"); 4412 } 4413 } 4414 4415 // If we can prove that the cases must cover all possible values, the 4416 // default destination becomes dead and we can remove it. If we know some 4417 // of the bits in the value, we can use that to more precisely compute the 4418 // number of possible unique case values. 4419 bool HasDefault = 4420 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4421 const unsigned NumUnknownBits = 4422 Bits - (Known.Zero | Known.One).countPopulation(); 4423 assert(NumUnknownBits <= Bits); 4424 if (HasDefault && DeadCases.empty() && 4425 NumUnknownBits < 64 /* avoid overflow */ && 4426 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4427 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4428 BasicBlock *NewDefault = 4429 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4430 SI->setDefaultDest(&*NewDefault); 4431 SplitBlock(&*NewDefault, &NewDefault->front()); 4432 auto *OldTI = NewDefault->getTerminator(); 4433 new UnreachableInst(SI->getContext(), OldTI); 4434 EraseTerminatorAndDCECond(OldTI); 4435 return true; 4436 } 4437 4438 SmallVector<uint64_t, 8> Weights; 4439 bool HasWeight = HasBranchWeights(SI); 4440 if (HasWeight) { 4441 GetBranchWeights(SI, Weights); 4442 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4443 } 4444 4445 // Remove dead cases from the switch. 4446 for (ConstantInt *DeadCase : DeadCases) { 4447 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4448 assert(CaseI != SI->case_default() && 4449 "Case was not found. Probably mistake in DeadCases forming."); 4450 if (HasWeight) { 4451 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4452 Weights.pop_back(); 4453 } 4454 4455 // Prune unused values from PHI nodes. 4456 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4457 SI->removeCase(CaseI); 4458 } 4459 if (HasWeight && Weights.size() >= 2) { 4460 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4461 setBranchWeights(SI, MDWeights); 4462 } 4463 4464 return !DeadCases.empty(); 4465 } 4466 4467 /// If BB would be eligible for simplification by 4468 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4469 /// by an unconditional branch), look at the phi node for BB in the successor 4470 /// block and see if the incoming value is equal to CaseValue. If so, return 4471 /// the phi node, and set PhiIndex to BB's index in the phi node. 4472 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4473 BasicBlock *BB, int *PhiIndex) { 4474 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4475 return nullptr; // BB must be empty to be a candidate for simplification. 4476 if (!BB->getSinglePredecessor()) 4477 return nullptr; // BB must be dominated by the switch. 4478 4479 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4480 if (!Branch || !Branch->isUnconditional()) 4481 return nullptr; // Terminator must be unconditional branch. 4482 4483 BasicBlock *Succ = Branch->getSuccessor(0); 4484 4485 for (PHINode &PHI : Succ->phis()) { 4486 int Idx = PHI.getBasicBlockIndex(BB); 4487 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4488 4489 Value *InValue = PHI.getIncomingValue(Idx); 4490 if (InValue != CaseValue) 4491 continue; 4492 4493 *PhiIndex = Idx; 4494 return &PHI; 4495 } 4496 4497 return nullptr; 4498 } 4499 4500 /// Try to forward the condition of a switch instruction to a phi node 4501 /// dominated by the switch, if that would mean that some of the destination 4502 /// blocks of the switch can be folded away. Return true if a change is made. 4503 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4504 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4505 4506 ForwardingNodesMap ForwardingNodes; 4507 BasicBlock *SwitchBlock = SI->getParent(); 4508 bool Changed = false; 4509 for (auto &Case : SI->cases()) { 4510 ConstantInt *CaseValue = Case.getCaseValue(); 4511 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4512 4513 // Replace phi operands in successor blocks that are using the constant case 4514 // value rather than the switch condition variable: 4515 // switchbb: 4516 // switch i32 %x, label %default [ 4517 // i32 17, label %succ 4518 // ... 4519 // succ: 4520 // %r = phi i32 ... [ 17, %switchbb ] ... 4521 // --> 4522 // %r = phi i32 ... [ %x, %switchbb ] ... 4523 4524 for (PHINode &Phi : CaseDest->phis()) { 4525 // This only works if there is exactly 1 incoming edge from the switch to 4526 // a phi. If there is >1, that means multiple cases of the switch map to 1 4527 // value in the phi, and that phi value is not the switch condition. Thus, 4528 // this transform would not make sense (the phi would be invalid because 4529 // a phi can't have different incoming values from the same block). 4530 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4531 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4532 count(Phi.blocks(), SwitchBlock) == 1) { 4533 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4534 Changed = true; 4535 } 4536 } 4537 4538 // Collect phi nodes that are indirectly using this switch's case constants. 4539 int PhiIdx; 4540 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4541 ForwardingNodes[Phi].push_back(PhiIdx); 4542 } 4543 4544 for (auto &ForwardingNode : ForwardingNodes) { 4545 PHINode *Phi = ForwardingNode.first; 4546 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4547 if (Indexes.size() < 2) 4548 continue; 4549 4550 for (int Index : Indexes) 4551 Phi->setIncomingValue(Index, SI->getCondition()); 4552 Changed = true; 4553 } 4554 4555 return Changed; 4556 } 4557 4558 /// Return true if the backend will be able to handle 4559 /// initializing an array of constants like C. 4560 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4561 if (C->isThreadDependent()) 4562 return false; 4563 if (C->isDLLImportDependent()) 4564 return false; 4565 4566 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4567 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4568 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4569 return false; 4570 4571 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4572 if (!CE->isGEPWithNoNotionalOverIndexing()) 4573 return false; 4574 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4575 return false; 4576 } 4577 4578 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4579 return false; 4580 4581 return true; 4582 } 4583 4584 /// If V is a Constant, return it. Otherwise, try to look up 4585 /// its constant value in ConstantPool, returning 0 if it's not there. 4586 static Constant * 4587 LookupConstant(Value *V, 4588 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4589 if (Constant *C = dyn_cast<Constant>(V)) 4590 return C; 4591 return ConstantPool.lookup(V); 4592 } 4593 4594 /// Try to fold instruction I into a constant. This works for 4595 /// simple instructions such as binary operations where both operands are 4596 /// constant or can be replaced by constants from the ConstantPool. Returns the 4597 /// resulting constant on success, 0 otherwise. 4598 static Constant * 4599 ConstantFold(Instruction *I, const DataLayout &DL, 4600 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4601 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4602 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4603 if (!A) 4604 return nullptr; 4605 if (A->isAllOnesValue()) 4606 return LookupConstant(Select->getTrueValue(), ConstantPool); 4607 if (A->isNullValue()) 4608 return LookupConstant(Select->getFalseValue(), ConstantPool); 4609 return nullptr; 4610 } 4611 4612 SmallVector<Constant *, 4> COps; 4613 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4614 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4615 COps.push_back(A); 4616 else 4617 return nullptr; 4618 } 4619 4620 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4621 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4622 COps[1], DL); 4623 } 4624 4625 return ConstantFoldInstOperands(I, COps, DL); 4626 } 4627 4628 /// Try to determine the resulting constant values in phi nodes 4629 /// at the common destination basic block, *CommonDest, for one of the case 4630 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4631 /// case), of a switch instruction SI. 4632 static bool 4633 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4634 BasicBlock **CommonDest, 4635 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4636 const DataLayout &DL, const TargetTransformInfo &TTI) { 4637 // The block from which we enter the common destination. 4638 BasicBlock *Pred = SI->getParent(); 4639 4640 // If CaseDest is empty except for some side-effect free instructions through 4641 // which we can constant-propagate the CaseVal, continue to its successor. 4642 SmallDenseMap<Value *, Constant *> ConstantPool; 4643 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4644 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4645 if (I.isTerminator()) { 4646 // If the terminator is a simple branch, continue to the next block. 4647 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4648 return false; 4649 Pred = CaseDest; 4650 CaseDest = I.getSuccessor(0); 4651 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4652 // Instruction is side-effect free and constant. 4653 4654 // If the instruction has uses outside this block or a phi node slot for 4655 // the block, it is not safe to bypass the instruction since it would then 4656 // no longer dominate all its uses. 4657 for (auto &Use : I.uses()) { 4658 User *User = Use.getUser(); 4659 if (Instruction *I = dyn_cast<Instruction>(User)) 4660 if (I->getParent() == CaseDest) 4661 continue; 4662 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4663 if (Phi->getIncomingBlock(Use) == CaseDest) 4664 continue; 4665 return false; 4666 } 4667 4668 ConstantPool.insert(std::make_pair(&I, C)); 4669 } else { 4670 break; 4671 } 4672 } 4673 4674 // If we did not have a CommonDest before, use the current one. 4675 if (!*CommonDest) 4676 *CommonDest = CaseDest; 4677 // If the destination isn't the common one, abort. 4678 if (CaseDest != *CommonDest) 4679 return false; 4680 4681 // Get the values for this case from phi nodes in the destination block. 4682 for (PHINode &PHI : (*CommonDest)->phis()) { 4683 int Idx = PHI.getBasicBlockIndex(Pred); 4684 if (Idx == -1) 4685 continue; 4686 4687 Constant *ConstVal = 4688 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4689 if (!ConstVal) 4690 return false; 4691 4692 // Be conservative about which kinds of constants we support. 4693 if (!ValidLookupTableConstant(ConstVal, TTI)) 4694 return false; 4695 4696 Res.push_back(std::make_pair(&PHI, ConstVal)); 4697 } 4698 4699 return Res.size() > 0; 4700 } 4701 4702 // Helper function used to add CaseVal to the list of cases that generate 4703 // Result. Returns the updated number of cases that generate this result. 4704 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4705 SwitchCaseResultVectorTy &UniqueResults, 4706 Constant *Result) { 4707 for (auto &I : UniqueResults) { 4708 if (I.first == Result) { 4709 I.second.push_back(CaseVal); 4710 return I.second.size(); 4711 } 4712 } 4713 UniqueResults.push_back( 4714 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4715 return 1; 4716 } 4717 4718 // Helper function that initializes a map containing 4719 // results for the PHI node of the common destination block for a switch 4720 // instruction. Returns false if multiple PHI nodes have been found or if 4721 // there is not a common destination block for the switch. 4722 static bool 4723 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4724 SwitchCaseResultVectorTy &UniqueResults, 4725 Constant *&DefaultResult, const DataLayout &DL, 4726 const TargetTransformInfo &TTI, 4727 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4728 for (auto &I : SI->cases()) { 4729 ConstantInt *CaseVal = I.getCaseValue(); 4730 4731 // Resulting value at phi nodes for this case value. 4732 SwitchCaseResultsTy Results; 4733 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4734 DL, TTI)) 4735 return false; 4736 4737 // Only one value per case is permitted. 4738 if (Results.size() > 1) 4739 return false; 4740 4741 // Add the case->result mapping to UniqueResults. 4742 const uintptr_t NumCasesForResult = 4743 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4744 4745 // Early out if there are too many cases for this result. 4746 if (NumCasesForResult > MaxCasesPerResult) 4747 return false; 4748 4749 // Early out if there are too many unique results. 4750 if (UniqueResults.size() > MaxUniqueResults) 4751 return false; 4752 4753 // Check the PHI consistency. 4754 if (!PHI) 4755 PHI = Results[0].first; 4756 else if (PHI != Results[0].first) 4757 return false; 4758 } 4759 // Find the default result value. 4760 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4761 BasicBlock *DefaultDest = SI->getDefaultDest(); 4762 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4763 DL, TTI); 4764 // If the default value is not found abort unless the default destination 4765 // is unreachable. 4766 DefaultResult = 4767 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4768 if ((!DefaultResult && 4769 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4770 return false; 4771 4772 return true; 4773 } 4774 4775 // Helper function that checks if it is possible to transform a switch with only 4776 // two cases (or two cases + default) that produces a result into a select. 4777 // Example: 4778 // switch (a) { 4779 // case 10: %0 = icmp eq i32 %a, 10 4780 // return 10; %1 = select i1 %0, i32 10, i32 4 4781 // case 20: ----> %2 = icmp eq i32 %a, 20 4782 // return 2; %3 = select i1 %2, i32 2, i32 %1 4783 // default: 4784 // return 4; 4785 // } 4786 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4787 Constant *DefaultResult, Value *Condition, 4788 IRBuilder<> &Builder) { 4789 assert(ResultVector.size() == 2 && 4790 "We should have exactly two unique results at this point"); 4791 // If we are selecting between only two cases transform into a simple 4792 // select or a two-way select if default is possible. 4793 if (ResultVector[0].second.size() == 1 && 4794 ResultVector[1].second.size() == 1) { 4795 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4796 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4797 4798 bool DefaultCanTrigger = DefaultResult; 4799 Value *SelectValue = ResultVector[1].first; 4800 if (DefaultCanTrigger) { 4801 Value *const ValueCompare = 4802 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4803 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4804 DefaultResult, "switch.select"); 4805 } 4806 Value *const ValueCompare = 4807 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4808 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4809 SelectValue, "switch.select"); 4810 } 4811 4812 return nullptr; 4813 } 4814 4815 // Helper function to cleanup a switch instruction that has been converted into 4816 // a select, fixing up PHI nodes and basic blocks. 4817 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4818 Value *SelectValue, 4819 IRBuilder<> &Builder) { 4820 BasicBlock *SelectBB = SI->getParent(); 4821 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4822 PHI->removeIncomingValue(SelectBB); 4823 PHI->addIncoming(SelectValue, SelectBB); 4824 4825 Builder.CreateBr(PHI->getParent()); 4826 4827 // Remove the switch. 4828 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4829 BasicBlock *Succ = SI->getSuccessor(i); 4830 4831 if (Succ == PHI->getParent()) 4832 continue; 4833 Succ->removePredecessor(SelectBB); 4834 } 4835 SI->eraseFromParent(); 4836 } 4837 4838 /// If the switch is only used to initialize one or more 4839 /// phi nodes in a common successor block with only two different 4840 /// constant values, replace the switch with select. 4841 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4842 const DataLayout &DL, 4843 const TargetTransformInfo &TTI) { 4844 Value *const Cond = SI->getCondition(); 4845 PHINode *PHI = nullptr; 4846 BasicBlock *CommonDest = nullptr; 4847 Constant *DefaultResult; 4848 SwitchCaseResultVectorTy UniqueResults; 4849 // Collect all the cases that will deliver the same value from the switch. 4850 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4851 DL, TTI, 2, 1)) 4852 return false; 4853 // Selects choose between maximum two values. 4854 if (UniqueResults.size() != 2) 4855 return false; 4856 assert(PHI != nullptr && "PHI for value select not found"); 4857 4858 Builder.SetInsertPoint(SI); 4859 Value *SelectValue = 4860 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4861 if (SelectValue) { 4862 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4863 return true; 4864 } 4865 // The switch couldn't be converted into a select. 4866 return false; 4867 } 4868 4869 namespace { 4870 4871 /// This class represents a lookup table that can be used to replace a switch. 4872 class SwitchLookupTable { 4873 public: 4874 /// Create a lookup table to use as a switch replacement with the contents 4875 /// of Values, using DefaultValue to fill any holes in the table. 4876 SwitchLookupTable( 4877 Module &M, uint64_t TableSize, ConstantInt *Offset, 4878 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4879 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4880 4881 /// Build instructions with Builder to retrieve the value at 4882 /// the position given by Index in the lookup table. 4883 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4884 4885 /// Return true if a table with TableSize elements of 4886 /// type ElementType would fit in a target-legal register. 4887 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4888 Type *ElementType); 4889 4890 private: 4891 // Depending on the contents of the table, it can be represented in 4892 // different ways. 4893 enum { 4894 // For tables where each element contains the same value, we just have to 4895 // store that single value and return it for each lookup. 4896 SingleValueKind, 4897 4898 // For tables where there is a linear relationship between table index 4899 // and values. We calculate the result with a simple multiplication 4900 // and addition instead of a table lookup. 4901 LinearMapKind, 4902 4903 // For small tables with integer elements, we can pack them into a bitmap 4904 // that fits into a target-legal register. Values are retrieved by 4905 // shift and mask operations. 4906 BitMapKind, 4907 4908 // The table is stored as an array of values. Values are retrieved by load 4909 // instructions from the table. 4910 ArrayKind 4911 } Kind; 4912 4913 // For SingleValueKind, this is the single value. 4914 Constant *SingleValue = nullptr; 4915 4916 // For BitMapKind, this is the bitmap. 4917 ConstantInt *BitMap = nullptr; 4918 IntegerType *BitMapElementTy = nullptr; 4919 4920 // For LinearMapKind, these are the constants used to derive the value. 4921 ConstantInt *LinearOffset = nullptr; 4922 ConstantInt *LinearMultiplier = nullptr; 4923 4924 // For ArrayKind, this is the array. 4925 GlobalVariable *Array = nullptr; 4926 }; 4927 4928 } // end anonymous namespace 4929 4930 SwitchLookupTable::SwitchLookupTable( 4931 Module &M, uint64_t TableSize, ConstantInt *Offset, 4932 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4933 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4934 assert(Values.size() && "Can't build lookup table without values!"); 4935 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4936 4937 // If all values in the table are equal, this is that value. 4938 SingleValue = Values.begin()->second; 4939 4940 Type *ValueType = Values.begin()->second->getType(); 4941 4942 // Build up the table contents. 4943 SmallVector<Constant *, 64> TableContents(TableSize); 4944 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4945 ConstantInt *CaseVal = Values[I].first; 4946 Constant *CaseRes = Values[I].second; 4947 assert(CaseRes->getType() == ValueType); 4948 4949 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4950 TableContents[Idx] = CaseRes; 4951 4952 if (CaseRes != SingleValue) 4953 SingleValue = nullptr; 4954 } 4955 4956 // Fill in any holes in the table with the default result. 4957 if (Values.size() < TableSize) { 4958 assert(DefaultValue && 4959 "Need a default value to fill the lookup table holes."); 4960 assert(DefaultValue->getType() == ValueType); 4961 for (uint64_t I = 0; I < TableSize; ++I) { 4962 if (!TableContents[I]) 4963 TableContents[I] = DefaultValue; 4964 } 4965 4966 if (DefaultValue != SingleValue) 4967 SingleValue = nullptr; 4968 } 4969 4970 // If each element in the table contains the same value, we only need to store 4971 // that single value. 4972 if (SingleValue) { 4973 Kind = SingleValueKind; 4974 return; 4975 } 4976 4977 // Check if we can derive the value with a linear transformation from the 4978 // table index. 4979 if (isa<IntegerType>(ValueType)) { 4980 bool LinearMappingPossible = true; 4981 APInt PrevVal; 4982 APInt DistToPrev; 4983 assert(TableSize >= 2 && "Should be a SingleValue table."); 4984 // Check if there is the same distance between two consecutive values. 4985 for (uint64_t I = 0; I < TableSize; ++I) { 4986 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4987 if (!ConstVal) { 4988 // This is an undef. We could deal with it, but undefs in lookup tables 4989 // are very seldom. It's probably not worth the additional complexity. 4990 LinearMappingPossible = false; 4991 break; 4992 } 4993 const APInt &Val = ConstVal->getValue(); 4994 if (I != 0) { 4995 APInt Dist = Val - PrevVal; 4996 if (I == 1) { 4997 DistToPrev = Dist; 4998 } else if (Dist != DistToPrev) { 4999 LinearMappingPossible = false; 5000 break; 5001 } 5002 } 5003 PrevVal = Val; 5004 } 5005 if (LinearMappingPossible) { 5006 LinearOffset = cast<ConstantInt>(TableContents[0]); 5007 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5008 Kind = LinearMapKind; 5009 ++NumLinearMaps; 5010 return; 5011 } 5012 } 5013 5014 // If the type is integer and the table fits in a register, build a bitmap. 5015 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5016 IntegerType *IT = cast<IntegerType>(ValueType); 5017 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5018 for (uint64_t I = TableSize; I > 0; --I) { 5019 TableInt <<= IT->getBitWidth(); 5020 // Insert values into the bitmap. Undef values are set to zero. 5021 if (!isa<UndefValue>(TableContents[I - 1])) { 5022 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5023 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5024 } 5025 } 5026 BitMap = ConstantInt::get(M.getContext(), TableInt); 5027 BitMapElementTy = IT; 5028 Kind = BitMapKind; 5029 ++NumBitMaps; 5030 return; 5031 } 5032 5033 // Store the table in an array. 5034 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5035 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5036 5037 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5038 GlobalVariable::PrivateLinkage, Initializer, 5039 "switch.table." + FuncName); 5040 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5041 // Set the alignment to that of an array items. We will be only loading one 5042 // value out of it. 5043 Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); 5044 Kind = ArrayKind; 5045 } 5046 5047 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5048 switch (Kind) { 5049 case SingleValueKind: 5050 return SingleValue; 5051 case LinearMapKind: { 5052 // Derive the result value from the input value. 5053 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5054 false, "switch.idx.cast"); 5055 if (!LinearMultiplier->isOne()) 5056 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5057 if (!LinearOffset->isZero()) 5058 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5059 return Result; 5060 } 5061 case BitMapKind: { 5062 // Type of the bitmap (e.g. i59). 5063 IntegerType *MapTy = BitMap->getType(); 5064 5065 // Cast Index to the same type as the bitmap. 5066 // Note: The Index is <= the number of elements in the table, so 5067 // truncating it to the width of the bitmask is safe. 5068 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5069 5070 // Multiply the shift amount by the element width. 5071 ShiftAmt = Builder.CreateMul( 5072 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5073 "switch.shiftamt"); 5074 5075 // Shift down. 5076 Value *DownShifted = 5077 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5078 // Mask off. 5079 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5080 } 5081 case ArrayKind: { 5082 // Make sure the table index will not overflow when treated as signed. 5083 IntegerType *IT = cast<IntegerType>(Index->getType()); 5084 uint64_t TableSize = 5085 Array->getInitializer()->getType()->getArrayNumElements(); 5086 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5087 Index = Builder.CreateZExt( 5088 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5089 "switch.tableidx.zext"); 5090 5091 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5092 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5093 GEPIndices, "switch.gep"); 5094 return Builder.CreateLoad(GEP, "switch.load"); 5095 } 5096 } 5097 llvm_unreachable("Unknown lookup table kind!"); 5098 } 5099 5100 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5101 uint64_t TableSize, 5102 Type *ElementType) { 5103 auto *IT = dyn_cast<IntegerType>(ElementType); 5104 if (!IT) 5105 return false; 5106 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5107 // are <= 15, we could try to narrow the type. 5108 5109 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5110 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5111 return false; 5112 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5113 } 5114 5115 /// Determine whether a lookup table should be built for this switch, based on 5116 /// the number of cases, size of the table, and the types of the results. 5117 static bool 5118 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5119 const TargetTransformInfo &TTI, const DataLayout &DL, 5120 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5121 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5122 return false; // TableSize overflowed, or mul below might overflow. 5123 5124 bool AllTablesFitInRegister = true; 5125 bool HasIllegalType = false; 5126 for (const auto &I : ResultTypes) { 5127 Type *Ty = I.second; 5128 5129 // Saturate this flag to true. 5130 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5131 5132 // Saturate this flag to false. 5133 AllTablesFitInRegister = 5134 AllTablesFitInRegister && 5135 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5136 5137 // If both flags saturate, we're done. NOTE: This *only* works with 5138 // saturating flags, and all flags have to saturate first due to the 5139 // non-deterministic behavior of iterating over a dense map. 5140 if (HasIllegalType && !AllTablesFitInRegister) 5141 break; 5142 } 5143 5144 // If each table would fit in a register, we should build it anyway. 5145 if (AllTablesFitInRegister) 5146 return true; 5147 5148 // Don't build a table that doesn't fit in-register if it has illegal types. 5149 if (HasIllegalType) 5150 return false; 5151 5152 // The table density should be at least 40%. This is the same criterion as for 5153 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5154 // FIXME: Find the best cut-off. 5155 return SI->getNumCases() * 10 >= TableSize * 4; 5156 } 5157 5158 /// Try to reuse the switch table index compare. Following pattern: 5159 /// \code 5160 /// if (idx < tablesize) 5161 /// r = table[idx]; // table does not contain default_value 5162 /// else 5163 /// r = default_value; 5164 /// if (r != default_value) 5165 /// ... 5166 /// \endcode 5167 /// Is optimized to: 5168 /// \code 5169 /// cond = idx < tablesize; 5170 /// if (cond) 5171 /// r = table[idx]; 5172 /// else 5173 /// r = default_value; 5174 /// if (cond) 5175 /// ... 5176 /// \endcode 5177 /// Jump threading will then eliminate the second if(cond). 5178 static void reuseTableCompare( 5179 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5180 Constant *DefaultValue, 5181 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5182 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5183 if (!CmpInst) 5184 return; 5185 5186 // We require that the compare is in the same block as the phi so that jump 5187 // threading can do its work afterwards. 5188 if (CmpInst->getParent() != PhiBlock) 5189 return; 5190 5191 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5192 if (!CmpOp1) 5193 return; 5194 5195 Value *RangeCmp = RangeCheckBranch->getCondition(); 5196 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5197 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5198 5199 // Check if the compare with the default value is constant true or false. 5200 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5201 DefaultValue, CmpOp1, true); 5202 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5203 return; 5204 5205 // Check if the compare with the case values is distinct from the default 5206 // compare result. 5207 for (auto ValuePair : Values) { 5208 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5209 ValuePair.second, CmpOp1, true); 5210 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5211 return; 5212 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5213 "Expect true or false as compare result."); 5214 } 5215 5216 // Check if the branch instruction dominates the phi node. It's a simple 5217 // dominance check, but sufficient for our needs. 5218 // Although this check is invariant in the calling loops, it's better to do it 5219 // at this late stage. Practically we do it at most once for a switch. 5220 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5221 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5222 BasicBlock *Pred = *PI; 5223 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5224 return; 5225 } 5226 5227 if (DefaultConst == FalseConst) { 5228 // The compare yields the same result. We can replace it. 5229 CmpInst->replaceAllUsesWith(RangeCmp); 5230 ++NumTableCmpReuses; 5231 } else { 5232 // The compare yields the same result, just inverted. We can replace it. 5233 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5234 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5235 RangeCheckBranch); 5236 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5237 ++NumTableCmpReuses; 5238 } 5239 } 5240 5241 /// If the switch is only used to initialize one or more phi nodes in a common 5242 /// successor block with different constant values, replace the switch with 5243 /// lookup tables. 5244 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5245 const DataLayout &DL, 5246 const TargetTransformInfo &TTI) { 5247 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5248 5249 Function *Fn = SI->getParent()->getParent(); 5250 // Only build lookup table when we have a target that supports it or the 5251 // attribute is not set. 5252 if (!TTI.shouldBuildLookupTables() || 5253 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5254 return false; 5255 5256 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5257 // split off a dense part and build a lookup table for that. 5258 5259 // FIXME: This creates arrays of GEPs to constant strings, which means each 5260 // GEP needs a runtime relocation in PIC code. We should just build one big 5261 // string and lookup indices into that. 5262 5263 // Ignore switches with less than three cases. Lookup tables will not make 5264 // them faster, so we don't analyze them. 5265 if (SI->getNumCases() < 3) 5266 return false; 5267 5268 // Figure out the corresponding result for each case value and phi node in the 5269 // common destination, as well as the min and max case values. 5270 assert(!empty(SI->cases())); 5271 SwitchInst::CaseIt CI = SI->case_begin(); 5272 ConstantInt *MinCaseVal = CI->getCaseValue(); 5273 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5274 5275 BasicBlock *CommonDest = nullptr; 5276 5277 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5278 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5279 5280 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5281 SmallDenseMap<PHINode *, Type *> ResultTypes; 5282 SmallVector<PHINode *, 4> PHIs; 5283 5284 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5285 ConstantInt *CaseVal = CI->getCaseValue(); 5286 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5287 MinCaseVal = CaseVal; 5288 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5289 MaxCaseVal = CaseVal; 5290 5291 // Resulting value at phi nodes for this case value. 5292 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5293 ResultsTy Results; 5294 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5295 Results, DL, TTI)) 5296 return false; 5297 5298 // Append the result from this case to the list for each phi. 5299 for (const auto &I : Results) { 5300 PHINode *PHI = I.first; 5301 Constant *Value = I.second; 5302 if (!ResultLists.count(PHI)) 5303 PHIs.push_back(PHI); 5304 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5305 } 5306 } 5307 5308 // Keep track of the result types. 5309 for (PHINode *PHI : PHIs) { 5310 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5311 } 5312 5313 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5314 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5315 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5316 bool TableHasHoles = (NumResults < TableSize); 5317 5318 // If the table has holes, we need a constant result for the default case 5319 // or a bitmask that fits in a register. 5320 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5321 bool HasDefaultResults = 5322 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5323 DefaultResultsList, DL, TTI); 5324 5325 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5326 if (NeedMask) { 5327 // As an extra penalty for the validity test we require more cases. 5328 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5329 return false; 5330 if (!DL.fitsInLegalInteger(TableSize)) 5331 return false; 5332 } 5333 5334 for (const auto &I : DefaultResultsList) { 5335 PHINode *PHI = I.first; 5336 Constant *Result = I.second; 5337 DefaultResults[PHI] = Result; 5338 } 5339 5340 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5341 return false; 5342 5343 // Create the BB that does the lookups. 5344 Module &Mod = *CommonDest->getParent()->getParent(); 5345 BasicBlock *LookupBB = BasicBlock::Create( 5346 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5347 5348 // Compute the table index value. 5349 Builder.SetInsertPoint(SI); 5350 Value *TableIndex; 5351 if (MinCaseVal->isNullValue()) 5352 TableIndex = SI->getCondition(); 5353 else 5354 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5355 "switch.tableidx"); 5356 5357 // Compute the maximum table size representable by the integer type we are 5358 // switching upon. 5359 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5360 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5361 assert(MaxTableSize >= TableSize && 5362 "It is impossible for a switch to have more entries than the max " 5363 "representable value of its input integer type's size."); 5364 5365 // If the default destination is unreachable, or if the lookup table covers 5366 // all values of the conditional variable, branch directly to the lookup table 5367 // BB. Otherwise, check that the condition is within the case range. 5368 const bool DefaultIsReachable = 5369 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5370 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5371 BranchInst *RangeCheckBranch = nullptr; 5372 5373 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5374 Builder.CreateBr(LookupBB); 5375 // Note: We call removeProdecessor later since we need to be able to get the 5376 // PHI value for the default case in case we're using a bit mask. 5377 } else { 5378 Value *Cmp = Builder.CreateICmpULT( 5379 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5380 RangeCheckBranch = 5381 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5382 } 5383 5384 // Populate the BB that does the lookups. 5385 Builder.SetInsertPoint(LookupBB); 5386 5387 if (NeedMask) { 5388 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5389 // re-purposed to do the hole check, and we create a new LookupBB. 5390 BasicBlock *MaskBB = LookupBB; 5391 MaskBB->setName("switch.hole_check"); 5392 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5393 CommonDest->getParent(), CommonDest); 5394 5395 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5396 // unnecessary illegal types. 5397 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5398 APInt MaskInt(TableSizePowOf2, 0); 5399 APInt One(TableSizePowOf2, 1); 5400 // Build bitmask; fill in a 1 bit for every case. 5401 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5402 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5403 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5404 .getLimitedValue(); 5405 MaskInt |= One << Idx; 5406 } 5407 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5408 5409 // Get the TableIndex'th bit of the bitmask. 5410 // If this bit is 0 (meaning hole) jump to the default destination, 5411 // else continue with table lookup. 5412 IntegerType *MapTy = TableMask->getType(); 5413 Value *MaskIndex = 5414 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5415 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5416 Value *LoBit = Builder.CreateTrunc( 5417 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5418 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5419 5420 Builder.SetInsertPoint(LookupBB); 5421 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5422 } 5423 5424 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5425 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5426 // do not delete PHINodes here. 5427 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5428 /*DontDeleteUselessPHIs=*/true); 5429 } 5430 5431 bool ReturnedEarly = false; 5432 for (PHINode *PHI : PHIs) { 5433 const ResultListTy &ResultList = ResultLists[PHI]; 5434 5435 // If using a bitmask, use any value to fill the lookup table holes. 5436 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5437 StringRef FuncName = Fn->getName(); 5438 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5439 FuncName); 5440 5441 Value *Result = Table.BuildLookup(TableIndex, Builder); 5442 5443 // If the result is used to return immediately from the function, we want to 5444 // do that right here. 5445 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5446 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5447 Builder.CreateRet(Result); 5448 ReturnedEarly = true; 5449 break; 5450 } 5451 5452 // Do a small peephole optimization: re-use the switch table compare if 5453 // possible. 5454 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5455 BasicBlock *PhiBlock = PHI->getParent(); 5456 // Search for compare instructions which use the phi. 5457 for (auto *User : PHI->users()) { 5458 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5459 } 5460 } 5461 5462 PHI->addIncoming(Result, LookupBB); 5463 } 5464 5465 if (!ReturnedEarly) 5466 Builder.CreateBr(CommonDest); 5467 5468 // Remove the switch. 5469 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5470 BasicBlock *Succ = SI->getSuccessor(i); 5471 5472 if (Succ == SI->getDefaultDest()) 5473 continue; 5474 Succ->removePredecessor(SI->getParent()); 5475 } 5476 SI->eraseFromParent(); 5477 5478 ++NumLookupTables; 5479 if (NeedMask) 5480 ++NumLookupTablesHoles; 5481 return true; 5482 } 5483 5484 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5485 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5486 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5487 uint64_t Range = Diff + 1; 5488 uint64_t NumCases = Values.size(); 5489 // 40% is the default density for building a jump table in optsize/minsize mode. 5490 uint64_t MinDensity = 40; 5491 5492 return NumCases * 100 >= Range * MinDensity; 5493 } 5494 5495 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5496 /// of cases. 5497 /// 5498 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5499 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5500 /// 5501 /// This converts a sparse switch into a dense switch which allows better 5502 /// lowering and could also allow transforming into a lookup table. 5503 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5504 const DataLayout &DL, 5505 const TargetTransformInfo &TTI) { 5506 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5507 if (CondTy->getIntegerBitWidth() > 64 || 5508 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5509 return false; 5510 // Only bother with this optimization if there are more than 3 switch cases; 5511 // SDAG will only bother creating jump tables for 4 or more cases. 5512 if (SI->getNumCases() < 4) 5513 return false; 5514 5515 // This transform is agnostic to the signedness of the input or case values. We 5516 // can treat the case values as signed or unsigned. We can optimize more common 5517 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5518 // as signed. 5519 SmallVector<int64_t,4> Values; 5520 for (auto &C : SI->cases()) 5521 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5522 llvm::sort(Values); 5523 5524 // If the switch is already dense, there's nothing useful to do here. 5525 if (isSwitchDense(Values)) 5526 return false; 5527 5528 // First, transform the values such that they start at zero and ascend. 5529 int64_t Base = Values[0]; 5530 for (auto &V : Values) 5531 V -= (uint64_t)(Base); 5532 5533 // Now we have signed numbers that have been shifted so that, given enough 5534 // precision, there are no negative values. Since the rest of the transform 5535 // is bitwise only, we switch now to an unsigned representation. 5536 uint64_t GCD = 0; 5537 for (auto &V : Values) 5538 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5539 5540 // This transform can be done speculatively because it is so cheap - it results 5541 // in a single rotate operation being inserted. This can only happen if the 5542 // factor extracted is a power of 2. 5543 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5544 // inverse of GCD and then perform this transform. 5545 // FIXME: It's possible that optimizing a switch on powers of two might also 5546 // be beneficial - flag values are often powers of two and we could use a CLZ 5547 // as the key function. 5548 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5549 // No common divisor found or too expensive to compute key function. 5550 return false; 5551 5552 unsigned Shift = Log2_64(GCD); 5553 for (auto &V : Values) 5554 V = (int64_t)((uint64_t)V >> Shift); 5555 5556 if (!isSwitchDense(Values)) 5557 // Transform didn't create a dense switch. 5558 return false; 5559 5560 // The obvious transform is to shift the switch condition right and emit a 5561 // check that the condition actually cleanly divided by GCD, i.e. 5562 // C & (1 << Shift - 1) == 0 5563 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5564 // 5565 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5566 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5567 // are nonzero then the switch condition will be very large and will hit the 5568 // default case. 5569 5570 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5571 Builder.SetInsertPoint(SI); 5572 auto *ShiftC = ConstantInt::get(Ty, Shift); 5573 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5574 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5575 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5576 auto *Rot = Builder.CreateOr(LShr, Shl); 5577 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5578 5579 for (auto Case : SI->cases()) { 5580 auto *Orig = Case.getCaseValue(); 5581 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5582 Case.setValue( 5583 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5584 } 5585 return true; 5586 } 5587 5588 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5589 BasicBlock *BB = SI->getParent(); 5590 5591 if (isValueEqualityComparison(SI)) { 5592 // If we only have one predecessor, and if it is a branch on this value, 5593 // see if that predecessor totally determines the outcome of this switch. 5594 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5595 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5596 return requestResimplify(); 5597 5598 Value *Cond = SI->getCondition(); 5599 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5600 if (SimplifySwitchOnSelect(SI, Select)) 5601 return requestResimplify(); 5602 5603 // If the block only contains the switch, see if we can fold the block 5604 // away into any preds. 5605 if (SI == &*BB->instructionsWithoutDebug().begin()) 5606 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5607 return requestResimplify(); 5608 } 5609 5610 // Try to transform the switch into an icmp and a branch. 5611 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5612 return requestResimplify(); 5613 5614 // Remove unreachable cases. 5615 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5616 return requestResimplify(); 5617 5618 if (switchToSelect(SI, Builder, DL, TTI)) 5619 return requestResimplify(); 5620 5621 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5622 return requestResimplify(); 5623 5624 // The conversion from switch to lookup tables results in difficult-to-analyze 5625 // code and makes pruning branches much harder. This is a problem if the 5626 // switch expression itself can still be restricted as a result of inlining or 5627 // CVP. Therefore, only apply this transformation during late stages of the 5628 // optimisation pipeline. 5629 if (Options.ConvertSwitchToLookupTable && 5630 SwitchToLookupTable(SI, Builder, DL, TTI)) 5631 return requestResimplify(); 5632 5633 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5634 return requestResimplify(); 5635 5636 return false; 5637 } 5638 5639 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5640 BasicBlock *BB = IBI->getParent(); 5641 bool Changed = false; 5642 5643 // Eliminate redundant destinations. 5644 SmallPtrSet<Value *, 8> Succs; 5645 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5646 BasicBlock *Dest = IBI->getDestination(i); 5647 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5648 Dest->removePredecessor(BB); 5649 IBI->removeDestination(i); 5650 --i; 5651 --e; 5652 Changed = true; 5653 } 5654 } 5655 5656 if (IBI->getNumDestinations() == 0) { 5657 // If the indirectbr has no successors, change it to unreachable. 5658 new UnreachableInst(IBI->getContext(), IBI); 5659 EraseTerminatorAndDCECond(IBI); 5660 return true; 5661 } 5662 5663 if (IBI->getNumDestinations() == 1) { 5664 // If the indirectbr has one successor, change it to a direct branch. 5665 BranchInst::Create(IBI->getDestination(0), IBI); 5666 EraseTerminatorAndDCECond(IBI); 5667 return true; 5668 } 5669 5670 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5671 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5672 return requestResimplify(); 5673 } 5674 return Changed; 5675 } 5676 5677 /// Given an block with only a single landing pad and a unconditional branch 5678 /// try to find another basic block which this one can be merged with. This 5679 /// handles cases where we have multiple invokes with unique landing pads, but 5680 /// a shared handler. 5681 /// 5682 /// We specifically choose to not worry about merging non-empty blocks 5683 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5684 /// practice, the optimizer produces empty landing pad blocks quite frequently 5685 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5686 /// sinking in this file) 5687 /// 5688 /// This is primarily a code size optimization. We need to avoid performing 5689 /// any transform which might inhibit optimization (such as our ability to 5690 /// specialize a particular handler via tail commoning). We do this by not 5691 /// merging any blocks which require us to introduce a phi. Since the same 5692 /// values are flowing through both blocks, we don't lose any ability to 5693 /// specialize. If anything, we make such specialization more likely. 5694 /// 5695 /// TODO - This transformation could remove entries from a phi in the target 5696 /// block when the inputs in the phi are the same for the two blocks being 5697 /// merged. In some cases, this could result in removal of the PHI entirely. 5698 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5699 BasicBlock *BB) { 5700 auto Succ = BB->getUniqueSuccessor(); 5701 assert(Succ); 5702 // If there's a phi in the successor block, we'd likely have to introduce 5703 // a phi into the merged landing pad block. 5704 if (isa<PHINode>(*Succ->begin())) 5705 return false; 5706 5707 for (BasicBlock *OtherPred : predecessors(Succ)) { 5708 if (BB == OtherPred) 5709 continue; 5710 BasicBlock::iterator I = OtherPred->begin(); 5711 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5712 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5713 continue; 5714 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5715 ; 5716 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5717 if (!BI2 || !BI2->isIdenticalTo(BI)) 5718 continue; 5719 5720 // We've found an identical block. Update our predecessors to take that 5721 // path instead and make ourselves dead. 5722 SmallPtrSet<BasicBlock *, 16> Preds; 5723 Preds.insert(pred_begin(BB), pred_end(BB)); 5724 for (BasicBlock *Pred : Preds) { 5725 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5726 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5727 "unexpected successor"); 5728 II->setUnwindDest(OtherPred); 5729 } 5730 5731 // The debug info in OtherPred doesn't cover the merged control flow that 5732 // used to go through BB. We need to delete it or update it. 5733 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5734 Instruction &Inst = *I; 5735 I++; 5736 if (isa<DbgInfoIntrinsic>(Inst)) 5737 Inst.eraseFromParent(); 5738 } 5739 5740 SmallPtrSet<BasicBlock *, 16> Succs; 5741 Succs.insert(succ_begin(BB), succ_end(BB)); 5742 for (BasicBlock *Succ : Succs) { 5743 Succ->removePredecessor(BB); 5744 } 5745 5746 IRBuilder<> Builder(BI); 5747 Builder.CreateUnreachable(); 5748 BI->eraseFromParent(); 5749 return true; 5750 } 5751 return false; 5752 } 5753 5754 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5755 IRBuilder<> &Builder) { 5756 BasicBlock *BB = BI->getParent(); 5757 BasicBlock *Succ = BI->getSuccessor(0); 5758 5759 // If the Terminator is the only non-phi instruction, simplify the block. 5760 // If LoopHeader is provided, check if the block or its successor is a loop 5761 // header. (This is for early invocations before loop simplify and 5762 // vectorization to keep canonical loop forms for nested loops. These blocks 5763 // can be eliminated when the pass is invoked later in the back-end.) 5764 // Note that if BB has only one predecessor then we do not introduce new 5765 // backedge, so we can eliminate BB. 5766 bool NeedCanonicalLoop = 5767 Options.NeedCanonicalLoop && 5768 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5769 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5770 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5771 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5772 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5773 return true; 5774 5775 // If the only instruction in the block is a seteq/setne comparison against a 5776 // constant, try to simplify the block. 5777 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5778 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5779 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5780 ; 5781 if (I->isTerminator() && 5782 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5783 return true; 5784 } 5785 5786 // See if we can merge an empty landing pad block with another which is 5787 // equivalent. 5788 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5789 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5790 ; 5791 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5792 return true; 5793 } 5794 5795 // If this basic block is ONLY a compare and a branch, and if a predecessor 5796 // branches to us and our successor, fold the comparison into the 5797 // predecessor and use logical operations to update the incoming value 5798 // for PHI nodes in common successor. 5799 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5800 return requestResimplify(); 5801 return false; 5802 } 5803 5804 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5805 BasicBlock *PredPred = nullptr; 5806 for (auto *P : predecessors(BB)) { 5807 BasicBlock *PPred = P->getSinglePredecessor(); 5808 if (!PPred || (PredPred && PredPred != PPred)) 5809 return nullptr; 5810 PredPred = PPred; 5811 } 5812 return PredPred; 5813 } 5814 5815 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5816 BasicBlock *BB = BI->getParent(); 5817 const Function *Fn = BB->getParent(); 5818 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5819 return false; 5820 5821 // Conditional branch 5822 if (isValueEqualityComparison(BI)) { 5823 // If we only have one predecessor, and if it is a branch on this value, 5824 // see if that predecessor totally determines the outcome of this 5825 // switch. 5826 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5827 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5828 return requestResimplify(); 5829 5830 // This block must be empty, except for the setcond inst, if it exists. 5831 // Ignore dbg intrinsics. 5832 auto I = BB->instructionsWithoutDebug().begin(); 5833 if (&*I == BI) { 5834 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5835 return requestResimplify(); 5836 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5837 ++I; 5838 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5839 return requestResimplify(); 5840 } 5841 } 5842 5843 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5844 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5845 return true; 5846 5847 // If this basic block has dominating predecessor blocks and the dominating 5848 // blocks' conditions imply BI's condition, we know the direction of BI. 5849 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 5850 if (Imp) { 5851 // Turn this into a branch on constant. 5852 auto *OldCond = BI->getCondition(); 5853 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 5854 : ConstantInt::getFalse(BB->getContext()); 5855 BI->setCondition(TorF); 5856 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5857 return requestResimplify(); 5858 } 5859 5860 // If this basic block is ONLY a compare and a branch, and if a predecessor 5861 // branches to us and one of our successors, fold the comparison into the 5862 // predecessor and use logical operations to pick the right destination. 5863 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5864 return requestResimplify(); 5865 5866 // We have a conditional branch to two blocks that are only reachable 5867 // from BI. We know that the condbr dominates the two blocks, so see if 5868 // there is any identical code in the "then" and "else" blocks. If so, we 5869 // can hoist it up to the branching block. 5870 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5871 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5872 if (HoistThenElseCodeToIf(BI, TTI)) 5873 return requestResimplify(); 5874 } else { 5875 // If Successor #1 has multiple preds, we may be able to conditionally 5876 // execute Successor #0 if it branches to Successor #1. 5877 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5878 if (Succ0TI->getNumSuccessors() == 1 && 5879 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5880 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5881 return requestResimplify(); 5882 } 5883 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5884 // If Successor #0 has multiple preds, we may be able to conditionally 5885 // execute Successor #1 if it branches to Successor #0. 5886 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5887 if (Succ1TI->getNumSuccessors() == 1 && 5888 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5889 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5890 return requestResimplify(); 5891 } 5892 5893 // If this is a branch on a phi node in the current block, thread control 5894 // through this block if any PHI node entries are constants. 5895 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5896 if (PN->getParent() == BI->getParent()) 5897 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5898 return requestResimplify(); 5899 5900 // Scan predecessor blocks for conditional branches. 5901 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5902 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5903 if (PBI != BI && PBI->isConditional()) 5904 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5905 return requestResimplify(); 5906 5907 // Look for diamond patterns. 5908 if (MergeCondStores) 5909 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5910 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5911 if (PBI != BI && PBI->isConditional()) 5912 if (mergeConditionalStores(PBI, BI, DL)) 5913 return requestResimplify(); 5914 5915 return false; 5916 } 5917 5918 /// Check if passing a value to an instruction will cause undefined behavior. 5919 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5920 Constant *C = dyn_cast<Constant>(V); 5921 if (!C) 5922 return false; 5923 5924 if (I->use_empty()) 5925 return false; 5926 5927 if (C->isNullValue() || isa<UndefValue>(C)) { 5928 // Only look at the first use, avoid hurting compile time with long uselists 5929 User *Use = *I->user_begin(); 5930 5931 // Now make sure that there are no instructions in between that can alter 5932 // control flow (eg. calls) 5933 for (BasicBlock::iterator 5934 i = ++BasicBlock::iterator(I), 5935 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5936 i != UI; ++i) 5937 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5938 return false; 5939 5940 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5941 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5942 if (GEP->getPointerOperand() == I) 5943 return passingValueIsAlwaysUndefined(V, GEP); 5944 5945 // Look through bitcasts. 5946 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5947 return passingValueIsAlwaysUndefined(V, BC); 5948 5949 // Load from null is undefined. 5950 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5951 if (!LI->isVolatile()) 5952 return !NullPointerIsDefined(LI->getFunction(), 5953 LI->getPointerAddressSpace()); 5954 5955 // Store to null is undefined. 5956 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5957 if (!SI->isVolatile()) 5958 return (!NullPointerIsDefined(SI->getFunction(), 5959 SI->getPointerAddressSpace())) && 5960 SI->getPointerOperand() == I; 5961 5962 // A call to null is undefined. 5963 if (auto CS = CallSite(Use)) 5964 return !NullPointerIsDefined(CS->getFunction()) && 5965 CS.getCalledValue() == I; 5966 } 5967 return false; 5968 } 5969 5970 /// If BB has an incoming value that will always trigger undefined behavior 5971 /// (eg. null pointer dereference), remove the branch leading here. 5972 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5973 for (PHINode &PHI : BB->phis()) 5974 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 5975 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 5976 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 5977 IRBuilder<> Builder(T); 5978 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5979 BB->removePredecessor(PHI.getIncomingBlock(i)); 5980 // Turn uncoditional branches into unreachables and remove the dead 5981 // destination from conditional branches. 5982 if (BI->isUnconditional()) 5983 Builder.CreateUnreachable(); 5984 else 5985 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5986 : BI->getSuccessor(0)); 5987 BI->eraseFromParent(); 5988 return true; 5989 } 5990 // TODO: SwitchInst. 5991 } 5992 5993 return false; 5994 } 5995 5996 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 5997 bool Changed = false; 5998 5999 assert(BB && BB->getParent() && "Block not embedded in function!"); 6000 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6001 6002 // Remove basic blocks that have no predecessors (except the entry block)... 6003 // or that just have themself as a predecessor. These are unreachable. 6004 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6005 BB->getSinglePredecessor() == BB) { 6006 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6007 DeleteDeadBlock(BB); 6008 return true; 6009 } 6010 6011 // Check to see if we can constant propagate this terminator instruction 6012 // away... 6013 Changed |= ConstantFoldTerminator(BB, true); 6014 6015 // Check for and eliminate duplicate PHI nodes in this block. 6016 Changed |= EliminateDuplicatePHINodes(BB); 6017 6018 // Check for and remove branches that will always cause undefined behavior. 6019 Changed |= removeUndefIntroducingPredecessor(BB); 6020 6021 // Merge basic blocks into their predecessor if there is only one distinct 6022 // pred, and if there is only one distinct successor of the predecessor, and 6023 // if there are no PHI nodes. 6024 if (MergeBlockIntoPredecessor(BB)) 6025 return true; 6026 6027 if (SinkCommon && Options.SinkCommonInsts) 6028 Changed |= SinkCommonCodeFromPredecessors(BB); 6029 6030 IRBuilder<> Builder(BB); 6031 6032 // If there is a trivial two-entry PHI node in this basic block, and we can 6033 // eliminate it, do so now. 6034 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6035 if (PN->getNumIncomingValues() == 2) 6036 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6037 6038 Builder.SetInsertPoint(BB->getTerminator()); 6039 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6040 if (BI->isUnconditional()) { 6041 if (SimplifyUncondBranch(BI, Builder)) 6042 return true; 6043 } else { 6044 if (SimplifyCondBranch(BI, Builder)) 6045 return true; 6046 } 6047 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6048 if (SimplifyReturn(RI, Builder)) 6049 return true; 6050 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6051 if (SimplifyResume(RI, Builder)) 6052 return true; 6053 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6054 if (SimplifyCleanupReturn(RI)) 6055 return true; 6056 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6057 if (SimplifySwitch(SI, Builder)) 6058 return true; 6059 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6060 if (SimplifyUnreachable(UI)) 6061 return true; 6062 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6063 if (SimplifyIndirectBr(IBI)) 6064 return true; 6065 } 6066 6067 return Changed; 6068 } 6069 6070 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6071 bool Changed = false; 6072 6073 // Repeated simplify BB as long as resimplification is requested. 6074 do { 6075 Resimplify = false; 6076 6077 // Perform one round of simplifcation. Resimplify flag will be set if 6078 // another iteration is requested. 6079 Changed |= simplifyOnce(BB); 6080 } while (Resimplify); 6081 6082 return Changed; 6083 } 6084 6085 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6086 const SimplifyCFGOptions &Options, 6087 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6088 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6089 Options) 6090 .run(BB); 6091 } 6092