1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines common loop utility functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/LoopUtils.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/LoopPass.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
23 #include "llvm/Analysis/ScalarEvolutionExpander.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
37 
38 #define DEBUG_TYPE "loop-utils"
39 
40 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
41                                         SmallPtrSetImpl<Instruction *> &Set) {
42   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
43     if (!Set.count(dyn_cast<Instruction>(*Use)))
44       return false;
45   return true;
46 }
47 
48 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
49   switch (Kind) {
50   default:
51     break;
52   case RK_IntegerAdd:
53   case RK_IntegerMult:
54   case RK_IntegerOr:
55   case RK_IntegerAnd:
56   case RK_IntegerXor:
57   case RK_IntegerMinMax:
58     return true;
59   }
60   return false;
61 }
62 
63 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
64   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
65 }
66 
67 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
68   switch (Kind) {
69   default:
70     break;
71   case RK_IntegerAdd:
72   case RK_IntegerMult:
73   case RK_FloatAdd:
74   case RK_FloatMult:
75     return true;
76   }
77   return false;
78 }
79 
80 Instruction *
81 RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
82                                      SmallPtrSetImpl<Instruction *> &Visited,
83                                      SmallPtrSetImpl<Instruction *> &CI) {
84   if (!Phi->hasOneUse())
85     return Phi;
86 
87   const APInt *M = nullptr;
88   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
89 
90   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
91   // with a new integer type of the corresponding bit width.
92   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
93     int32_t Bits = (*M + 1).exactLogBase2();
94     if (Bits > 0) {
95       RT = IntegerType::get(Phi->getContext(), Bits);
96       Visited.insert(Phi);
97       CI.insert(J);
98       return J;
99     }
100   }
101   return Phi;
102 }
103 
104 bool RecurrenceDescriptor::getSourceExtensionKind(
105     Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
106     SmallPtrSetImpl<Instruction *> &Visited,
107     SmallPtrSetImpl<Instruction *> &CI) {
108 
109   SmallVector<Instruction *, 8> Worklist;
110   bool FoundOneOperand = false;
111   unsigned DstSize = RT->getPrimitiveSizeInBits();
112   Worklist.push_back(Exit);
113 
114   // Traverse the instructions in the reduction expression, beginning with the
115   // exit value.
116   while (!Worklist.empty()) {
117     Instruction *I = Worklist.pop_back_val();
118     for (Use &U : I->operands()) {
119 
120       // Terminate the traversal if the operand is not an instruction, or we
121       // reach the starting value.
122       Instruction *J = dyn_cast<Instruction>(U.get());
123       if (!J || J == Start)
124         continue;
125 
126       // Otherwise, investigate the operation if it is also in the expression.
127       if (Visited.count(J)) {
128         Worklist.push_back(J);
129         continue;
130       }
131 
132       // If the operand is not in Visited, it is not a reduction operation, but
133       // it does feed into one. Make sure it is either a single-use sign- or
134       // zero-extend instruction.
135       CastInst *Cast = dyn_cast<CastInst>(J);
136       bool IsSExtInst = isa<SExtInst>(J);
137       if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
138         return false;
139 
140       // Ensure the source type of the extend is no larger than the reduction
141       // type. It is not necessary for the types to be identical.
142       unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
143       if (SrcSize > DstSize)
144         return false;
145 
146       // Furthermore, ensure that all such extends are of the same kind.
147       if (FoundOneOperand) {
148         if (IsSigned != IsSExtInst)
149           return false;
150       } else {
151         FoundOneOperand = true;
152         IsSigned = IsSExtInst;
153       }
154 
155       // Lastly, if the source type of the extend matches the reduction type,
156       // add the extend to CI so that we can avoid accounting for it in the
157       // cost model.
158       if (SrcSize == DstSize)
159         CI.insert(Cast);
160     }
161   }
162   return true;
163 }
164 
165 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
166                                            Loop *TheLoop, bool HasFunNoNaNAttr,
167                                            RecurrenceDescriptor &RedDes) {
168   if (Phi->getNumIncomingValues() != 2)
169     return false;
170 
171   // Reduction variables are only found in the loop header block.
172   if (Phi->getParent() != TheLoop->getHeader())
173     return false;
174 
175   // Obtain the reduction start value from the value that comes from the loop
176   // preheader.
177   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
178 
179   // ExitInstruction is the single value which is used outside the loop.
180   // We only allow for a single reduction value to be used outside the loop.
181   // This includes users of the reduction, variables (which form a cycle
182   // which ends in the phi node).
183   Instruction *ExitInstruction = nullptr;
184   // Indicates that we found a reduction operation in our scan.
185   bool FoundReduxOp = false;
186 
187   // We start with the PHI node and scan for all of the users of this
188   // instruction. All users must be instructions that can be used as reduction
189   // variables (such as ADD). We must have a single out-of-block user. The cycle
190   // must include the original PHI.
191   bool FoundStartPHI = false;
192 
193   // To recognize min/max patterns formed by a icmp select sequence, we store
194   // the number of instruction we saw from the recognized min/max pattern,
195   //  to make sure we only see exactly the two instructions.
196   unsigned NumCmpSelectPatternInst = 0;
197   InstDesc ReduxDesc(false, nullptr);
198 
199   // Data used for determining if the recurrence has been type-promoted.
200   Type *RecurrenceType = Phi->getType();
201   SmallPtrSet<Instruction *, 4> CastInsts;
202   Instruction *Start = Phi;
203   bool IsSigned = false;
204 
205   SmallPtrSet<Instruction *, 8> VisitedInsts;
206   SmallVector<Instruction *, 8> Worklist;
207 
208   // Return early if the recurrence kind does not match the type of Phi. If the
209   // recurrence kind is arithmetic, we attempt to look through AND operations
210   // resulting from the type promotion performed by InstCombine.  Vector
211   // operations are not limited to the legal integer widths, so we may be able
212   // to evaluate the reduction in the narrower width.
213   if (RecurrenceType->isFloatingPointTy()) {
214     if (!isFloatingPointRecurrenceKind(Kind))
215       return false;
216   } else {
217     if (!isIntegerRecurrenceKind(Kind))
218       return false;
219     if (isArithmeticRecurrenceKind(Kind))
220       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
221   }
222 
223   Worklist.push_back(Start);
224   VisitedInsts.insert(Start);
225 
226   // A value in the reduction can be used:
227   //  - By the reduction:
228   //      - Reduction operation:
229   //        - One use of reduction value (safe).
230   //        - Multiple use of reduction value (not safe).
231   //      - PHI:
232   //        - All uses of the PHI must be the reduction (safe).
233   //        - Otherwise, not safe.
234   //  - By instructions outside of the loop (safe).
235   //      * One value may have several outside users, but all outside
236   //        uses must be of the same value.
237   //  - By an instruction that is not part of the reduction (not safe).
238   //    This is either:
239   //      * An instruction type other than PHI or the reduction operation.
240   //      * A PHI in the header other than the initial PHI.
241   while (!Worklist.empty()) {
242     Instruction *Cur = Worklist.back();
243     Worklist.pop_back();
244 
245     // No Users.
246     // If the instruction has no users then this is a broken chain and can't be
247     // a reduction variable.
248     if (Cur->use_empty())
249       return false;
250 
251     bool IsAPhi = isa<PHINode>(Cur);
252 
253     // A header PHI use other than the original PHI.
254     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
255       return false;
256 
257     // Reductions of instructions such as Div, and Sub is only possible if the
258     // LHS is the reduction variable.
259     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
260         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
261         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
262       return false;
263 
264     // Any reduction instruction must be of one of the allowed kinds. We ignore
265     // the starting value (the Phi or an AND instruction if the Phi has been
266     // type-promoted).
267     if (Cur != Start) {
268       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
269       if (!ReduxDesc.isRecurrence())
270         return false;
271     }
272 
273     // A reduction operation must only have one use of the reduction value.
274     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
275         hasMultipleUsesOf(Cur, VisitedInsts))
276       return false;
277 
278     // All inputs to a PHI node must be a reduction value.
279     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
280       return false;
281 
282     if (Kind == RK_IntegerMinMax &&
283         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
284       ++NumCmpSelectPatternInst;
285     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
286       ++NumCmpSelectPatternInst;
287 
288     // Check  whether we found a reduction operator.
289     FoundReduxOp |= !IsAPhi && Cur != Start;
290 
291     // Process users of current instruction. Push non-PHI nodes after PHI nodes
292     // onto the stack. This way we are going to have seen all inputs to PHI
293     // nodes once we get to them.
294     SmallVector<Instruction *, 8> NonPHIs;
295     SmallVector<Instruction *, 8> PHIs;
296     for (User *U : Cur->users()) {
297       Instruction *UI = cast<Instruction>(U);
298 
299       // Check if we found the exit user.
300       BasicBlock *Parent = UI->getParent();
301       if (!TheLoop->contains(Parent)) {
302         // If we already know this instruction is used externally, move on to
303         // the next user.
304         if (ExitInstruction == Cur)
305           continue;
306 
307         // Exit if you find multiple values used outside or if the header phi
308         // node is being used. In this case the user uses the value of the
309         // previous iteration, in which case we would loose "VF-1" iterations of
310         // the reduction operation if we vectorize.
311         if (ExitInstruction != nullptr || Cur == Phi)
312           return false;
313 
314         // The instruction used by an outside user must be the last instruction
315         // before we feed back to the reduction phi. Otherwise, we loose VF-1
316         // operations on the value.
317         if (!is_contained(Phi->operands(), Cur))
318           return false;
319 
320         ExitInstruction = Cur;
321         continue;
322       }
323 
324       // Process instructions only once (termination). Each reduction cycle
325       // value must only be used once, except by phi nodes and min/max
326       // reductions which are represented as a cmp followed by a select.
327       InstDesc IgnoredVal(false, nullptr);
328       if (VisitedInsts.insert(UI).second) {
329         if (isa<PHINode>(UI))
330           PHIs.push_back(UI);
331         else
332           NonPHIs.push_back(UI);
333       } else if (!isa<PHINode>(UI) &&
334                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
335                    !isa<SelectInst>(UI)) ||
336                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
337         return false;
338 
339       // Remember that we completed the cycle.
340       if (UI == Phi)
341         FoundStartPHI = true;
342     }
343     Worklist.append(PHIs.begin(), PHIs.end());
344     Worklist.append(NonPHIs.begin(), NonPHIs.end());
345   }
346 
347   // This means we have seen one but not the other instruction of the
348   // pattern or more than just a select and cmp.
349   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
350       NumCmpSelectPatternInst != 2)
351     return false;
352 
353   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
354     return false;
355 
356   // If we think Phi may have been type-promoted, we also need to ensure that
357   // all source operands of the reduction are either SExtInsts or ZEstInsts. If
358   // so, we will be able to evaluate the reduction in the narrower bit width.
359   if (Start != Phi)
360     if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
361                                 IsSigned, VisitedInsts, CastInsts))
362       return false;
363 
364   // We found a reduction var if we have reached the original phi node and we
365   // only have a single instruction with out-of-loop users.
366 
367   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
368   // is saved as part of the RecurrenceDescriptor.
369 
370   // Save the description of this reduction variable.
371   RecurrenceDescriptor RD(
372       RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
373       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
374   RedDes = RD;
375 
376   return true;
377 }
378 
379 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
380 /// pattern corresponding to a min(X, Y) or max(X, Y).
381 RecurrenceDescriptor::InstDesc
382 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
383 
384   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
385          "Expect a select instruction");
386   Instruction *Cmp = nullptr;
387   SelectInst *Select = nullptr;
388 
389   // We must handle the select(cmp()) as a single instruction. Advance to the
390   // select.
391   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
392     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
393       return InstDesc(false, I);
394     return InstDesc(Select, Prev.getMinMaxKind());
395   }
396 
397   // Only handle single use cases for now.
398   if (!(Select = dyn_cast<SelectInst>(I)))
399     return InstDesc(false, I);
400   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
401       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
402     return InstDesc(false, I);
403   if (!Cmp->hasOneUse())
404     return InstDesc(false, I);
405 
406   Value *CmpLeft;
407   Value *CmpRight;
408 
409   // Look for a min/max pattern.
410   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
411     return InstDesc(Select, MRK_UIntMin);
412   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
413     return InstDesc(Select, MRK_UIntMax);
414   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
415     return InstDesc(Select, MRK_SIntMax);
416   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
417     return InstDesc(Select, MRK_SIntMin);
418   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
419     return InstDesc(Select, MRK_FloatMin);
420   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
421     return InstDesc(Select, MRK_FloatMax);
422   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
423     return InstDesc(Select, MRK_FloatMin);
424   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
425     return InstDesc(Select, MRK_FloatMax);
426 
427   return InstDesc(false, I);
428 }
429 
430 RecurrenceDescriptor::InstDesc
431 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
432                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
433   bool FP = I->getType()->isFloatingPointTy();
434   Instruction *UAI = Prev.getUnsafeAlgebraInst();
435   if (!UAI && FP && !I->hasUnsafeAlgebra())
436     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
437 
438   switch (I->getOpcode()) {
439   default:
440     return InstDesc(false, I);
441   case Instruction::PHI:
442     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
443   case Instruction::Sub:
444   case Instruction::Add:
445     return InstDesc(Kind == RK_IntegerAdd, I);
446   case Instruction::Mul:
447     return InstDesc(Kind == RK_IntegerMult, I);
448   case Instruction::And:
449     return InstDesc(Kind == RK_IntegerAnd, I);
450   case Instruction::Or:
451     return InstDesc(Kind == RK_IntegerOr, I);
452   case Instruction::Xor:
453     return InstDesc(Kind == RK_IntegerXor, I);
454   case Instruction::FMul:
455     return InstDesc(Kind == RK_FloatMult, I, UAI);
456   case Instruction::FSub:
457   case Instruction::FAdd:
458     return InstDesc(Kind == RK_FloatAdd, I, UAI);
459   case Instruction::FCmp:
460   case Instruction::ICmp:
461   case Instruction::Select:
462     if (Kind != RK_IntegerMinMax &&
463         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
464       return InstDesc(false, I);
465     return isMinMaxSelectCmpPattern(I, Prev);
466   }
467 }
468 
469 bool RecurrenceDescriptor::hasMultipleUsesOf(
470     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
471   unsigned NumUses = 0;
472   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
473        ++Use) {
474     if (Insts.count(dyn_cast<Instruction>(*Use)))
475       ++NumUses;
476     if (NumUses > 1)
477       return true;
478   }
479 
480   return false;
481 }
482 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
483                                           RecurrenceDescriptor &RedDes) {
484 
485   BasicBlock *Header = TheLoop->getHeader();
486   Function &F = *Header->getParent();
487   bool HasFunNoNaNAttr =
488       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
489 
490   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
491     DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
492     return true;
493   }
494   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
495     DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
496     return true;
497   }
498   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
499     DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
500     return true;
501   }
502   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
503     DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
504     return true;
505   }
506   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
507     DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
508     return true;
509   }
510   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
511                       RedDes)) {
512     DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
513     return true;
514   }
515   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
516     DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
517     return true;
518   }
519   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
520     DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
521     return true;
522   }
523   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
524     DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
525     return true;
526   }
527   // Not a reduction of known type.
528   return false;
529 }
530 
531 bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
532                                                   DominatorTree *DT) {
533 
534   // Ensure the phi node is in the loop header and has two incoming values.
535   if (Phi->getParent() != TheLoop->getHeader() ||
536       Phi->getNumIncomingValues() != 2)
537     return false;
538 
539   // Ensure the loop has a preheader and a single latch block. The loop
540   // vectorizer will need the latch to set up the next iteration of the loop.
541   auto *Preheader = TheLoop->getLoopPreheader();
542   auto *Latch = TheLoop->getLoopLatch();
543   if (!Preheader || !Latch)
544     return false;
545 
546   // Ensure the phi node's incoming blocks are the loop preheader and latch.
547   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
548       Phi->getBasicBlockIndex(Latch) < 0)
549     return false;
550 
551   // Get the previous value. The previous value comes from the latch edge while
552   // the initial value comes form the preheader edge.
553   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
554   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
555     return false;
556 
557   // Ensure every user of the phi node is dominated by the previous value.
558   // The dominance requirement ensures the loop vectorizer will not need to
559   // vectorize the initial value prior to the first iteration of the loop.
560   for (User *U : Phi->users())
561     if (auto *I = dyn_cast<Instruction>(U)) {
562       if (!DT->dominates(Previous, I))
563         return false;
564     }
565 
566   return true;
567 }
568 
569 /// This function returns the identity element (or neutral element) for
570 /// the operation K.
571 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
572                                                       Type *Tp) {
573   switch (K) {
574   case RK_IntegerXor:
575   case RK_IntegerAdd:
576   case RK_IntegerOr:
577     // Adding, Xoring, Oring zero to a number does not change it.
578     return ConstantInt::get(Tp, 0);
579   case RK_IntegerMult:
580     // Multiplying a number by 1 does not change it.
581     return ConstantInt::get(Tp, 1);
582   case RK_IntegerAnd:
583     // AND-ing a number with an all-1 value does not change it.
584     return ConstantInt::get(Tp, -1, true);
585   case RK_FloatMult:
586     // Multiplying a number by 1 does not change it.
587     return ConstantFP::get(Tp, 1.0L);
588   case RK_FloatAdd:
589     // Adding zero to a number does not change it.
590     return ConstantFP::get(Tp, 0.0L);
591   default:
592     llvm_unreachable("Unknown recurrence kind");
593   }
594 }
595 
596 /// This function translates the recurrence kind to an LLVM binary operator.
597 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
598   switch (Kind) {
599   case RK_IntegerAdd:
600     return Instruction::Add;
601   case RK_IntegerMult:
602     return Instruction::Mul;
603   case RK_IntegerOr:
604     return Instruction::Or;
605   case RK_IntegerAnd:
606     return Instruction::And;
607   case RK_IntegerXor:
608     return Instruction::Xor;
609   case RK_FloatMult:
610     return Instruction::FMul;
611   case RK_FloatAdd:
612     return Instruction::FAdd;
613   case RK_IntegerMinMax:
614     return Instruction::ICmp;
615   case RK_FloatMinMax:
616     return Instruction::FCmp;
617   default:
618     llvm_unreachable("Unknown recurrence operation");
619   }
620 }
621 
622 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
623                                             MinMaxRecurrenceKind RK,
624                                             Value *Left, Value *Right) {
625   CmpInst::Predicate P = CmpInst::ICMP_NE;
626   switch (RK) {
627   default:
628     llvm_unreachable("Unknown min/max recurrence kind");
629   case MRK_UIntMin:
630     P = CmpInst::ICMP_ULT;
631     break;
632   case MRK_UIntMax:
633     P = CmpInst::ICMP_UGT;
634     break;
635   case MRK_SIntMin:
636     P = CmpInst::ICMP_SLT;
637     break;
638   case MRK_SIntMax:
639     P = CmpInst::ICMP_SGT;
640     break;
641   case MRK_FloatMin:
642     P = CmpInst::FCMP_OLT;
643     break;
644   case MRK_FloatMax:
645     P = CmpInst::FCMP_OGT;
646     break;
647   }
648 
649   // We only match FP sequences with unsafe algebra, so we can unconditionally
650   // set it on any generated instructions.
651   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
652   FastMathFlags FMF;
653   FMF.setUnsafeAlgebra();
654   Builder.setFastMathFlags(FMF);
655 
656   Value *Cmp;
657   if (RK == MRK_FloatMin || RK == MRK_FloatMax)
658     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
659   else
660     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
661 
662   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
663   return Select;
664 }
665 
666 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
667                                          const SCEV *Step, BinaryOperator *BOp)
668   : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
669   assert(IK != IK_NoInduction && "Not an induction");
670 
671   // Start value type should match the induction kind and the value
672   // itself should not be null.
673   assert(StartValue && "StartValue is null");
674   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
675          "StartValue is not a pointer for pointer induction");
676   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
677          "StartValue is not an integer for integer induction");
678 
679   // Check the Step Value. It should be non-zero integer value.
680   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
681          "Step value is zero");
682 
683   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
684          "Step value should be constant for pointer induction");
685   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
686          "StepValue is not an integer");
687 
688   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
689          "StepValue is not FP for FpInduction");
690   assert((IK != IK_FpInduction || (InductionBinOp &&
691           (InductionBinOp->getOpcode() == Instruction::FAdd ||
692            InductionBinOp->getOpcode() == Instruction::FSub))) &&
693          "Binary opcode should be specified for FP induction");
694 }
695 
696 int InductionDescriptor::getConsecutiveDirection() const {
697   ConstantInt *ConstStep = getConstIntStepValue();
698   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
699     return ConstStep->getSExtValue();
700   return 0;
701 }
702 
703 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
704   if (isa<SCEVConstant>(Step))
705     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
706   return nullptr;
707 }
708 
709 Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
710                                       ScalarEvolution *SE,
711                                       const DataLayout& DL) const {
712 
713   SCEVExpander Exp(*SE, DL, "induction");
714   assert(Index->getType() == Step->getType() &&
715          "Index type does not match StepValue type");
716   switch (IK) {
717   case IK_IntInduction: {
718     assert(Index->getType() == StartValue->getType() &&
719            "Index type does not match StartValue type");
720 
721     // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
722     // and calculate (Start + Index * Step) for all cases, without
723     // special handling for "isOne" and "isMinusOne".
724     // But in the real life the result code getting worse. We mix SCEV
725     // expressions and ADD/SUB operations and receive redundant
726     // intermediate values being calculated in different ways and
727     // Instcombine is unable to reduce them all.
728 
729     if (getConstIntStepValue() &&
730         getConstIntStepValue()->isMinusOne())
731       return B.CreateSub(StartValue, Index);
732     if (getConstIntStepValue() &&
733         getConstIntStepValue()->isOne())
734       return B.CreateAdd(StartValue, Index);
735     const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
736                                    SE->getMulExpr(Step, SE->getSCEV(Index)));
737     return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
738   }
739   case IK_PtrInduction: {
740     assert(isa<SCEVConstant>(Step) &&
741            "Expected constant step for pointer induction");
742     const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
743     Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
744     return B.CreateGEP(nullptr, StartValue, Index);
745   }
746   case IK_FpInduction: {
747     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
748     assert(InductionBinOp &&
749            (InductionBinOp->getOpcode() == Instruction::FAdd ||
750             InductionBinOp->getOpcode() == Instruction::FSub) &&
751            "Original bin op should be defined for FP induction");
752 
753     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
754 
755     // Floating point operations had to be 'fast' to enable the induction.
756     FastMathFlags Flags;
757     Flags.setUnsafeAlgebra();
758 
759     Value *MulExp = B.CreateFMul(StepValue, Index);
760     if (isa<Instruction>(MulExp))
761       // We have to check, the MulExp may be a constant.
762       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
763 
764     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
765                                MulExp, "induction");
766     if (isa<Instruction>(BOp))
767       cast<Instruction>(BOp)->setFastMathFlags(Flags);
768 
769     return BOp;
770   }
771   case IK_NoInduction:
772     return nullptr;
773   }
774   llvm_unreachable("invalid enum");
775 }
776 
777 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
778                                            ScalarEvolution *SE,
779                                            InductionDescriptor &D) {
780 
781   // Here we only handle FP induction variables.
782   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
783 
784   if (TheLoop->getHeader() != Phi->getParent())
785     return false;
786 
787   // The loop may have multiple entrances or multiple exits; we can analyze
788   // this phi if it has a unique entry value and a unique backedge value.
789   if (Phi->getNumIncomingValues() != 2)
790     return false;
791   Value *BEValue = nullptr, *StartValue = nullptr;
792   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
793     BEValue = Phi->getIncomingValue(0);
794     StartValue = Phi->getIncomingValue(1);
795   } else {
796     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
797            "Unexpected Phi node in the loop");
798     BEValue = Phi->getIncomingValue(1);
799     StartValue = Phi->getIncomingValue(0);
800   }
801 
802   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
803   if (!BOp)
804     return false;
805 
806   Value *Addend = nullptr;
807   if (BOp->getOpcode() == Instruction::FAdd) {
808     if (BOp->getOperand(0) == Phi)
809       Addend = BOp->getOperand(1);
810     else if (BOp->getOperand(1) == Phi)
811       Addend = BOp->getOperand(0);
812   } else if (BOp->getOpcode() == Instruction::FSub)
813     if (BOp->getOperand(0) == Phi)
814       Addend = BOp->getOperand(1);
815 
816   if (!Addend)
817     return false;
818 
819   // The addend should be loop invariant
820   if (auto *I = dyn_cast<Instruction>(Addend))
821     if (TheLoop->contains(I))
822       return false;
823 
824   // FP Step has unknown SCEV
825   const SCEV *Step = SE->getUnknown(Addend);
826   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
827   return true;
828 }
829 
830 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
831                                          PredicatedScalarEvolution &PSE,
832                                          InductionDescriptor &D,
833                                          bool Assume) {
834   Type *PhiTy = Phi->getType();
835 
836   // Handle integer and pointer inductions variables.
837   // Now we handle also FP induction but not trying to make a
838   // recurrent expression from the PHI node in-place.
839 
840   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
841       !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
842     return false;
843 
844   if (PhiTy->isFloatingPointTy())
845     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
846 
847   const SCEV *PhiScev = PSE.getSCEV(Phi);
848   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
849 
850   // We need this expression to be an AddRecExpr.
851   if (Assume && !AR)
852     AR = PSE.getAsAddRec(Phi);
853 
854   if (!AR) {
855     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
856     return false;
857   }
858 
859   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
860 }
861 
862 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
863                                          ScalarEvolution *SE,
864                                          InductionDescriptor &D,
865                                          const SCEV *Expr) {
866   Type *PhiTy = Phi->getType();
867   // We only handle integer and pointer inductions variables.
868   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
869     return false;
870 
871   // Check that the PHI is consecutive.
872   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
873   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
874 
875   if (!AR) {
876     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
877     return false;
878   }
879 
880   if (AR->getLoop() != TheLoop) {
881     // FIXME: We should treat this as a uniform. Unfortunately, we
882     // don't currently know how to handled uniform PHIs.
883     DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
884     return false;
885   }
886 
887   Value *StartValue =
888     Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
889   const SCEV *Step = AR->getStepRecurrence(*SE);
890   // Calculate the pointer stride and check if it is consecutive.
891   // The stride may be a constant or a loop invariant integer value.
892   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
893   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
894     return false;
895 
896   if (PhiTy->isIntegerTy()) {
897     D = InductionDescriptor(StartValue, IK_IntInduction, Step);
898     return true;
899   }
900 
901   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
902   // Pointer induction should be a constant.
903   if (!ConstStep)
904     return false;
905 
906   ConstantInt *CV = ConstStep->getValue();
907   Type *PointerElementType = PhiTy->getPointerElementType();
908   // The pointer stride cannot be determined if the pointer element type is not
909   // sized.
910   if (!PointerElementType->isSized())
911     return false;
912 
913   const DataLayout &DL = Phi->getModule()->getDataLayout();
914   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
915   if (!Size)
916     return false;
917 
918   int64_t CVSize = CV->getSExtValue();
919   if (CVSize % Size)
920     return false;
921   auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
922                                     true /* signed */);
923   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
924   return true;
925 }
926 
927 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
928                                    bool PreserveLCSSA) {
929   bool Changed = false;
930 
931   // We re-use a vector for the in-loop predecesosrs.
932   SmallVector<BasicBlock *, 4> InLoopPredecessors;
933 
934   auto RewriteExit = [&](BasicBlock *BB) {
935     assert(InLoopPredecessors.empty() &&
936            "Must start with an empty predecessors list!");
937     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
938 
939     // See if there are any non-loop predecessors of this exit block and
940     // keep track of the in-loop predecessors.
941     bool IsDedicatedExit = true;
942     for (auto *PredBB : predecessors(BB))
943       if (L->contains(PredBB)) {
944         if (isa<IndirectBrInst>(PredBB->getTerminator()))
945           // We cannot rewrite exiting edges from an indirectbr.
946           return false;
947 
948         InLoopPredecessors.push_back(PredBB);
949       } else {
950         IsDedicatedExit = false;
951       }
952 
953     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
954 
955     // Nothing to do if this is already a dedicated exit.
956     if (IsDedicatedExit)
957       return false;
958 
959     auto *NewExitBB = SplitBlockPredecessors(
960         BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);
961 
962     if (!NewExitBB)
963       DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
964                    << *L << "\n");
965     else
966       DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
967                    << NewExitBB->getName() << "\n");
968     return true;
969   };
970 
971   // Walk the exit blocks directly rather than building up a data structure for
972   // them, but only visit each one once.
973   SmallPtrSet<BasicBlock *, 4> Visited;
974   for (auto *BB : L->blocks())
975     for (auto *SuccBB : successors(BB)) {
976       // We're looking for exit blocks so skip in-loop successors.
977       if (L->contains(SuccBB))
978         continue;
979 
980       // Visit each exit block exactly once.
981       if (!Visited.insert(SuccBB).second)
982         continue;
983 
984       Changed |= RewriteExit(SuccBB);
985     }
986 
987   return Changed;
988 }
989 
990 /// \brief Returns the instructions that use values defined in the loop.
991 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
992   SmallVector<Instruction *, 8> UsedOutside;
993 
994   for (auto *Block : L->getBlocks())
995     // FIXME: I believe that this could use copy_if if the Inst reference could
996     // be adapted into a pointer.
997     for (auto &Inst : *Block) {
998       auto Users = Inst.users();
999       if (any_of(Users, [&](User *U) {
1000             auto *Use = cast<Instruction>(U);
1001             return !L->contains(Use->getParent());
1002           }))
1003         UsedOutside.push_back(&Inst);
1004     }
1005 
1006   return UsedOutside;
1007 }
1008 
1009 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
1010   // By definition, all loop passes need the LoopInfo analysis and the
1011   // Dominator tree it depends on. Because they all participate in the loop
1012   // pass manager, they must also preserve these.
1013   AU.addRequired<DominatorTreeWrapperPass>();
1014   AU.addPreserved<DominatorTreeWrapperPass>();
1015   AU.addRequired<LoopInfoWrapperPass>();
1016   AU.addPreserved<LoopInfoWrapperPass>();
1017 
1018   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
1019   // here because users shouldn't directly get them from this header.
1020   extern char &LoopSimplifyID;
1021   extern char &LCSSAID;
1022   AU.addRequiredID(LoopSimplifyID);
1023   AU.addPreservedID(LoopSimplifyID);
1024   AU.addRequiredID(LCSSAID);
1025   AU.addPreservedID(LCSSAID);
1026   // This is used in the LPPassManager to perform LCSSA verification on passes
1027   // which preserve lcssa form
1028   AU.addRequired<LCSSAVerificationPass>();
1029   AU.addPreserved<LCSSAVerificationPass>();
1030 
1031   // Loop passes are designed to run inside of a loop pass manager which means
1032   // that any function analyses they require must be required by the first loop
1033   // pass in the manager (so that it is computed before the loop pass manager
1034   // runs) and preserved by all loop pasess in the manager. To make this
1035   // reasonably robust, the set needed for most loop passes is maintained here.
1036   // If your loop pass requires an analysis not listed here, you will need to
1037   // carefully audit the loop pass manager nesting structure that results.
1038   AU.addRequired<AAResultsWrapperPass>();
1039   AU.addPreserved<AAResultsWrapperPass>();
1040   AU.addPreserved<BasicAAWrapperPass>();
1041   AU.addPreserved<GlobalsAAWrapperPass>();
1042   AU.addPreserved<SCEVAAWrapperPass>();
1043   AU.addRequired<ScalarEvolutionWrapperPass>();
1044   AU.addPreserved<ScalarEvolutionWrapperPass>();
1045 }
1046 
1047 /// Manually defined generic "LoopPass" dependency initialization. This is used
1048 /// to initialize the exact set of passes from above in \c
1049 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
1050 /// with:
1051 ///
1052 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
1053 ///
1054 /// As-if "LoopPass" were a pass.
1055 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
1056   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1057   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1058   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1059   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
1060   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1061   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
1062   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
1063   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
1064   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1065 }
1066 
1067 /// \brief Find string metadata for loop
1068 ///
1069 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1070 /// operand or null otherwise.  If the string metadata is not found return
1071 /// Optional's not-a-value.
1072 Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
1073                                                             StringRef Name) {
1074   MDNode *LoopID = TheLoop->getLoopID();
1075   // Return none if LoopID is false.
1076   if (!LoopID)
1077     return None;
1078 
1079   // First operand should refer to the loop id itself.
1080   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1081   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1082 
1083   // Iterate over LoopID operands and look for MDString Metadata
1084   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1085     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1086     if (!MD)
1087       continue;
1088     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1089     if (!S)
1090       continue;
1091     // Return true if MDString holds expected MetaData.
1092     if (Name.equals(S->getString()))
1093       switch (MD->getNumOperands()) {
1094       case 1:
1095         return nullptr;
1096       case 2:
1097         return &MD->getOperand(1);
1098       default:
1099         llvm_unreachable("loop metadata has 0 or 1 operand");
1100       }
1101   }
1102   return None;
1103 }
1104 
1105 /// Returns true if the instruction in a loop is guaranteed to execute at least
1106 /// once.
1107 bool llvm::isGuaranteedToExecute(const Instruction &Inst,
1108                                  const DominatorTree *DT, const Loop *CurLoop,
1109                                  const LoopSafetyInfo *SafetyInfo) {
1110   // We have to check to make sure that the instruction dominates all
1111   // of the exit blocks.  If it doesn't, then there is a path out of the loop
1112   // which does not execute this instruction, so we can't hoist it.
1113 
1114   // If the instruction is in the header block for the loop (which is very
1115   // common), it is always guaranteed to dominate the exit blocks.  Since this
1116   // is a common case, and can save some work, check it now.
1117   if (Inst.getParent() == CurLoop->getHeader())
1118     // If there's a throw in the header block, we can't guarantee we'll reach
1119     // Inst.
1120     return !SafetyInfo->HeaderMayThrow;
1121 
1122   // Somewhere in this loop there is an instruction which may throw and make us
1123   // exit the loop.
1124   if (SafetyInfo->MayThrow)
1125     return false;
1126 
1127   // Get the exit blocks for the current loop.
1128   SmallVector<BasicBlock *, 8> ExitBlocks;
1129   CurLoop->getExitBlocks(ExitBlocks);
1130 
1131   // Verify that the block dominates each of the exit blocks of the loop.
1132   for (BasicBlock *ExitBlock : ExitBlocks)
1133     if (!DT->dominates(Inst.getParent(), ExitBlock))
1134       return false;
1135 
1136   // As a degenerate case, if the loop is statically infinite then we haven't
1137   // proven anything since there are no exit blocks.
1138   if (ExitBlocks.empty())
1139     return false;
1140 
1141   // FIXME: In general, we have to prove that the loop isn't an infinite loop.
1142   // See http::llvm.org/PR24078 .  (The "ExitBlocks.empty()" check above is
1143   // just a special case of this.)
1144   return true;
1145 }
1146 
1147 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
1148   // Only support loops with a unique exiting block, and a latch.
1149   if (!L->getExitingBlock())
1150     return None;
1151 
1152   // Get the branch weights for the the loop's backedge.
1153   BranchInst *LatchBR =
1154       dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
1155   if (!LatchBR || LatchBR->getNumSuccessors() != 2)
1156     return None;
1157 
1158   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
1159           LatchBR->getSuccessor(1) == L->getHeader()) &&
1160          "At least one edge out of the latch must go to the header");
1161 
1162   // To estimate the number of times the loop body was executed, we want to
1163   // know the number of times the backedge was taken, vs. the number of times
1164   // we exited the loop.
1165   uint64_t TrueVal, FalseVal;
1166   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
1167     return None;
1168 
1169   if (!TrueVal || !FalseVal)
1170     return 0;
1171 
1172   // Divide the count of the backedge by the count of the edge exiting the loop,
1173   // rounding to nearest.
1174   if (LatchBR->getSuccessor(0) == L->getHeader())
1175     return (TrueVal + (FalseVal / 2)) / FalseVal;
1176   else
1177     return (FalseVal + (TrueVal / 2)) / TrueVal;
1178 }
1179 
1180 /// \brief Adds a 'fast' flag to floating point operations.
1181 static Value *addFastMathFlag(Value *V) {
1182   if (isa<FPMathOperator>(V)) {
1183     FastMathFlags Flags;
1184     Flags.setUnsafeAlgebra();
1185     cast<Instruction>(V)->setFastMathFlags(Flags);
1186   }
1187   return V;
1188 }
1189 
1190 // Helper to generate a log2 shuffle reduction.
1191 Value *
1192 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
1193                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
1194                           ArrayRef<Value *> RedOps) {
1195   unsigned VF = Src->getType()->getVectorNumElements();
1196   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1197   // and vector ops, reducing the set of values being computed by half each
1198   // round.
1199   assert(isPowerOf2_32(VF) &&
1200          "Reduction emission only supported for pow2 vectors!");
1201   Value *TmpVec = Src;
1202   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
1203   for (unsigned i = VF; i != 1; i >>= 1) {
1204     // Move the upper half of the vector to the lower half.
1205     for (unsigned j = 0; j != i / 2; ++j)
1206       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
1207 
1208     // Fill the rest of the mask with undef.
1209     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
1210               UndefValue::get(Builder.getInt32Ty()));
1211 
1212     Value *Shuf = Builder.CreateShuffleVector(
1213         TmpVec, UndefValue::get(TmpVec->getType()),
1214         ConstantVector::get(ShuffleMask), "rdx.shuf");
1215 
1216     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1217       // Floating point operations had to be 'fast' to enable the reduction.
1218       TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
1219                                                    TmpVec, Shuf, "bin.rdx"));
1220     } else {
1221       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
1222              "Invalid min/max");
1223       TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
1224                                                     Shuf);
1225     }
1226     if (!RedOps.empty())
1227       propagateIRFlags(TmpVec, RedOps);
1228   }
1229   // The result is in the first element of the vector.
1230   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1231 }
1232 
1233 /// Create a simple vector reduction specified by an opcode and some
1234 /// flags (if generating min/max reductions).
1235 Value *llvm::createSimpleTargetReduction(
1236     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
1237     Value *Src, TargetTransformInfo::ReductionFlags Flags,
1238     ArrayRef<Value *> RedOps) {
1239   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
1240 
1241   Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
1242   std::function<Value*()> BuildFunc;
1243   using RD = RecurrenceDescriptor;
1244   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
1245   // TODO: Support creating ordered reductions.
1246   FastMathFlags FMFUnsafe;
1247   FMFUnsafe.setUnsafeAlgebra();
1248 
1249   switch (Opcode) {
1250   case Instruction::Add:
1251     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
1252     break;
1253   case Instruction::Mul:
1254     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
1255     break;
1256   case Instruction::And:
1257     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
1258     break;
1259   case Instruction::Or:
1260     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
1261     break;
1262   case Instruction::Xor:
1263     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
1264     break;
1265   case Instruction::FAdd:
1266     BuildFunc = [&]() {
1267       auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
1268       cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
1269       return Rdx;
1270     };
1271     break;
1272   case Instruction::FMul:
1273     BuildFunc = [&]() {
1274       auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
1275       cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
1276       return Rdx;
1277     };
1278     break;
1279   case Instruction::ICmp:
1280     if (Flags.IsMaxOp) {
1281       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1282       BuildFunc = [&]() {
1283         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1284       };
1285     } else {
1286       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1287       BuildFunc = [&]() {
1288         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1289       };
1290     }
1291     break;
1292   case Instruction::FCmp:
1293     if (Flags.IsMaxOp) {
1294       MinMaxKind = RD::MRK_FloatMax;
1295       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1296     } else {
1297       MinMaxKind = RD::MRK_FloatMin;
1298       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1299     }
1300     break;
1301   default:
1302     llvm_unreachable("Unhandled opcode");
1303     break;
1304   }
1305   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1306     return BuildFunc();
1307   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1308 }
1309 
1310 /// Create a vector reduction using a given recurrence descriptor.
1311 Value *llvm::createTargetReduction(IRBuilder<> &Builder,
1312                                    const TargetTransformInfo *TTI,
1313                                    RecurrenceDescriptor &Desc, Value *Src,
1314                                    bool NoNaN) {
1315   // TODO: Support in-order reductions based on the recurrence descriptor.
1316   RecurrenceDescriptor::RecurrenceKind RecKind = Desc.getRecurrenceKind();
1317   TargetTransformInfo::ReductionFlags Flags;
1318   Flags.NoNaN = NoNaN;
1319   auto getSimpleRdx = [&](unsigned Opc) {
1320     return createSimpleTargetReduction(Builder, TTI, Opc, Src, Flags);
1321   };
1322   switch (RecKind) {
1323   case RecurrenceDescriptor::RK_FloatAdd:
1324     return getSimpleRdx(Instruction::FAdd);
1325   case RecurrenceDescriptor::RK_FloatMult:
1326     return getSimpleRdx(Instruction::FMul);
1327   case RecurrenceDescriptor::RK_IntegerAdd:
1328     return getSimpleRdx(Instruction::Add);
1329   case RecurrenceDescriptor::RK_IntegerMult:
1330     return getSimpleRdx(Instruction::Mul);
1331   case RecurrenceDescriptor::RK_IntegerAnd:
1332     return getSimpleRdx(Instruction::And);
1333   case RecurrenceDescriptor::RK_IntegerOr:
1334     return getSimpleRdx(Instruction::Or);
1335   case RecurrenceDescriptor::RK_IntegerXor:
1336     return getSimpleRdx(Instruction::Xor);
1337   case RecurrenceDescriptor::RK_IntegerMinMax: {
1338     switch (Desc.getMinMaxRecurrenceKind()) {
1339     case RecurrenceDescriptor::MRK_SIntMax:
1340       Flags.IsSigned = true;
1341       Flags.IsMaxOp = true;
1342       break;
1343     case RecurrenceDescriptor::MRK_UIntMax:
1344       Flags.IsMaxOp = true;
1345       break;
1346     case RecurrenceDescriptor::MRK_SIntMin:
1347       Flags.IsSigned = true;
1348       break;
1349     case RecurrenceDescriptor::MRK_UIntMin:
1350       break;
1351     default:
1352       llvm_unreachable("Unhandled MRK");
1353     }
1354     return getSimpleRdx(Instruction::ICmp);
1355   }
1356   case RecurrenceDescriptor::RK_FloatMinMax: {
1357     Flags.IsMaxOp =
1358         Desc.getMinMaxRecurrenceKind() == RecurrenceDescriptor::MRK_FloatMax;
1359     return getSimpleRdx(Instruction::FCmp);
1360   }
1361   default:
1362     llvm_unreachable("Unhandled RecKind");
1363   }
1364 }
1365 
1366 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
1367   if (auto *VecOp = dyn_cast<Instruction>(I)) {
1368     if (auto *I0 = dyn_cast<Instruction>(VL[0])) {
1369       // VecOVp is initialized to the 0th scalar, so start counting from index
1370       // '1'.
1371       VecOp->copyIRFlags(I0);
1372       for (int i = 1, e = VL.size(); i < e; ++i) {
1373         if (auto *Scalar = dyn_cast<Instruction>(VL[i]))
1374           VecOp->andIRFlags(Scalar);
1375       }
1376     }
1377   }
1378 }
1379