1 //===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation is designed for use by code generators which do not yet 11 // support stack unwinding. This pass supports two models of exception handling 12 // lowering, the 'cheap' support and the 'expensive' support. 13 // 14 // 'Cheap' exception handling support gives the program the ability to execute 15 // any program which does not "throw an exception", by turning 'invoke' 16 // instructions into calls and by turning 'unwind' instructions into calls to 17 // abort(). If the program does dynamically use the unwind instruction, the 18 // program will print a message then abort. 19 // 20 // 'Expensive' exception handling support gives the full exception handling 21 // support to the program at the cost of making the 'invoke' instruction 22 // really expensive. It basically inserts setjmp/longjmp calls to emulate the 23 // exception handling as necessary. 24 // 25 // Because the 'expensive' support slows down programs a lot, and EH is only 26 // used for a subset of the programs, it must be specifically enabled by an 27 // option. 28 // 29 // Note that after this pass runs the CFG is not entirely accurate (exceptional 30 // control flow edges are not correct anymore) so only very simple things should 31 // be done after the lowerinvoke pass has run (like generation of native code). 32 // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't 33 // support the invoke instruction yet" lowering pass. 34 // 35 //===----------------------------------------------------------------------===// 36 37 #define DEBUG_TYPE "lowerinvoke" 38 #include "llvm/Transforms/Scalar.h" 39 #include "llvm/Constants.h" 40 #include "llvm/DerivedTypes.h" 41 #include "llvm/Instructions.h" 42 #include "llvm/Intrinsics.h" 43 #include "llvm/LLVMContext.h" 44 #include "llvm/Module.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include <csetjmp> 53 #include <set> 54 using namespace llvm; 55 56 STATISTIC(NumInvokes, "Number of invokes replaced"); 57 STATISTIC(NumUnwinds, "Number of unwinds replaced"); 58 STATISTIC(NumSpilled, "Number of registers live across unwind edges"); 59 60 static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support", 61 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code")); 62 63 namespace { 64 class LowerInvoke : public FunctionPass { 65 // Used for both models. 66 Constant *AbortFn; 67 68 // Used for expensive EH support. 69 const Type *JBLinkTy; 70 GlobalVariable *JBListHead; 71 Constant *SetJmpFn, *LongJmpFn, *StackSaveFn, *StackRestoreFn; 72 bool useExpensiveEHSupport; 73 74 // We peek in TLI to grab the target's jmp_buf size and alignment 75 const TargetLowering *TLI; 76 77 public: 78 static char ID; // Pass identification, replacement for typeid 79 explicit LowerInvoke(const TargetLowering *tli = NULL, 80 bool useExpensiveEHSupport = ExpensiveEHSupport) 81 : FunctionPass(ID), useExpensiveEHSupport(useExpensiveEHSupport), 82 TLI(tli) { } 83 bool doInitialization(Module &M); 84 bool runOnFunction(Function &F); 85 86 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 87 // This is a cluster of orthogonal Transforms 88 AU.addPreserved("mem2reg"); 89 AU.addPreservedID(LowerSwitchID); 90 } 91 92 private: 93 bool insertCheapEHSupport(Function &F); 94 void splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*>&Invokes); 95 void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, 96 AllocaInst *InvokeNum, AllocaInst *StackPtr, 97 SwitchInst *CatchSwitch); 98 bool insertExpensiveEHSupport(Function &F); 99 }; 100 } 101 102 char LowerInvoke::ID = 0; 103 INITIALIZE_PASS(LowerInvoke, "lowerinvoke", 104 "Lower invoke and unwind, for unwindless code generators", 105 false, false); 106 107 char &llvm::LowerInvokePassID = LowerInvoke::ID; 108 109 // Public Interface To the LowerInvoke pass. 110 FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) { 111 return new LowerInvoke(TLI, ExpensiveEHSupport); 112 } 113 FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI, 114 bool useExpensiveEHSupport) { 115 return new LowerInvoke(TLI, useExpensiveEHSupport); 116 } 117 118 // doInitialization - Make sure that there is a prototype for abort in the 119 // current module. 120 bool LowerInvoke::doInitialization(Module &M) { 121 const Type *VoidPtrTy = 122 Type::getInt8PtrTy(M.getContext()); 123 if (useExpensiveEHSupport) { 124 // Insert a type for the linked list of jump buffers. 125 unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0; 126 JBSize = JBSize ? JBSize : 200; 127 const Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize); 128 129 { // The type is recursive, so use a type holder. 130 std::vector<const Type*> Elements; 131 Elements.push_back(JmpBufTy); 132 OpaqueType *OT = OpaqueType::get(M.getContext()); 133 Elements.push_back(PointerType::getUnqual(OT)); 134 PATypeHolder JBLType(StructType::get(M.getContext(), Elements)); 135 OT->refineAbstractTypeTo(JBLType.get()); // Complete the cycle. 136 JBLinkTy = JBLType.get(); 137 M.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy); 138 } 139 140 const Type *PtrJBList = PointerType::getUnqual(JBLinkTy); 141 142 // Now that we've done that, insert the jmpbuf list head global, unless it 143 // already exists. 144 if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) { 145 JBListHead = new GlobalVariable(M, PtrJBList, false, 146 GlobalValue::LinkOnceAnyLinkage, 147 Constant::getNullValue(PtrJBList), 148 "llvm.sjljeh.jblist"); 149 } 150 151 // VisualStudio defines setjmp as _setjmp via #include <csetjmp> / <setjmp.h>, 152 // so it looks like Intrinsic::_setjmp 153 #if defined(_MSC_VER) && defined(setjmp) 154 #define setjmp_undefined_for_visual_studio 155 #undef setjmp 156 #endif 157 158 SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp); 159 160 #if defined(_MSC_VER) && defined(setjmp_undefined_for_visual_studio) 161 // let's return it to _setjmp state in case anyone ever needs it after this 162 // point under VisualStudio 163 #define setjmp _setjmp 164 #endif 165 166 LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp); 167 StackSaveFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave); 168 StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore); 169 } 170 171 // We need the 'write' and 'abort' functions for both models. 172 AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()), 173 (Type *)0); 174 return true; 175 } 176 177 bool LowerInvoke::insertCheapEHSupport(Function &F) { 178 bool Changed = false; 179 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 180 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 181 SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3); 182 // Insert a normal call instruction... 183 CallInst *NewCall = CallInst::Create(II->getCalledValue(), 184 CallArgs.begin(), CallArgs.end(), 185 "",II); 186 NewCall->takeName(II); 187 NewCall->setCallingConv(II->getCallingConv()); 188 NewCall->setAttributes(II->getAttributes()); 189 II->replaceAllUsesWith(NewCall); 190 191 // Insert an unconditional branch to the normal destination. 192 BranchInst::Create(II->getNormalDest(), II); 193 194 // Remove any PHI node entries from the exception destination. 195 II->getUnwindDest()->removePredecessor(BB); 196 197 // Remove the invoke instruction now. 198 BB->getInstList().erase(II); 199 200 ++NumInvokes; Changed = true; 201 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 202 // Insert a call to abort() 203 CallInst::Create(AbortFn, "", UI)->setTailCall(); 204 205 // Insert a return instruction. This really should be a "barrier", as it 206 // is unreachable. 207 ReturnInst::Create(F.getContext(), 208 F.getReturnType()->isVoidTy() ? 209 0 : Constant::getNullValue(F.getReturnType()), UI); 210 211 // Remove the unwind instruction now. 212 BB->getInstList().erase(UI); 213 214 ++NumUnwinds; Changed = true; 215 } 216 return Changed; 217 } 218 219 /// rewriteExpensiveInvoke - Insert code and hack the function to replace the 220 /// specified invoke instruction with a call. 221 void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, 222 AllocaInst *InvokeNum, 223 AllocaInst *StackPtr, 224 SwitchInst *CatchSwitch) { 225 ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()), 226 InvokeNo); 227 228 // If the unwind edge has phi nodes, split the edge. 229 if (isa<PHINode>(II->getUnwindDest()->begin())) { 230 SplitCriticalEdge(II, 1, this); 231 232 // If there are any phi nodes left, they must have a single predecessor. 233 while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) { 234 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 235 PN->eraseFromParent(); 236 } 237 } 238 239 // Insert a store of the invoke num before the invoke and store zero into the 240 // location afterward. 241 new StoreInst(InvokeNoC, InvokeNum, true, II); // volatile 242 243 // Insert a store of the stack ptr before the invoke, so we can restore it 244 // later in the exception case. 245 CallInst* StackSaveRet = CallInst::Create(StackSaveFn, "ssret", II); 246 new StoreInst(StackSaveRet, StackPtr, true, II); // volatile 247 248 BasicBlock::iterator NI = II->getNormalDest()->getFirstNonPHI(); 249 // nonvolatile. 250 new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())), 251 InvokeNum, false, NI); 252 253 Instruction* StackPtrLoad = new LoadInst(StackPtr, "stackptr.restore", true, 254 II->getUnwindDest()->getFirstNonPHI() 255 ); 256 CallInst::Create(StackRestoreFn, StackPtrLoad, "")->insertAfter(StackPtrLoad); 257 258 // Add a switch case to our unwind block. 259 CatchSwitch->addCase(InvokeNoC, II->getUnwindDest()); 260 261 // Insert a normal call instruction. 262 SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3); 263 CallInst *NewCall = CallInst::Create(II->getCalledValue(), 264 CallArgs.begin(), CallArgs.end(), "", 265 II); 266 NewCall->takeName(II); 267 NewCall->setCallingConv(II->getCallingConv()); 268 NewCall->setAttributes(II->getAttributes()); 269 II->replaceAllUsesWith(NewCall); 270 271 // Replace the invoke with an uncond branch. 272 BranchInst::Create(II->getNormalDest(), NewCall->getParent()); 273 II->eraseFromParent(); 274 } 275 276 /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until 277 /// we reach blocks we've already seen. 278 static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) { 279 if (!LiveBBs.insert(BB).second) return; // already been here. 280 281 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 282 MarkBlocksLiveIn(*PI, LiveBBs); 283 } 284 285 // First thing we need to do is scan the whole function for values that are 286 // live across unwind edges. Each value that is live across an unwind edge 287 // we spill into a stack location, guaranteeing that there is nothing live 288 // across the unwind edge. This process also splits all critical edges 289 // coming out of invoke's. 290 void LowerInvoke:: 291 splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*> &Invokes) { 292 // First step, split all critical edges from invoke instructions. 293 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { 294 InvokeInst *II = Invokes[i]; 295 SplitCriticalEdge(II, 0, this); 296 SplitCriticalEdge(II, 1, this); 297 assert(!isa<PHINode>(II->getNormalDest()) && 298 !isa<PHINode>(II->getUnwindDest()) && 299 "critical edge splitting left single entry phi nodes?"); 300 } 301 302 Function *F = Invokes.back()->getParent()->getParent(); 303 304 // To avoid having to handle incoming arguments specially, we lower each arg 305 // to a copy instruction in the entry block. This ensures that the argument 306 // value itself cannot be live across the entry block. 307 BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin(); 308 while (isa<AllocaInst>(AfterAllocaInsertPt) && 309 isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize())) 310 ++AfterAllocaInsertPt; 311 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 312 AI != E; ++AI) { 313 const Type *Ty = AI->getType(); 314 // Aggregate types can't be cast, but are legal argument types, so we have 315 // to handle them differently. We use an extract/insert pair as a 316 // lightweight method to achieve the same goal. 317 if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 318 Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt); 319 Instruction *NI = InsertValueInst::Create(AI, EI, 0); 320 NI->insertAfter(EI); 321 AI->replaceAllUsesWith(NI); 322 // Set the operand of the instructions back to the AllocaInst. 323 EI->setOperand(0, AI); 324 NI->setOperand(0, AI); 325 } else { 326 // This is always a no-op cast because we're casting AI to AI->getType() 327 // so src and destination types are identical. BitCast is the only 328 // possibility. 329 CastInst *NC = new BitCastInst( 330 AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt); 331 AI->replaceAllUsesWith(NC); 332 // Set the operand of the cast instruction back to the AllocaInst. 333 // Normally it's forbidden to replace a CastInst's operand because it 334 // could cause the opcode to reflect an illegal conversion. However, 335 // we're replacing it here with the same value it was constructed with. 336 // We do this because the above replaceAllUsesWith() clobbered the 337 // operand, but we want this one to remain. 338 NC->setOperand(0, AI); 339 } 340 } 341 342 // Finally, scan the code looking for instructions with bad live ranges. 343 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 344 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { 345 // Ignore obvious cases we don't have to handle. In particular, most 346 // instructions either have no uses or only have a single use inside the 347 // current block. Ignore them quickly. 348 Instruction *Inst = II; 349 if (Inst->use_empty()) continue; 350 if (Inst->hasOneUse() && 351 cast<Instruction>(Inst->use_back())->getParent() == BB && 352 !isa<PHINode>(Inst->use_back())) continue; 353 354 // If this is an alloca in the entry block, it's not a real register 355 // value. 356 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) 357 if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin()) 358 continue; 359 360 // Avoid iterator invalidation by copying users to a temporary vector. 361 SmallVector<Instruction*,16> Users; 362 for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end(); 363 UI != E; ++UI) { 364 Instruction *User = cast<Instruction>(*UI); 365 if (User->getParent() != BB || isa<PHINode>(User)) 366 Users.push_back(User); 367 } 368 369 // Scan all of the uses and see if the live range is live across an unwind 370 // edge. If we find a use live across an invoke edge, create an alloca 371 // and spill the value. 372 std::set<InvokeInst*> InvokesWithStoreInserted; 373 374 // Find all of the blocks that this value is live in. 375 std::set<BasicBlock*> LiveBBs; 376 LiveBBs.insert(Inst->getParent()); 377 while (!Users.empty()) { 378 Instruction *U = Users.back(); 379 Users.pop_back(); 380 381 if (!isa<PHINode>(U)) { 382 MarkBlocksLiveIn(U->getParent(), LiveBBs); 383 } else { 384 // Uses for a PHI node occur in their predecessor block. 385 PHINode *PN = cast<PHINode>(U); 386 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 387 if (PN->getIncomingValue(i) == Inst) 388 MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs); 389 } 390 } 391 392 // Now that we know all of the blocks that this thing is live in, see if 393 // it includes any of the unwind locations. 394 bool NeedsSpill = false; 395 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { 396 BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest(); 397 if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) { 398 NeedsSpill = true; 399 } 400 } 401 402 // If we decided we need a spill, do it. 403 if (NeedsSpill) { 404 ++NumSpilled; 405 DemoteRegToStack(*Inst, true); 406 } 407 } 408 } 409 410 bool LowerInvoke::insertExpensiveEHSupport(Function &F) { 411 SmallVector<ReturnInst*,16> Returns; 412 SmallVector<UnwindInst*,16> Unwinds; 413 SmallVector<InvokeInst*,16> Invokes; 414 415 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 416 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 417 // Remember all return instructions in case we insert an invoke into this 418 // function. 419 Returns.push_back(RI); 420 } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 421 Invokes.push_back(II); 422 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 423 Unwinds.push_back(UI); 424 } 425 426 if (Unwinds.empty() && Invokes.empty()) return false; 427 428 NumInvokes += Invokes.size(); 429 NumUnwinds += Unwinds.size(); 430 431 // TODO: This is not an optimal way to do this. In particular, this always 432 // inserts setjmp calls into the entries of functions with invoke instructions 433 // even though there are possibly paths through the function that do not 434 // execute any invokes. In particular, for functions with early exits, e.g. 435 // the 'addMove' method in hexxagon, it would be nice to not have to do the 436 // setjmp stuff on the early exit path. This requires a bit of dataflow, but 437 // would not be too hard to do. 438 439 // If we have an invoke instruction, insert a setjmp that dominates all 440 // invokes. After the setjmp, use a cond branch that goes to the original 441 // code path on zero, and to a designated 'catch' block of nonzero. 442 Value *OldJmpBufPtr = 0; 443 if (!Invokes.empty()) { 444 // First thing we need to do is scan the whole function for values that are 445 // live across unwind edges. Each value that is live across an unwind edge 446 // we spill into a stack location, guaranteeing that there is nothing live 447 // across the unwind edge. This process also splits all critical edges 448 // coming out of invoke's. 449 splitLiveRangesLiveAcrossInvokes(Invokes); 450 451 BasicBlock *EntryBB = F.begin(); 452 453 // Create an alloca for the incoming jump buffer ptr and the new jump buffer 454 // that needs to be restored on all exits from the function. This is an 455 // alloca because the value needs to be live across invokes. 456 unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0; 457 AllocaInst *JmpBuf = 458 new AllocaInst(JBLinkTy, 0, Align, 459 "jblink", F.begin()->begin()); 460 461 Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())), 462 ConstantInt::get(Type::getInt32Ty(F.getContext()), 1) }; 463 OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, &Idx[0], &Idx[2], 464 "OldBuf", 465 EntryBB->getTerminator()); 466 467 // Copy the JBListHead to the alloca. 468 Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true, 469 EntryBB->getTerminator()); 470 new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator()); 471 472 // Add the new jumpbuf to the list. 473 new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator()); 474 475 // Create the catch block. The catch block is basically a big switch 476 // statement that goes to all of the invoke catch blocks. 477 BasicBlock *CatchBB = 478 BasicBlock::Create(F.getContext(), "setjmp.catch", &F); 479 480 // Create an alloca which keeps track of the stack pointer before every 481 // invoke, this allows us to properly restore the stack pointer after 482 // long jumping. 483 AllocaInst *StackPtr = new AllocaInst(Type::getInt8PtrTy(F.getContext()), 0, 484 "stackptr", EntryBB->begin()); 485 486 // Create an alloca which keeps track of which invoke is currently 487 // executing. For normal calls it contains zero. 488 AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0, 489 "invokenum",EntryBB->begin()); 490 new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0), 491 InvokeNum, true, EntryBB->getTerminator()); 492 493 // Insert a load in the Catch block, and a switch on its value. By default, 494 // we go to a block that just does an unwind (which is the correct action 495 // for a standard call). 496 BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F); 497 Unwinds.push_back(new UnwindInst(F.getContext(), UnwindBB)); 498 499 Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB); 500 SwitchInst *CatchSwitch = 501 SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB); 502 503 // Now that things are set up, insert the setjmp call itself. 504 505 // Split the entry block to insert the conditional branch for the setjmp. 506 BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(), 507 "setjmp.cont"); 508 509 Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0); 510 Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, &Idx[0], &Idx[2], 511 "TheJmpBuf", 512 EntryBB->getTerminator()); 513 JmpBufPtr = new BitCastInst(JmpBufPtr, 514 Type::getInt8PtrTy(F.getContext()), 515 "tmp", EntryBB->getTerminator()); 516 Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret", 517 EntryBB->getTerminator()); 518 519 // Compare the return value to zero. 520 Value *IsNormal = new ICmpInst(EntryBB->getTerminator(), 521 ICmpInst::ICMP_EQ, SJRet, 522 Constant::getNullValue(SJRet->getType()), 523 "notunwind"); 524 // Nuke the uncond branch. 525 EntryBB->getTerminator()->eraseFromParent(); 526 527 // Put in a new condbranch in its place. 528 BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB); 529 530 // At this point, we are all set up, rewrite each invoke instruction. 531 for (unsigned i = 0, e = Invokes.size(); i != e; ++i) 532 rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, StackPtr, CatchSwitch); 533 } 534 535 // We know that there is at least one unwind. 536 537 // Create three new blocks, the block to load the jmpbuf ptr and compare 538 // against null, the block to do the longjmp, and the error block for if it 539 // is null. Add them at the end of the function because they are not hot. 540 BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(), 541 "dounwind", &F); 542 BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F); 543 BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F); 544 545 // If this function contains an invoke, restore the old jumpbuf ptr. 546 Value *BufPtr; 547 if (OldJmpBufPtr) { 548 // Before the return, insert a copy from the saved value to the new value. 549 BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler); 550 new StoreInst(BufPtr, JBListHead, UnwindHandler); 551 } else { 552 BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler); 553 } 554 555 // Load the JBList, if it's null, then there was no catch! 556 Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr, 557 Constant::getNullValue(BufPtr->getType()), 558 "notnull"); 559 BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler); 560 561 // Create the block to do the longjmp. 562 // Get a pointer to the jmpbuf and longjmp. 563 Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())), 564 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) }; 565 Idx[0] = GetElementPtrInst::Create(BufPtr, &Idx[0], &Idx[2], "JmpBuf", 566 UnwindBlock); 567 Idx[0] = new BitCastInst(Idx[0], 568 Type::getInt8PtrTy(F.getContext()), 569 "tmp", UnwindBlock); 570 Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1); 571 CallInst::Create(LongJmpFn, &Idx[0], &Idx[2], "", UnwindBlock); 572 new UnreachableInst(F.getContext(), UnwindBlock); 573 574 // Set up the term block ("throw without a catch"). 575 new UnreachableInst(F.getContext(), TermBlock); 576 577 // Insert a call to abort() 578 CallInst::Create(AbortFn, "", 579 TermBlock->getTerminator())->setTailCall(); 580 581 582 // Replace all unwinds with a branch to the unwind handler. 583 for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) { 584 BranchInst::Create(UnwindHandler, Unwinds[i]); 585 Unwinds[i]->eraseFromParent(); 586 } 587 588 // Finally, for any returns from this function, if this function contains an 589 // invoke, restore the old jmpbuf pointer to its input value. 590 if (OldJmpBufPtr) { 591 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 592 ReturnInst *R = Returns[i]; 593 594 // Before the return, insert a copy from the saved value to the new value. 595 Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R); 596 new StoreInst(OldBuf, JBListHead, true, R); 597 } 598 } 599 600 return true; 601 } 602 603 bool LowerInvoke::runOnFunction(Function &F) { 604 if (useExpensiveEHSupport) 605 return insertExpensiveEHSupport(F); 606 else 607 return insertCheapEHSupport(F); 608 } 609