1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetOperations.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/NoFolder.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ValueMapper.h" 49 #include <algorithm> 50 #include <map> 51 #include <set> 52 using namespace llvm; 53 using namespace PatternMatch; 54 55 #define DEBUG_TYPE "simplifycfg" 56 57 // Chosen as 2 so as to be cheap, but still to have enough power to fold 58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 59 // To catch this, we need to fold a compare and a select, hence '2' being the 60 // minimum reasonable default. 61 static cl::opt<unsigned> PHINodeFoldingThreshold( 62 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 63 cl::desc( 64 "Control the amount of phi node folding to perform (default = 2)")); 65 66 static cl::opt<bool> DupRet( 67 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 68 cl::desc("Duplicate return instructions into unconditional branches")); 69 70 static cl::opt<bool> 71 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 72 cl::desc("Sink common instructions down to the end block")); 73 74 static cl::opt<bool> HoistCondStores( 75 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 76 cl::desc("Hoist conditional stores if an unconditional store precedes")); 77 78 static cl::opt<bool> MergeCondStores( 79 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 80 cl::desc("Hoist conditional stores even if an unconditional store does not " 81 "precede - hoist multiple conditional stores into a single " 82 "predicated store")); 83 84 static cl::opt<bool> MergeCondStoresAggressively( 85 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 86 cl::desc("When merging conditional stores, do so even if the resultant " 87 "basic blocks are unlikely to be if-converted as a result")); 88 89 static cl::opt<bool> SpeculateOneExpensiveInst( 90 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 91 cl::desc("Allow exactly one expensive instruction to be speculatively " 92 "executed")); 93 94 static cl::opt<unsigned> MaxSpeculationDepth( 95 "max-speculation-depth", cl::Hidden, cl::init(10), 96 cl::desc("Limit maximum recursion depth when calculating costs of " 97 "speculatively executed instructions")); 98 99 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 100 STATISTIC(NumLinearMaps, 101 "Number of switch instructions turned into linear mapping"); 102 STATISTIC(NumLookupTables, 103 "Number of switch instructions turned into lookup tables"); 104 STATISTIC( 105 NumLookupTablesHoles, 106 "Number of switch instructions turned into lookup tables (holes checked)"); 107 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 108 STATISTIC(NumSinkCommons, 109 "Number of common instructions sunk down to the end block"); 110 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 111 112 namespace { 113 // The first field contains the value that the switch produces when a certain 114 // case group is selected, and the second field is a vector containing the 115 // cases composing the case group. 116 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 117 SwitchCaseResultVectorTy; 118 // The first field contains the phi node that generates a result of the switch 119 // and the second field contains the value generated for a certain case in the 120 // switch for that PHI. 121 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 122 123 /// ValueEqualityComparisonCase - Represents a case of a switch. 124 struct ValueEqualityComparisonCase { 125 ConstantInt *Value; 126 BasicBlock *Dest; 127 128 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 129 : Value(Value), Dest(Dest) {} 130 131 bool operator<(ValueEqualityComparisonCase RHS) const { 132 // Comparing pointers is ok as we only rely on the order for uniquing. 133 return Value < RHS.Value; 134 } 135 136 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 137 }; 138 139 class SimplifyCFGOpt { 140 const TargetTransformInfo &TTI; 141 const DataLayout &DL; 142 unsigned BonusInstThreshold; 143 AssumptionCache *AC; 144 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 145 Value *isValueEqualityComparison(TerminatorInst *TI); 146 BasicBlock *GetValueEqualityComparisonCases( 147 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 148 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 149 BasicBlock *Pred, 150 IRBuilder<> &Builder); 151 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 152 IRBuilder<> &Builder); 153 154 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 155 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 156 bool SimplifySingleResume(ResumeInst *RI); 157 bool SimplifyCommonResume(ResumeInst *RI); 158 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 159 bool SimplifyUnreachable(UnreachableInst *UI); 160 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 161 bool SimplifyIndirectBr(IndirectBrInst *IBI); 162 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 163 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 164 165 public: 166 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 167 unsigned BonusInstThreshold, AssumptionCache *AC, 168 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) 169 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC), 170 LoopHeaders(LoopHeaders) {} 171 bool run(BasicBlock *BB); 172 }; 173 } 174 175 /// Return true if it is safe to merge these two 176 /// terminator instructions together. 177 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 178 if (SI1 == SI2) 179 return false; // Can't merge with self! 180 181 // It is not safe to merge these two switch instructions if they have a common 182 // successor, and if that successor has a PHI node, and if *that* PHI node has 183 // conflicting incoming values from the two switch blocks. 184 BasicBlock *SI1BB = SI1->getParent(); 185 BasicBlock *SI2BB = SI2->getParent(); 186 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 187 188 for (BasicBlock *Succ : successors(SI2BB)) 189 if (SI1Succs.count(Succ)) 190 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 191 PHINode *PN = cast<PHINode>(BBI); 192 if (PN->getIncomingValueForBlock(SI1BB) != 193 PN->getIncomingValueForBlock(SI2BB)) 194 return false; 195 } 196 197 return true; 198 } 199 200 /// Return true if it is safe and profitable to merge these two terminator 201 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 202 /// store all PHI nodes in common successors. 203 static bool 204 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 205 Instruction *Cond, 206 SmallVectorImpl<PHINode *> &PhiNodes) { 207 if (SI1 == SI2) 208 return false; // Can't merge with self! 209 assert(SI1->isUnconditional() && SI2->isConditional()); 210 211 // We fold the unconditional branch if we can easily update all PHI nodes in 212 // common successors: 213 // 1> We have a constant incoming value for the conditional branch; 214 // 2> We have "Cond" as the incoming value for the unconditional branch; 215 // 3> SI2->getCondition() and Cond have same operands. 216 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 217 if (!Ci2) 218 return false; 219 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 220 Cond->getOperand(1) == Ci2->getOperand(1)) && 221 !(Cond->getOperand(0) == Ci2->getOperand(1) && 222 Cond->getOperand(1) == Ci2->getOperand(0))) 223 return false; 224 225 BasicBlock *SI1BB = SI1->getParent(); 226 BasicBlock *SI2BB = SI2->getParent(); 227 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 228 for (BasicBlock *Succ : successors(SI2BB)) 229 if (SI1Succs.count(Succ)) 230 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 231 PHINode *PN = cast<PHINode>(BBI); 232 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 233 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 234 return false; 235 PhiNodes.push_back(PN); 236 } 237 return true; 238 } 239 240 /// Update PHI nodes in Succ to indicate that there will now be entries in it 241 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 242 /// will be the same as those coming in from ExistPred, an existing predecessor 243 /// of Succ. 244 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 245 BasicBlock *ExistPred) { 246 if (!isa<PHINode>(Succ->begin())) 247 return; // Quick exit if nothing to do 248 249 PHINode *PN; 250 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 251 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 252 } 253 254 /// Compute an abstract "cost" of speculating the given instruction, 255 /// which is assumed to be safe to speculate. TCC_Free means cheap, 256 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 257 /// expensive. 258 static unsigned ComputeSpeculationCost(const User *I, 259 const TargetTransformInfo &TTI) { 260 assert(isSafeToSpeculativelyExecute(I) && 261 "Instruction is not safe to speculatively execute!"); 262 return TTI.getUserCost(I); 263 } 264 265 /// If we have a merge point of an "if condition" as accepted above, 266 /// return true if the specified value dominates the block. We 267 /// don't handle the true generality of domination here, just a special case 268 /// which works well enough for us. 269 /// 270 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 271 /// see if V (which must be an instruction) and its recursive operands 272 /// that do not dominate BB have a combined cost lower than CostRemaining and 273 /// are non-trapping. If both are true, the instruction is inserted into the 274 /// set and true is returned. 275 /// 276 /// The cost for most non-trapping instructions is defined as 1 except for 277 /// Select whose cost is 2. 278 /// 279 /// After this function returns, CostRemaining is decreased by the cost of 280 /// V plus its non-dominating operands. If that cost is greater than 281 /// CostRemaining, false is returned and CostRemaining is undefined. 282 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 283 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 284 unsigned &CostRemaining, 285 const TargetTransformInfo &TTI, 286 unsigned Depth = 0) { 287 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 288 // so limit the recursion depth. 289 // TODO: While this recursion limit does prevent pathological behavior, it 290 // would be better to track visited instructions to avoid cycles. 291 if (Depth == MaxSpeculationDepth) 292 return false; 293 294 Instruction *I = dyn_cast<Instruction>(V); 295 if (!I) { 296 // Non-instructions all dominate instructions, but not all constantexprs 297 // can be executed unconditionally. 298 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 299 if (C->canTrap()) 300 return false; 301 return true; 302 } 303 BasicBlock *PBB = I->getParent(); 304 305 // We don't want to allow weird loops that might have the "if condition" in 306 // the bottom of this block. 307 if (PBB == BB) 308 return false; 309 310 // If this instruction is defined in a block that contains an unconditional 311 // branch to BB, then it must be in the 'conditional' part of the "if 312 // statement". If not, it definitely dominates the region. 313 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 314 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 315 return true; 316 317 // If we aren't allowing aggressive promotion anymore, then don't consider 318 // instructions in the 'if region'. 319 if (!AggressiveInsts) 320 return false; 321 322 // If we have seen this instruction before, don't count it again. 323 if (AggressiveInsts->count(I)) 324 return true; 325 326 // Okay, it looks like the instruction IS in the "condition". Check to 327 // see if it's a cheap instruction to unconditionally compute, and if it 328 // only uses stuff defined outside of the condition. If so, hoist it out. 329 if (!isSafeToSpeculativelyExecute(I)) 330 return false; 331 332 unsigned Cost = ComputeSpeculationCost(I, TTI); 333 334 // Allow exactly one instruction to be speculated regardless of its cost 335 // (as long as it is safe to do so). 336 // This is intended to flatten the CFG even if the instruction is a division 337 // or other expensive operation. The speculation of an expensive instruction 338 // is expected to be undone in CodeGenPrepare if the speculation has not 339 // enabled further IR optimizations. 340 if (Cost > CostRemaining && 341 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 342 return false; 343 344 // Avoid unsigned wrap. 345 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 346 347 // Okay, we can only really hoist these out if their operands do 348 // not take us over the cost threshold. 349 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 350 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 351 Depth + 1)) 352 return false; 353 // Okay, it's safe to do this! Remember this instruction. 354 AggressiveInsts->insert(I); 355 return true; 356 } 357 358 /// Extract ConstantInt from value, looking through IntToPtr 359 /// and PointerNullValue. Return NULL if value is not a constant int. 360 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 361 // Normal constant int. 362 ConstantInt *CI = dyn_cast<ConstantInt>(V); 363 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 364 return CI; 365 366 // This is some kind of pointer constant. Turn it into a pointer-sized 367 // ConstantInt if possible. 368 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 369 370 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 371 if (isa<ConstantPointerNull>(V)) 372 return ConstantInt::get(PtrTy, 0); 373 374 // IntToPtr const int. 375 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 376 if (CE->getOpcode() == Instruction::IntToPtr) 377 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 378 // The constant is very likely to have the right type already. 379 if (CI->getType() == PtrTy) 380 return CI; 381 else 382 return cast<ConstantInt>( 383 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 384 } 385 return nullptr; 386 } 387 388 namespace { 389 390 /// Given a chain of or (||) or and (&&) comparison of a value against a 391 /// constant, this will try to recover the information required for a switch 392 /// structure. 393 /// It will depth-first traverse the chain of comparison, seeking for patterns 394 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 395 /// representing the different cases for the switch. 396 /// Note that if the chain is composed of '||' it will build the set of elements 397 /// that matches the comparisons (i.e. any of this value validate the chain) 398 /// while for a chain of '&&' it will build the set elements that make the test 399 /// fail. 400 struct ConstantComparesGatherer { 401 const DataLayout &DL; 402 Value *CompValue; /// Value found for the switch comparison 403 Value *Extra; /// Extra clause to be checked before the switch 404 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 405 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 406 407 /// Construct and compute the result for the comparison instruction Cond 408 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 409 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 410 gather(Cond); 411 } 412 413 /// Prevent copy 414 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 415 ConstantComparesGatherer & 416 operator=(const ConstantComparesGatherer &) = delete; 417 418 private: 419 /// Try to set the current value used for the comparison, it succeeds only if 420 /// it wasn't set before or if the new value is the same as the old one 421 bool setValueOnce(Value *NewVal) { 422 if (CompValue && CompValue != NewVal) 423 return false; 424 CompValue = NewVal; 425 return (CompValue != nullptr); 426 } 427 428 /// Try to match Instruction "I" as a comparison against a constant and 429 /// populates the array Vals with the set of values that match (or do not 430 /// match depending on isEQ). 431 /// Return false on failure. On success, the Value the comparison matched 432 /// against is placed in CompValue. 433 /// If CompValue is already set, the function is expected to fail if a match 434 /// is found but the value compared to is different. 435 bool matchInstruction(Instruction *I, bool isEQ) { 436 // If this is an icmp against a constant, handle this as one of the cases. 437 ICmpInst *ICI; 438 ConstantInt *C; 439 if (!((ICI = dyn_cast<ICmpInst>(I)) && 440 (C = GetConstantInt(I->getOperand(1), DL)))) { 441 return false; 442 } 443 444 Value *RHSVal; 445 const APInt *RHSC; 446 447 // Pattern match a special case 448 // (x & ~2^z) == y --> x == y || x == y|2^z 449 // This undoes a transformation done by instcombine to fuse 2 compares. 450 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 451 452 // It's a little bit hard to see why the following transformations are 453 // correct. Here is a CVC3 program to verify them for 64-bit values: 454 455 /* 456 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 457 x : BITVECTOR(64); 458 y : BITVECTOR(64); 459 z : BITVECTOR(64); 460 mask : BITVECTOR(64) = BVSHL(ONE, z); 461 QUERY( (y & ~mask = y) => 462 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 463 ); 464 QUERY( (y | mask = y) => 465 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 466 ); 467 */ 468 469 // Please note that each pattern must be a dual implication (<--> or 470 // iff). One directional implication can create spurious matches. If the 471 // implication is only one-way, an unsatisfiable condition on the left 472 // side can imply a satisfiable condition on the right side. Dual 473 // implication ensures that satisfiable conditions are transformed to 474 // other satisfiable conditions and unsatisfiable conditions are 475 // transformed to other unsatisfiable conditions. 476 477 // Here is a concrete example of a unsatisfiable condition on the left 478 // implying a satisfiable condition on the right: 479 // 480 // mask = (1 << z) 481 // (x & ~mask) == y --> (x == y || x == (y | mask)) 482 // 483 // Substituting y = 3, z = 0 yields: 484 // (x & -2) == 3 --> (x == 3 || x == 2) 485 486 // Pattern match a special case: 487 /* 488 QUERY( (y & ~mask = y) => 489 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 490 ); 491 */ 492 if (match(ICI->getOperand(0), 493 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 494 APInt Mask = ~*RHSC; 495 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 496 // If we already have a value for the switch, it has to match! 497 if (!setValueOnce(RHSVal)) 498 return false; 499 500 Vals.push_back(C); 501 Vals.push_back( 502 ConstantInt::get(C->getContext(), 503 C->getValue() | Mask)); 504 UsedICmps++; 505 return true; 506 } 507 } 508 509 // Pattern match a special case: 510 /* 511 QUERY( (y | mask = y) => 512 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 513 ); 514 */ 515 if (match(ICI->getOperand(0), 516 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 517 APInt Mask = *RHSC; 518 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 519 // If we already have a value for the switch, it has to match! 520 if (!setValueOnce(RHSVal)) 521 return false; 522 523 Vals.push_back(C); 524 Vals.push_back(ConstantInt::get(C->getContext(), 525 C->getValue() & ~Mask)); 526 UsedICmps++; 527 return true; 528 } 529 } 530 531 // If we already have a value for the switch, it has to match! 532 if (!setValueOnce(ICI->getOperand(0))) 533 return false; 534 535 UsedICmps++; 536 Vals.push_back(C); 537 return ICI->getOperand(0); 538 } 539 540 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 541 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 542 ICI->getPredicate(), C->getValue()); 543 544 // Shift the range if the compare is fed by an add. This is the range 545 // compare idiom as emitted by instcombine. 546 Value *CandidateVal = I->getOperand(0); 547 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 548 Span = Span.subtract(*RHSC); 549 CandidateVal = RHSVal; 550 } 551 552 // If this is an and/!= check, then we are looking to build the set of 553 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 554 // x != 0 && x != 1. 555 if (!isEQ) 556 Span = Span.inverse(); 557 558 // If there are a ton of values, we don't want to make a ginormous switch. 559 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 560 return false; 561 } 562 563 // If we already have a value for the switch, it has to match! 564 if (!setValueOnce(CandidateVal)) 565 return false; 566 567 // Add all values from the range to the set 568 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 569 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 570 571 UsedICmps++; 572 return true; 573 } 574 575 /// Given a potentially 'or'd or 'and'd together collection of icmp 576 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 577 /// the value being compared, and stick the list constants into the Vals 578 /// vector. 579 /// One "Extra" case is allowed to differ from the other. 580 void gather(Value *V) { 581 Instruction *I = dyn_cast<Instruction>(V); 582 bool isEQ = (I->getOpcode() == Instruction::Or); 583 584 // Keep a stack (SmallVector for efficiency) for depth-first traversal 585 SmallVector<Value *, 8> DFT; 586 SmallPtrSet<Value *, 8> Visited; 587 588 // Initialize 589 Visited.insert(V); 590 DFT.push_back(V); 591 592 while (!DFT.empty()) { 593 V = DFT.pop_back_val(); 594 595 if (Instruction *I = dyn_cast<Instruction>(V)) { 596 // If it is a || (or && depending on isEQ), process the operands. 597 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 598 if (Visited.insert(I->getOperand(1)).second) 599 DFT.push_back(I->getOperand(1)); 600 if (Visited.insert(I->getOperand(0)).second) 601 DFT.push_back(I->getOperand(0)); 602 continue; 603 } 604 605 // Try to match the current instruction 606 if (matchInstruction(I, isEQ)) 607 // Match succeed, continue the loop 608 continue; 609 } 610 611 // One element of the sequence of || (or &&) could not be match as a 612 // comparison against the same value as the others. 613 // We allow only one "Extra" case to be checked before the switch 614 if (!Extra) { 615 Extra = V; 616 continue; 617 } 618 // Failed to parse a proper sequence, abort now 619 CompValue = nullptr; 620 break; 621 } 622 } 623 }; 624 } 625 626 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 627 Instruction *Cond = nullptr; 628 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 629 Cond = dyn_cast<Instruction>(SI->getCondition()); 630 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 631 if (BI->isConditional()) 632 Cond = dyn_cast<Instruction>(BI->getCondition()); 633 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 634 Cond = dyn_cast<Instruction>(IBI->getAddress()); 635 } 636 637 TI->eraseFromParent(); 638 if (Cond) 639 RecursivelyDeleteTriviallyDeadInstructions(Cond); 640 } 641 642 /// Return true if the specified terminator checks 643 /// to see if a value is equal to constant integer value. 644 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 645 Value *CV = nullptr; 646 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 647 // Do not permit merging of large switch instructions into their 648 // predecessors unless there is only one predecessor. 649 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 650 pred_end(SI->getParent())) <= 651 128) 652 CV = SI->getCondition(); 653 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 654 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 655 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 656 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 657 CV = ICI->getOperand(0); 658 } 659 660 // Unwrap any lossless ptrtoint cast. 661 if (CV) { 662 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 663 Value *Ptr = PTII->getPointerOperand(); 664 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 665 CV = Ptr; 666 } 667 } 668 return CV; 669 } 670 671 /// Given a value comparison instruction, 672 /// decode all of the 'cases' that it represents and return the 'default' block. 673 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 674 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 675 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 676 Cases.reserve(SI->getNumCases()); 677 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 678 ++i) 679 Cases.push_back( 680 ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor())); 681 return SI->getDefaultDest(); 682 } 683 684 BranchInst *BI = cast<BranchInst>(TI); 685 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 686 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 687 Cases.push_back(ValueEqualityComparisonCase( 688 GetConstantInt(ICI->getOperand(1), DL), Succ)); 689 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 690 } 691 692 /// Given a vector of bb/value pairs, remove any entries 693 /// in the list that match the specified block. 694 static void 695 EliminateBlockCases(BasicBlock *BB, 696 std::vector<ValueEqualityComparisonCase> &Cases) { 697 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 698 } 699 700 /// Return true if there are any keys in C1 that exist in C2 as well. 701 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 702 std::vector<ValueEqualityComparisonCase> &C2) { 703 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 704 705 // Make V1 be smaller than V2. 706 if (V1->size() > V2->size()) 707 std::swap(V1, V2); 708 709 if (V1->size() == 0) 710 return false; 711 if (V1->size() == 1) { 712 // Just scan V2. 713 ConstantInt *TheVal = (*V1)[0].Value; 714 for (unsigned i = 0, e = V2->size(); i != e; ++i) 715 if (TheVal == (*V2)[i].Value) 716 return true; 717 } 718 719 // Otherwise, just sort both lists and compare element by element. 720 array_pod_sort(V1->begin(), V1->end()); 721 array_pod_sort(V2->begin(), V2->end()); 722 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 723 while (i1 != e1 && i2 != e2) { 724 if ((*V1)[i1].Value == (*V2)[i2].Value) 725 return true; 726 if ((*V1)[i1].Value < (*V2)[i2].Value) 727 ++i1; 728 else 729 ++i2; 730 } 731 return false; 732 } 733 734 /// If TI is known to be a terminator instruction and its block is known to 735 /// only have a single predecessor block, check to see if that predecessor is 736 /// also a value comparison with the same value, and if that comparison 737 /// determines the outcome of this comparison. If so, simplify TI. This does a 738 /// very limited form of jump threading. 739 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 740 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 741 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 742 if (!PredVal) 743 return false; // Not a value comparison in predecessor. 744 745 Value *ThisVal = isValueEqualityComparison(TI); 746 assert(ThisVal && "This isn't a value comparison!!"); 747 if (ThisVal != PredVal) 748 return false; // Different predicates. 749 750 // TODO: Preserve branch weight metadata, similarly to how 751 // FoldValueComparisonIntoPredecessors preserves it. 752 753 // Find out information about when control will move from Pred to TI's block. 754 std::vector<ValueEqualityComparisonCase> PredCases; 755 BasicBlock *PredDef = 756 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 757 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 758 759 // Find information about how control leaves this block. 760 std::vector<ValueEqualityComparisonCase> ThisCases; 761 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 762 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 763 764 // If TI's block is the default block from Pred's comparison, potentially 765 // simplify TI based on this knowledge. 766 if (PredDef == TI->getParent()) { 767 // If we are here, we know that the value is none of those cases listed in 768 // PredCases. If there are any cases in ThisCases that are in PredCases, we 769 // can simplify TI. 770 if (!ValuesOverlap(PredCases, ThisCases)) 771 return false; 772 773 if (isa<BranchInst>(TI)) { 774 // Okay, one of the successors of this condbr is dead. Convert it to a 775 // uncond br. 776 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 777 // Insert the new branch. 778 Instruction *NI = Builder.CreateBr(ThisDef); 779 (void)NI; 780 781 // Remove PHI node entries for the dead edge. 782 ThisCases[0].Dest->removePredecessor(TI->getParent()); 783 784 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 785 << "Through successor TI: " << *TI << "Leaving: " << *NI 786 << "\n"); 787 788 EraseTerminatorInstAndDCECond(TI); 789 return true; 790 } 791 792 SwitchInst *SI = cast<SwitchInst>(TI); 793 // Okay, TI has cases that are statically dead, prune them away. 794 SmallPtrSet<Constant *, 16> DeadCases; 795 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 796 DeadCases.insert(PredCases[i].Value); 797 798 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 799 << "Through successor TI: " << *TI); 800 801 // Collect branch weights into a vector. 802 SmallVector<uint32_t, 8> Weights; 803 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 804 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 805 if (HasWeight) 806 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 807 ++MD_i) { 808 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 809 Weights.push_back(CI->getValue().getZExtValue()); 810 } 811 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 812 --i; 813 if (DeadCases.count(i.getCaseValue())) { 814 if (HasWeight) { 815 std::swap(Weights[i.getCaseIndex() + 1], Weights.back()); 816 Weights.pop_back(); 817 } 818 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 819 SI->removeCase(i); 820 } 821 } 822 if (HasWeight && Weights.size() >= 2) 823 SI->setMetadata(LLVMContext::MD_prof, 824 MDBuilder(SI->getParent()->getContext()) 825 .createBranchWeights(Weights)); 826 827 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 828 return true; 829 } 830 831 // Otherwise, TI's block must correspond to some matched value. Find out 832 // which value (or set of values) this is. 833 ConstantInt *TIV = nullptr; 834 BasicBlock *TIBB = TI->getParent(); 835 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 836 if (PredCases[i].Dest == TIBB) { 837 if (TIV) 838 return false; // Cannot handle multiple values coming to this block. 839 TIV = PredCases[i].Value; 840 } 841 assert(TIV && "No edge from pred to succ?"); 842 843 // Okay, we found the one constant that our value can be if we get into TI's 844 // BB. Find out which successor will unconditionally be branched to. 845 BasicBlock *TheRealDest = nullptr; 846 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 847 if (ThisCases[i].Value == TIV) { 848 TheRealDest = ThisCases[i].Dest; 849 break; 850 } 851 852 // If not handled by any explicit cases, it is handled by the default case. 853 if (!TheRealDest) 854 TheRealDest = ThisDef; 855 856 // Remove PHI node entries for dead edges. 857 BasicBlock *CheckEdge = TheRealDest; 858 for (BasicBlock *Succ : successors(TIBB)) 859 if (Succ != CheckEdge) 860 Succ->removePredecessor(TIBB); 861 else 862 CheckEdge = nullptr; 863 864 // Insert the new branch. 865 Instruction *NI = Builder.CreateBr(TheRealDest); 866 (void)NI; 867 868 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 869 << "Through successor TI: " << *TI << "Leaving: " << *NI 870 << "\n"); 871 872 EraseTerminatorInstAndDCECond(TI); 873 return true; 874 } 875 876 namespace { 877 /// This class implements a stable ordering of constant 878 /// integers that does not depend on their address. This is important for 879 /// applications that sort ConstantInt's to ensure uniqueness. 880 struct ConstantIntOrdering { 881 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 882 return LHS->getValue().ult(RHS->getValue()); 883 } 884 }; 885 } 886 887 static int ConstantIntSortPredicate(ConstantInt *const *P1, 888 ConstantInt *const *P2) { 889 const ConstantInt *LHS = *P1; 890 const ConstantInt *RHS = *P2; 891 if (LHS == RHS) 892 return 0; 893 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 894 } 895 896 static inline bool HasBranchWeights(const Instruction *I) { 897 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 898 if (ProfMD && ProfMD->getOperand(0)) 899 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 900 return MDS->getString().equals("branch_weights"); 901 902 return false; 903 } 904 905 /// Get Weights of a given TerminatorInst, the default weight is at the front 906 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 907 /// metadata. 908 static void GetBranchWeights(TerminatorInst *TI, 909 SmallVectorImpl<uint64_t> &Weights) { 910 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 911 assert(MD); 912 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 913 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 914 Weights.push_back(CI->getValue().getZExtValue()); 915 } 916 917 // If TI is a conditional eq, the default case is the false case, 918 // and the corresponding branch-weight data is at index 2. We swap the 919 // default weight to be the first entry. 920 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 921 assert(Weights.size() == 2); 922 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 923 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 924 std::swap(Weights.front(), Weights.back()); 925 } 926 } 927 928 /// Keep halving the weights until all can fit in uint32_t. 929 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 930 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 931 if (Max > UINT_MAX) { 932 unsigned Offset = 32 - countLeadingZeros(Max); 933 for (uint64_t &I : Weights) 934 I >>= Offset; 935 } 936 } 937 938 /// The specified terminator is a value equality comparison instruction 939 /// (either a switch or a branch on "X == c"). 940 /// See if any of the predecessors of the terminator block are value comparisons 941 /// on the same value. If so, and if safe to do so, fold them together. 942 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 943 IRBuilder<> &Builder) { 944 BasicBlock *BB = TI->getParent(); 945 Value *CV = isValueEqualityComparison(TI); // CondVal 946 assert(CV && "Not a comparison?"); 947 bool Changed = false; 948 949 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 950 while (!Preds.empty()) { 951 BasicBlock *Pred = Preds.pop_back_val(); 952 953 // See if the predecessor is a comparison with the same value. 954 TerminatorInst *PTI = Pred->getTerminator(); 955 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 956 957 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 958 // Figure out which 'cases' to copy from SI to PSI. 959 std::vector<ValueEqualityComparisonCase> BBCases; 960 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 961 962 std::vector<ValueEqualityComparisonCase> PredCases; 963 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 964 965 // Based on whether the default edge from PTI goes to BB or not, fill in 966 // PredCases and PredDefault with the new switch cases we would like to 967 // build. 968 SmallVector<BasicBlock *, 8> NewSuccessors; 969 970 // Update the branch weight metadata along the way 971 SmallVector<uint64_t, 8> Weights; 972 bool PredHasWeights = HasBranchWeights(PTI); 973 bool SuccHasWeights = HasBranchWeights(TI); 974 975 if (PredHasWeights) { 976 GetBranchWeights(PTI, Weights); 977 // branch-weight metadata is inconsistent here. 978 if (Weights.size() != 1 + PredCases.size()) 979 PredHasWeights = SuccHasWeights = false; 980 } else if (SuccHasWeights) 981 // If there are no predecessor weights but there are successor weights, 982 // populate Weights with 1, which will later be scaled to the sum of 983 // successor's weights 984 Weights.assign(1 + PredCases.size(), 1); 985 986 SmallVector<uint64_t, 8> SuccWeights; 987 if (SuccHasWeights) { 988 GetBranchWeights(TI, SuccWeights); 989 // branch-weight metadata is inconsistent here. 990 if (SuccWeights.size() != 1 + BBCases.size()) 991 PredHasWeights = SuccHasWeights = false; 992 } else if (PredHasWeights) 993 SuccWeights.assign(1 + BBCases.size(), 1); 994 995 if (PredDefault == BB) { 996 // If this is the default destination from PTI, only the edges in TI 997 // that don't occur in PTI, or that branch to BB will be activated. 998 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 999 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1000 if (PredCases[i].Dest != BB) 1001 PTIHandled.insert(PredCases[i].Value); 1002 else { 1003 // The default destination is BB, we don't need explicit targets. 1004 std::swap(PredCases[i], PredCases.back()); 1005 1006 if (PredHasWeights || SuccHasWeights) { 1007 // Increase weight for the default case. 1008 Weights[0] += Weights[i + 1]; 1009 std::swap(Weights[i + 1], Weights.back()); 1010 Weights.pop_back(); 1011 } 1012 1013 PredCases.pop_back(); 1014 --i; 1015 --e; 1016 } 1017 1018 // Reconstruct the new switch statement we will be building. 1019 if (PredDefault != BBDefault) { 1020 PredDefault->removePredecessor(Pred); 1021 PredDefault = BBDefault; 1022 NewSuccessors.push_back(BBDefault); 1023 } 1024 1025 unsigned CasesFromPred = Weights.size(); 1026 uint64_t ValidTotalSuccWeight = 0; 1027 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1028 if (!PTIHandled.count(BBCases[i].Value) && 1029 BBCases[i].Dest != BBDefault) { 1030 PredCases.push_back(BBCases[i]); 1031 NewSuccessors.push_back(BBCases[i].Dest); 1032 if (SuccHasWeights || PredHasWeights) { 1033 // The default weight is at index 0, so weight for the ith case 1034 // should be at index i+1. Scale the cases from successor by 1035 // PredDefaultWeight (Weights[0]). 1036 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1037 ValidTotalSuccWeight += SuccWeights[i + 1]; 1038 } 1039 } 1040 1041 if (SuccHasWeights || PredHasWeights) { 1042 ValidTotalSuccWeight += SuccWeights[0]; 1043 // Scale the cases from predecessor by ValidTotalSuccWeight. 1044 for (unsigned i = 1; i < CasesFromPred; ++i) 1045 Weights[i] *= ValidTotalSuccWeight; 1046 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1047 Weights[0] *= SuccWeights[0]; 1048 } 1049 } else { 1050 // If this is not the default destination from PSI, only the edges 1051 // in SI that occur in PSI with a destination of BB will be 1052 // activated. 1053 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1054 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1055 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1056 if (PredCases[i].Dest == BB) { 1057 PTIHandled.insert(PredCases[i].Value); 1058 1059 if (PredHasWeights || SuccHasWeights) { 1060 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1061 std::swap(Weights[i + 1], Weights.back()); 1062 Weights.pop_back(); 1063 } 1064 1065 std::swap(PredCases[i], PredCases.back()); 1066 PredCases.pop_back(); 1067 --i; 1068 --e; 1069 } 1070 1071 // Okay, now we know which constants were sent to BB from the 1072 // predecessor. Figure out where they will all go now. 1073 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1074 if (PTIHandled.count(BBCases[i].Value)) { 1075 // If this is one we are capable of getting... 1076 if (PredHasWeights || SuccHasWeights) 1077 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1078 PredCases.push_back(BBCases[i]); 1079 NewSuccessors.push_back(BBCases[i].Dest); 1080 PTIHandled.erase( 1081 BBCases[i].Value); // This constant is taken care of 1082 } 1083 1084 // If there are any constants vectored to BB that TI doesn't handle, 1085 // they must go to the default destination of TI. 1086 for (ConstantInt *I : PTIHandled) { 1087 if (PredHasWeights || SuccHasWeights) 1088 Weights.push_back(WeightsForHandled[I]); 1089 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1090 NewSuccessors.push_back(BBDefault); 1091 } 1092 } 1093 1094 // Okay, at this point, we know which new successor Pred will get. Make 1095 // sure we update the number of entries in the PHI nodes for these 1096 // successors. 1097 for (BasicBlock *NewSuccessor : NewSuccessors) 1098 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1099 1100 Builder.SetInsertPoint(PTI); 1101 // Convert pointer to int before we switch. 1102 if (CV->getType()->isPointerTy()) { 1103 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1104 "magicptr"); 1105 } 1106 1107 // Now that the successors are updated, create the new Switch instruction. 1108 SwitchInst *NewSI = 1109 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1110 NewSI->setDebugLoc(PTI->getDebugLoc()); 1111 for (ValueEqualityComparisonCase &V : PredCases) 1112 NewSI->addCase(V.Value, V.Dest); 1113 1114 if (PredHasWeights || SuccHasWeights) { 1115 // Halve the weights if any of them cannot fit in an uint32_t 1116 FitWeights(Weights); 1117 1118 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1119 1120 NewSI->setMetadata( 1121 LLVMContext::MD_prof, 1122 MDBuilder(BB->getContext()).createBranchWeights(MDWeights)); 1123 } 1124 1125 EraseTerminatorInstAndDCECond(PTI); 1126 1127 // Okay, last check. If BB is still a successor of PSI, then we must 1128 // have an infinite loop case. If so, add an infinitely looping block 1129 // to handle the case to preserve the behavior of the code. 1130 BasicBlock *InfLoopBlock = nullptr; 1131 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1132 if (NewSI->getSuccessor(i) == BB) { 1133 if (!InfLoopBlock) { 1134 // Insert it at the end of the function, because it's either code, 1135 // or it won't matter if it's hot. :) 1136 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1137 BB->getParent()); 1138 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1139 } 1140 NewSI->setSuccessor(i, InfLoopBlock); 1141 } 1142 1143 Changed = true; 1144 } 1145 } 1146 return Changed; 1147 } 1148 1149 // If we would need to insert a select that uses the value of this invoke 1150 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1151 // can't hoist the invoke, as there is nowhere to put the select in this case. 1152 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1153 Instruction *I1, Instruction *I2) { 1154 for (BasicBlock *Succ : successors(BB1)) { 1155 PHINode *PN; 1156 for (BasicBlock::iterator BBI = Succ->begin(); 1157 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1158 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1159 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1160 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1161 return false; 1162 } 1163 } 1164 } 1165 return true; 1166 } 1167 1168 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1169 1170 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1171 /// in the two blocks up into the branch block. The caller of this function 1172 /// guarantees that BI's block dominates BB1 and BB2. 1173 static bool HoistThenElseCodeToIf(BranchInst *BI, 1174 const TargetTransformInfo &TTI) { 1175 // This does very trivial matching, with limited scanning, to find identical 1176 // instructions in the two blocks. In particular, we don't want to get into 1177 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1178 // such, we currently just scan for obviously identical instructions in an 1179 // identical order. 1180 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1181 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1182 1183 BasicBlock::iterator BB1_Itr = BB1->begin(); 1184 BasicBlock::iterator BB2_Itr = BB2->begin(); 1185 1186 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1187 // Skip debug info if it is not identical. 1188 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1189 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1190 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1191 while (isa<DbgInfoIntrinsic>(I1)) 1192 I1 = &*BB1_Itr++; 1193 while (isa<DbgInfoIntrinsic>(I2)) 1194 I2 = &*BB2_Itr++; 1195 } 1196 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1197 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1198 return false; 1199 1200 BasicBlock *BIParent = BI->getParent(); 1201 1202 bool Changed = false; 1203 do { 1204 // If we are hoisting the terminator instruction, don't move one (making a 1205 // broken BB), instead clone it, and remove BI. 1206 if (isa<TerminatorInst>(I1)) 1207 goto HoistTerminator; 1208 1209 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1210 return Changed; 1211 1212 // For a normal instruction, we just move one to right before the branch, 1213 // then replace all uses of the other with the first. Finally, we remove 1214 // the now redundant second instruction. 1215 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1216 if (!I2->use_empty()) 1217 I2->replaceAllUsesWith(I1); 1218 I1->intersectOptionalDataWith(I2); 1219 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1220 LLVMContext::MD_range, 1221 LLVMContext::MD_fpmath, 1222 LLVMContext::MD_invariant_load, 1223 LLVMContext::MD_nonnull, 1224 LLVMContext::MD_invariant_group, 1225 LLVMContext::MD_align, 1226 LLVMContext::MD_dereferenceable, 1227 LLVMContext::MD_dereferenceable_or_null, 1228 LLVMContext::MD_mem_parallel_loop_access}; 1229 combineMetadata(I1, I2, KnownIDs); 1230 I2->eraseFromParent(); 1231 Changed = true; 1232 1233 I1 = &*BB1_Itr++; 1234 I2 = &*BB2_Itr++; 1235 // Skip debug info if it is not identical. 1236 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1237 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1238 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1239 while (isa<DbgInfoIntrinsic>(I1)) 1240 I1 = &*BB1_Itr++; 1241 while (isa<DbgInfoIntrinsic>(I2)) 1242 I2 = &*BB2_Itr++; 1243 } 1244 } while (I1->isIdenticalToWhenDefined(I2)); 1245 1246 return true; 1247 1248 HoistTerminator: 1249 // It may not be possible to hoist an invoke. 1250 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1251 return Changed; 1252 1253 for (BasicBlock *Succ : successors(BB1)) { 1254 PHINode *PN; 1255 for (BasicBlock::iterator BBI = Succ->begin(); 1256 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1257 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1258 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1259 if (BB1V == BB2V) 1260 continue; 1261 1262 // Check for passingValueIsAlwaysUndefined here because we would rather 1263 // eliminate undefined control flow then converting it to a select. 1264 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1265 passingValueIsAlwaysUndefined(BB2V, PN)) 1266 return Changed; 1267 1268 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1269 return Changed; 1270 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1271 return Changed; 1272 } 1273 } 1274 1275 // Okay, it is safe to hoist the terminator. 1276 Instruction *NT = I1->clone(); 1277 BIParent->getInstList().insert(BI->getIterator(), NT); 1278 if (!NT->getType()->isVoidTy()) { 1279 I1->replaceAllUsesWith(NT); 1280 I2->replaceAllUsesWith(NT); 1281 NT->takeName(I1); 1282 } 1283 1284 IRBuilder<NoFolder> Builder(NT); 1285 // Hoisting one of the terminators from our successor is a great thing. 1286 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1287 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1288 // nodes, so we insert select instruction to compute the final result. 1289 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1290 for (BasicBlock *Succ : successors(BB1)) { 1291 PHINode *PN; 1292 for (BasicBlock::iterator BBI = Succ->begin(); 1293 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1294 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1295 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1296 if (BB1V == BB2V) 1297 continue; 1298 1299 // These values do not agree. Insert a select instruction before NT 1300 // that determines the right value. 1301 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1302 if (!SI) 1303 SI = cast<SelectInst>( 1304 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1305 BB1V->getName() + "." + BB2V->getName(), BI)); 1306 1307 // Make the PHI node use the select for all incoming values for BB1/BB2 1308 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1309 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1310 PN->setIncomingValue(i, SI); 1311 } 1312 } 1313 1314 // Update any PHI nodes in our new successors. 1315 for (BasicBlock *Succ : successors(BB1)) 1316 AddPredecessorToBlock(Succ, BIParent, BB1); 1317 1318 EraseTerminatorInstAndDCECond(BI); 1319 return true; 1320 } 1321 1322 /// Given an unconditional branch that goes to BBEnd, 1323 /// check whether BBEnd has only two predecessors and the other predecessor 1324 /// ends with an unconditional branch. If it is true, sink any common code 1325 /// in the two predecessors to BBEnd. 1326 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1327 assert(BI1->isUnconditional()); 1328 BasicBlock *BB1 = BI1->getParent(); 1329 BasicBlock *BBEnd = BI1->getSuccessor(0); 1330 1331 // Check that BBEnd has two predecessors and the other predecessor ends with 1332 // an unconditional branch. 1333 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1334 BasicBlock *Pred0 = *PI++; 1335 if (PI == PE) // Only one predecessor. 1336 return false; 1337 BasicBlock *Pred1 = *PI++; 1338 if (PI != PE) // More than two predecessors. 1339 return false; 1340 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1341 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1342 if (!BI2 || !BI2->isUnconditional()) 1343 return false; 1344 1345 // Gather the PHI nodes in BBEnd. 1346 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap; 1347 Instruction *FirstNonPhiInBBEnd = nullptr; 1348 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) { 1349 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1350 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1351 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1352 JointValueMap[std::make_pair(BB1V, BB2V)] = PN; 1353 } else { 1354 FirstNonPhiInBBEnd = &*I; 1355 break; 1356 } 1357 } 1358 if (!FirstNonPhiInBBEnd) 1359 return false; 1360 1361 // This does very trivial matching, with limited scanning, to find identical 1362 // instructions in the two blocks. We scan backward for obviously identical 1363 // instructions in an identical order. 1364 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1365 RE1 = BB1->getInstList().rend(), 1366 RI2 = BB2->getInstList().rbegin(), 1367 RE2 = BB2->getInstList().rend(); 1368 // Skip debug info. 1369 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) 1370 ++RI1; 1371 if (RI1 == RE1) 1372 return false; 1373 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) 1374 ++RI2; 1375 if (RI2 == RE2) 1376 return false; 1377 // Skip the unconditional branches. 1378 ++RI1; 1379 ++RI2; 1380 1381 bool Changed = false; 1382 while (RI1 != RE1 && RI2 != RE2) { 1383 // Skip debug info. 1384 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) 1385 ++RI1; 1386 if (RI1 == RE1) 1387 return Changed; 1388 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) 1389 ++RI2; 1390 if (RI2 == RE2) 1391 return Changed; 1392 1393 Instruction *I1 = &*RI1, *I2 = &*RI2; 1394 auto InstPair = std::make_pair(I1, I2); 1395 // I1 and I2 should have a single use in the same PHI node, and they 1396 // perform the same operation. 1397 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1398 if (isa<PHINode>(I1) || isa<PHINode>(I2) || isa<TerminatorInst>(I1) || 1399 isa<TerminatorInst>(I2) || I1->isEHPad() || I2->isEHPad() || 1400 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1401 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1402 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1403 !I1->hasOneUse() || !I2->hasOneUse() || !JointValueMap.count(InstPair)) 1404 return Changed; 1405 1406 // Check whether we should swap the operands of ICmpInst. 1407 // TODO: Add support of communativity. 1408 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1409 bool SwapOpnds = false; 1410 if (ICmp1 && ICmp2 && ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1411 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1412 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1413 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1414 ICmp2->swapOperands(); 1415 SwapOpnds = true; 1416 } 1417 if (!I1->isSameOperationAs(I2)) { 1418 if (SwapOpnds) 1419 ICmp2->swapOperands(); 1420 return Changed; 1421 } 1422 1423 // The operands should be either the same or they need to be generated 1424 // with a PHI node after sinking. We only handle the case where there is 1425 // a single pair of different operands. 1426 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1427 unsigned Op1Idx = ~0U; 1428 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1429 if (I1->getOperand(I) == I2->getOperand(I)) 1430 continue; 1431 // Early exit if we have more-than one pair of different operands or if 1432 // we need a PHI node to replace a constant. 1433 if (Op1Idx != ~0U || isa<Constant>(I1->getOperand(I)) || 1434 isa<Constant>(I2->getOperand(I))) { 1435 // If we can't sink the instructions, undo the swapping. 1436 if (SwapOpnds) 1437 ICmp2->swapOperands(); 1438 return Changed; 1439 } 1440 DifferentOp1 = I1->getOperand(I); 1441 Op1Idx = I; 1442 DifferentOp2 = I2->getOperand(I); 1443 } 1444 1445 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n"); 1446 DEBUG(dbgs() << " " << *I2 << "\n"); 1447 1448 // We insert the pair of different operands to JointValueMap and 1449 // remove (I1, I2) from JointValueMap. 1450 if (Op1Idx != ~0U) { 1451 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)]; 1452 if (!NewPN) { 1453 NewPN = 1454 PHINode::Create(DifferentOp1->getType(), 2, 1455 DifferentOp1->getName() + ".sink", &BBEnd->front()); 1456 NewPN->addIncoming(DifferentOp1, BB1); 1457 NewPN->addIncoming(DifferentOp2, BB2); 1458 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1459 } 1460 // I1 should use NewPN instead of DifferentOp1. 1461 I1->setOperand(Op1Idx, NewPN); 1462 } 1463 PHINode *OldPN = JointValueMap[InstPair]; 1464 JointValueMap.erase(InstPair); 1465 1466 // We need to update RE1 and RE2 if we are going to sink the first 1467 // instruction in the basic block down. 1468 bool UpdateRE1 = (I1 == &BB1->front()), UpdateRE2 = (I2 == &BB2->front()); 1469 // Sink the instruction. 1470 BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(), 1471 BB1->getInstList(), I1); 1472 if (!OldPN->use_empty()) 1473 OldPN->replaceAllUsesWith(I1); 1474 OldPN->eraseFromParent(); 1475 1476 if (!I2->use_empty()) 1477 I2->replaceAllUsesWith(I1); 1478 I1->intersectOptionalDataWith(I2); 1479 // TODO: Use combineMetadata here to preserve what metadata we can 1480 // (analogous to the hoisting case above). 1481 I2->eraseFromParent(); 1482 1483 if (UpdateRE1) 1484 RE1 = BB1->getInstList().rend(); 1485 if (UpdateRE2) 1486 RE2 = BB2->getInstList().rend(); 1487 FirstNonPhiInBBEnd = &*I1; 1488 NumSinkCommons++; 1489 Changed = true; 1490 } 1491 return Changed; 1492 } 1493 1494 /// \brief Determine if we can hoist sink a sole store instruction out of a 1495 /// conditional block. 1496 /// 1497 /// We are looking for code like the following: 1498 /// BrBB: 1499 /// store i32 %add, i32* %arrayidx2 1500 /// ... // No other stores or function calls (we could be calling a memory 1501 /// ... // function). 1502 /// %cmp = icmp ult %x, %y 1503 /// br i1 %cmp, label %EndBB, label %ThenBB 1504 /// ThenBB: 1505 /// store i32 %add5, i32* %arrayidx2 1506 /// br label EndBB 1507 /// EndBB: 1508 /// ... 1509 /// We are going to transform this into: 1510 /// BrBB: 1511 /// store i32 %add, i32* %arrayidx2 1512 /// ... // 1513 /// %cmp = icmp ult %x, %y 1514 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1515 /// store i32 %add.add5, i32* %arrayidx2 1516 /// ... 1517 /// 1518 /// \return The pointer to the value of the previous store if the store can be 1519 /// hoisted into the predecessor block. 0 otherwise. 1520 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1521 BasicBlock *StoreBB, BasicBlock *EndBB) { 1522 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1523 if (!StoreToHoist) 1524 return nullptr; 1525 1526 // Volatile or atomic. 1527 if (!StoreToHoist->isSimple()) 1528 return nullptr; 1529 1530 Value *StorePtr = StoreToHoist->getPointerOperand(); 1531 1532 // Look for a store to the same pointer in BrBB. 1533 unsigned MaxNumInstToLookAt = 9; 1534 for (Instruction &CurI : reverse(*BrBB)) { 1535 if (!MaxNumInstToLookAt) 1536 break; 1537 // Skip debug info. 1538 if (isa<DbgInfoIntrinsic>(CurI)) 1539 continue; 1540 --MaxNumInstToLookAt; 1541 1542 // Could be calling an instruction that effects memory like free(). 1543 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1544 return nullptr; 1545 1546 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1547 // Found the previous store make sure it stores to the same location. 1548 if (SI->getPointerOperand() == StorePtr) 1549 // Found the previous store, return its value operand. 1550 return SI->getValueOperand(); 1551 return nullptr; // Unknown store. 1552 } 1553 } 1554 1555 return nullptr; 1556 } 1557 1558 /// \brief Speculate a conditional basic block flattening the CFG. 1559 /// 1560 /// Note that this is a very risky transform currently. Speculating 1561 /// instructions like this is most often not desirable. Instead, there is an MI 1562 /// pass which can do it with full awareness of the resource constraints. 1563 /// However, some cases are "obvious" and we should do directly. An example of 1564 /// this is speculating a single, reasonably cheap instruction. 1565 /// 1566 /// There is only one distinct advantage to flattening the CFG at the IR level: 1567 /// it makes very common but simplistic optimizations such as are common in 1568 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1569 /// modeling their effects with easier to reason about SSA value graphs. 1570 /// 1571 /// 1572 /// An illustration of this transform is turning this IR: 1573 /// \code 1574 /// BB: 1575 /// %cmp = icmp ult %x, %y 1576 /// br i1 %cmp, label %EndBB, label %ThenBB 1577 /// ThenBB: 1578 /// %sub = sub %x, %y 1579 /// br label BB2 1580 /// EndBB: 1581 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1582 /// ... 1583 /// \endcode 1584 /// 1585 /// Into this IR: 1586 /// \code 1587 /// BB: 1588 /// %cmp = icmp ult %x, %y 1589 /// %sub = sub %x, %y 1590 /// %cond = select i1 %cmp, 0, %sub 1591 /// ... 1592 /// \endcode 1593 /// 1594 /// \returns true if the conditional block is removed. 1595 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1596 const TargetTransformInfo &TTI) { 1597 // Be conservative for now. FP select instruction can often be expensive. 1598 Value *BrCond = BI->getCondition(); 1599 if (isa<FCmpInst>(BrCond)) 1600 return false; 1601 1602 BasicBlock *BB = BI->getParent(); 1603 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1604 1605 // If ThenBB is actually on the false edge of the conditional branch, remember 1606 // to swap the select operands later. 1607 bool Invert = false; 1608 if (ThenBB != BI->getSuccessor(0)) { 1609 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1610 Invert = true; 1611 } 1612 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1613 1614 // Keep a count of how many times instructions are used within CondBB when 1615 // they are candidates for sinking into CondBB. Specifically: 1616 // - They are defined in BB, and 1617 // - They have no side effects, and 1618 // - All of their uses are in CondBB. 1619 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1620 1621 unsigned SpeculationCost = 0; 1622 Value *SpeculatedStoreValue = nullptr; 1623 StoreInst *SpeculatedStore = nullptr; 1624 for (BasicBlock::iterator BBI = ThenBB->begin(), 1625 BBE = std::prev(ThenBB->end()); 1626 BBI != BBE; ++BBI) { 1627 Instruction *I = &*BBI; 1628 // Skip debug info. 1629 if (isa<DbgInfoIntrinsic>(I)) 1630 continue; 1631 1632 // Only speculatively execute a single instruction (not counting the 1633 // terminator) for now. 1634 ++SpeculationCost; 1635 if (SpeculationCost > 1) 1636 return false; 1637 1638 // Don't hoist the instruction if it's unsafe or expensive. 1639 if (!isSafeToSpeculativelyExecute(I) && 1640 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1641 I, BB, ThenBB, EndBB)))) 1642 return false; 1643 if (!SpeculatedStoreValue && 1644 ComputeSpeculationCost(I, TTI) > 1645 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1646 return false; 1647 1648 // Store the store speculation candidate. 1649 if (SpeculatedStoreValue) 1650 SpeculatedStore = cast<StoreInst>(I); 1651 1652 // Do not hoist the instruction if any of its operands are defined but not 1653 // used in BB. The transformation will prevent the operand from 1654 // being sunk into the use block. 1655 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1656 Instruction *OpI = dyn_cast<Instruction>(*i); 1657 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1658 continue; // Not a candidate for sinking. 1659 1660 ++SinkCandidateUseCounts[OpI]; 1661 } 1662 } 1663 1664 // Consider any sink candidates which are only used in CondBB as costs for 1665 // speculation. Note, while we iterate over a DenseMap here, we are summing 1666 // and so iteration order isn't significant. 1667 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 1668 I = SinkCandidateUseCounts.begin(), 1669 E = SinkCandidateUseCounts.end(); 1670 I != E; ++I) 1671 if (I->first->getNumUses() == I->second) { 1672 ++SpeculationCost; 1673 if (SpeculationCost > 1) 1674 return false; 1675 } 1676 1677 // Check that the PHI nodes can be converted to selects. 1678 bool HaveRewritablePHIs = false; 1679 for (BasicBlock::iterator I = EndBB->begin(); 1680 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1681 Value *OrigV = PN->getIncomingValueForBlock(BB); 1682 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1683 1684 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1685 // Skip PHIs which are trivial. 1686 if (ThenV == OrigV) 1687 continue; 1688 1689 // Don't convert to selects if we could remove undefined behavior instead. 1690 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1691 passingValueIsAlwaysUndefined(ThenV, PN)) 1692 return false; 1693 1694 HaveRewritablePHIs = true; 1695 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1696 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1697 if (!OrigCE && !ThenCE) 1698 continue; // Known safe and cheap. 1699 1700 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1701 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1702 return false; 1703 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1704 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 1705 unsigned MaxCost = 1706 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 1707 if (OrigCost + ThenCost > MaxCost) 1708 return false; 1709 1710 // Account for the cost of an unfolded ConstantExpr which could end up 1711 // getting expanded into Instructions. 1712 // FIXME: This doesn't account for how many operations are combined in the 1713 // constant expression. 1714 ++SpeculationCost; 1715 if (SpeculationCost > 1) 1716 return false; 1717 } 1718 1719 // If there are no PHIs to process, bail early. This helps ensure idempotence 1720 // as well. 1721 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1722 return false; 1723 1724 // If we get here, we can hoist the instruction and if-convert. 1725 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1726 1727 // Insert a select of the value of the speculated store. 1728 if (SpeculatedStoreValue) { 1729 IRBuilder<NoFolder> Builder(BI); 1730 Value *TrueV = SpeculatedStore->getValueOperand(); 1731 Value *FalseV = SpeculatedStoreValue; 1732 if (Invert) 1733 std::swap(TrueV, FalseV); 1734 Value *S = Builder.CreateSelect( 1735 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 1736 SpeculatedStore->setOperand(0, S); 1737 } 1738 1739 // Metadata can be dependent on the condition we are hoisting above. 1740 // Conservatively strip all metadata on the instruction. 1741 for (auto &I : *ThenBB) 1742 I.dropUnknownNonDebugMetadata(); 1743 1744 // Hoist the instructions. 1745 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 1746 ThenBB->begin(), std::prev(ThenBB->end())); 1747 1748 // Insert selects and rewrite the PHI operands. 1749 IRBuilder<NoFolder> Builder(BI); 1750 for (BasicBlock::iterator I = EndBB->begin(); 1751 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1752 unsigned OrigI = PN->getBasicBlockIndex(BB); 1753 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1754 Value *OrigV = PN->getIncomingValue(OrigI); 1755 Value *ThenV = PN->getIncomingValue(ThenI); 1756 1757 // Skip PHIs which are trivial. 1758 if (OrigV == ThenV) 1759 continue; 1760 1761 // Create a select whose true value is the speculatively executed value and 1762 // false value is the preexisting value. Swap them if the branch 1763 // destinations were inverted. 1764 Value *TrueV = ThenV, *FalseV = OrigV; 1765 if (Invert) 1766 std::swap(TrueV, FalseV); 1767 Value *V = Builder.CreateSelect( 1768 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 1769 PN->setIncomingValue(OrigI, V); 1770 PN->setIncomingValue(ThenI, V); 1771 } 1772 1773 ++NumSpeculations; 1774 return true; 1775 } 1776 1777 /// Return true if we can thread a branch across this block. 1778 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1779 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1780 unsigned Size = 0; 1781 1782 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1783 if (isa<DbgInfoIntrinsic>(BBI)) 1784 continue; 1785 if (Size > 10) 1786 return false; // Don't clone large BB's. 1787 ++Size; 1788 1789 // We can only support instructions that do not define values that are 1790 // live outside of the current basic block. 1791 for (User *U : BBI->users()) { 1792 Instruction *UI = cast<Instruction>(U); 1793 if (UI->getParent() != BB || isa<PHINode>(UI)) 1794 return false; 1795 } 1796 1797 // Looks ok, continue checking. 1798 } 1799 1800 return true; 1801 } 1802 1803 /// If we have a conditional branch on a PHI node value that is defined in the 1804 /// same block as the branch and if any PHI entries are constants, thread edges 1805 /// corresponding to that entry to be branches to their ultimate destination. 1806 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 1807 BasicBlock *BB = BI->getParent(); 1808 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1809 // NOTE: we currently cannot transform this case if the PHI node is used 1810 // outside of the block. 1811 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1812 return false; 1813 1814 // Degenerate case of a single entry PHI. 1815 if (PN->getNumIncomingValues() == 1) { 1816 FoldSingleEntryPHINodes(PN->getParent()); 1817 return true; 1818 } 1819 1820 // Now we know that this block has multiple preds and two succs. 1821 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 1822 return false; 1823 1824 // Can't fold blocks that contain noduplicate or convergent calls. 1825 if (llvm::any_of(*BB, [](const Instruction &I) { 1826 const CallInst *CI = dyn_cast<CallInst>(&I); 1827 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 1828 })) 1829 return false; 1830 1831 // Okay, this is a simple enough basic block. See if any phi values are 1832 // constants. 1833 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1834 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1835 if (!CB || !CB->getType()->isIntegerTy(1)) 1836 continue; 1837 1838 // Okay, we now know that all edges from PredBB should be revectored to 1839 // branch to RealDest. 1840 BasicBlock *PredBB = PN->getIncomingBlock(i); 1841 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1842 1843 if (RealDest == BB) 1844 continue; // Skip self loops. 1845 // Skip if the predecessor's terminator is an indirect branch. 1846 if (isa<IndirectBrInst>(PredBB->getTerminator())) 1847 continue; 1848 1849 // The dest block might have PHI nodes, other predecessors and other 1850 // difficult cases. Instead of being smart about this, just insert a new 1851 // block that jumps to the destination block, effectively splitting 1852 // the edge we are about to create. 1853 BasicBlock *EdgeBB = 1854 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 1855 RealDest->getParent(), RealDest); 1856 BranchInst::Create(RealDest, EdgeBB); 1857 1858 // Update PHI nodes. 1859 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1860 1861 // BB may have instructions that are being threaded over. Clone these 1862 // instructions into EdgeBB. We know that there will be no uses of the 1863 // cloned instructions outside of EdgeBB. 1864 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1865 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 1866 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1867 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1868 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1869 continue; 1870 } 1871 // Clone the instruction. 1872 Instruction *N = BBI->clone(); 1873 if (BBI->hasName()) 1874 N->setName(BBI->getName() + ".c"); 1875 1876 // Update operands due to translation. 1877 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 1878 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 1879 if (PI != TranslateMap.end()) 1880 *i = PI->second; 1881 } 1882 1883 // Check for trivial simplification. 1884 if (Value *V = SimplifyInstruction(N, DL)) { 1885 if (!BBI->use_empty()) 1886 TranslateMap[&*BBI] = V; 1887 if (!N->mayHaveSideEffects()) { 1888 delete N; // Instruction folded away, don't need actual inst 1889 N = nullptr; 1890 } 1891 } else { 1892 if (!BBI->use_empty()) 1893 TranslateMap[&*BBI] = N; 1894 } 1895 // Insert the new instruction into its new home. 1896 if (N) 1897 EdgeBB->getInstList().insert(InsertPt, N); 1898 } 1899 1900 // Loop over all of the edges from PredBB to BB, changing them to branch 1901 // to EdgeBB instead. 1902 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1903 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1904 if (PredBBTI->getSuccessor(i) == BB) { 1905 BB->removePredecessor(PredBB); 1906 PredBBTI->setSuccessor(i, EdgeBB); 1907 } 1908 1909 // Recurse, simplifying any other constants. 1910 return FoldCondBranchOnPHI(BI, DL) | true; 1911 } 1912 1913 return false; 1914 } 1915 1916 /// Given a BB that starts with the specified two-entry PHI node, 1917 /// see if we can eliminate it. 1918 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 1919 const DataLayout &DL) { 1920 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1921 // statement", which has a very simple dominance structure. Basically, we 1922 // are trying to find the condition that is being branched on, which 1923 // subsequently causes this merge to happen. We really want control 1924 // dependence information for this check, but simplifycfg can't keep it up 1925 // to date, and this catches most of the cases we care about anyway. 1926 BasicBlock *BB = PN->getParent(); 1927 BasicBlock *IfTrue, *IfFalse; 1928 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1929 if (!IfCond || 1930 // Don't bother if the branch will be constant folded trivially. 1931 isa<ConstantInt>(IfCond)) 1932 return false; 1933 1934 // Okay, we found that we can merge this two-entry phi node into a select. 1935 // Doing so would require us to fold *all* two entry phi nodes in this block. 1936 // At some point this becomes non-profitable (particularly if the target 1937 // doesn't support cmov's). Only do this transformation if there are two or 1938 // fewer PHI nodes in this block. 1939 unsigned NumPhis = 0; 1940 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1941 if (NumPhis > 2) 1942 return false; 1943 1944 // Loop over the PHI's seeing if we can promote them all to select 1945 // instructions. While we are at it, keep track of the instructions 1946 // that need to be moved to the dominating block. 1947 SmallPtrSet<Instruction *, 4> AggressiveInsts; 1948 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1949 MaxCostVal1 = PHINodeFoldingThreshold; 1950 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 1951 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 1952 1953 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1954 PHINode *PN = cast<PHINode>(II++); 1955 if (Value *V = SimplifyInstruction(PN, DL)) { 1956 PN->replaceAllUsesWith(V); 1957 PN->eraseFromParent(); 1958 continue; 1959 } 1960 1961 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1962 MaxCostVal0, TTI) || 1963 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1964 MaxCostVal1, TTI)) 1965 return false; 1966 } 1967 1968 // If we folded the first phi, PN dangles at this point. Refresh it. If 1969 // we ran out of PHIs then we simplified them all. 1970 PN = dyn_cast<PHINode>(BB->begin()); 1971 if (!PN) 1972 return true; 1973 1974 // Don't fold i1 branches on PHIs which contain binary operators. These can 1975 // often be turned into switches and other things. 1976 if (PN->getType()->isIntegerTy(1) && 1977 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1978 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1979 isa<BinaryOperator>(IfCond))) 1980 return false; 1981 1982 // If all PHI nodes are promotable, check to make sure that all instructions 1983 // in the predecessor blocks can be promoted as well. If not, we won't be able 1984 // to get rid of the control flow, so it's not worth promoting to select 1985 // instructions. 1986 BasicBlock *DomBlock = nullptr; 1987 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1988 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1989 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1990 IfBlock1 = nullptr; 1991 } else { 1992 DomBlock = *pred_begin(IfBlock1); 1993 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 1994 ++I) 1995 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1996 // This is not an aggressive instruction that we can promote. 1997 // Because of this, we won't be able to get rid of the control flow, so 1998 // the xform is not worth it. 1999 return false; 2000 } 2001 } 2002 2003 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2004 IfBlock2 = nullptr; 2005 } else { 2006 DomBlock = *pred_begin(IfBlock2); 2007 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2008 ++I) 2009 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2010 // This is not an aggressive instruction that we can promote. 2011 // Because of this, we won't be able to get rid of the control flow, so 2012 // the xform is not worth it. 2013 return false; 2014 } 2015 } 2016 2017 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 2018 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 2019 2020 // If we can still promote the PHI nodes after this gauntlet of tests, 2021 // do all of the PHI's now. 2022 Instruction *InsertPt = DomBlock->getTerminator(); 2023 IRBuilder<NoFolder> Builder(InsertPt); 2024 2025 // Move all 'aggressive' instructions, which are defined in the 2026 // conditional parts of the if's up to the dominating block. 2027 if (IfBlock1) { 2028 for (auto &I : *IfBlock1) 2029 I.dropUnknownNonDebugMetadata(); 2030 DomBlock->getInstList().splice(InsertPt->getIterator(), 2031 IfBlock1->getInstList(), IfBlock1->begin(), 2032 IfBlock1->getTerminator()->getIterator()); 2033 } 2034 if (IfBlock2) { 2035 for (auto &I : *IfBlock2) 2036 I.dropUnknownNonDebugMetadata(); 2037 DomBlock->getInstList().splice(InsertPt->getIterator(), 2038 IfBlock2->getInstList(), IfBlock2->begin(), 2039 IfBlock2->getTerminator()->getIterator()); 2040 } 2041 2042 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2043 // Change the PHI node into a select instruction. 2044 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2045 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2046 2047 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2048 PN->replaceAllUsesWith(Sel); 2049 Sel->takeName(PN); 2050 PN->eraseFromParent(); 2051 } 2052 2053 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2054 // has been flattened. Change DomBlock to jump directly to our new block to 2055 // avoid other simplifycfg's kicking in on the diamond. 2056 TerminatorInst *OldTI = DomBlock->getTerminator(); 2057 Builder.SetInsertPoint(OldTI); 2058 Builder.CreateBr(BB); 2059 OldTI->eraseFromParent(); 2060 return true; 2061 } 2062 2063 /// If we found a conditional branch that goes to two returning blocks, 2064 /// try to merge them together into one return, 2065 /// introducing a select if the return values disagree. 2066 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2067 IRBuilder<> &Builder) { 2068 assert(BI->isConditional() && "Must be a conditional branch"); 2069 BasicBlock *TrueSucc = BI->getSuccessor(0); 2070 BasicBlock *FalseSucc = BI->getSuccessor(1); 2071 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2072 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2073 2074 // Check to ensure both blocks are empty (just a return) or optionally empty 2075 // with PHI nodes. If there are other instructions, merging would cause extra 2076 // computation on one path or the other. 2077 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2078 return false; 2079 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2080 return false; 2081 2082 Builder.SetInsertPoint(BI); 2083 // Okay, we found a branch that is going to two return nodes. If 2084 // there is no return value for this function, just change the 2085 // branch into a return. 2086 if (FalseRet->getNumOperands() == 0) { 2087 TrueSucc->removePredecessor(BI->getParent()); 2088 FalseSucc->removePredecessor(BI->getParent()); 2089 Builder.CreateRetVoid(); 2090 EraseTerminatorInstAndDCECond(BI); 2091 return true; 2092 } 2093 2094 // Otherwise, figure out what the true and false return values are 2095 // so we can insert a new select instruction. 2096 Value *TrueValue = TrueRet->getReturnValue(); 2097 Value *FalseValue = FalseRet->getReturnValue(); 2098 2099 // Unwrap any PHI nodes in the return blocks. 2100 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2101 if (TVPN->getParent() == TrueSucc) 2102 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2103 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2104 if (FVPN->getParent() == FalseSucc) 2105 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2106 2107 // In order for this transformation to be safe, we must be able to 2108 // unconditionally execute both operands to the return. This is 2109 // normally the case, but we could have a potentially-trapping 2110 // constant expression that prevents this transformation from being 2111 // safe. 2112 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2113 if (TCV->canTrap()) 2114 return false; 2115 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2116 if (FCV->canTrap()) 2117 return false; 2118 2119 // Okay, we collected all the mapped values and checked them for sanity, and 2120 // defined to really do this transformation. First, update the CFG. 2121 TrueSucc->removePredecessor(BI->getParent()); 2122 FalseSucc->removePredecessor(BI->getParent()); 2123 2124 // Insert select instructions where needed. 2125 Value *BrCond = BI->getCondition(); 2126 if (TrueValue) { 2127 // Insert a select if the results differ. 2128 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2129 } else if (isa<UndefValue>(TrueValue)) { 2130 TrueValue = FalseValue; 2131 } else { 2132 TrueValue = 2133 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2134 } 2135 } 2136 2137 Value *RI = 2138 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2139 2140 (void)RI; 2141 2142 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2143 << "\n " << *BI << "NewRet = " << *RI 2144 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2145 2146 EraseTerminatorInstAndDCECond(BI); 2147 2148 return true; 2149 } 2150 2151 /// Return true if the given instruction is available 2152 /// in its predecessor block. If yes, the instruction will be removed. 2153 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2154 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2155 return false; 2156 for (Instruction &I : *PB) { 2157 Instruction *PBI = &I; 2158 // Check whether Inst and PBI generate the same value. 2159 if (Inst->isIdenticalTo(PBI)) { 2160 Inst->replaceAllUsesWith(PBI); 2161 Inst->eraseFromParent(); 2162 return true; 2163 } 2164 } 2165 return false; 2166 } 2167 2168 /// Return true if either PBI or BI has branch weight available, and store 2169 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2170 /// not have branch weight, use 1:1 as its weight. 2171 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2172 uint64_t &PredTrueWeight, 2173 uint64_t &PredFalseWeight, 2174 uint64_t &SuccTrueWeight, 2175 uint64_t &SuccFalseWeight) { 2176 bool PredHasWeights = 2177 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2178 bool SuccHasWeights = 2179 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2180 if (PredHasWeights || SuccHasWeights) { 2181 if (!PredHasWeights) 2182 PredTrueWeight = PredFalseWeight = 1; 2183 if (!SuccHasWeights) 2184 SuccTrueWeight = SuccFalseWeight = 1; 2185 return true; 2186 } else { 2187 return false; 2188 } 2189 } 2190 2191 /// If this basic block is simple enough, and if a predecessor branches to us 2192 /// and one of our successors, fold the block into the predecessor and use 2193 /// logical operations to pick the right destination. 2194 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2195 BasicBlock *BB = BI->getParent(); 2196 2197 Instruction *Cond = nullptr; 2198 if (BI->isConditional()) 2199 Cond = dyn_cast<Instruction>(BI->getCondition()); 2200 else { 2201 // For unconditional branch, check for a simple CFG pattern, where 2202 // BB has a single predecessor and BB's successor is also its predecessor's 2203 // successor. If such pattern exisits, check for CSE between BB and its 2204 // predecessor. 2205 if (BasicBlock *PB = BB->getSinglePredecessor()) 2206 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2207 if (PBI->isConditional() && 2208 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2209 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2210 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2211 Instruction *Curr = &*I++; 2212 if (isa<CmpInst>(Curr)) { 2213 Cond = Curr; 2214 break; 2215 } 2216 // Quit if we can't remove this instruction. 2217 if (!checkCSEInPredecessor(Curr, PB)) 2218 return false; 2219 } 2220 } 2221 2222 if (!Cond) 2223 return false; 2224 } 2225 2226 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2227 Cond->getParent() != BB || !Cond->hasOneUse()) 2228 return false; 2229 2230 // Make sure the instruction after the condition is the cond branch. 2231 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2232 2233 // Ignore dbg intrinsics. 2234 while (isa<DbgInfoIntrinsic>(CondIt)) 2235 ++CondIt; 2236 2237 if (&*CondIt != BI) 2238 return false; 2239 2240 // Only allow this transformation if computing the condition doesn't involve 2241 // too many instructions and these involved instructions can be executed 2242 // unconditionally. We denote all involved instructions except the condition 2243 // as "bonus instructions", and only allow this transformation when the 2244 // number of the bonus instructions does not exceed a certain threshold. 2245 unsigned NumBonusInsts = 0; 2246 for (auto I = BB->begin(); Cond != &*I; ++I) { 2247 // Ignore dbg intrinsics. 2248 if (isa<DbgInfoIntrinsic>(I)) 2249 continue; 2250 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2251 return false; 2252 // I has only one use and can be executed unconditionally. 2253 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2254 if (User == nullptr || User->getParent() != BB) 2255 return false; 2256 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2257 // to use any other instruction, User must be an instruction between next(I) 2258 // and Cond. 2259 ++NumBonusInsts; 2260 // Early exits once we reach the limit. 2261 if (NumBonusInsts > BonusInstThreshold) 2262 return false; 2263 } 2264 2265 // Cond is known to be a compare or binary operator. Check to make sure that 2266 // neither operand is a potentially-trapping constant expression. 2267 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2268 if (CE->canTrap()) 2269 return false; 2270 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2271 if (CE->canTrap()) 2272 return false; 2273 2274 // Finally, don't infinitely unroll conditional loops. 2275 BasicBlock *TrueDest = BI->getSuccessor(0); 2276 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2277 if (TrueDest == BB || FalseDest == BB) 2278 return false; 2279 2280 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2281 BasicBlock *PredBlock = *PI; 2282 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2283 2284 // Check that we have two conditional branches. If there is a PHI node in 2285 // the common successor, verify that the same value flows in from both 2286 // blocks. 2287 SmallVector<PHINode *, 4> PHIs; 2288 if (!PBI || PBI->isUnconditional() || 2289 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2290 (!BI->isConditional() && 2291 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2292 continue; 2293 2294 // Determine if the two branches share a common destination. 2295 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2296 bool InvertPredCond = false; 2297 2298 if (BI->isConditional()) { 2299 if (PBI->getSuccessor(0) == TrueDest) { 2300 Opc = Instruction::Or; 2301 } else if (PBI->getSuccessor(1) == FalseDest) { 2302 Opc = Instruction::And; 2303 } else if (PBI->getSuccessor(0) == FalseDest) { 2304 Opc = Instruction::And; 2305 InvertPredCond = true; 2306 } else if (PBI->getSuccessor(1) == TrueDest) { 2307 Opc = Instruction::Or; 2308 InvertPredCond = true; 2309 } else { 2310 continue; 2311 } 2312 } else { 2313 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2314 continue; 2315 } 2316 2317 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2318 IRBuilder<> Builder(PBI); 2319 2320 // If we need to invert the condition in the pred block to match, do so now. 2321 if (InvertPredCond) { 2322 Value *NewCond = PBI->getCondition(); 2323 2324 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2325 CmpInst *CI = cast<CmpInst>(NewCond); 2326 CI->setPredicate(CI->getInversePredicate()); 2327 } else { 2328 NewCond = 2329 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2330 } 2331 2332 PBI->setCondition(NewCond); 2333 PBI->swapSuccessors(); 2334 } 2335 2336 // If we have bonus instructions, clone them into the predecessor block. 2337 // Note that there may be multiple predecessor blocks, so we cannot move 2338 // bonus instructions to a predecessor block. 2339 ValueToValueMapTy VMap; // maps original values to cloned values 2340 // We already make sure Cond is the last instruction before BI. Therefore, 2341 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2342 // instructions. 2343 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2344 if (isa<DbgInfoIntrinsic>(BonusInst)) 2345 continue; 2346 Instruction *NewBonusInst = BonusInst->clone(); 2347 RemapInstruction(NewBonusInst, VMap, 2348 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2349 VMap[&*BonusInst] = NewBonusInst; 2350 2351 // If we moved a load, we cannot any longer claim any knowledge about 2352 // its potential value. The previous information might have been valid 2353 // only given the branch precondition. 2354 // For an analogous reason, we must also drop all the metadata whose 2355 // semantics we don't understand. 2356 NewBonusInst->dropUnknownNonDebugMetadata(); 2357 2358 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2359 NewBonusInst->takeName(&*BonusInst); 2360 BonusInst->setName(BonusInst->getName() + ".old"); 2361 } 2362 2363 // Clone Cond into the predecessor basic block, and or/and the 2364 // two conditions together. 2365 Instruction *New = Cond->clone(); 2366 RemapInstruction(New, VMap, 2367 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2368 PredBlock->getInstList().insert(PBI->getIterator(), New); 2369 New->takeName(Cond); 2370 Cond->setName(New->getName() + ".old"); 2371 2372 if (BI->isConditional()) { 2373 Instruction *NewCond = cast<Instruction>( 2374 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2375 PBI->setCondition(NewCond); 2376 2377 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2378 bool HasWeights = 2379 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2380 SuccTrueWeight, SuccFalseWeight); 2381 SmallVector<uint64_t, 8> NewWeights; 2382 2383 if (PBI->getSuccessor(0) == BB) { 2384 if (HasWeights) { 2385 // PBI: br i1 %x, BB, FalseDest 2386 // BI: br i1 %y, TrueDest, FalseDest 2387 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2388 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2389 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2390 // TrueWeight for PBI * FalseWeight for BI. 2391 // We assume that total weights of a BranchInst can fit into 32 bits. 2392 // Therefore, we will not have overflow using 64-bit arithmetic. 2393 NewWeights.push_back(PredFalseWeight * 2394 (SuccFalseWeight + SuccTrueWeight) + 2395 PredTrueWeight * SuccFalseWeight); 2396 } 2397 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2398 PBI->setSuccessor(0, TrueDest); 2399 } 2400 if (PBI->getSuccessor(1) == BB) { 2401 if (HasWeights) { 2402 // PBI: br i1 %x, TrueDest, BB 2403 // BI: br i1 %y, TrueDest, FalseDest 2404 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2405 // FalseWeight for PBI * TrueWeight for BI. 2406 NewWeights.push_back(PredTrueWeight * 2407 (SuccFalseWeight + SuccTrueWeight) + 2408 PredFalseWeight * SuccTrueWeight); 2409 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2410 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2411 } 2412 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2413 PBI->setSuccessor(1, FalseDest); 2414 } 2415 if (NewWeights.size() == 2) { 2416 // Halve the weights if any of them cannot fit in an uint32_t 2417 FitWeights(NewWeights); 2418 2419 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2420 NewWeights.end()); 2421 PBI->setMetadata( 2422 LLVMContext::MD_prof, 2423 MDBuilder(BI->getContext()).createBranchWeights(MDWeights)); 2424 } else 2425 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2426 } else { 2427 // Update PHI nodes in the common successors. 2428 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2429 ConstantInt *PBI_C = cast<ConstantInt>( 2430 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2431 assert(PBI_C->getType()->isIntegerTy(1)); 2432 Instruction *MergedCond = nullptr; 2433 if (PBI->getSuccessor(0) == TrueDest) { 2434 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2435 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2436 // is false: !PBI_Cond and BI_Value 2437 Instruction *NotCond = cast<Instruction>( 2438 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2439 MergedCond = cast<Instruction>( 2440 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2441 if (PBI_C->isOne()) 2442 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2443 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2444 } else { 2445 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2446 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2447 // is false: PBI_Cond and BI_Value 2448 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2449 Instruction::And, PBI->getCondition(), New, "and.cond")); 2450 if (PBI_C->isOne()) { 2451 Instruction *NotCond = cast<Instruction>( 2452 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2453 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2454 Instruction::Or, NotCond, MergedCond, "or.cond")); 2455 } 2456 } 2457 // Update PHI Node. 2458 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2459 MergedCond); 2460 } 2461 // Change PBI from Conditional to Unconditional. 2462 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2463 EraseTerminatorInstAndDCECond(PBI); 2464 PBI = New_PBI; 2465 } 2466 2467 // TODO: If BB is reachable from all paths through PredBlock, then we 2468 // could replace PBI's branch probabilities with BI's. 2469 2470 // Copy any debug value intrinsics into the end of PredBlock. 2471 for (Instruction &I : *BB) 2472 if (isa<DbgInfoIntrinsic>(I)) 2473 I.clone()->insertBefore(PBI); 2474 2475 return true; 2476 } 2477 return false; 2478 } 2479 2480 // If there is only one store in BB1 and BB2, return it, otherwise return 2481 // nullptr. 2482 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2483 StoreInst *S = nullptr; 2484 for (auto *BB : {BB1, BB2}) { 2485 if (!BB) 2486 continue; 2487 for (auto &I : *BB) 2488 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2489 if (S) 2490 // Multiple stores seen. 2491 return nullptr; 2492 else 2493 S = SI; 2494 } 2495 } 2496 return S; 2497 } 2498 2499 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2500 Value *AlternativeV = nullptr) { 2501 // PHI is going to be a PHI node that allows the value V that is defined in 2502 // BB to be referenced in BB's only successor. 2503 // 2504 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2505 // doesn't matter to us what the other operand is (it'll never get used). We 2506 // could just create a new PHI with an undef incoming value, but that could 2507 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2508 // other PHI. So here we directly look for some PHI in BB's successor with V 2509 // as an incoming operand. If we find one, we use it, else we create a new 2510 // one. 2511 // 2512 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2513 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2514 // where OtherBB is the single other predecessor of BB's only successor. 2515 PHINode *PHI = nullptr; 2516 BasicBlock *Succ = BB->getSingleSuccessor(); 2517 2518 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2519 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2520 PHI = cast<PHINode>(I); 2521 if (!AlternativeV) 2522 break; 2523 2524 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2525 auto PredI = pred_begin(Succ); 2526 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2527 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2528 break; 2529 PHI = nullptr; 2530 } 2531 if (PHI) 2532 return PHI; 2533 2534 // If V is not an instruction defined in BB, just return it. 2535 if (!AlternativeV && 2536 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2537 return V; 2538 2539 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2540 PHI->addIncoming(V, BB); 2541 for (BasicBlock *PredBB : predecessors(Succ)) 2542 if (PredBB != BB) 2543 PHI->addIncoming( 2544 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2545 return PHI; 2546 } 2547 2548 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2549 BasicBlock *QTB, BasicBlock *QFB, 2550 BasicBlock *PostBB, Value *Address, 2551 bool InvertPCond, bool InvertQCond) { 2552 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2553 return Operator::getOpcode(&I) == Instruction::BitCast && 2554 I.getType()->isPointerTy(); 2555 }; 2556 2557 // If we're not in aggressive mode, we only optimize if we have some 2558 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2559 auto IsWorthwhile = [&](BasicBlock *BB) { 2560 if (!BB) 2561 return true; 2562 // Heuristic: if the block can be if-converted/phi-folded and the 2563 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2564 // thread this store. 2565 unsigned N = 0; 2566 for (auto &I : *BB) { 2567 // Cheap instructions viable for folding. 2568 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2569 isa<StoreInst>(I)) 2570 ++N; 2571 // Free instructions. 2572 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2573 IsaBitcastOfPointerType(I)) 2574 continue; 2575 else 2576 return false; 2577 } 2578 return N <= PHINodeFoldingThreshold; 2579 }; 2580 2581 if (!MergeCondStoresAggressively && 2582 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2583 !IsWorthwhile(QFB))) 2584 return false; 2585 2586 // For every pointer, there must be exactly two stores, one coming from 2587 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2588 // store (to any address) in PTB,PFB or QTB,QFB. 2589 // FIXME: We could relax this restriction with a bit more work and performance 2590 // testing. 2591 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2592 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2593 if (!PStore || !QStore) 2594 return false; 2595 2596 // Now check the stores are compatible. 2597 if (!QStore->isUnordered() || !PStore->isUnordered()) 2598 return false; 2599 2600 // Check that sinking the store won't cause program behavior changes. Sinking 2601 // the store out of the Q blocks won't change any behavior as we're sinking 2602 // from a block to its unconditional successor. But we're moving a store from 2603 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2604 // So we need to check that there are no aliasing loads or stores in 2605 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2606 // operations between PStore and the end of its parent block. 2607 // 2608 // The ideal way to do this is to query AliasAnalysis, but we don't 2609 // preserve AA currently so that is dangerous. Be super safe and just 2610 // check there are no other memory operations at all. 2611 for (auto &I : *QFB->getSinglePredecessor()) 2612 if (I.mayReadOrWriteMemory()) 2613 return false; 2614 for (auto &I : *QFB) 2615 if (&I != QStore && I.mayReadOrWriteMemory()) 2616 return false; 2617 if (QTB) 2618 for (auto &I : *QTB) 2619 if (&I != QStore && I.mayReadOrWriteMemory()) 2620 return false; 2621 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2622 I != E; ++I) 2623 if (&*I != PStore && I->mayReadOrWriteMemory()) 2624 return false; 2625 2626 // OK, we're going to sink the stores to PostBB. The store has to be 2627 // conditional though, so first create the predicate. 2628 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2629 ->getCondition(); 2630 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2631 ->getCondition(); 2632 2633 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2634 PStore->getParent()); 2635 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2636 QStore->getParent(), PPHI); 2637 2638 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2639 2640 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2641 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2642 2643 if (InvertPCond) 2644 PPred = QB.CreateNot(PPred); 2645 if (InvertQCond) 2646 QPred = QB.CreateNot(QPred); 2647 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2648 2649 auto *T = 2650 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2651 QB.SetInsertPoint(T); 2652 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2653 AAMDNodes AAMD; 2654 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2655 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2656 SI->setAAMetadata(AAMD); 2657 2658 QStore->eraseFromParent(); 2659 PStore->eraseFromParent(); 2660 2661 return true; 2662 } 2663 2664 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2665 // The intention here is to find diamonds or triangles (see below) where each 2666 // conditional block contains a store to the same address. Both of these 2667 // stores are conditional, so they can't be unconditionally sunk. But it may 2668 // be profitable to speculatively sink the stores into one merged store at the 2669 // end, and predicate the merged store on the union of the two conditions of 2670 // PBI and QBI. 2671 // 2672 // This can reduce the number of stores executed if both of the conditions are 2673 // true, and can allow the blocks to become small enough to be if-converted. 2674 // This optimization will also chain, so that ladders of test-and-set 2675 // sequences can be if-converted away. 2676 // 2677 // We only deal with simple diamonds or triangles: 2678 // 2679 // PBI or PBI or a combination of the two 2680 // / \ | \ 2681 // PTB PFB | PFB 2682 // \ / | / 2683 // QBI QBI 2684 // / \ | \ 2685 // QTB QFB | QFB 2686 // \ / | / 2687 // PostBB PostBB 2688 // 2689 // We model triangles as a type of diamond with a nullptr "true" block. 2690 // Triangles are canonicalized so that the fallthrough edge is represented by 2691 // a true condition, as in the diagram above. 2692 // 2693 BasicBlock *PTB = PBI->getSuccessor(0); 2694 BasicBlock *PFB = PBI->getSuccessor(1); 2695 BasicBlock *QTB = QBI->getSuccessor(0); 2696 BasicBlock *QFB = QBI->getSuccessor(1); 2697 BasicBlock *PostBB = QFB->getSingleSuccessor(); 2698 2699 bool InvertPCond = false, InvertQCond = false; 2700 // Canonicalize fallthroughs to the true branches. 2701 if (PFB == QBI->getParent()) { 2702 std::swap(PFB, PTB); 2703 InvertPCond = true; 2704 } 2705 if (QFB == PostBB) { 2706 std::swap(QFB, QTB); 2707 InvertQCond = true; 2708 } 2709 2710 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 2711 // and QFB may not. Model fallthroughs as a nullptr block. 2712 if (PTB == QBI->getParent()) 2713 PTB = nullptr; 2714 if (QTB == PostBB) 2715 QTB = nullptr; 2716 2717 // Legality bailouts. We must have at least the non-fallthrough blocks and 2718 // the post-dominating block, and the non-fallthroughs must only have one 2719 // predecessor. 2720 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 2721 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 2722 }; 2723 if (!PostBB || 2724 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 2725 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 2726 return false; 2727 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 2728 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 2729 return false; 2730 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 2731 return false; 2732 2733 // OK, this is a sequence of two diamonds or triangles. 2734 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 2735 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 2736 for (auto *BB : {PTB, PFB}) { 2737 if (!BB) 2738 continue; 2739 for (auto &I : *BB) 2740 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2741 PStoreAddresses.insert(SI->getPointerOperand()); 2742 } 2743 for (auto *BB : {QTB, QFB}) { 2744 if (!BB) 2745 continue; 2746 for (auto &I : *BB) 2747 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2748 QStoreAddresses.insert(SI->getPointerOperand()); 2749 } 2750 2751 set_intersect(PStoreAddresses, QStoreAddresses); 2752 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 2753 // clear what it contains. 2754 auto &CommonAddresses = PStoreAddresses; 2755 2756 bool Changed = false; 2757 for (auto *Address : CommonAddresses) 2758 Changed |= mergeConditionalStoreToAddress( 2759 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 2760 return Changed; 2761 } 2762 2763 /// If we have a conditional branch as a predecessor of another block, 2764 /// this function tries to simplify it. We know 2765 /// that PBI and BI are both conditional branches, and BI is in one of the 2766 /// successor blocks of PBI - PBI branches to BI. 2767 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 2768 const DataLayout &DL) { 2769 assert(PBI->isConditional() && BI->isConditional()); 2770 BasicBlock *BB = BI->getParent(); 2771 2772 // If this block ends with a branch instruction, and if there is a 2773 // predecessor that ends on a branch of the same condition, make 2774 // this conditional branch redundant. 2775 if (PBI->getCondition() == BI->getCondition() && 2776 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2777 // Okay, the outcome of this conditional branch is statically 2778 // knowable. If this block had a single pred, handle specially. 2779 if (BB->getSinglePredecessor()) { 2780 // Turn this into a branch on constant. 2781 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2782 BI->setCondition( 2783 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 2784 return true; // Nuke the branch on constant. 2785 } 2786 2787 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2788 // in the constant and simplify the block result. Subsequent passes of 2789 // simplifycfg will thread the block. 2790 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2791 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2792 PHINode *NewPN = PHINode::Create( 2793 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 2794 BI->getCondition()->getName() + ".pr", &BB->front()); 2795 // Okay, we're going to insert the PHI node. Since PBI is not the only 2796 // predecessor, compute the PHI'd conditional value for all of the preds. 2797 // Any predecessor where the condition is not computable we keep symbolic. 2798 for (pred_iterator PI = PB; PI != PE; ++PI) { 2799 BasicBlock *P = *PI; 2800 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 2801 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 2802 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2803 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2804 NewPN->addIncoming( 2805 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 2806 P); 2807 } else { 2808 NewPN->addIncoming(BI->getCondition(), P); 2809 } 2810 } 2811 2812 BI->setCondition(NewPN); 2813 return true; 2814 } 2815 } 2816 2817 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2818 if (CE->canTrap()) 2819 return false; 2820 2821 // If both branches are conditional and both contain stores to the same 2822 // address, remove the stores from the conditionals and create a conditional 2823 // merged store at the end. 2824 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 2825 return true; 2826 2827 // If this is a conditional branch in an empty block, and if any 2828 // predecessors are a conditional branch to one of our destinations, 2829 // fold the conditions into logical ops and one cond br. 2830 BasicBlock::iterator BBI = BB->begin(); 2831 // Ignore dbg intrinsics. 2832 while (isa<DbgInfoIntrinsic>(BBI)) 2833 ++BBI; 2834 if (&*BBI != BI) 2835 return false; 2836 2837 int PBIOp, BIOp; 2838 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 2839 PBIOp = 0; 2840 BIOp = 0; 2841 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 2842 PBIOp = 0; 2843 BIOp = 1; 2844 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 2845 PBIOp = 1; 2846 BIOp = 0; 2847 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 2848 PBIOp = 1; 2849 BIOp = 1; 2850 } else { 2851 return false; 2852 } 2853 2854 // Check to make sure that the other destination of this branch 2855 // isn't BB itself. If so, this is an infinite loop that will 2856 // keep getting unwound. 2857 if (PBI->getSuccessor(PBIOp) == BB) 2858 return false; 2859 2860 // Do not perform this transformation if it would require 2861 // insertion of a large number of select instructions. For targets 2862 // without predication/cmovs, this is a big pessimization. 2863 2864 // Also do not perform this transformation if any phi node in the common 2865 // destination block can trap when reached by BB or PBB (PR17073). In that 2866 // case, it would be unsafe to hoist the operation into a select instruction. 2867 2868 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2869 unsigned NumPhis = 0; 2870 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 2871 ++II, ++NumPhis) { 2872 if (NumPhis > 2) // Disable this xform. 2873 return false; 2874 2875 PHINode *PN = cast<PHINode>(II); 2876 Value *BIV = PN->getIncomingValueForBlock(BB); 2877 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2878 if (CE->canTrap()) 2879 return false; 2880 2881 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2882 Value *PBIV = PN->getIncomingValue(PBBIdx); 2883 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2884 if (CE->canTrap()) 2885 return false; 2886 } 2887 2888 // Finally, if everything is ok, fold the branches to logical ops. 2889 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2890 2891 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2892 << "AND: " << *BI->getParent()); 2893 2894 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2895 // branch in it, where one edge (OtherDest) goes back to itself but the other 2896 // exits. We don't *know* that the program avoids the infinite loop 2897 // (even though that seems likely). If we do this xform naively, we'll end up 2898 // recursively unpeeling the loop. Since we know that (after the xform is 2899 // done) that the block *is* infinite if reached, we just make it an obviously 2900 // infinite loop with no cond branch. 2901 if (OtherDest == BB) { 2902 // Insert it at the end of the function, because it's either code, 2903 // or it won't matter if it's hot. :) 2904 BasicBlock *InfLoopBlock = 2905 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 2906 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2907 OtherDest = InfLoopBlock; 2908 } 2909 2910 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2911 2912 // BI may have other predecessors. Because of this, we leave 2913 // it alone, but modify PBI. 2914 2915 // Make sure we get to CommonDest on True&True directions. 2916 Value *PBICond = PBI->getCondition(); 2917 IRBuilder<NoFolder> Builder(PBI); 2918 if (PBIOp) 2919 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 2920 2921 Value *BICond = BI->getCondition(); 2922 if (BIOp) 2923 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 2924 2925 // Merge the conditions. 2926 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2927 2928 // Modify PBI to branch on the new condition to the new dests. 2929 PBI->setCondition(Cond); 2930 PBI->setSuccessor(0, CommonDest); 2931 PBI->setSuccessor(1, OtherDest); 2932 2933 // Update branch weight for PBI. 2934 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2935 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 2936 bool HasWeights = 2937 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2938 SuccTrueWeight, SuccFalseWeight); 2939 if (HasWeights) { 2940 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2941 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 2942 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2943 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2944 // The weight to CommonDest should be PredCommon * SuccTotal + 2945 // PredOther * SuccCommon. 2946 // The weight to OtherDest should be PredOther * SuccOther. 2947 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 2948 PredOther * SuccCommon, 2949 PredOther * SuccOther}; 2950 // Halve the weights if any of them cannot fit in an uint32_t 2951 FitWeights(NewWeights); 2952 2953 PBI->setMetadata(LLVMContext::MD_prof, 2954 MDBuilder(BI->getContext()) 2955 .createBranchWeights(NewWeights[0], NewWeights[1])); 2956 } 2957 2958 // OtherDest may have phi nodes. If so, add an entry from PBI's 2959 // block that are identical to the entries for BI's block. 2960 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2961 2962 // We know that the CommonDest already had an edge from PBI to 2963 // it. If it has PHIs though, the PHIs may have different 2964 // entries for BB and PBI's BB. If so, insert a select to make 2965 // them agree. 2966 PHINode *PN; 2967 for (BasicBlock::iterator II = CommonDest->begin(); 2968 (PN = dyn_cast<PHINode>(II)); ++II) { 2969 Value *BIV = PN->getIncomingValueForBlock(BB); 2970 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2971 Value *PBIV = PN->getIncomingValue(PBBIdx); 2972 if (BIV != PBIV) { 2973 // Insert a select in PBI to pick the right value. 2974 SelectInst *NV = cast<SelectInst>( 2975 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 2976 PN->setIncomingValue(PBBIdx, NV); 2977 // Although the select has the same condition as PBI, the original branch 2978 // weights for PBI do not apply to the new select because the select's 2979 // 'logical' edges are incoming edges of the phi that is eliminated, not 2980 // the outgoing edges of PBI. 2981 if (HasWeights) { 2982 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2983 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 2984 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2985 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2986 // The weight to PredCommonDest should be PredCommon * SuccTotal. 2987 // The weight to PredOtherDest should be PredOther * SuccCommon. 2988 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 2989 PredOther * SuccCommon}; 2990 2991 FitWeights(NewWeights); 2992 2993 NV->setMetadata(LLVMContext::MD_prof, 2994 MDBuilder(BI->getContext()) 2995 .createBranchWeights(NewWeights[0], NewWeights[1])); 2996 } 2997 } 2998 } 2999 3000 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3001 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3002 3003 // This basic block is probably dead. We know it has at least 3004 // one fewer predecessor. 3005 return true; 3006 } 3007 3008 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3009 // true or to FalseBB if Cond is false. 3010 // Takes care of updating the successors and removing the old terminator. 3011 // Also makes sure not to introduce new successors by assuming that edges to 3012 // non-successor TrueBBs and FalseBBs aren't reachable. 3013 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3014 BasicBlock *TrueBB, BasicBlock *FalseBB, 3015 uint32_t TrueWeight, 3016 uint32_t FalseWeight) { 3017 // Remove any superfluous successor edges from the CFG. 3018 // First, figure out which successors to preserve. 3019 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3020 // successor. 3021 BasicBlock *KeepEdge1 = TrueBB; 3022 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3023 3024 // Then remove the rest. 3025 for (BasicBlock *Succ : OldTerm->successors()) { 3026 // Make sure only to keep exactly one copy of each edge. 3027 if (Succ == KeepEdge1) 3028 KeepEdge1 = nullptr; 3029 else if (Succ == KeepEdge2) 3030 KeepEdge2 = nullptr; 3031 else 3032 Succ->removePredecessor(OldTerm->getParent(), 3033 /*DontDeleteUselessPHIs=*/true); 3034 } 3035 3036 IRBuilder<> Builder(OldTerm); 3037 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3038 3039 // Insert an appropriate new terminator. 3040 if (!KeepEdge1 && !KeepEdge2) { 3041 if (TrueBB == FalseBB) 3042 // We were only looking for one successor, and it was present. 3043 // Create an unconditional branch to it. 3044 Builder.CreateBr(TrueBB); 3045 else { 3046 // We found both of the successors we were looking for. 3047 // Create a conditional branch sharing the condition of the select. 3048 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3049 if (TrueWeight != FalseWeight) 3050 NewBI->setMetadata(LLVMContext::MD_prof, 3051 MDBuilder(OldTerm->getContext()) 3052 .createBranchWeights(TrueWeight, FalseWeight)); 3053 } 3054 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3055 // Neither of the selected blocks were successors, so this 3056 // terminator must be unreachable. 3057 new UnreachableInst(OldTerm->getContext(), OldTerm); 3058 } else { 3059 // One of the selected values was a successor, but the other wasn't. 3060 // Insert an unconditional branch to the one that was found; 3061 // the edge to the one that wasn't must be unreachable. 3062 if (!KeepEdge1) 3063 // Only TrueBB was found. 3064 Builder.CreateBr(TrueBB); 3065 else 3066 // Only FalseBB was found. 3067 Builder.CreateBr(FalseBB); 3068 } 3069 3070 EraseTerminatorInstAndDCECond(OldTerm); 3071 return true; 3072 } 3073 3074 // Replaces 3075 // (switch (select cond, X, Y)) on constant X, Y 3076 // with a branch - conditional if X and Y lead to distinct BBs, 3077 // unconditional otherwise. 3078 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3079 // Check for constant integer values in the select. 3080 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3081 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3082 if (!TrueVal || !FalseVal) 3083 return false; 3084 3085 // Find the relevant condition and destinations. 3086 Value *Condition = Select->getCondition(); 3087 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 3088 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 3089 3090 // Get weight for TrueBB and FalseBB. 3091 uint32_t TrueWeight = 0, FalseWeight = 0; 3092 SmallVector<uint64_t, 8> Weights; 3093 bool HasWeights = HasBranchWeights(SI); 3094 if (HasWeights) { 3095 GetBranchWeights(SI, Weights); 3096 if (Weights.size() == 1 + SI->getNumCases()) { 3097 TrueWeight = 3098 (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()]; 3099 FalseWeight = 3100 (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()]; 3101 } 3102 } 3103 3104 // Perform the actual simplification. 3105 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3106 FalseWeight); 3107 } 3108 3109 // Replaces 3110 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3111 // blockaddress(@fn, BlockB))) 3112 // with 3113 // (br cond, BlockA, BlockB). 3114 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3115 // Check that both operands of the select are block addresses. 3116 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3117 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3118 if (!TBA || !FBA) 3119 return false; 3120 3121 // Extract the actual blocks. 3122 BasicBlock *TrueBB = TBA->getBasicBlock(); 3123 BasicBlock *FalseBB = FBA->getBasicBlock(); 3124 3125 // Perform the actual simplification. 3126 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3127 0); 3128 } 3129 3130 /// This is called when we find an icmp instruction 3131 /// (a seteq/setne with a constant) as the only instruction in a 3132 /// block that ends with an uncond branch. We are looking for a very specific 3133 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3134 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3135 /// default value goes to an uncond block with a seteq in it, we get something 3136 /// like: 3137 /// 3138 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3139 /// DEFAULT: 3140 /// %tmp = icmp eq i8 %A, 92 3141 /// br label %end 3142 /// end: 3143 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3144 /// 3145 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3146 /// the PHI, merging the third icmp into the switch. 3147 static bool TryToSimplifyUncondBranchWithICmpInIt( 3148 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3149 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3150 AssumptionCache *AC) { 3151 BasicBlock *BB = ICI->getParent(); 3152 3153 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3154 // complex. 3155 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3156 return false; 3157 3158 Value *V = ICI->getOperand(0); 3159 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3160 3161 // The pattern we're looking for is where our only predecessor is a switch on 3162 // 'V' and this block is the default case for the switch. In this case we can 3163 // fold the compared value into the switch to simplify things. 3164 BasicBlock *Pred = BB->getSinglePredecessor(); 3165 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3166 return false; 3167 3168 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3169 if (SI->getCondition() != V) 3170 return false; 3171 3172 // If BB is reachable on a non-default case, then we simply know the value of 3173 // V in this block. Substitute it and constant fold the icmp instruction 3174 // away. 3175 if (SI->getDefaultDest() != BB) { 3176 ConstantInt *VVal = SI->findCaseDest(BB); 3177 assert(VVal && "Should have a unique destination value"); 3178 ICI->setOperand(0, VVal); 3179 3180 if (Value *V = SimplifyInstruction(ICI, DL)) { 3181 ICI->replaceAllUsesWith(V); 3182 ICI->eraseFromParent(); 3183 } 3184 // BB is now empty, so it is likely to simplify away. 3185 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3186 } 3187 3188 // Ok, the block is reachable from the default dest. If the constant we're 3189 // comparing exists in one of the other edges, then we can constant fold ICI 3190 // and zap it. 3191 if (SI->findCaseValue(Cst) != SI->case_default()) { 3192 Value *V; 3193 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3194 V = ConstantInt::getFalse(BB->getContext()); 3195 else 3196 V = ConstantInt::getTrue(BB->getContext()); 3197 3198 ICI->replaceAllUsesWith(V); 3199 ICI->eraseFromParent(); 3200 // BB is now empty, so it is likely to simplify away. 3201 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3202 } 3203 3204 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3205 // the block. 3206 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3207 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3208 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3209 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3210 return false; 3211 3212 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3213 // true in the PHI. 3214 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3215 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3216 3217 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3218 std::swap(DefaultCst, NewCst); 3219 3220 // Replace ICI (which is used by the PHI for the default value) with true or 3221 // false depending on if it is EQ or NE. 3222 ICI->replaceAllUsesWith(DefaultCst); 3223 ICI->eraseFromParent(); 3224 3225 // Okay, the switch goes to this block on a default value. Add an edge from 3226 // the switch to the merge point on the compared value. 3227 BasicBlock *NewBB = 3228 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3229 SmallVector<uint64_t, 8> Weights; 3230 bool HasWeights = HasBranchWeights(SI); 3231 if (HasWeights) { 3232 GetBranchWeights(SI, Weights); 3233 if (Weights.size() == 1 + SI->getNumCases()) { 3234 // Split weight for default case to case for "Cst". 3235 Weights[0] = (Weights[0] + 1) >> 1; 3236 Weights.push_back(Weights[0]); 3237 3238 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3239 SI->setMetadata( 3240 LLVMContext::MD_prof, 3241 MDBuilder(SI->getContext()).createBranchWeights(MDWeights)); 3242 } 3243 } 3244 SI->addCase(Cst, NewBB); 3245 3246 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3247 Builder.SetInsertPoint(NewBB); 3248 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3249 Builder.CreateBr(SuccBlock); 3250 PHIUse->addIncoming(NewCst, NewBB); 3251 return true; 3252 } 3253 3254 /// The specified branch is a conditional branch. 3255 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3256 /// fold it into a switch instruction if so. 3257 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3258 const DataLayout &DL) { 3259 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3260 if (!Cond) 3261 return false; 3262 3263 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3264 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3265 // 'setne's and'ed together, collect them. 3266 3267 // Try to gather values from a chain of and/or to be turned into a switch 3268 ConstantComparesGatherer ConstantCompare(Cond, DL); 3269 // Unpack the result 3270 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3271 Value *CompVal = ConstantCompare.CompValue; 3272 unsigned UsedICmps = ConstantCompare.UsedICmps; 3273 Value *ExtraCase = ConstantCompare.Extra; 3274 3275 // If we didn't have a multiply compared value, fail. 3276 if (!CompVal) 3277 return false; 3278 3279 // Avoid turning single icmps into a switch. 3280 if (UsedICmps <= 1) 3281 return false; 3282 3283 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3284 3285 // There might be duplicate constants in the list, which the switch 3286 // instruction can't handle, remove them now. 3287 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3288 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3289 3290 // If Extra was used, we require at least two switch values to do the 3291 // transformation. A switch with one value is just a conditional branch. 3292 if (ExtraCase && Values.size() < 2) 3293 return false; 3294 3295 // TODO: Preserve branch weight metadata, similarly to how 3296 // FoldValueComparisonIntoPredecessors preserves it. 3297 3298 // Figure out which block is which destination. 3299 BasicBlock *DefaultBB = BI->getSuccessor(1); 3300 BasicBlock *EdgeBB = BI->getSuccessor(0); 3301 if (!TrueWhenEqual) 3302 std::swap(DefaultBB, EdgeBB); 3303 3304 BasicBlock *BB = BI->getParent(); 3305 3306 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3307 << " cases into SWITCH. BB is:\n" 3308 << *BB); 3309 3310 // If there are any extra values that couldn't be folded into the switch 3311 // then we evaluate them with an explicit branch first. Split the block 3312 // right before the condbr to handle it. 3313 if (ExtraCase) { 3314 BasicBlock *NewBB = 3315 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3316 // Remove the uncond branch added to the old block. 3317 TerminatorInst *OldTI = BB->getTerminator(); 3318 Builder.SetInsertPoint(OldTI); 3319 3320 if (TrueWhenEqual) 3321 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3322 else 3323 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3324 3325 OldTI->eraseFromParent(); 3326 3327 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3328 // for the edge we just added. 3329 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3330 3331 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3332 << "\nEXTRABB = " << *BB); 3333 BB = NewBB; 3334 } 3335 3336 Builder.SetInsertPoint(BI); 3337 // Convert pointer to int before we switch. 3338 if (CompVal->getType()->isPointerTy()) { 3339 CompVal = Builder.CreatePtrToInt( 3340 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3341 } 3342 3343 // Create the new switch instruction now. 3344 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3345 3346 // Add all of the 'cases' to the switch instruction. 3347 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3348 New->addCase(Values[i], EdgeBB); 3349 3350 // We added edges from PI to the EdgeBB. As such, if there were any 3351 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3352 // the number of edges added. 3353 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3354 PHINode *PN = cast<PHINode>(BBI); 3355 Value *InVal = PN->getIncomingValueForBlock(BB); 3356 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3357 PN->addIncoming(InVal, BB); 3358 } 3359 3360 // Erase the old branch instruction. 3361 EraseTerminatorInstAndDCECond(BI); 3362 3363 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3364 return true; 3365 } 3366 3367 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3368 if (isa<PHINode>(RI->getValue())) 3369 return SimplifyCommonResume(RI); 3370 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3371 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3372 // The resume must unwind the exception that caused control to branch here. 3373 return SimplifySingleResume(RI); 3374 3375 return false; 3376 } 3377 3378 // Simplify resume that is shared by several landing pads (phi of landing pad). 3379 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3380 BasicBlock *BB = RI->getParent(); 3381 3382 // Check that there are no other instructions except for debug intrinsics 3383 // between the phi of landing pads (RI->getValue()) and resume instruction. 3384 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3385 E = RI->getIterator(); 3386 while (++I != E) 3387 if (!isa<DbgInfoIntrinsic>(I)) 3388 return false; 3389 3390 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3391 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3392 3393 // Check incoming blocks to see if any of them are trivial. 3394 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3395 Idx++) { 3396 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3397 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3398 3399 // If the block has other successors, we can not delete it because 3400 // it has other dependents. 3401 if (IncomingBB->getUniqueSuccessor() != BB) 3402 continue; 3403 3404 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3405 // Not the landing pad that caused the control to branch here. 3406 if (IncomingValue != LandingPad) 3407 continue; 3408 3409 bool isTrivial = true; 3410 3411 I = IncomingBB->getFirstNonPHI()->getIterator(); 3412 E = IncomingBB->getTerminator()->getIterator(); 3413 while (++I != E) 3414 if (!isa<DbgInfoIntrinsic>(I)) { 3415 isTrivial = false; 3416 break; 3417 } 3418 3419 if (isTrivial) 3420 TrivialUnwindBlocks.insert(IncomingBB); 3421 } 3422 3423 // If no trivial unwind blocks, don't do any simplifications. 3424 if (TrivialUnwindBlocks.empty()) 3425 return false; 3426 3427 // Turn all invokes that unwind here into calls. 3428 for (auto *TrivialBB : TrivialUnwindBlocks) { 3429 // Blocks that will be simplified should be removed from the phi node. 3430 // Note there could be multiple edges to the resume block, and we need 3431 // to remove them all. 3432 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3433 BB->removePredecessor(TrivialBB, true); 3434 3435 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3436 PI != PE;) { 3437 BasicBlock *Pred = *PI++; 3438 removeUnwindEdge(Pred); 3439 } 3440 3441 // In each SimplifyCFG run, only the current processed block can be erased. 3442 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3443 // of erasing TrivialBB, we only remove the branch to the common resume 3444 // block so that we can later erase the resume block since it has no 3445 // predecessors. 3446 TrivialBB->getTerminator()->eraseFromParent(); 3447 new UnreachableInst(RI->getContext(), TrivialBB); 3448 } 3449 3450 // Delete the resume block if all its predecessors have been removed. 3451 if (pred_empty(BB)) 3452 BB->eraseFromParent(); 3453 3454 return !TrivialUnwindBlocks.empty(); 3455 } 3456 3457 // Simplify resume that is only used by a single (non-phi) landing pad. 3458 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3459 BasicBlock *BB = RI->getParent(); 3460 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3461 assert(RI->getValue() == LPInst && 3462 "Resume must unwind the exception that caused control to here"); 3463 3464 // Check that there are no other instructions except for debug intrinsics. 3465 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3466 while (++I != E) 3467 if (!isa<DbgInfoIntrinsic>(I)) 3468 return false; 3469 3470 // Turn all invokes that unwind here into calls and delete the basic block. 3471 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3472 BasicBlock *Pred = *PI++; 3473 removeUnwindEdge(Pred); 3474 } 3475 3476 // The landingpad is now unreachable. Zap it. 3477 BB->eraseFromParent(); 3478 if (LoopHeaders) 3479 LoopHeaders->erase(BB); 3480 return true; 3481 } 3482 3483 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3484 // If this is a trivial cleanup pad that executes no instructions, it can be 3485 // eliminated. If the cleanup pad continues to the caller, any predecessor 3486 // that is an EH pad will be updated to continue to the caller and any 3487 // predecessor that terminates with an invoke instruction will have its invoke 3488 // instruction converted to a call instruction. If the cleanup pad being 3489 // simplified does not continue to the caller, each predecessor will be 3490 // updated to continue to the unwind destination of the cleanup pad being 3491 // simplified. 3492 BasicBlock *BB = RI->getParent(); 3493 CleanupPadInst *CPInst = RI->getCleanupPad(); 3494 if (CPInst->getParent() != BB) 3495 // This isn't an empty cleanup. 3496 return false; 3497 3498 // We cannot kill the pad if it has multiple uses. This typically arises 3499 // from unreachable basic blocks. 3500 if (!CPInst->hasOneUse()) 3501 return false; 3502 3503 // Check that there are no other instructions except for benign intrinsics. 3504 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3505 while (++I != E) { 3506 auto *II = dyn_cast<IntrinsicInst>(I); 3507 if (!II) 3508 return false; 3509 3510 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3511 switch (IntrinsicID) { 3512 case Intrinsic::dbg_declare: 3513 case Intrinsic::dbg_value: 3514 case Intrinsic::lifetime_end: 3515 break; 3516 default: 3517 return false; 3518 } 3519 } 3520 3521 // If the cleanup return we are simplifying unwinds to the caller, this will 3522 // set UnwindDest to nullptr. 3523 BasicBlock *UnwindDest = RI->getUnwindDest(); 3524 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3525 3526 // We're about to remove BB from the control flow. Before we do, sink any 3527 // PHINodes into the unwind destination. Doing this before changing the 3528 // control flow avoids some potentially slow checks, since we can currently 3529 // be certain that UnwindDest and BB have no common predecessors (since they 3530 // are both EH pads). 3531 if (UnwindDest) { 3532 // First, go through the PHI nodes in UnwindDest and update any nodes that 3533 // reference the block we are removing 3534 for (BasicBlock::iterator I = UnwindDest->begin(), 3535 IE = DestEHPad->getIterator(); 3536 I != IE; ++I) { 3537 PHINode *DestPN = cast<PHINode>(I); 3538 3539 int Idx = DestPN->getBasicBlockIndex(BB); 3540 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3541 assert(Idx != -1); 3542 // This PHI node has an incoming value that corresponds to a control 3543 // path through the cleanup pad we are removing. If the incoming 3544 // value is in the cleanup pad, it must be a PHINode (because we 3545 // verified above that the block is otherwise empty). Otherwise, the 3546 // value is either a constant or a value that dominates the cleanup 3547 // pad being removed. 3548 // 3549 // Because BB and UnwindDest are both EH pads, all of their 3550 // predecessors must unwind to these blocks, and since no instruction 3551 // can have multiple unwind destinations, there will be no overlap in 3552 // incoming blocks between SrcPN and DestPN. 3553 Value *SrcVal = DestPN->getIncomingValue(Idx); 3554 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3555 3556 // Remove the entry for the block we are deleting. 3557 DestPN->removeIncomingValue(Idx, false); 3558 3559 if (SrcPN && SrcPN->getParent() == BB) { 3560 // If the incoming value was a PHI node in the cleanup pad we are 3561 // removing, we need to merge that PHI node's incoming values into 3562 // DestPN. 3563 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3564 SrcIdx != SrcE; ++SrcIdx) { 3565 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3566 SrcPN->getIncomingBlock(SrcIdx)); 3567 } 3568 } else { 3569 // Otherwise, the incoming value came from above BB and 3570 // so we can just reuse it. We must associate all of BB's 3571 // predecessors with this value. 3572 for (auto *pred : predecessors(BB)) { 3573 DestPN->addIncoming(SrcVal, pred); 3574 } 3575 } 3576 } 3577 3578 // Sink any remaining PHI nodes directly into UnwindDest. 3579 Instruction *InsertPt = DestEHPad; 3580 for (BasicBlock::iterator I = BB->begin(), 3581 IE = BB->getFirstNonPHI()->getIterator(); 3582 I != IE;) { 3583 // The iterator must be incremented here because the instructions are 3584 // being moved to another block. 3585 PHINode *PN = cast<PHINode>(I++); 3586 if (PN->use_empty()) 3587 // If the PHI node has no uses, just leave it. It will be erased 3588 // when we erase BB below. 3589 continue; 3590 3591 // Otherwise, sink this PHI node into UnwindDest. 3592 // Any predecessors to UnwindDest which are not already represented 3593 // must be back edges which inherit the value from the path through 3594 // BB. In this case, the PHI value must reference itself. 3595 for (auto *pred : predecessors(UnwindDest)) 3596 if (pred != BB) 3597 PN->addIncoming(PN, pred); 3598 PN->moveBefore(InsertPt); 3599 } 3600 } 3601 3602 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3603 // The iterator must be updated here because we are removing this pred. 3604 BasicBlock *PredBB = *PI++; 3605 if (UnwindDest == nullptr) { 3606 removeUnwindEdge(PredBB); 3607 } else { 3608 TerminatorInst *TI = PredBB->getTerminator(); 3609 TI->replaceUsesOfWith(BB, UnwindDest); 3610 } 3611 } 3612 3613 // The cleanup pad is now unreachable. Zap it. 3614 BB->eraseFromParent(); 3615 return true; 3616 } 3617 3618 // Try to merge two cleanuppads together. 3619 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3620 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3621 // with. 3622 BasicBlock *UnwindDest = RI->getUnwindDest(); 3623 if (!UnwindDest) 3624 return false; 3625 3626 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3627 // be safe to merge without code duplication. 3628 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3629 return false; 3630 3631 // Verify that our cleanuppad's unwind destination is another cleanuppad. 3632 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 3633 if (!SuccessorCleanupPad) 3634 return false; 3635 3636 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 3637 // Replace any uses of the successor cleanupad with the predecessor pad 3638 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 3639 // funclet bundle operands. 3640 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 3641 // Remove the old cleanuppad. 3642 SuccessorCleanupPad->eraseFromParent(); 3643 // Now, we simply replace the cleanupret with a branch to the unwind 3644 // destination. 3645 BranchInst::Create(UnwindDest, RI->getParent()); 3646 RI->eraseFromParent(); 3647 3648 return true; 3649 } 3650 3651 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3652 // It is possible to transiantly have an undef cleanuppad operand because we 3653 // have deleted some, but not all, dead blocks. 3654 // Eventually, this block will be deleted. 3655 if (isa<UndefValue>(RI->getOperand(0))) 3656 return false; 3657 3658 if (mergeCleanupPad(RI)) 3659 return true; 3660 3661 if (removeEmptyCleanup(RI)) 3662 return true; 3663 3664 return false; 3665 } 3666 3667 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3668 BasicBlock *BB = RI->getParent(); 3669 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 3670 return false; 3671 3672 // Find predecessors that end with branches. 3673 SmallVector<BasicBlock *, 8> UncondBranchPreds; 3674 SmallVector<BranchInst *, 8> CondBranchPreds; 3675 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3676 BasicBlock *P = *PI; 3677 TerminatorInst *PTI = P->getTerminator(); 3678 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3679 if (BI->isUnconditional()) 3680 UncondBranchPreds.push_back(P); 3681 else 3682 CondBranchPreds.push_back(BI); 3683 } 3684 } 3685 3686 // If we found some, do the transformation! 3687 if (!UncondBranchPreds.empty() && DupRet) { 3688 while (!UncondBranchPreds.empty()) { 3689 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3690 DEBUG(dbgs() << "FOLDING: " << *BB 3691 << "INTO UNCOND BRANCH PRED: " << *Pred); 3692 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3693 } 3694 3695 // If we eliminated all predecessors of the block, delete the block now. 3696 if (pred_empty(BB)) { 3697 // We know there are no successors, so just nuke the block. 3698 BB->eraseFromParent(); 3699 if (LoopHeaders) 3700 LoopHeaders->erase(BB); 3701 } 3702 3703 return true; 3704 } 3705 3706 // Check out all of the conditional branches going to this return 3707 // instruction. If any of them just select between returns, change the 3708 // branch itself into a select/return pair. 3709 while (!CondBranchPreds.empty()) { 3710 BranchInst *BI = CondBranchPreds.pop_back_val(); 3711 3712 // Check to see if the non-BB successor is also a return block. 3713 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3714 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3715 SimplifyCondBranchToTwoReturns(BI, Builder)) 3716 return true; 3717 } 3718 return false; 3719 } 3720 3721 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3722 BasicBlock *BB = UI->getParent(); 3723 3724 bool Changed = false; 3725 3726 // If there are any instructions immediately before the unreachable that can 3727 // be removed, do so. 3728 while (UI->getIterator() != BB->begin()) { 3729 BasicBlock::iterator BBI = UI->getIterator(); 3730 --BBI; 3731 // Do not delete instructions that can have side effects which might cause 3732 // the unreachable to not be reachable; specifically, calls and volatile 3733 // operations may have this effect. 3734 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 3735 break; 3736 3737 if (BBI->mayHaveSideEffects()) { 3738 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 3739 if (SI->isVolatile()) 3740 break; 3741 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 3742 if (LI->isVolatile()) 3743 break; 3744 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3745 if (RMWI->isVolatile()) 3746 break; 3747 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3748 if (CXI->isVolatile()) 3749 break; 3750 } else if (isa<CatchPadInst>(BBI)) { 3751 // A catchpad may invoke exception object constructors and such, which 3752 // in some languages can be arbitrary code, so be conservative by 3753 // default. 3754 // For CoreCLR, it just involves a type test, so can be removed. 3755 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 3756 EHPersonality::CoreCLR) 3757 break; 3758 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3759 !isa<LandingPadInst>(BBI)) { 3760 break; 3761 } 3762 // Note that deleting LandingPad's here is in fact okay, although it 3763 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3764 // all the predecessors of this block will be the unwind edges of Invokes, 3765 // and we can therefore guarantee this block will be erased. 3766 } 3767 3768 // Delete this instruction (any uses are guaranteed to be dead) 3769 if (!BBI->use_empty()) 3770 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3771 BBI->eraseFromParent(); 3772 Changed = true; 3773 } 3774 3775 // If the unreachable instruction is the first in the block, take a gander 3776 // at all of the predecessors of this instruction, and simplify them. 3777 if (&BB->front() != UI) 3778 return Changed; 3779 3780 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 3781 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3782 TerminatorInst *TI = Preds[i]->getTerminator(); 3783 IRBuilder<> Builder(TI); 3784 if (auto *BI = dyn_cast<BranchInst>(TI)) { 3785 if (BI->isUnconditional()) { 3786 if (BI->getSuccessor(0) == BB) { 3787 new UnreachableInst(TI->getContext(), TI); 3788 TI->eraseFromParent(); 3789 Changed = true; 3790 } 3791 } else { 3792 if (BI->getSuccessor(0) == BB) { 3793 Builder.CreateBr(BI->getSuccessor(1)); 3794 EraseTerminatorInstAndDCECond(BI); 3795 } else if (BI->getSuccessor(1) == BB) { 3796 Builder.CreateBr(BI->getSuccessor(0)); 3797 EraseTerminatorInstAndDCECond(BI); 3798 Changed = true; 3799 } 3800 } 3801 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 3802 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 3803 ++i) 3804 if (i.getCaseSuccessor() == BB) { 3805 BB->removePredecessor(SI->getParent()); 3806 SI->removeCase(i); 3807 --i; 3808 --e; 3809 Changed = true; 3810 } 3811 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 3812 if (II->getUnwindDest() == BB) { 3813 removeUnwindEdge(TI->getParent()); 3814 Changed = true; 3815 } 3816 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3817 if (CSI->getUnwindDest() == BB) { 3818 removeUnwindEdge(TI->getParent()); 3819 Changed = true; 3820 continue; 3821 } 3822 3823 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 3824 E = CSI->handler_end(); 3825 I != E; ++I) { 3826 if (*I == BB) { 3827 CSI->removeHandler(I); 3828 --I; 3829 --E; 3830 Changed = true; 3831 } 3832 } 3833 if (CSI->getNumHandlers() == 0) { 3834 BasicBlock *CatchSwitchBB = CSI->getParent(); 3835 if (CSI->hasUnwindDest()) { 3836 // Redirect preds to the unwind dest 3837 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 3838 } else { 3839 // Rewrite all preds to unwind to caller (or from invoke to call). 3840 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 3841 for (BasicBlock *EHPred : EHPreds) 3842 removeUnwindEdge(EHPred); 3843 } 3844 // The catchswitch is no longer reachable. 3845 new UnreachableInst(CSI->getContext(), CSI); 3846 CSI->eraseFromParent(); 3847 Changed = true; 3848 } 3849 } else if (isa<CleanupReturnInst>(TI)) { 3850 new UnreachableInst(TI->getContext(), TI); 3851 TI->eraseFromParent(); 3852 Changed = true; 3853 } 3854 } 3855 3856 // If this block is now dead, remove it. 3857 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 3858 // We know there are no successors, so just nuke the block. 3859 BB->eraseFromParent(); 3860 if (LoopHeaders) 3861 LoopHeaders->erase(BB); 3862 return true; 3863 } 3864 3865 return Changed; 3866 } 3867 3868 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 3869 assert(Cases.size() >= 1); 3870 3871 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3872 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 3873 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 3874 return false; 3875 } 3876 return true; 3877 } 3878 3879 /// Turn a switch with two reachable destinations into an integer range 3880 /// comparison and branch. 3881 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3882 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3883 3884 bool HasDefault = 3885 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3886 3887 // Partition the cases into two sets with different destinations. 3888 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 3889 BasicBlock *DestB = nullptr; 3890 SmallVector<ConstantInt *, 16> CasesA; 3891 SmallVector<ConstantInt *, 16> CasesB; 3892 3893 for (SwitchInst::CaseIt I : SI->cases()) { 3894 BasicBlock *Dest = I.getCaseSuccessor(); 3895 if (!DestA) 3896 DestA = Dest; 3897 if (Dest == DestA) { 3898 CasesA.push_back(I.getCaseValue()); 3899 continue; 3900 } 3901 if (!DestB) 3902 DestB = Dest; 3903 if (Dest == DestB) { 3904 CasesB.push_back(I.getCaseValue()); 3905 continue; 3906 } 3907 return false; // More than two destinations. 3908 } 3909 3910 assert(DestA && DestB && 3911 "Single-destination switch should have been folded."); 3912 assert(DestA != DestB); 3913 assert(DestB != SI->getDefaultDest()); 3914 assert(!CasesB.empty() && "There must be non-default cases."); 3915 assert(!CasesA.empty() || HasDefault); 3916 3917 // Figure out if one of the sets of cases form a contiguous range. 3918 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 3919 BasicBlock *ContiguousDest = nullptr; 3920 BasicBlock *OtherDest = nullptr; 3921 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 3922 ContiguousCases = &CasesA; 3923 ContiguousDest = DestA; 3924 OtherDest = DestB; 3925 } else if (CasesAreContiguous(CasesB)) { 3926 ContiguousCases = &CasesB; 3927 ContiguousDest = DestB; 3928 OtherDest = DestA; 3929 } else 3930 return false; 3931 3932 // Start building the compare and branch. 3933 3934 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 3935 Constant *NumCases = 3936 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 3937 3938 Value *Sub = SI->getCondition(); 3939 if (!Offset->isNullValue()) 3940 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 3941 3942 Value *Cmp; 3943 // If NumCases overflowed, then all possible values jump to the successor. 3944 if (NumCases->isNullValue() && !ContiguousCases->empty()) 3945 Cmp = ConstantInt::getTrue(SI->getContext()); 3946 else 3947 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3948 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 3949 3950 // Update weight for the newly-created conditional branch. 3951 if (HasBranchWeights(SI)) { 3952 SmallVector<uint64_t, 8> Weights; 3953 GetBranchWeights(SI, Weights); 3954 if (Weights.size() == 1 + SI->getNumCases()) { 3955 uint64_t TrueWeight = 0; 3956 uint64_t FalseWeight = 0; 3957 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 3958 if (SI->getSuccessor(I) == ContiguousDest) 3959 TrueWeight += Weights[I]; 3960 else 3961 FalseWeight += Weights[I]; 3962 } 3963 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 3964 TrueWeight /= 2; 3965 FalseWeight /= 2; 3966 } 3967 NewBI->setMetadata(LLVMContext::MD_prof, 3968 MDBuilder(SI->getContext()) 3969 .createBranchWeights((uint32_t)TrueWeight, 3970 (uint32_t)FalseWeight)); 3971 } 3972 } 3973 3974 // Prune obsolete incoming values off the successors' PHI nodes. 3975 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 3976 unsigned PreviousEdges = ContiguousCases->size(); 3977 if (ContiguousDest == SI->getDefaultDest()) 3978 ++PreviousEdges; 3979 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3980 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3981 } 3982 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 3983 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 3984 if (OtherDest == SI->getDefaultDest()) 3985 ++PreviousEdges; 3986 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3987 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3988 } 3989 3990 // Drop the switch. 3991 SI->eraseFromParent(); 3992 3993 return true; 3994 } 3995 3996 /// Compute masked bits for the condition of a switch 3997 /// and use it to remove dead cases. 3998 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 3999 const DataLayout &DL) { 4000 Value *Cond = SI->getCondition(); 4001 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4002 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 4003 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 4004 4005 // We can also eliminate cases by determining that their values are outside of 4006 // the limited range of the condition based on how many significant (non-sign) 4007 // bits are in the condition value. 4008 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4009 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4010 4011 // Gather dead cases. 4012 SmallVector<ConstantInt *, 8> DeadCases; 4013 for (auto &Case : SI->cases()) { 4014 APInt CaseVal = Case.getCaseValue()->getValue(); 4015 if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne || 4016 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4017 DeadCases.push_back(Case.getCaseValue()); 4018 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 4019 } 4020 } 4021 4022 // If we can prove that the cases must cover all possible values, the 4023 // default destination becomes dead and we can remove it. If we know some 4024 // of the bits in the value, we can use that to more precisely compute the 4025 // number of possible unique case values. 4026 bool HasDefault = 4027 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4028 const unsigned NumUnknownBits = 4029 Bits - (KnownZero.Or(KnownOne)).countPopulation(); 4030 assert(NumUnknownBits <= Bits); 4031 if (HasDefault && DeadCases.empty() && 4032 NumUnknownBits < 64 /* avoid overflow */ && 4033 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4034 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4035 BasicBlock *NewDefault = 4036 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4037 SI->setDefaultDest(&*NewDefault); 4038 SplitBlock(&*NewDefault, &NewDefault->front()); 4039 auto *OldTI = NewDefault->getTerminator(); 4040 new UnreachableInst(SI->getContext(), OldTI); 4041 EraseTerminatorInstAndDCECond(OldTI); 4042 return true; 4043 } 4044 4045 SmallVector<uint64_t, 8> Weights; 4046 bool HasWeight = HasBranchWeights(SI); 4047 if (HasWeight) { 4048 GetBranchWeights(SI, Weights); 4049 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4050 } 4051 4052 // Remove dead cases from the switch. 4053 for (ConstantInt *DeadCase : DeadCases) { 4054 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase); 4055 assert(Case != SI->case_default() && 4056 "Case was not found. Probably mistake in DeadCases forming."); 4057 if (HasWeight) { 4058 std::swap(Weights[Case.getCaseIndex() + 1], Weights.back()); 4059 Weights.pop_back(); 4060 } 4061 4062 // Prune unused values from PHI nodes. 4063 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 4064 SI->removeCase(Case); 4065 } 4066 if (HasWeight && Weights.size() >= 2) { 4067 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4068 SI->setMetadata(LLVMContext::MD_prof, 4069 MDBuilder(SI->getParent()->getContext()) 4070 .createBranchWeights(MDWeights)); 4071 } 4072 4073 return !DeadCases.empty(); 4074 } 4075 4076 /// If BB would be eligible for simplification by 4077 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4078 /// by an unconditional branch), look at the phi node for BB in the successor 4079 /// block and see if the incoming value is equal to CaseValue. If so, return 4080 /// the phi node, and set PhiIndex to BB's index in the phi node. 4081 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4082 BasicBlock *BB, int *PhiIndex) { 4083 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4084 return nullptr; // BB must be empty to be a candidate for simplification. 4085 if (!BB->getSinglePredecessor()) 4086 return nullptr; // BB must be dominated by the switch. 4087 4088 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4089 if (!Branch || !Branch->isUnconditional()) 4090 return nullptr; // Terminator must be unconditional branch. 4091 4092 BasicBlock *Succ = Branch->getSuccessor(0); 4093 4094 BasicBlock::iterator I = Succ->begin(); 4095 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4096 int Idx = PHI->getBasicBlockIndex(BB); 4097 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4098 4099 Value *InValue = PHI->getIncomingValue(Idx); 4100 if (InValue != CaseValue) 4101 continue; 4102 4103 *PhiIndex = Idx; 4104 return PHI; 4105 } 4106 4107 return nullptr; 4108 } 4109 4110 /// Try to forward the condition of a switch instruction to a phi node 4111 /// dominated by the switch, if that would mean that some of the destination 4112 /// blocks of the switch can be folded away. 4113 /// Returns true if a change is made. 4114 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4115 typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap; 4116 ForwardingNodesMap ForwardingNodes; 4117 4118 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; 4119 ++I) { 4120 ConstantInt *CaseValue = I.getCaseValue(); 4121 BasicBlock *CaseDest = I.getCaseSuccessor(); 4122 4123 int PhiIndex; 4124 PHINode *PHI = 4125 FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex); 4126 if (!PHI) 4127 continue; 4128 4129 ForwardingNodes[PHI].push_back(PhiIndex); 4130 } 4131 4132 bool Changed = false; 4133 4134 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 4135 E = ForwardingNodes.end(); 4136 I != E; ++I) { 4137 PHINode *Phi = I->first; 4138 SmallVectorImpl<int> &Indexes = I->second; 4139 4140 if (Indexes.size() < 2) 4141 continue; 4142 4143 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 4144 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 4145 Changed = true; 4146 } 4147 4148 return Changed; 4149 } 4150 4151 /// Return true if the backend will be able to handle 4152 /// initializing an array of constants like C. 4153 static bool ValidLookupTableConstant(Constant *C) { 4154 if (C->isThreadDependent()) 4155 return false; 4156 if (C->isDLLImportDependent()) 4157 return false; 4158 4159 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 4160 return CE->isGEPWithNoNotionalOverIndexing(); 4161 4162 return isa<ConstantFP>(C) || isa<ConstantInt>(C) || 4163 isa<ConstantPointerNull>(C) || isa<GlobalValue>(C) || 4164 isa<UndefValue>(C); 4165 } 4166 4167 /// If V is a Constant, return it. Otherwise, try to look up 4168 /// its constant value in ConstantPool, returning 0 if it's not there. 4169 static Constant * 4170 LookupConstant(Value *V, 4171 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4172 if (Constant *C = dyn_cast<Constant>(V)) 4173 return C; 4174 return ConstantPool.lookup(V); 4175 } 4176 4177 /// Try to fold instruction I into a constant. This works for 4178 /// simple instructions such as binary operations where both operands are 4179 /// constant or can be replaced by constants from the ConstantPool. Returns the 4180 /// resulting constant on success, 0 otherwise. 4181 static Constant * 4182 ConstantFold(Instruction *I, const DataLayout &DL, 4183 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4184 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4185 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4186 if (!A) 4187 return nullptr; 4188 if (A->isAllOnesValue()) 4189 return LookupConstant(Select->getTrueValue(), ConstantPool); 4190 if (A->isNullValue()) 4191 return LookupConstant(Select->getFalseValue(), ConstantPool); 4192 return nullptr; 4193 } 4194 4195 SmallVector<Constant *, 4> COps; 4196 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4197 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4198 COps.push_back(A); 4199 else 4200 return nullptr; 4201 } 4202 4203 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4204 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4205 COps[1], DL); 4206 } 4207 4208 return ConstantFoldInstOperands(I, COps, DL); 4209 } 4210 4211 /// Try to determine the resulting constant values in phi nodes 4212 /// at the common destination basic block, *CommonDest, for one of the case 4213 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4214 /// case), of a switch instruction SI. 4215 static bool 4216 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4217 BasicBlock **CommonDest, 4218 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4219 const DataLayout &DL) { 4220 // The block from which we enter the common destination. 4221 BasicBlock *Pred = SI->getParent(); 4222 4223 // If CaseDest is empty except for some side-effect free instructions through 4224 // which we can constant-propagate the CaseVal, continue to its successor. 4225 SmallDenseMap<Value *, Constant *> ConstantPool; 4226 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4227 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4228 ++I) { 4229 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4230 // If the terminator is a simple branch, continue to the next block. 4231 if (T->getNumSuccessors() != 1) 4232 return false; 4233 Pred = CaseDest; 4234 CaseDest = T->getSuccessor(0); 4235 } else if (isa<DbgInfoIntrinsic>(I)) { 4236 // Skip debug intrinsic. 4237 continue; 4238 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4239 // Instruction is side-effect free and constant. 4240 4241 // If the instruction has uses outside this block or a phi node slot for 4242 // the block, it is not safe to bypass the instruction since it would then 4243 // no longer dominate all its uses. 4244 for (auto &Use : I->uses()) { 4245 User *User = Use.getUser(); 4246 if (Instruction *I = dyn_cast<Instruction>(User)) 4247 if (I->getParent() == CaseDest) 4248 continue; 4249 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4250 if (Phi->getIncomingBlock(Use) == CaseDest) 4251 continue; 4252 return false; 4253 } 4254 4255 ConstantPool.insert(std::make_pair(&*I, C)); 4256 } else { 4257 break; 4258 } 4259 } 4260 4261 // If we did not have a CommonDest before, use the current one. 4262 if (!*CommonDest) 4263 *CommonDest = CaseDest; 4264 // If the destination isn't the common one, abort. 4265 if (CaseDest != *CommonDest) 4266 return false; 4267 4268 // Get the values for this case from phi nodes in the destination block. 4269 BasicBlock::iterator I = (*CommonDest)->begin(); 4270 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4271 int Idx = PHI->getBasicBlockIndex(Pred); 4272 if (Idx == -1) 4273 continue; 4274 4275 Constant *ConstVal = 4276 LookupConstant(PHI->getIncomingValue(Idx), ConstantPool); 4277 if (!ConstVal) 4278 return false; 4279 4280 // Be conservative about which kinds of constants we support. 4281 if (!ValidLookupTableConstant(ConstVal)) 4282 return false; 4283 4284 Res.push_back(std::make_pair(PHI, ConstVal)); 4285 } 4286 4287 return Res.size() > 0; 4288 } 4289 4290 // Helper function used to add CaseVal to the list of cases that generate 4291 // Result. 4292 static void MapCaseToResult(ConstantInt *CaseVal, 4293 SwitchCaseResultVectorTy &UniqueResults, 4294 Constant *Result) { 4295 for (auto &I : UniqueResults) { 4296 if (I.first == Result) { 4297 I.second.push_back(CaseVal); 4298 return; 4299 } 4300 } 4301 UniqueResults.push_back( 4302 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4303 } 4304 4305 // Helper function that initializes a map containing 4306 // results for the PHI node of the common destination block for a switch 4307 // instruction. Returns false if multiple PHI nodes have been found or if 4308 // there is not a common destination block for the switch. 4309 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4310 BasicBlock *&CommonDest, 4311 SwitchCaseResultVectorTy &UniqueResults, 4312 Constant *&DefaultResult, 4313 const DataLayout &DL) { 4314 for (auto &I : SI->cases()) { 4315 ConstantInt *CaseVal = I.getCaseValue(); 4316 4317 // Resulting value at phi nodes for this case value. 4318 SwitchCaseResultsTy Results; 4319 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4320 DL)) 4321 return false; 4322 4323 // Only one value per case is permitted 4324 if (Results.size() > 1) 4325 return false; 4326 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4327 4328 // Check the PHI consistency. 4329 if (!PHI) 4330 PHI = Results[0].first; 4331 else if (PHI != Results[0].first) 4332 return false; 4333 } 4334 // Find the default result value. 4335 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4336 BasicBlock *DefaultDest = SI->getDefaultDest(); 4337 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4338 DL); 4339 // If the default value is not found abort unless the default destination 4340 // is unreachable. 4341 DefaultResult = 4342 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4343 if ((!DefaultResult && 4344 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4345 return false; 4346 4347 return true; 4348 } 4349 4350 // Helper function that checks if it is possible to transform a switch with only 4351 // two cases (or two cases + default) that produces a result into a select. 4352 // Example: 4353 // switch (a) { 4354 // case 10: %0 = icmp eq i32 %a, 10 4355 // return 10; %1 = select i1 %0, i32 10, i32 4 4356 // case 20: ----> %2 = icmp eq i32 %a, 20 4357 // return 2; %3 = select i1 %2, i32 2, i32 %1 4358 // default: 4359 // return 4; 4360 // } 4361 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4362 Constant *DefaultResult, Value *Condition, 4363 IRBuilder<> &Builder) { 4364 assert(ResultVector.size() == 2 && 4365 "We should have exactly two unique results at this point"); 4366 // If we are selecting between only two cases transform into a simple 4367 // select or a two-way select if default is possible. 4368 if (ResultVector[0].second.size() == 1 && 4369 ResultVector[1].second.size() == 1) { 4370 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4371 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4372 4373 bool DefaultCanTrigger = DefaultResult; 4374 Value *SelectValue = ResultVector[1].first; 4375 if (DefaultCanTrigger) { 4376 Value *const ValueCompare = 4377 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4378 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4379 DefaultResult, "switch.select"); 4380 } 4381 Value *const ValueCompare = 4382 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4383 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4384 SelectValue, "switch.select"); 4385 } 4386 4387 return nullptr; 4388 } 4389 4390 // Helper function to cleanup a switch instruction that has been converted into 4391 // a select, fixing up PHI nodes and basic blocks. 4392 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4393 Value *SelectValue, 4394 IRBuilder<> &Builder) { 4395 BasicBlock *SelectBB = SI->getParent(); 4396 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4397 PHI->removeIncomingValue(SelectBB); 4398 PHI->addIncoming(SelectValue, SelectBB); 4399 4400 Builder.CreateBr(PHI->getParent()); 4401 4402 // Remove the switch. 4403 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4404 BasicBlock *Succ = SI->getSuccessor(i); 4405 4406 if (Succ == PHI->getParent()) 4407 continue; 4408 Succ->removePredecessor(SelectBB); 4409 } 4410 SI->eraseFromParent(); 4411 } 4412 4413 /// If the switch is only used to initialize one or more 4414 /// phi nodes in a common successor block with only two different 4415 /// constant values, replace the switch with select. 4416 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4417 AssumptionCache *AC, const DataLayout &DL) { 4418 Value *const Cond = SI->getCondition(); 4419 PHINode *PHI = nullptr; 4420 BasicBlock *CommonDest = nullptr; 4421 Constant *DefaultResult; 4422 SwitchCaseResultVectorTy UniqueResults; 4423 // Collect all the cases that will deliver the same value from the switch. 4424 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4425 DL)) 4426 return false; 4427 // Selects choose between maximum two values. 4428 if (UniqueResults.size() != 2) 4429 return false; 4430 assert(PHI != nullptr && "PHI for value select not found"); 4431 4432 Builder.SetInsertPoint(SI); 4433 Value *SelectValue = 4434 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4435 if (SelectValue) { 4436 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4437 return true; 4438 } 4439 // The switch couldn't be converted into a select. 4440 return false; 4441 } 4442 4443 namespace { 4444 /// This class represents a lookup table that can be used to replace a switch. 4445 class SwitchLookupTable { 4446 public: 4447 /// Create a lookup table to use as a switch replacement with the contents 4448 /// of Values, using DefaultValue to fill any holes in the table. 4449 SwitchLookupTable( 4450 Module &M, uint64_t TableSize, ConstantInt *Offset, 4451 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4452 Constant *DefaultValue, const DataLayout &DL); 4453 4454 /// Build instructions with Builder to retrieve the value at 4455 /// the position given by Index in the lookup table. 4456 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4457 4458 /// Return true if a table with TableSize elements of 4459 /// type ElementType would fit in a target-legal register. 4460 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4461 Type *ElementType); 4462 4463 private: 4464 // Depending on the contents of the table, it can be represented in 4465 // different ways. 4466 enum { 4467 // For tables where each element contains the same value, we just have to 4468 // store that single value and return it for each lookup. 4469 SingleValueKind, 4470 4471 // For tables where there is a linear relationship between table index 4472 // and values. We calculate the result with a simple multiplication 4473 // and addition instead of a table lookup. 4474 LinearMapKind, 4475 4476 // For small tables with integer elements, we can pack them into a bitmap 4477 // that fits into a target-legal register. Values are retrieved by 4478 // shift and mask operations. 4479 BitMapKind, 4480 4481 // The table is stored as an array of values. Values are retrieved by load 4482 // instructions from the table. 4483 ArrayKind 4484 } Kind; 4485 4486 // For SingleValueKind, this is the single value. 4487 Constant *SingleValue; 4488 4489 // For BitMapKind, this is the bitmap. 4490 ConstantInt *BitMap; 4491 IntegerType *BitMapElementTy; 4492 4493 // For LinearMapKind, these are the constants used to derive the value. 4494 ConstantInt *LinearOffset; 4495 ConstantInt *LinearMultiplier; 4496 4497 // For ArrayKind, this is the array. 4498 GlobalVariable *Array; 4499 }; 4500 } 4501 4502 SwitchLookupTable::SwitchLookupTable( 4503 Module &M, uint64_t TableSize, ConstantInt *Offset, 4504 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4505 Constant *DefaultValue, const DataLayout &DL) 4506 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4507 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4508 assert(Values.size() && "Can't build lookup table without values!"); 4509 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4510 4511 // If all values in the table are equal, this is that value. 4512 SingleValue = Values.begin()->second; 4513 4514 Type *ValueType = Values.begin()->second->getType(); 4515 4516 // Build up the table contents. 4517 SmallVector<Constant *, 64> TableContents(TableSize); 4518 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4519 ConstantInt *CaseVal = Values[I].first; 4520 Constant *CaseRes = Values[I].second; 4521 assert(CaseRes->getType() == ValueType); 4522 4523 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4524 TableContents[Idx] = CaseRes; 4525 4526 if (CaseRes != SingleValue) 4527 SingleValue = nullptr; 4528 } 4529 4530 // Fill in any holes in the table with the default result. 4531 if (Values.size() < TableSize) { 4532 assert(DefaultValue && 4533 "Need a default value to fill the lookup table holes."); 4534 assert(DefaultValue->getType() == ValueType); 4535 for (uint64_t I = 0; I < TableSize; ++I) { 4536 if (!TableContents[I]) 4537 TableContents[I] = DefaultValue; 4538 } 4539 4540 if (DefaultValue != SingleValue) 4541 SingleValue = nullptr; 4542 } 4543 4544 // If each element in the table contains the same value, we only need to store 4545 // that single value. 4546 if (SingleValue) { 4547 Kind = SingleValueKind; 4548 return; 4549 } 4550 4551 // Check if we can derive the value with a linear transformation from the 4552 // table index. 4553 if (isa<IntegerType>(ValueType)) { 4554 bool LinearMappingPossible = true; 4555 APInt PrevVal; 4556 APInt DistToPrev; 4557 assert(TableSize >= 2 && "Should be a SingleValue table."); 4558 // Check if there is the same distance between two consecutive values. 4559 for (uint64_t I = 0; I < TableSize; ++I) { 4560 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4561 if (!ConstVal) { 4562 // This is an undef. We could deal with it, but undefs in lookup tables 4563 // are very seldom. It's probably not worth the additional complexity. 4564 LinearMappingPossible = false; 4565 break; 4566 } 4567 APInt Val = ConstVal->getValue(); 4568 if (I != 0) { 4569 APInt Dist = Val - PrevVal; 4570 if (I == 1) { 4571 DistToPrev = Dist; 4572 } else if (Dist != DistToPrev) { 4573 LinearMappingPossible = false; 4574 break; 4575 } 4576 } 4577 PrevVal = Val; 4578 } 4579 if (LinearMappingPossible) { 4580 LinearOffset = cast<ConstantInt>(TableContents[0]); 4581 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4582 Kind = LinearMapKind; 4583 ++NumLinearMaps; 4584 return; 4585 } 4586 } 4587 4588 // If the type is integer and the table fits in a register, build a bitmap. 4589 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4590 IntegerType *IT = cast<IntegerType>(ValueType); 4591 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4592 for (uint64_t I = TableSize; I > 0; --I) { 4593 TableInt <<= IT->getBitWidth(); 4594 // Insert values into the bitmap. Undef values are set to zero. 4595 if (!isa<UndefValue>(TableContents[I - 1])) { 4596 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4597 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4598 } 4599 } 4600 BitMap = ConstantInt::get(M.getContext(), TableInt); 4601 BitMapElementTy = IT; 4602 Kind = BitMapKind; 4603 ++NumBitMaps; 4604 return; 4605 } 4606 4607 // Store the table in an array. 4608 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4609 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4610 4611 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 4612 GlobalVariable::PrivateLinkage, Initializer, 4613 "switch.table"); 4614 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 4615 Kind = ArrayKind; 4616 } 4617 4618 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4619 switch (Kind) { 4620 case SingleValueKind: 4621 return SingleValue; 4622 case LinearMapKind: { 4623 // Derive the result value from the input value. 4624 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4625 false, "switch.idx.cast"); 4626 if (!LinearMultiplier->isOne()) 4627 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4628 if (!LinearOffset->isZero()) 4629 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4630 return Result; 4631 } 4632 case BitMapKind: { 4633 // Type of the bitmap (e.g. i59). 4634 IntegerType *MapTy = BitMap->getType(); 4635 4636 // Cast Index to the same type as the bitmap. 4637 // Note: The Index is <= the number of elements in the table, so 4638 // truncating it to the width of the bitmask is safe. 4639 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4640 4641 // Multiply the shift amount by the element width. 4642 ShiftAmt = Builder.CreateMul( 4643 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4644 "switch.shiftamt"); 4645 4646 // Shift down. 4647 Value *DownShifted = 4648 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 4649 // Mask off. 4650 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 4651 } 4652 case ArrayKind: { 4653 // Make sure the table index will not overflow when treated as signed. 4654 IntegerType *IT = cast<IntegerType>(Index->getType()); 4655 uint64_t TableSize = 4656 Array->getInitializer()->getType()->getArrayNumElements(); 4657 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 4658 Index = Builder.CreateZExt( 4659 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 4660 "switch.tableidx.zext"); 4661 4662 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 4663 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 4664 GEPIndices, "switch.gep"); 4665 return Builder.CreateLoad(GEP, "switch.load"); 4666 } 4667 } 4668 llvm_unreachable("Unknown lookup table kind!"); 4669 } 4670 4671 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 4672 uint64_t TableSize, 4673 Type *ElementType) { 4674 auto *IT = dyn_cast<IntegerType>(ElementType); 4675 if (!IT) 4676 return false; 4677 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4678 // are <= 15, we could try to narrow the type. 4679 4680 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4681 if (TableSize >= UINT_MAX / IT->getBitWidth()) 4682 return false; 4683 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4684 } 4685 4686 /// Determine whether a lookup table should be built for this switch, based on 4687 /// the number of cases, size of the table, and the types of the results. 4688 static bool 4689 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4690 const TargetTransformInfo &TTI, const DataLayout &DL, 4691 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4692 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 4693 return false; // TableSize overflowed, or mul below might overflow. 4694 4695 bool AllTablesFitInRegister = true; 4696 bool HasIllegalType = false; 4697 for (const auto &I : ResultTypes) { 4698 Type *Ty = I.second; 4699 4700 // Saturate this flag to true. 4701 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 4702 4703 // Saturate this flag to false. 4704 AllTablesFitInRegister = 4705 AllTablesFitInRegister && 4706 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 4707 4708 // If both flags saturate, we're done. NOTE: This *only* works with 4709 // saturating flags, and all flags have to saturate first due to the 4710 // non-deterministic behavior of iterating over a dense map. 4711 if (HasIllegalType && !AllTablesFitInRegister) 4712 break; 4713 } 4714 4715 // If each table would fit in a register, we should build it anyway. 4716 if (AllTablesFitInRegister) 4717 return true; 4718 4719 // Don't build a table that doesn't fit in-register if it has illegal types. 4720 if (HasIllegalType) 4721 return false; 4722 4723 // The table density should be at least 40%. This is the same criterion as for 4724 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 4725 // FIXME: Find the best cut-off. 4726 return SI->getNumCases() * 10 >= TableSize * 4; 4727 } 4728 4729 /// Try to reuse the switch table index compare. Following pattern: 4730 /// \code 4731 /// if (idx < tablesize) 4732 /// r = table[idx]; // table does not contain default_value 4733 /// else 4734 /// r = default_value; 4735 /// if (r != default_value) 4736 /// ... 4737 /// \endcode 4738 /// Is optimized to: 4739 /// \code 4740 /// cond = idx < tablesize; 4741 /// if (cond) 4742 /// r = table[idx]; 4743 /// else 4744 /// r = default_value; 4745 /// if (cond) 4746 /// ... 4747 /// \endcode 4748 /// Jump threading will then eliminate the second if(cond). 4749 static void reuseTableCompare( 4750 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 4751 Constant *DefaultValue, 4752 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 4753 4754 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 4755 if (!CmpInst) 4756 return; 4757 4758 // We require that the compare is in the same block as the phi so that jump 4759 // threading can do its work afterwards. 4760 if (CmpInst->getParent() != PhiBlock) 4761 return; 4762 4763 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 4764 if (!CmpOp1) 4765 return; 4766 4767 Value *RangeCmp = RangeCheckBranch->getCondition(); 4768 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 4769 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 4770 4771 // Check if the compare with the default value is constant true or false. 4772 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4773 DefaultValue, CmpOp1, true); 4774 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 4775 return; 4776 4777 // Check if the compare with the case values is distinct from the default 4778 // compare result. 4779 for (auto ValuePair : Values) { 4780 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4781 ValuePair.second, CmpOp1, true); 4782 if (!CaseConst || CaseConst == DefaultConst) 4783 return; 4784 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 4785 "Expect true or false as compare result."); 4786 } 4787 4788 // Check if the branch instruction dominates the phi node. It's a simple 4789 // dominance check, but sufficient for our needs. 4790 // Although this check is invariant in the calling loops, it's better to do it 4791 // at this late stage. Practically we do it at most once for a switch. 4792 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 4793 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 4794 BasicBlock *Pred = *PI; 4795 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 4796 return; 4797 } 4798 4799 if (DefaultConst == FalseConst) { 4800 // The compare yields the same result. We can replace it. 4801 CmpInst->replaceAllUsesWith(RangeCmp); 4802 ++NumTableCmpReuses; 4803 } else { 4804 // The compare yields the same result, just inverted. We can replace it. 4805 Value *InvertedTableCmp = BinaryOperator::CreateXor( 4806 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 4807 RangeCheckBranch); 4808 CmpInst->replaceAllUsesWith(InvertedTableCmp); 4809 ++NumTableCmpReuses; 4810 } 4811 } 4812 4813 /// If the switch is only used to initialize one or more phi nodes in a common 4814 /// successor block with different constant values, replace the switch with 4815 /// lookup tables. 4816 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 4817 const DataLayout &DL, 4818 const TargetTransformInfo &TTI) { 4819 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4820 4821 // Only build lookup table when we have a target that supports it. 4822 if (!TTI.shouldBuildLookupTables()) 4823 return false; 4824 4825 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 4826 // split off a dense part and build a lookup table for that. 4827 4828 // FIXME: This creates arrays of GEPs to constant strings, which means each 4829 // GEP needs a runtime relocation in PIC code. We should just build one big 4830 // string and lookup indices into that. 4831 4832 // Ignore switches with less than three cases. Lookup tables will not make 4833 // them 4834 // faster, so we don't analyze them. 4835 if (SI->getNumCases() < 3) 4836 return false; 4837 4838 // Figure out the corresponding result for each case value and phi node in the 4839 // common destination, as well as the min and max case values. 4840 assert(SI->case_begin() != SI->case_end()); 4841 SwitchInst::CaseIt CI = SI->case_begin(); 4842 ConstantInt *MinCaseVal = CI.getCaseValue(); 4843 ConstantInt *MaxCaseVal = CI.getCaseValue(); 4844 4845 BasicBlock *CommonDest = nullptr; 4846 typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy; 4847 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 4848 SmallDenseMap<PHINode *, Constant *> DefaultResults; 4849 SmallDenseMap<PHINode *, Type *> ResultTypes; 4850 SmallVector<PHINode *, 4> PHIs; 4851 4852 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 4853 ConstantInt *CaseVal = CI.getCaseValue(); 4854 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 4855 MinCaseVal = CaseVal; 4856 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 4857 MaxCaseVal = CaseVal; 4858 4859 // Resulting value at phi nodes for this case value. 4860 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy; 4861 ResultsTy Results; 4862 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 4863 Results, DL)) 4864 return false; 4865 4866 // Append the result from this case to the list for each phi. 4867 for (const auto &I : Results) { 4868 PHINode *PHI = I.first; 4869 Constant *Value = I.second; 4870 if (!ResultLists.count(PHI)) 4871 PHIs.push_back(PHI); 4872 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 4873 } 4874 } 4875 4876 // Keep track of the result types. 4877 for (PHINode *PHI : PHIs) { 4878 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 4879 } 4880 4881 uint64_t NumResults = ResultLists[PHIs[0]].size(); 4882 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 4883 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 4884 bool TableHasHoles = (NumResults < TableSize); 4885 4886 // If the table has holes, we need a constant result for the default case 4887 // or a bitmask that fits in a register. 4888 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 4889 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 4890 &CommonDest, DefaultResultsList, DL); 4891 4892 bool NeedMask = (TableHasHoles && !HasDefaultResults); 4893 if (NeedMask) { 4894 // As an extra penalty for the validity test we require more cases. 4895 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 4896 return false; 4897 if (!DL.fitsInLegalInteger(TableSize)) 4898 return false; 4899 } 4900 4901 for (const auto &I : DefaultResultsList) { 4902 PHINode *PHI = I.first; 4903 Constant *Result = I.second; 4904 DefaultResults[PHI] = Result; 4905 } 4906 4907 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 4908 return false; 4909 4910 // Create the BB that does the lookups. 4911 Module &Mod = *CommonDest->getParent()->getParent(); 4912 BasicBlock *LookupBB = BasicBlock::Create( 4913 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 4914 4915 // Compute the table index value. 4916 Builder.SetInsertPoint(SI); 4917 Value *TableIndex = 4918 Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx"); 4919 4920 // Compute the maximum table size representable by the integer type we are 4921 // switching upon. 4922 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 4923 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 4924 assert(MaxTableSize >= TableSize && 4925 "It is impossible for a switch to have more entries than the max " 4926 "representable value of its input integer type's size."); 4927 4928 // If the default destination is unreachable, or if the lookup table covers 4929 // all values of the conditional variable, branch directly to the lookup table 4930 // BB. Otherwise, check that the condition is within the case range. 4931 const bool DefaultIsReachable = 4932 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4933 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 4934 BranchInst *RangeCheckBranch = nullptr; 4935 4936 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4937 Builder.CreateBr(LookupBB); 4938 // Note: We call removeProdecessor later since we need to be able to get the 4939 // PHI value for the default case in case we're using a bit mask. 4940 } else { 4941 Value *Cmp = Builder.CreateICmpULT( 4942 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 4943 RangeCheckBranch = 4944 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 4945 } 4946 4947 // Populate the BB that does the lookups. 4948 Builder.SetInsertPoint(LookupBB); 4949 4950 if (NeedMask) { 4951 // Before doing the lookup we do the hole check. 4952 // The LookupBB is therefore re-purposed to do the hole check 4953 // and we create a new LookupBB. 4954 BasicBlock *MaskBB = LookupBB; 4955 MaskBB->setName("switch.hole_check"); 4956 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 4957 CommonDest->getParent(), CommonDest); 4958 4959 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 4960 // unnecessary illegal types. 4961 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 4962 APInt MaskInt(TableSizePowOf2, 0); 4963 APInt One(TableSizePowOf2, 1); 4964 // Build bitmask; fill in a 1 bit for every case. 4965 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 4966 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 4967 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 4968 .getLimitedValue(); 4969 MaskInt |= One << Idx; 4970 } 4971 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 4972 4973 // Get the TableIndex'th bit of the bitmask. 4974 // If this bit is 0 (meaning hole) jump to the default destination, 4975 // else continue with table lookup. 4976 IntegerType *MapTy = TableMask->getType(); 4977 Value *MaskIndex = 4978 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 4979 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 4980 Value *LoBit = Builder.CreateTrunc( 4981 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 4982 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 4983 4984 Builder.SetInsertPoint(LookupBB); 4985 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 4986 } 4987 4988 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4989 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 4990 // do not delete PHINodes here. 4991 SI->getDefaultDest()->removePredecessor(SI->getParent(), 4992 /*DontDeleteUselessPHIs=*/true); 4993 } 4994 4995 bool ReturnedEarly = false; 4996 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 4997 PHINode *PHI = PHIs[I]; 4998 const ResultListTy &ResultList = ResultLists[PHI]; 4999 5000 // If using a bitmask, use any value to fill the lookup table holes. 5001 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5002 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 5003 5004 Value *Result = Table.BuildLookup(TableIndex, Builder); 5005 5006 // If the result is used to return immediately from the function, we want to 5007 // do that right here. 5008 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5009 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5010 Builder.CreateRet(Result); 5011 ReturnedEarly = true; 5012 break; 5013 } 5014 5015 // Do a small peephole optimization: re-use the switch table compare if 5016 // possible. 5017 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5018 BasicBlock *PhiBlock = PHI->getParent(); 5019 // Search for compare instructions which use the phi. 5020 for (auto *User : PHI->users()) { 5021 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5022 } 5023 } 5024 5025 PHI->addIncoming(Result, LookupBB); 5026 } 5027 5028 if (!ReturnedEarly) 5029 Builder.CreateBr(CommonDest); 5030 5031 // Remove the switch. 5032 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5033 BasicBlock *Succ = SI->getSuccessor(i); 5034 5035 if (Succ == SI->getDefaultDest()) 5036 continue; 5037 Succ->removePredecessor(SI->getParent()); 5038 } 5039 SI->eraseFromParent(); 5040 5041 ++NumLookupTables; 5042 if (NeedMask) 5043 ++NumLookupTablesHoles; 5044 return true; 5045 } 5046 5047 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5048 BasicBlock *BB = SI->getParent(); 5049 5050 if (isValueEqualityComparison(SI)) { 5051 // If we only have one predecessor, and if it is a branch on this value, 5052 // see if that predecessor totally determines the outcome of this switch. 5053 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5054 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5055 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5056 5057 Value *Cond = SI->getCondition(); 5058 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5059 if (SimplifySwitchOnSelect(SI, Select)) 5060 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5061 5062 // If the block only contains the switch, see if we can fold the block 5063 // away into any preds. 5064 BasicBlock::iterator BBI = BB->begin(); 5065 // Ignore dbg intrinsics. 5066 while (isa<DbgInfoIntrinsic>(BBI)) 5067 ++BBI; 5068 if (SI == &*BBI) 5069 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5070 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5071 } 5072 5073 // Try to transform the switch into an icmp and a branch. 5074 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5075 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5076 5077 // Remove unreachable cases. 5078 if (EliminateDeadSwitchCases(SI, AC, DL)) 5079 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5080 5081 if (SwitchToSelect(SI, Builder, AC, DL)) 5082 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5083 5084 if (ForwardSwitchConditionToPHI(SI)) 5085 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5086 5087 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 5088 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5089 5090 return false; 5091 } 5092 5093 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5094 BasicBlock *BB = IBI->getParent(); 5095 bool Changed = false; 5096 5097 // Eliminate redundant destinations. 5098 SmallPtrSet<Value *, 8> Succs; 5099 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5100 BasicBlock *Dest = IBI->getDestination(i); 5101 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5102 Dest->removePredecessor(BB); 5103 IBI->removeDestination(i); 5104 --i; 5105 --e; 5106 Changed = true; 5107 } 5108 } 5109 5110 if (IBI->getNumDestinations() == 0) { 5111 // If the indirectbr has no successors, change it to unreachable. 5112 new UnreachableInst(IBI->getContext(), IBI); 5113 EraseTerminatorInstAndDCECond(IBI); 5114 return true; 5115 } 5116 5117 if (IBI->getNumDestinations() == 1) { 5118 // If the indirectbr has one successor, change it to a direct branch. 5119 BranchInst::Create(IBI->getDestination(0), IBI); 5120 EraseTerminatorInstAndDCECond(IBI); 5121 return true; 5122 } 5123 5124 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5125 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5126 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5127 } 5128 return Changed; 5129 } 5130 5131 /// Given an block with only a single landing pad and a unconditional branch 5132 /// try to find another basic block which this one can be merged with. This 5133 /// handles cases where we have multiple invokes with unique landing pads, but 5134 /// a shared handler. 5135 /// 5136 /// We specifically choose to not worry about merging non-empty blocks 5137 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5138 /// practice, the optimizer produces empty landing pad blocks quite frequently 5139 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5140 /// sinking in this file) 5141 /// 5142 /// This is primarily a code size optimization. We need to avoid performing 5143 /// any transform which might inhibit optimization (such as our ability to 5144 /// specialize a particular handler via tail commoning). We do this by not 5145 /// merging any blocks which require us to introduce a phi. Since the same 5146 /// values are flowing through both blocks, we don't loose any ability to 5147 /// specialize. If anything, we make such specialization more likely. 5148 /// 5149 /// TODO - This transformation could remove entries from a phi in the target 5150 /// block when the inputs in the phi are the same for the two blocks being 5151 /// merged. In some cases, this could result in removal of the PHI entirely. 5152 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5153 BasicBlock *BB) { 5154 auto Succ = BB->getUniqueSuccessor(); 5155 assert(Succ); 5156 // If there's a phi in the successor block, we'd likely have to introduce 5157 // a phi into the merged landing pad block. 5158 if (isa<PHINode>(*Succ->begin())) 5159 return false; 5160 5161 for (BasicBlock *OtherPred : predecessors(Succ)) { 5162 if (BB == OtherPred) 5163 continue; 5164 BasicBlock::iterator I = OtherPred->begin(); 5165 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5166 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5167 continue; 5168 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5169 } 5170 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5171 if (!BI2 || !BI2->isIdenticalTo(BI)) 5172 continue; 5173 5174 // We've found an identical block. Update our predecessors to take that 5175 // path instead and make ourselves dead. 5176 SmallSet<BasicBlock *, 16> Preds; 5177 Preds.insert(pred_begin(BB), pred_end(BB)); 5178 for (BasicBlock *Pred : Preds) { 5179 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5180 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5181 "unexpected successor"); 5182 II->setUnwindDest(OtherPred); 5183 } 5184 5185 // The debug info in OtherPred doesn't cover the merged control flow that 5186 // used to go through BB. We need to delete it or update it. 5187 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5188 Instruction &Inst = *I; 5189 I++; 5190 if (isa<DbgInfoIntrinsic>(Inst)) 5191 Inst.eraseFromParent(); 5192 } 5193 5194 SmallSet<BasicBlock *, 16> Succs; 5195 Succs.insert(succ_begin(BB), succ_end(BB)); 5196 for (BasicBlock *Succ : Succs) { 5197 Succ->removePredecessor(BB); 5198 } 5199 5200 IRBuilder<> Builder(BI); 5201 Builder.CreateUnreachable(); 5202 BI->eraseFromParent(); 5203 return true; 5204 } 5205 return false; 5206 } 5207 5208 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5209 IRBuilder<> &Builder) { 5210 BasicBlock *BB = BI->getParent(); 5211 5212 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5213 return true; 5214 5215 // If the Terminator is the only non-phi instruction, simplify the block. 5216 // if LoopHeader is provided, check if the block is a loop header 5217 // (This is for early invocations before loop simplify and vectorization 5218 // to keep canonical loop forms for nested loops. 5219 // These blocks can be eliminated when the pass is invoked later 5220 // in the back-end.) 5221 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5222 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5223 (!LoopHeaders || !LoopHeaders->count(BB)) && 5224 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5225 return true; 5226 5227 // If the only instruction in the block is a seteq/setne comparison 5228 // against a constant, try to simplify the block. 5229 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5230 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5231 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5232 ; 5233 if (I->isTerminator() && 5234 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5235 BonusInstThreshold, AC)) 5236 return true; 5237 } 5238 5239 // See if we can merge an empty landing pad block with another which is 5240 // equivalent. 5241 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5242 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5243 } 5244 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5245 return true; 5246 } 5247 5248 // If this basic block is ONLY a compare and a branch, and if a predecessor 5249 // branches to us and our successor, fold the comparison into the 5250 // predecessor and use logical operations to update the incoming value 5251 // for PHI nodes in common successor. 5252 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5253 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5254 return false; 5255 } 5256 5257 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5258 BasicBlock *PredPred = nullptr; 5259 for (auto *P : predecessors(BB)) { 5260 BasicBlock *PPred = P->getSinglePredecessor(); 5261 if (!PPred || (PredPred && PredPred != PPred)) 5262 return nullptr; 5263 PredPred = PPred; 5264 } 5265 return PredPred; 5266 } 5267 5268 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5269 BasicBlock *BB = BI->getParent(); 5270 5271 // Conditional branch 5272 if (isValueEqualityComparison(BI)) { 5273 // If we only have one predecessor, and if it is a branch on this value, 5274 // see if that predecessor totally determines the outcome of this 5275 // switch. 5276 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5277 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5278 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5279 5280 // This block must be empty, except for the setcond inst, if it exists. 5281 // Ignore dbg intrinsics. 5282 BasicBlock::iterator I = BB->begin(); 5283 // Ignore dbg intrinsics. 5284 while (isa<DbgInfoIntrinsic>(I)) 5285 ++I; 5286 if (&*I == BI) { 5287 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5288 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5289 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5290 ++I; 5291 // Ignore dbg intrinsics. 5292 while (isa<DbgInfoIntrinsic>(I)) 5293 ++I; 5294 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5295 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5296 } 5297 } 5298 5299 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5300 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5301 return true; 5302 5303 // If this basic block has a single dominating predecessor block and the 5304 // dominating block's condition implies BI's condition, we know the direction 5305 // of the BI branch. 5306 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5307 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5308 if (PBI && PBI->isConditional() && 5309 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 5310 (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) { 5311 bool CondIsFalse = PBI->getSuccessor(1) == BB; 5312 Optional<bool> Implication = isImpliedCondition( 5313 PBI->getCondition(), BI->getCondition(), DL, CondIsFalse); 5314 if (Implication) { 5315 // Turn this into a branch on constant. 5316 auto *OldCond = BI->getCondition(); 5317 ConstantInt *CI = *Implication 5318 ? ConstantInt::getTrue(BB->getContext()) 5319 : ConstantInt::getFalse(BB->getContext()); 5320 BI->setCondition(CI); 5321 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5322 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5323 } 5324 } 5325 } 5326 5327 // If this basic block is ONLY a compare and a branch, and if a predecessor 5328 // branches to us and one of our successors, fold the comparison into the 5329 // predecessor and use logical operations to pick the right destination. 5330 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5331 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5332 5333 // We have a conditional branch to two blocks that are only reachable 5334 // from BI. We know that the condbr dominates the two blocks, so see if 5335 // there is any identical code in the "then" and "else" blocks. If so, we 5336 // can hoist it up to the branching block. 5337 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5338 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5339 if (HoistThenElseCodeToIf(BI, TTI)) 5340 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5341 } else { 5342 // If Successor #1 has multiple preds, we may be able to conditionally 5343 // execute Successor #0 if it branches to Successor #1. 5344 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5345 if (Succ0TI->getNumSuccessors() == 1 && 5346 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5347 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5348 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5349 } 5350 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5351 // If Successor #0 has multiple preds, we may be able to conditionally 5352 // execute Successor #1 if it branches to Successor #0. 5353 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5354 if (Succ1TI->getNumSuccessors() == 1 && 5355 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5356 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5357 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5358 } 5359 5360 // If this is a branch on a phi node in the current block, thread control 5361 // through this block if any PHI node entries are constants. 5362 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5363 if (PN->getParent() == BI->getParent()) 5364 if (FoldCondBranchOnPHI(BI, DL)) 5365 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5366 5367 // Scan predecessor blocks for conditional branches. 5368 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5369 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5370 if (PBI != BI && PBI->isConditional()) 5371 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5372 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5373 5374 // Look for diamond patterns. 5375 if (MergeCondStores) 5376 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5377 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5378 if (PBI != BI && PBI->isConditional()) 5379 if (mergeConditionalStores(PBI, BI)) 5380 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5381 5382 return false; 5383 } 5384 5385 /// Check if passing a value to an instruction will cause undefined behavior. 5386 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5387 Constant *C = dyn_cast<Constant>(V); 5388 if (!C) 5389 return false; 5390 5391 if (I->use_empty()) 5392 return false; 5393 5394 if (C->isNullValue() || isa<UndefValue>(C)) { 5395 // Only look at the first use, avoid hurting compile time with long uselists 5396 User *Use = *I->user_begin(); 5397 5398 // Now make sure that there are no instructions in between that can alter 5399 // control flow (eg. calls) 5400 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 5401 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5402 return false; 5403 5404 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5405 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5406 if (GEP->getPointerOperand() == I) 5407 return passingValueIsAlwaysUndefined(V, GEP); 5408 5409 // Look through bitcasts. 5410 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5411 return passingValueIsAlwaysUndefined(V, BC); 5412 5413 // Load from null is undefined. 5414 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5415 if (!LI->isVolatile()) 5416 return LI->getPointerAddressSpace() == 0; 5417 5418 // Store to null is undefined. 5419 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5420 if (!SI->isVolatile()) 5421 return SI->getPointerAddressSpace() == 0 && 5422 SI->getPointerOperand() == I; 5423 5424 // A call to null is undefined. 5425 if (auto CS = CallSite(Use)) 5426 return CS.getCalledValue() == I; 5427 } 5428 return false; 5429 } 5430 5431 /// If BB has an incoming value that will always trigger undefined behavior 5432 /// (eg. null pointer dereference), remove the branch leading here. 5433 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5434 for (BasicBlock::iterator i = BB->begin(); 5435 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5436 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5437 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5438 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5439 IRBuilder<> Builder(T); 5440 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5441 BB->removePredecessor(PHI->getIncomingBlock(i)); 5442 // Turn uncoditional branches into unreachables and remove the dead 5443 // destination from conditional branches. 5444 if (BI->isUnconditional()) 5445 Builder.CreateUnreachable(); 5446 else 5447 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5448 : BI->getSuccessor(0)); 5449 BI->eraseFromParent(); 5450 return true; 5451 } 5452 // TODO: SwitchInst. 5453 } 5454 5455 return false; 5456 } 5457 5458 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5459 bool Changed = false; 5460 5461 assert(BB && BB->getParent() && "Block not embedded in function!"); 5462 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5463 5464 // Remove basic blocks that have no predecessors (except the entry block)... 5465 // or that just have themself as a predecessor. These are unreachable. 5466 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5467 BB->getSinglePredecessor() == BB) { 5468 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5469 DeleteDeadBlock(BB); 5470 return true; 5471 } 5472 5473 // Check to see if we can constant propagate this terminator instruction 5474 // away... 5475 Changed |= ConstantFoldTerminator(BB, true); 5476 5477 // Check for and eliminate duplicate PHI nodes in this block. 5478 Changed |= EliminateDuplicatePHINodes(BB); 5479 5480 // Check for and remove branches that will always cause undefined behavior. 5481 Changed |= removeUndefIntroducingPredecessor(BB); 5482 5483 // Merge basic blocks into their predecessor if there is only one distinct 5484 // pred, and if there is only one distinct successor of the predecessor, and 5485 // if there are no PHI nodes. 5486 // 5487 if (MergeBlockIntoPredecessor(BB)) 5488 return true; 5489 5490 IRBuilder<> Builder(BB); 5491 5492 // If there is a trivial two-entry PHI node in this basic block, and we can 5493 // eliminate it, do so now. 5494 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5495 if (PN->getNumIncomingValues() == 2) 5496 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5497 5498 Builder.SetInsertPoint(BB->getTerminator()); 5499 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5500 if (BI->isUnconditional()) { 5501 if (SimplifyUncondBranch(BI, Builder)) 5502 return true; 5503 } else { 5504 if (SimplifyCondBranch(BI, Builder)) 5505 return true; 5506 } 5507 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5508 if (SimplifyReturn(RI, Builder)) 5509 return true; 5510 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5511 if (SimplifyResume(RI, Builder)) 5512 return true; 5513 } else if (CleanupReturnInst *RI = 5514 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5515 if (SimplifyCleanupReturn(RI)) 5516 return true; 5517 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5518 if (SimplifySwitch(SI, Builder)) 5519 return true; 5520 } else if (UnreachableInst *UI = 5521 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5522 if (SimplifyUnreachable(UI)) 5523 return true; 5524 } else if (IndirectBrInst *IBI = 5525 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5526 if (SimplifyIndirectBr(IBI)) 5527 return true; 5528 } 5529 5530 return Changed; 5531 } 5532 5533 /// This function is used to do simplification of a CFG. 5534 /// For example, it adjusts branches to branches to eliminate the extra hop, 5535 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5536 /// of the CFG. It returns true if a modification was made. 5537 /// 5538 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5539 unsigned BonusInstThreshold, AssumptionCache *AC, 5540 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 5541 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 5542 BonusInstThreshold, AC, LoopHeaders) 5543 .run(BB); 5544 } 5545