1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file promotes memory references to be register references. It promotes 11 // alloca instructions which only have loads and stores as uses. An alloca is 12 // transformed by using iterated dominator frontiers to place PHI nodes, then 13 // traversing the function in depth-first order to rewrite loads and stores as 14 // appropriate. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/TinyPtrVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/IteratedDominanceFrontier.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <utility> 54 #include <vector> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "mem2reg" 59 60 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 61 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 62 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 63 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 64 65 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 66 // FIXME: If the memory unit is of pointer or integer type, we can permit 67 // assignments to subsections of the memory unit. 68 unsigned AS = AI->getType()->getAddressSpace(); 69 70 // Only allow direct and non-volatile loads and stores... 71 for (const User *U : AI->users()) { 72 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 73 // Note that atomic loads can be transformed; atomic semantics do 74 // not have any meaning for a local alloca. 75 if (LI->isVolatile()) 76 return false; 77 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 78 if (SI->getOperand(0) == AI) 79 return false; // Don't allow a store OF the AI, only INTO the AI. 80 // Note that atomic stores can be transformed; atomic semantics do 81 // not have any meaning for a local alloca. 82 if (SI->isVolatile()) 83 return false; 84 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 85 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 86 II->getIntrinsicID() != Intrinsic::lifetime_end) 87 return false; 88 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 89 if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 90 return false; 91 if (!onlyUsedByLifetimeMarkers(BCI)) 92 return false; 93 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 94 if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) 95 return false; 96 if (!GEPI->hasAllZeroIndices()) 97 return false; 98 if (!onlyUsedByLifetimeMarkers(GEPI)) 99 return false; 100 } else { 101 return false; 102 } 103 } 104 105 return true; 106 } 107 108 namespace { 109 110 struct AllocaInfo { 111 SmallVector<BasicBlock *, 32> DefiningBlocks; 112 SmallVector<BasicBlock *, 32> UsingBlocks; 113 114 StoreInst *OnlyStore; 115 BasicBlock *OnlyBlock; 116 bool OnlyUsedInOneBlock; 117 118 Value *AllocaPointerVal; 119 TinyPtrVector<DbgInfoIntrinsic *> DbgDeclares; 120 121 void clear() { 122 DefiningBlocks.clear(); 123 UsingBlocks.clear(); 124 OnlyStore = nullptr; 125 OnlyBlock = nullptr; 126 OnlyUsedInOneBlock = true; 127 AllocaPointerVal = nullptr; 128 DbgDeclares.clear(); 129 } 130 131 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 132 /// by the rest of the pass to reason about the uses of this alloca. 133 void AnalyzeAlloca(AllocaInst *AI) { 134 clear(); 135 136 // As we scan the uses of the alloca instruction, keep track of stores, 137 // and decide whether all of the loads and stores to the alloca are within 138 // the same basic block. 139 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 140 Instruction *User = cast<Instruction>(*UI++); 141 142 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 143 // Remember the basic blocks which define new values for the alloca 144 DefiningBlocks.push_back(SI->getParent()); 145 AllocaPointerVal = SI->getOperand(0); 146 OnlyStore = SI; 147 } else { 148 LoadInst *LI = cast<LoadInst>(User); 149 // Otherwise it must be a load instruction, keep track of variable 150 // reads. 151 UsingBlocks.push_back(LI->getParent()); 152 AllocaPointerVal = LI; 153 } 154 155 if (OnlyUsedInOneBlock) { 156 if (!OnlyBlock) 157 OnlyBlock = User->getParent(); 158 else if (OnlyBlock != User->getParent()) 159 OnlyUsedInOneBlock = false; 160 } 161 } 162 163 DbgDeclares = FindDbgAddrUses(AI); 164 } 165 }; 166 167 // Data package used by RenamePass() 168 class RenamePassData { 169 public: 170 using ValVector = std::vector<Value *>; 171 172 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V) 173 : BB(B), Pred(P), Values(std::move(V)) {} 174 175 BasicBlock *BB; 176 BasicBlock *Pred; 177 ValVector Values; 178 }; 179 180 /// \brief This assigns and keeps a per-bb relative ordering of load/store 181 /// instructions in the block that directly load or store an alloca. 182 /// 183 /// This functionality is important because it avoids scanning large basic 184 /// blocks multiple times when promoting many allocas in the same block. 185 class LargeBlockInfo { 186 /// \brief For each instruction that we track, keep the index of the 187 /// instruction. 188 /// 189 /// The index starts out as the number of the instruction from the start of 190 /// the block. 191 DenseMap<const Instruction *, unsigned> InstNumbers; 192 193 public: 194 195 /// This code only looks at accesses to allocas. 196 static bool isInterestingInstruction(const Instruction *I) { 197 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 198 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 199 } 200 201 /// Get or calculate the index of the specified instruction. 202 unsigned getInstructionIndex(const Instruction *I) { 203 assert(isInterestingInstruction(I) && 204 "Not a load/store to/from an alloca?"); 205 206 // If we already have this instruction number, return it. 207 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 208 if (It != InstNumbers.end()) 209 return It->second; 210 211 // Scan the whole block to get the instruction. This accumulates 212 // information for every interesting instruction in the block, in order to 213 // avoid gratuitus rescans. 214 const BasicBlock *BB = I->getParent(); 215 unsigned InstNo = 0; 216 for (const Instruction &BBI : *BB) 217 if (isInterestingInstruction(&BBI)) 218 InstNumbers[&BBI] = InstNo++; 219 It = InstNumbers.find(I); 220 221 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 222 return It->second; 223 } 224 225 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 226 227 void clear() { InstNumbers.clear(); } 228 }; 229 230 struct PromoteMem2Reg { 231 /// The alloca instructions being promoted. 232 std::vector<AllocaInst *> Allocas; 233 234 DominatorTree &DT; 235 DIBuilder DIB; 236 237 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 238 AssumptionCache *AC; 239 240 const SimplifyQuery SQ; 241 242 /// Reverse mapping of Allocas. 243 DenseMap<AllocaInst *, unsigned> AllocaLookup; 244 245 /// \brief The PhiNodes we're adding. 246 /// 247 /// That map is used to simplify some Phi nodes as we iterate over it, so 248 /// it should have deterministic iterators. We could use a MapVector, but 249 /// since we already maintain a map from BasicBlock* to a stable numbering 250 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 251 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 252 253 /// For each PHI node, keep track of which entry in Allocas it corresponds 254 /// to. 255 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 256 257 /// If we are updating an AliasSetTracker, then for each alloca that is of 258 /// pointer type, we keep track of what to copyValue to the inserted PHI 259 /// nodes here. 260 std::vector<Value *> PointerAllocaValues; 261 262 /// For each alloca, we keep track of the dbg.declare intrinsic that 263 /// describes it, if any, so that we can convert it to a dbg.value 264 /// intrinsic if the alloca gets promoted. 265 SmallVector<TinyPtrVector<DbgInfoIntrinsic *>, 8> AllocaDbgDeclares; 266 267 /// The set of basic blocks the renamer has already visited. 268 SmallPtrSet<BasicBlock *, 16> Visited; 269 270 /// Contains a stable numbering of basic blocks to avoid non-determinstic 271 /// behavior. 272 DenseMap<BasicBlock *, unsigned> BBNumbers; 273 274 /// Lazily compute the number of predecessors a block has. 275 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 276 277 public: 278 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 279 AssumptionCache *AC) 280 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 281 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 282 AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(), 283 nullptr, &DT, AC) {} 284 285 void run(); 286 287 private: 288 void RemoveFromAllocasList(unsigned &AllocaIdx) { 289 Allocas[AllocaIdx] = Allocas.back(); 290 Allocas.pop_back(); 291 --AllocaIdx; 292 } 293 294 unsigned getNumPreds(const BasicBlock *BB) { 295 unsigned &NP = BBNumPreds[BB]; 296 if (NP == 0) 297 NP = std::distance(pred_begin(BB), pred_end(BB)) + 1; 298 return NP - 1; 299 } 300 301 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 302 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 303 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 304 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 305 RenamePassData::ValVector &IncVals, 306 std::vector<RenamePassData> &Worklist); 307 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 308 }; 309 310 } // end anonymous namespace 311 312 /// Given a LoadInst LI this adds assume(LI != null) after it. 313 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { 314 Function *AssumeIntrinsic = 315 Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume); 316 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, 317 Constant::getNullValue(LI->getType())); 318 LoadNotNull->insertAfter(LI); 319 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); 320 CI->insertAfter(LoadNotNull); 321 AC->registerAssumption(CI); 322 } 323 324 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { 325 // Knowing that this alloca is promotable, we know that it's safe to kill all 326 // instructions except for load and store. 327 328 for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) { 329 Instruction *I = cast<Instruction>(*UI); 330 ++UI; 331 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 332 continue; 333 334 if (!I->getType()->isVoidTy()) { 335 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 336 // Follow the use/def chain to erase them now instead of leaving it for 337 // dead code elimination later. 338 for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) { 339 Instruction *Inst = cast<Instruction>(*UUI); 340 ++UUI; 341 Inst->eraseFromParent(); 342 } 343 } 344 I->eraseFromParent(); 345 } 346 } 347 348 /// \brief Rewrite as many loads as possible given a single store. 349 /// 350 /// When there is only a single store, we can use the domtree to trivially 351 /// replace all of the dominated loads with the stored value. Do so, and return 352 /// true if this has successfully promoted the alloca entirely. If this returns 353 /// false there were some loads which were not dominated by the single store 354 /// and thus must be phi-ed with undef. We fall back to the standard alloca 355 /// promotion algorithm in that case. 356 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, 357 LargeBlockInfo &LBI, const DataLayout &DL, 358 DominatorTree &DT, AssumptionCache *AC) { 359 StoreInst *OnlyStore = Info.OnlyStore; 360 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 361 BasicBlock *StoreBB = OnlyStore->getParent(); 362 int StoreIndex = -1; 363 364 // Clear out UsingBlocks. We will reconstruct it here if needed. 365 Info.UsingBlocks.clear(); 366 367 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 368 Instruction *UserInst = cast<Instruction>(*UI++); 369 if (!isa<LoadInst>(UserInst)) { 370 assert(UserInst == OnlyStore && "Should only have load/stores"); 371 continue; 372 } 373 LoadInst *LI = cast<LoadInst>(UserInst); 374 375 // Okay, if we have a load from the alloca, we want to replace it with the 376 // only value stored to the alloca. We can do this if the value is 377 // dominated by the store. If not, we use the rest of the mem2reg machinery 378 // to insert the phi nodes as needed. 379 if (!StoringGlobalVal) { // Non-instructions are always dominated. 380 if (LI->getParent() == StoreBB) { 381 // If we have a use that is in the same block as the store, compare the 382 // indices of the two instructions to see which one came first. If the 383 // load came before the store, we can't handle it. 384 if (StoreIndex == -1) 385 StoreIndex = LBI.getInstructionIndex(OnlyStore); 386 387 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 388 // Can't handle this load, bail out. 389 Info.UsingBlocks.push_back(StoreBB); 390 continue; 391 } 392 } else if (LI->getParent() != StoreBB && 393 !DT.dominates(StoreBB, LI->getParent())) { 394 // If the load and store are in different blocks, use BB dominance to 395 // check their relationships. If the store doesn't dom the use, bail 396 // out. 397 Info.UsingBlocks.push_back(LI->getParent()); 398 continue; 399 } 400 } 401 402 // Otherwise, we *can* safely rewrite this load. 403 Value *ReplVal = OnlyStore->getOperand(0); 404 // If the replacement value is the load, this must occur in unreachable 405 // code. 406 if (ReplVal == LI) 407 ReplVal = UndefValue::get(LI->getType()); 408 409 // If the load was marked as nonnull we don't want to lose 410 // that information when we erase this Load. So we preserve 411 // it with an assume. 412 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 413 !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) 414 addAssumeNonNull(AC, LI); 415 416 LI->replaceAllUsesWith(ReplVal); 417 LI->eraseFromParent(); 418 LBI.deleteValue(LI); 419 } 420 421 // Finally, after the scan, check to see if the store is all that is left. 422 if (!Info.UsingBlocks.empty()) 423 return false; // If not, we'll have to fall back for the remainder. 424 425 // Record debuginfo for the store and remove the declaration's 426 // debuginfo. 427 for (DbgInfoIntrinsic *DII : Info.DbgDeclares) { 428 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 429 ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB); 430 DII->eraseFromParent(); 431 LBI.deleteValue(DII); 432 } 433 // Remove the (now dead) store and alloca. 434 Info.OnlyStore->eraseFromParent(); 435 LBI.deleteValue(Info.OnlyStore); 436 437 AI->eraseFromParent(); 438 LBI.deleteValue(AI); 439 return true; 440 } 441 442 /// Many allocas are only used within a single basic block. If this is the 443 /// case, avoid traversing the CFG and inserting a lot of potentially useless 444 /// PHI nodes by just performing a single linear pass over the basic block 445 /// using the Alloca. 446 /// 447 /// If we cannot promote this alloca (because it is read before it is written), 448 /// return false. This is necessary in cases where, due to control flow, the 449 /// alloca is undefined only on some control flow paths. e.g. code like 450 /// this is correct in LLVM IR: 451 /// // A is an alloca with no stores so far 452 /// for (...) { 453 /// int t = *A; 454 /// if (!first_iteration) 455 /// use(t); 456 /// *A = 42; 457 /// } 458 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 459 LargeBlockInfo &LBI, 460 const DataLayout &DL, 461 DominatorTree &DT, 462 AssumptionCache *AC) { 463 // The trickiest case to handle is when we have large blocks. Because of this, 464 // this code is optimized assuming that large blocks happen. This does not 465 // significantly pessimize the small block case. This uses LargeBlockInfo to 466 // make it efficient to get the index of various operations in the block. 467 468 // Walk the use-def list of the alloca, getting the locations of all stores. 469 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>; 470 StoresByIndexTy StoresByIndex; 471 472 for (User *U : AI->users()) 473 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 474 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 475 476 // Sort the stores by their index, making it efficient to do a lookup with a 477 // binary search. 478 std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first()); 479 480 // Walk all of the loads from this alloca, replacing them with the nearest 481 // store above them, if any. 482 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { 483 LoadInst *LI = dyn_cast<LoadInst>(*UI++); 484 if (!LI) 485 continue; 486 487 unsigned LoadIdx = LBI.getInstructionIndex(LI); 488 489 // Find the nearest store that has a lower index than this load. 490 StoresByIndexTy::iterator I = 491 std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), 492 std::make_pair(LoadIdx, 493 static_cast<StoreInst *>(nullptr)), 494 less_first()); 495 if (I == StoresByIndex.begin()) { 496 if (StoresByIndex.empty()) 497 // If there are no stores, the load takes the undef value. 498 LI->replaceAllUsesWith(UndefValue::get(LI->getType())); 499 else 500 // There is no store before this load, bail out (load may be affected 501 // by the following stores - see main comment). 502 return false; 503 } else { 504 // Otherwise, there was a store before this load, the load takes its value. 505 // Note, if the load was marked as nonnull we don't want to lose that 506 // information when we erase it. So we preserve it with an assume. 507 Value *ReplVal = std::prev(I)->second->getOperand(0); 508 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 509 !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT)) 510 addAssumeNonNull(AC, LI); 511 512 LI->replaceAllUsesWith(ReplVal); 513 } 514 515 LI->eraseFromParent(); 516 LBI.deleteValue(LI); 517 } 518 519 // Remove the (now dead) stores and alloca. 520 while (!AI->use_empty()) { 521 StoreInst *SI = cast<StoreInst>(AI->user_back()); 522 // Record debuginfo for the store before removing it. 523 for (DbgInfoIntrinsic *DII : Info.DbgDeclares) { 524 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 525 ConvertDebugDeclareToDebugValue(DII, SI, DIB); 526 } 527 SI->eraseFromParent(); 528 LBI.deleteValue(SI); 529 } 530 531 AI->eraseFromParent(); 532 LBI.deleteValue(AI); 533 534 // The alloca's debuginfo can be removed as well. 535 for (DbgInfoIntrinsic *DII : Info.DbgDeclares) { 536 DII->eraseFromParent(); 537 LBI.deleteValue(DII); 538 } 539 540 ++NumLocalPromoted; 541 return true; 542 } 543 544 void PromoteMem2Reg::run() { 545 Function &F = *DT.getRoot()->getParent(); 546 547 AllocaDbgDeclares.resize(Allocas.size()); 548 549 AllocaInfo Info; 550 LargeBlockInfo LBI; 551 ForwardIDFCalculator IDF(DT); 552 553 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 554 AllocaInst *AI = Allocas[AllocaNum]; 555 556 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 557 assert(AI->getParent()->getParent() == &F && 558 "All allocas should be in the same function, which is same as DF!"); 559 560 removeLifetimeIntrinsicUsers(AI); 561 562 if (AI->use_empty()) { 563 // If there are no uses of the alloca, just delete it now. 564 AI->eraseFromParent(); 565 566 // Remove the alloca from the Allocas list, since it has been processed 567 RemoveFromAllocasList(AllocaNum); 568 ++NumDeadAlloca; 569 continue; 570 } 571 572 // Calculate the set of read and write-locations for each alloca. This is 573 // analogous to finding the 'uses' and 'definitions' of each variable. 574 Info.AnalyzeAlloca(AI); 575 576 // If there is only a single store to this value, replace any loads of 577 // it that are directly dominated by the definition with the value stored. 578 if (Info.DefiningBlocks.size() == 1) { 579 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { 580 // The alloca has been processed, move on. 581 RemoveFromAllocasList(AllocaNum); 582 ++NumSingleStore; 583 continue; 584 } 585 } 586 587 // If the alloca is only read and written in one basic block, just perform a 588 // linear sweep over the block to eliminate it. 589 if (Info.OnlyUsedInOneBlock && 590 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) { 591 // The alloca has been processed, move on. 592 RemoveFromAllocasList(AllocaNum); 593 continue; 594 } 595 596 // If we haven't computed a numbering for the BB's in the function, do so 597 // now. 598 if (BBNumbers.empty()) { 599 unsigned ID = 0; 600 for (auto &BB : F) 601 BBNumbers[&BB] = ID++; 602 } 603 604 // Remember the dbg.declare intrinsic describing this alloca, if any. 605 if (!Info.DbgDeclares.empty()) 606 AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares; 607 608 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 609 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 610 611 // At this point, we're committed to promoting the alloca using IDF's, and 612 // the standard SSA construction algorithm. Determine which blocks need PHI 613 // nodes and see if we can optimize out some work by avoiding insertion of 614 // dead phi nodes. 615 616 // Unique the set of defining blocks for efficient lookup. 617 SmallPtrSet<BasicBlock *, 32> DefBlocks; 618 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); 619 620 // Determine which blocks the value is live in. These are blocks which lead 621 // to uses. 622 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 623 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 624 625 // At this point, we're committed to promoting the alloca using IDF's, and 626 // the standard SSA construction algorithm. Determine which blocks need phi 627 // nodes and see if we can optimize out some work by avoiding insertion of 628 // dead phi nodes. 629 IDF.setLiveInBlocks(LiveInBlocks); 630 IDF.setDefiningBlocks(DefBlocks); 631 SmallVector<BasicBlock *, 32> PHIBlocks; 632 IDF.calculate(PHIBlocks); 633 if (PHIBlocks.size() > 1) 634 std::sort(PHIBlocks.begin(), PHIBlocks.end(), 635 [this](BasicBlock *A, BasicBlock *B) { 636 return BBNumbers.lookup(A) < BBNumbers.lookup(B); 637 }); 638 639 unsigned CurrentVersion = 0; 640 for (BasicBlock *BB : PHIBlocks) 641 QueuePhiNode(BB, AllocaNum, CurrentVersion); 642 } 643 644 if (Allocas.empty()) 645 return; // All of the allocas must have been trivial! 646 647 LBI.clear(); 648 649 // Set the incoming values for the basic block to be null values for all of 650 // the alloca's. We do this in case there is a load of a value that has not 651 // been stored yet. In this case, it will get this null value. 652 RenamePassData::ValVector Values(Allocas.size()); 653 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 654 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 655 656 // Walks all basic blocks in the function performing the SSA rename algorithm 657 // and inserting the phi nodes we marked as necessary 658 std::vector<RenamePassData> RenamePassWorkList; 659 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values)); 660 do { 661 RenamePassData RPD = std::move(RenamePassWorkList.back()); 662 RenamePassWorkList.pop_back(); 663 // RenamePass may add new worklist entries. 664 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList); 665 } while (!RenamePassWorkList.empty()); 666 667 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 668 Visited.clear(); 669 670 // Remove the allocas themselves from the function. 671 for (Instruction *A : Allocas) { 672 // If there are any uses of the alloca instructions left, they must be in 673 // unreachable basic blocks that were not processed by walking the dominator 674 // tree. Just delete the users now. 675 if (!A->use_empty()) 676 A->replaceAllUsesWith(UndefValue::get(A->getType())); 677 A->eraseFromParent(); 678 } 679 680 // Remove alloca's dbg.declare instrinsics from the function. 681 for (auto &Declares : AllocaDbgDeclares) 682 for (auto *DII : Declares) 683 DII->eraseFromParent(); 684 685 // Loop over all of the PHI nodes and see if there are any that we can get 686 // rid of because they merge all of the same incoming values. This can 687 // happen due to undef values coming into the PHI nodes. This process is 688 // iterative, because eliminating one PHI node can cause others to be removed. 689 bool EliminatedAPHI = true; 690 while (EliminatedAPHI) { 691 EliminatedAPHI = false; 692 693 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 694 // simplify and RAUW them as we go. If it was not, we could add uses to 695 // the values we replace with in a non-deterministic order, thus creating 696 // non-deterministic def->use chains. 697 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 698 I = NewPhiNodes.begin(), 699 E = NewPhiNodes.end(); 700 I != E;) { 701 PHINode *PN = I->second; 702 703 // If this PHI node merges one value and/or undefs, get the value. 704 if (Value *V = SimplifyInstruction(PN, SQ)) { 705 PN->replaceAllUsesWith(V); 706 PN->eraseFromParent(); 707 NewPhiNodes.erase(I++); 708 EliminatedAPHI = true; 709 continue; 710 } 711 ++I; 712 } 713 } 714 715 // At this point, the renamer has added entries to PHI nodes for all reachable 716 // code. Unfortunately, there may be unreachable blocks which the renamer 717 // hasn't traversed. If this is the case, the PHI nodes may not 718 // have incoming values for all predecessors. Loop over all PHI nodes we have 719 // created, inserting undef values if they are missing any incoming values. 720 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 721 I = NewPhiNodes.begin(), 722 E = NewPhiNodes.end(); 723 I != E; ++I) { 724 // We want to do this once per basic block. As such, only process a block 725 // when we find the PHI that is the first entry in the block. 726 PHINode *SomePHI = I->second; 727 BasicBlock *BB = SomePHI->getParent(); 728 if (&BB->front() != SomePHI) 729 continue; 730 731 // Only do work here if there the PHI nodes are missing incoming values. We 732 // know that all PHI nodes that were inserted in a block will have the same 733 // number of incoming values, so we can just check any of them. 734 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 735 continue; 736 737 // Get the preds for BB. 738 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 739 740 // Ok, now we know that all of the PHI nodes are missing entries for some 741 // basic blocks. Start by sorting the incoming predecessors for efficient 742 // access. 743 std::sort(Preds.begin(), Preds.end()); 744 745 // Now we loop through all BB's which have entries in SomePHI and remove 746 // them from the Preds list. 747 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 748 // Do a log(n) search of the Preds list for the entry we want. 749 SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound( 750 Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i)); 751 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 752 "PHI node has entry for a block which is not a predecessor!"); 753 754 // Remove the entry 755 Preds.erase(EntIt); 756 } 757 758 // At this point, the blocks left in the preds list must have dummy 759 // entries inserted into every PHI nodes for the block. Update all the phi 760 // nodes in this block that we are inserting (there could be phis before 761 // mem2reg runs). 762 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 763 BasicBlock::iterator BBI = BB->begin(); 764 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 765 SomePHI->getNumIncomingValues() == NumBadPreds) { 766 Value *UndefVal = UndefValue::get(SomePHI->getType()); 767 for (BasicBlock *Pred : Preds) 768 SomePHI->addIncoming(UndefVal, Pred); 769 } 770 } 771 772 NewPhiNodes.clear(); 773 } 774 775 /// \brief Determine which blocks the value is live in. 776 /// 777 /// These are blocks which lead to uses. Knowing this allows us to avoid 778 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 779 /// inserted phi nodes would be dead). 780 void PromoteMem2Reg::ComputeLiveInBlocks( 781 AllocaInst *AI, AllocaInfo &Info, 782 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 783 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 784 // To determine liveness, we must iterate through the predecessors of blocks 785 // where the def is live. Blocks are added to the worklist if we need to 786 // check their predecessors. Start with all the using blocks. 787 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 788 Info.UsingBlocks.end()); 789 790 // If any of the using blocks is also a definition block, check to see if the 791 // definition occurs before or after the use. If it happens before the use, 792 // the value isn't really live-in. 793 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 794 BasicBlock *BB = LiveInBlockWorklist[i]; 795 if (!DefBlocks.count(BB)) 796 continue; 797 798 // Okay, this is a block that both uses and defines the value. If the first 799 // reference to the alloca is a def (store), then we know it isn't live-in. 800 for (BasicBlock::iterator I = BB->begin();; ++I) { 801 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 802 if (SI->getOperand(1) != AI) 803 continue; 804 805 // We found a store to the alloca before a load. The alloca is not 806 // actually live-in here. 807 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 808 LiveInBlockWorklist.pop_back(); 809 --i; 810 --e; 811 break; 812 } 813 814 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 815 if (LI->getOperand(0) != AI) 816 continue; 817 818 // Okay, we found a load before a store to the alloca. It is actually 819 // live into this block. 820 break; 821 } 822 } 823 } 824 825 // Now that we have a set of blocks where the phi is live-in, recursively add 826 // their predecessors until we find the full region the value is live. 827 while (!LiveInBlockWorklist.empty()) { 828 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 829 830 // The block really is live in here, insert it into the set. If already in 831 // the set, then it has already been processed. 832 if (!LiveInBlocks.insert(BB).second) 833 continue; 834 835 // Since the value is live into BB, it is either defined in a predecessor or 836 // live into it to. Add the preds to the worklist unless they are a 837 // defining block. 838 for (BasicBlock *P : predecessors(BB)) { 839 // The value is not live into a predecessor if it defines the value. 840 if (DefBlocks.count(P)) 841 continue; 842 843 // Otherwise it is, add to the worklist. 844 LiveInBlockWorklist.push_back(P); 845 } 846 } 847 } 848 849 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca. 850 /// 851 /// Returns true if there wasn't already a phi-node for that variable 852 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 853 unsigned &Version) { 854 // Look up the basic-block in question. 855 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 856 857 // If the BB already has a phi node added for the i'th alloca then we're done! 858 if (PN) 859 return false; 860 861 // Create a PhiNode using the dereferenced type... and add the phi-node to the 862 // BasicBlock. 863 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 864 Allocas[AllocaNo]->getName() + "." + Twine(Version++), 865 &BB->front()); 866 ++NumPHIInsert; 867 PhiToAllocaMap[PN] = AllocaNo; 868 return true; 869 } 870 871 /// \brief Recursively traverse the CFG of the function, renaming loads and 872 /// stores to the allocas which we are promoting. 873 /// 874 /// IncomingVals indicates what value each Alloca contains on exit from the 875 /// predecessor block Pred. 876 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 877 RenamePassData::ValVector &IncomingVals, 878 std::vector<RenamePassData> &Worklist) { 879 NextIteration: 880 // If we are inserting any phi nodes into this BB, they will already be in the 881 // block. 882 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 883 // If we have PHI nodes to update, compute the number of edges from Pred to 884 // BB. 885 if (PhiToAllocaMap.count(APN)) { 886 // We want to be able to distinguish between PHI nodes being inserted by 887 // this invocation of mem2reg from those phi nodes that already existed in 888 // the IR before mem2reg was run. We determine that APN is being inserted 889 // because it is missing incoming edges. All other PHI nodes being 890 // inserted by this pass of mem2reg will have the same number of incoming 891 // operands so far. Remember this count. 892 unsigned NewPHINumOperands = APN->getNumOperands(); 893 894 unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB); 895 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 896 897 // Add entries for all the phis. 898 BasicBlock::iterator PNI = BB->begin(); 899 do { 900 unsigned AllocaNo = PhiToAllocaMap[APN]; 901 902 // Add N incoming values to the PHI node. 903 for (unsigned i = 0; i != NumEdges; ++i) 904 APN->addIncoming(IncomingVals[AllocaNo], Pred); 905 906 // The currently active variable for this block is now the PHI. 907 IncomingVals[AllocaNo] = APN; 908 for (DbgInfoIntrinsic *DII : AllocaDbgDeclares[AllocaNo]) 909 ConvertDebugDeclareToDebugValue(DII, APN, DIB); 910 911 // Get the next phi node. 912 ++PNI; 913 APN = dyn_cast<PHINode>(PNI); 914 if (!APN) 915 break; 916 917 // Verify that it is missing entries. If not, it is not being inserted 918 // by this mem2reg invocation so we want to ignore it. 919 } while (APN->getNumOperands() == NewPHINumOperands); 920 } 921 } 922 923 // Don't revisit blocks. 924 if (!Visited.insert(BB).second) 925 return; 926 927 for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) { 928 Instruction *I = &*II++; // get the instruction, increment iterator 929 930 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 931 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 932 if (!Src) 933 continue; 934 935 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 936 if (AI == AllocaLookup.end()) 937 continue; 938 939 Value *V = IncomingVals[AI->second]; 940 941 // If the load was marked as nonnull we don't want to lose 942 // that information when we erase this Load. So we preserve 943 // it with an assume. 944 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 945 !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT)) 946 addAssumeNonNull(AC, LI); 947 948 // Anything using the load now uses the current value. 949 LI->replaceAllUsesWith(V); 950 BB->getInstList().erase(LI); 951 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 952 // Delete this instruction and mark the name as the current holder of the 953 // value 954 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 955 if (!Dest) 956 continue; 957 958 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 959 if (ai == AllocaLookup.end()) 960 continue; 961 962 // what value were we writing? 963 IncomingVals[ai->second] = SI->getOperand(0); 964 // Record debuginfo for the store before removing it. 965 for (DbgInfoIntrinsic *DII : AllocaDbgDeclares[ai->second]) 966 ConvertDebugDeclareToDebugValue(DII, SI, DIB); 967 BB->getInstList().erase(SI); 968 } 969 } 970 971 // 'Recurse' to our successors. 972 succ_iterator I = succ_begin(BB), E = succ_end(BB); 973 if (I == E) 974 return; 975 976 // Keep track of the successors so we don't visit the same successor twice 977 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 978 979 // Handle the first successor without using the worklist. 980 VisitedSuccs.insert(*I); 981 Pred = BB; 982 BB = *I; 983 ++I; 984 985 for (; I != E; ++I) 986 if (VisitedSuccs.insert(*I).second) 987 Worklist.emplace_back(*I, Pred, IncomingVals); 988 989 goto NextIteration; 990 } 991 992 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 993 AssumptionCache *AC) { 994 // If there is nothing to do, bail out... 995 if (Allocas.empty()) 996 return; 997 998 PromoteMem2Reg(Allocas, DT, AC).run(); 999 } 1000