1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines common loop utility functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/LoopUtils.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MustExecute.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/ScalarEvolutionExpander.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/DIBuilder.h" 30 #include "llvm/IR/DomTreeUpdater.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 #define DEBUG_TYPE "loop-utils" 46 47 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; 48 49 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, 50 bool PreserveLCSSA) { 51 bool Changed = false; 52 53 // We re-use a vector for the in-loop predecesosrs. 54 SmallVector<BasicBlock *, 4> InLoopPredecessors; 55 56 auto RewriteExit = [&](BasicBlock *BB) { 57 assert(InLoopPredecessors.empty() && 58 "Must start with an empty predecessors list!"); 59 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); 60 61 // See if there are any non-loop predecessors of this exit block and 62 // keep track of the in-loop predecessors. 63 bool IsDedicatedExit = true; 64 for (auto *PredBB : predecessors(BB)) 65 if (L->contains(PredBB)) { 66 if (isa<IndirectBrInst>(PredBB->getTerminator())) 67 // We cannot rewrite exiting edges from an indirectbr. 68 return false; 69 70 InLoopPredecessors.push_back(PredBB); 71 } else { 72 IsDedicatedExit = false; 73 } 74 75 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); 76 77 // Nothing to do if this is already a dedicated exit. 78 if (IsDedicatedExit) 79 return false; 80 81 auto *NewExitBB = SplitBlockPredecessors( 82 BB, InLoopPredecessors, ".loopexit", DT, LI, nullptr, PreserveLCSSA); 83 84 if (!NewExitBB) 85 LLVM_DEBUG( 86 dbgs() << "WARNING: Can't create a dedicated exit block for loop: " 87 << *L << "\n"); 88 else 89 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " 90 << NewExitBB->getName() << "\n"); 91 return true; 92 }; 93 94 // Walk the exit blocks directly rather than building up a data structure for 95 // them, but only visit each one once. 96 SmallPtrSet<BasicBlock *, 4> Visited; 97 for (auto *BB : L->blocks()) 98 for (auto *SuccBB : successors(BB)) { 99 // We're looking for exit blocks so skip in-loop successors. 100 if (L->contains(SuccBB)) 101 continue; 102 103 // Visit each exit block exactly once. 104 if (!Visited.insert(SuccBB).second) 105 continue; 106 107 Changed |= RewriteExit(SuccBB); 108 } 109 110 return Changed; 111 } 112 113 /// Returns the instructions that use values defined in the loop. 114 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 115 SmallVector<Instruction *, 8> UsedOutside; 116 117 for (auto *Block : L->getBlocks()) 118 // FIXME: I believe that this could use copy_if if the Inst reference could 119 // be adapted into a pointer. 120 for (auto &Inst : *Block) { 121 auto Users = Inst.users(); 122 if (any_of(Users, [&](User *U) { 123 auto *Use = cast<Instruction>(U); 124 return !L->contains(Use->getParent()); 125 })) 126 UsedOutside.push_back(&Inst); 127 } 128 129 return UsedOutside; 130 } 131 132 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 133 // By definition, all loop passes need the LoopInfo analysis and the 134 // Dominator tree it depends on. Because they all participate in the loop 135 // pass manager, they must also preserve these. 136 AU.addRequired<DominatorTreeWrapperPass>(); 137 AU.addPreserved<DominatorTreeWrapperPass>(); 138 AU.addRequired<LoopInfoWrapperPass>(); 139 AU.addPreserved<LoopInfoWrapperPass>(); 140 141 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 142 // here because users shouldn't directly get them from this header. 143 extern char &LoopSimplifyID; 144 extern char &LCSSAID; 145 AU.addRequiredID(LoopSimplifyID); 146 AU.addPreservedID(LoopSimplifyID); 147 AU.addRequiredID(LCSSAID); 148 AU.addPreservedID(LCSSAID); 149 // This is used in the LPPassManager to perform LCSSA verification on passes 150 // which preserve lcssa form 151 AU.addRequired<LCSSAVerificationPass>(); 152 AU.addPreserved<LCSSAVerificationPass>(); 153 154 // Loop passes are designed to run inside of a loop pass manager which means 155 // that any function analyses they require must be required by the first loop 156 // pass in the manager (so that it is computed before the loop pass manager 157 // runs) and preserved by all loop pasess in the manager. To make this 158 // reasonably robust, the set needed for most loop passes is maintained here. 159 // If your loop pass requires an analysis not listed here, you will need to 160 // carefully audit the loop pass manager nesting structure that results. 161 AU.addRequired<AAResultsWrapperPass>(); 162 AU.addPreserved<AAResultsWrapperPass>(); 163 AU.addPreserved<BasicAAWrapperPass>(); 164 AU.addPreserved<GlobalsAAWrapperPass>(); 165 AU.addPreserved<SCEVAAWrapperPass>(); 166 AU.addRequired<ScalarEvolutionWrapperPass>(); 167 AU.addPreserved<ScalarEvolutionWrapperPass>(); 168 } 169 170 /// Manually defined generic "LoopPass" dependency initialization. This is used 171 /// to initialize the exact set of passes from above in \c 172 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 173 /// with: 174 /// 175 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 176 /// 177 /// As-if "LoopPass" were a pass. 178 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 179 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 180 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 181 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 182 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 183 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 184 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 185 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 186 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 187 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 188 } 189 190 /// Find string metadata for loop 191 /// 192 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 193 /// operand or null otherwise. If the string metadata is not found return 194 /// Optional's not-a-value. 195 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, 196 StringRef Name) { 197 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 198 if (!MD) 199 return None; 200 switch (MD->getNumOperands()) { 201 case 1: 202 return nullptr; 203 case 2: 204 return &MD->getOperand(1); 205 default: 206 llvm_unreachable("loop metadata has 0 or 1 operand"); 207 } 208 } 209 210 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 211 StringRef Name) { 212 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 213 if (!MD) 214 return None; 215 switch (MD->getNumOperands()) { 216 case 1: 217 // When the value is absent it is interpreted as 'attribute set'. 218 return true; 219 case 2: 220 if (ConstantInt *IntMD = 221 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 222 return IntMD->getZExtValue(); 223 return true; 224 } 225 llvm_unreachable("unexpected number of options"); 226 } 227 228 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 229 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); 230 } 231 232 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, 233 StringRef Name) { 234 const MDOperand *AttrMD = 235 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); 236 if (!AttrMD) 237 return None; 238 239 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 240 if (!IntMD) 241 return None; 242 243 return IntMD->getSExtValue(); 244 } 245 246 Optional<MDNode *> llvm::makeFollowupLoopID( 247 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, 248 const char *InheritOptionsExceptPrefix, bool AlwaysNew) { 249 if (!OrigLoopID) { 250 if (AlwaysNew) 251 return nullptr; 252 return None; 253 } 254 255 assert(OrigLoopID->getOperand(0) == OrigLoopID); 256 257 bool InheritAllAttrs = !InheritOptionsExceptPrefix; 258 bool InheritSomeAttrs = 259 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; 260 SmallVector<Metadata *, 8> MDs; 261 MDs.push_back(nullptr); 262 263 bool Changed = false; 264 if (InheritAllAttrs || InheritSomeAttrs) { 265 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { 266 MDNode *Op = cast<MDNode>(Existing.get()); 267 268 auto InheritThisAttribute = [InheritSomeAttrs, 269 InheritOptionsExceptPrefix](MDNode *Op) { 270 if (!InheritSomeAttrs) 271 return false; 272 273 // Skip malformatted attribute metadata nodes. 274 if (Op->getNumOperands() == 0) 275 return true; 276 Metadata *NameMD = Op->getOperand(0).get(); 277 if (!isa<MDString>(NameMD)) 278 return true; 279 StringRef AttrName = cast<MDString>(NameMD)->getString(); 280 281 // Do not inherit excluded attributes. 282 return !AttrName.startswith(InheritOptionsExceptPrefix); 283 }; 284 285 if (InheritThisAttribute(Op)) 286 MDs.push_back(Op); 287 else 288 Changed = true; 289 } 290 } else { 291 // Modified if we dropped at least one attribute. 292 Changed = OrigLoopID->getNumOperands() > 1; 293 } 294 295 bool HasAnyFollowup = false; 296 for (StringRef OptionName : FollowupOptions) { 297 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); 298 if (!FollowupNode) 299 continue; 300 301 HasAnyFollowup = true; 302 for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { 303 MDs.push_back(Option.get()); 304 Changed = true; 305 } 306 } 307 308 // Attributes of the followup loop not specified explicity, so signal to the 309 // transformation pass to add suitable attributes. 310 if (!AlwaysNew && !HasAnyFollowup) 311 return None; 312 313 // If no attributes were added or remove, the previous loop Id can be reused. 314 if (!AlwaysNew && !Changed) 315 return OrigLoopID; 316 317 // No attributes is equivalent to having no !llvm.loop metadata at all. 318 if (MDs.size() == 1) 319 return nullptr; 320 321 // Build the new loop ID. 322 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); 323 FollowupLoopID->replaceOperandWith(0, FollowupLoopID); 324 return FollowupLoopID; 325 } 326 327 bool llvm::hasDisableAllTransformsHint(const Loop *L) { 328 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); 329 } 330 331 TransformationMode llvm::hasUnrollTransformation(Loop *L) { 332 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) 333 return TM_SuppressedByUser; 334 335 Optional<int> Count = 336 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); 337 if (Count.hasValue()) 338 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 339 340 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) 341 return TM_ForcedByUser; 342 343 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) 344 return TM_ForcedByUser; 345 346 if (hasDisableAllTransformsHint(L)) 347 return TM_Disable; 348 349 return TM_Unspecified; 350 } 351 352 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { 353 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) 354 return TM_SuppressedByUser; 355 356 Optional<int> Count = 357 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); 358 if (Count.hasValue()) 359 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; 360 361 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) 362 return TM_ForcedByUser; 363 364 if (hasDisableAllTransformsHint(L)) 365 return TM_Disable; 366 367 return TM_Unspecified; 368 } 369 370 TransformationMode llvm::hasVectorizeTransformation(Loop *L) { 371 Optional<bool> Enable = 372 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); 373 374 if (Enable == false) 375 return TM_SuppressedByUser; 376 377 Optional<int> VectorizeWidth = 378 getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); 379 Optional<int> InterleaveCount = 380 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); 381 382 // 'Forcing' vector width and interleave count to one effectively disables 383 // this tranformation. 384 if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1) 385 return TM_SuppressedByUser; 386 387 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 388 return TM_Disable; 389 390 if (Enable == true) 391 return TM_ForcedByUser; 392 393 if (VectorizeWidth == 1 && InterleaveCount == 1) 394 return TM_Disable; 395 396 if (VectorizeWidth > 1 || InterleaveCount > 1) 397 return TM_Enable; 398 399 if (hasDisableAllTransformsHint(L)) 400 return TM_Disable; 401 402 return TM_Unspecified; 403 } 404 405 TransformationMode llvm::hasDistributeTransformation(Loop *L) { 406 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) 407 return TM_ForcedByUser; 408 409 if (hasDisableAllTransformsHint(L)) 410 return TM_Disable; 411 412 return TM_Unspecified; 413 } 414 415 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { 416 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) 417 return TM_SuppressedByUser; 418 419 if (hasDisableAllTransformsHint(L)) 420 return TM_Disable; 421 422 return TM_Unspecified; 423 } 424 425 /// Does a BFS from a given node to all of its children inside a given loop. 426 /// The returned vector of nodes includes the starting point. 427 SmallVector<DomTreeNode *, 16> 428 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { 429 SmallVector<DomTreeNode *, 16> Worklist; 430 auto AddRegionToWorklist = [&](DomTreeNode *DTN) { 431 // Only include subregions in the top level loop. 432 BasicBlock *BB = DTN->getBlock(); 433 if (CurLoop->contains(BB)) 434 Worklist.push_back(DTN); 435 }; 436 437 AddRegionToWorklist(N); 438 439 for (size_t I = 0; I < Worklist.size(); I++) 440 for (DomTreeNode *Child : Worklist[I]->getChildren()) 441 AddRegionToWorklist(Child); 442 443 return Worklist; 444 } 445 446 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, 447 ScalarEvolution *SE = nullptr, 448 LoopInfo *LI = nullptr) { 449 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); 450 auto *Preheader = L->getLoopPreheader(); 451 assert(Preheader && "Preheader should exist!"); 452 453 // Now that we know the removal is safe, remove the loop by changing the 454 // branch from the preheader to go to the single exit block. 455 // 456 // Because we're deleting a large chunk of code at once, the sequence in which 457 // we remove things is very important to avoid invalidation issues. 458 459 // Tell ScalarEvolution that the loop is deleted. Do this before 460 // deleting the loop so that ScalarEvolution can look at the loop 461 // to determine what it needs to clean up. 462 if (SE) 463 SE->forgetLoop(L); 464 465 auto *ExitBlock = L->getUniqueExitBlock(); 466 assert(ExitBlock && "Should have a unique exit block!"); 467 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 468 469 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); 470 assert(OldBr && "Preheader must end with a branch"); 471 assert(OldBr->isUnconditional() && "Preheader must have a single successor"); 472 // Connect the preheader to the exit block. Keep the old edge to the header 473 // around to perform the dominator tree update in two separate steps 474 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge 475 // preheader -> header. 476 // 477 // 478 // 0. Preheader 1. Preheader 2. Preheader 479 // | | | | 480 // V | V | 481 // Header <--\ | Header <--\ | Header <--\ 482 // | | | | | | | | | | | 483 // | V | | | V | | | V | 484 // | Body --/ | | Body --/ | | Body --/ 485 // V V V V V 486 // Exit Exit Exit 487 // 488 // By doing this is two separate steps we can perform the dominator tree 489 // update without using the batch update API. 490 // 491 // Even when the loop is never executed, we cannot remove the edge from the 492 // source block to the exit block. Consider the case where the unexecuted loop 493 // branches back to an outer loop. If we deleted the loop and removed the edge 494 // coming to this inner loop, this will break the outer loop structure (by 495 // deleting the backedge of the outer loop). If the outer loop is indeed a 496 // non-loop, it will be deleted in a future iteration of loop deletion pass. 497 IRBuilder<> Builder(OldBr); 498 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 499 // Remove the old branch. The conditional branch becomes a new terminator. 500 OldBr->eraseFromParent(); 501 502 // Rewrite phis in the exit block to get their inputs from the Preheader 503 // instead of the exiting block. 504 for (PHINode &P : ExitBlock->phis()) { 505 // Set the zero'th element of Phi to be from the preheader and remove all 506 // other incoming values. Given the loop has dedicated exits, all other 507 // incoming values must be from the exiting blocks. 508 int PredIndex = 0; 509 P.setIncomingBlock(PredIndex, Preheader); 510 // Removes all incoming values from all other exiting blocks (including 511 // duplicate values from an exiting block). 512 // Nuke all entries except the zero'th entry which is the preheader entry. 513 // NOTE! We need to remove Incoming Values in the reverse order as done 514 // below, to keep the indices valid for deletion (removeIncomingValues 515 // updates getNumIncomingValues and shifts all values down into the operand 516 // being deleted). 517 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 518 P.removeIncomingValue(e - i, false); 519 520 assert((P.getNumIncomingValues() == 1 && 521 P.getIncomingBlock(PredIndex) == Preheader) && 522 "Should have exactly one value and that's from the preheader!"); 523 } 524 525 // Disconnect the loop body by branching directly to its exit. 526 Builder.SetInsertPoint(Preheader->getTerminator()); 527 Builder.CreateBr(ExitBlock); 528 // Remove the old branch. 529 Preheader->getTerminator()->eraseFromParent(); 530 531 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 532 if (DT) { 533 // Update the dominator tree by informing it about the new edge from the 534 // preheader to the exit. 535 DTU.insertEdge(Preheader, ExitBlock); 536 // Inform the dominator tree about the removed edge. 537 DTU.deleteEdge(Preheader, L->getHeader()); 538 } 539 540 // Use a map to unique and a vector to guarantee deterministic ordering. 541 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; 542 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; 543 544 // Given LCSSA form is satisfied, we should not have users of instructions 545 // within the dead loop outside of the loop. However, LCSSA doesn't take 546 // unreachable uses into account. We handle them here. 547 // We could do it after drop all references (in this case all users in the 548 // loop will be already eliminated and we have less work to do but according 549 // to API doc of User::dropAllReferences only valid operation after dropping 550 // references, is deletion. So let's substitute all usages of 551 // instruction from the loop with undef value of corresponding type first. 552 for (auto *Block : L->blocks()) 553 for (Instruction &I : *Block) { 554 auto *Undef = UndefValue::get(I.getType()); 555 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { 556 Use &U = *UI; 557 ++UI; 558 if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 559 if (L->contains(Usr->getParent())) 560 continue; 561 // If we have a DT then we can check that uses outside a loop only in 562 // unreachable block. 563 if (DT) 564 assert(!DT->isReachableFromEntry(U) && 565 "Unexpected user in reachable block"); 566 U.set(Undef); 567 } 568 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 569 if (!DVI) 570 continue; 571 auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 572 if (Key != DeadDebugSet.end()) 573 continue; 574 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 575 DeadDebugInst.push_back(DVI); 576 } 577 578 // After the loop has been deleted all the values defined and modified 579 // inside the loop are going to be unavailable. 580 // Since debug values in the loop have been deleted, inserting an undef 581 // dbg.value truncates the range of any dbg.value before the loop where the 582 // loop used to be. This is particularly important for constant values. 583 DIBuilder DIB(*ExitBlock->getModule()); 584 for (auto *DVI : DeadDebugInst) 585 DIB.insertDbgValueIntrinsic( 586 UndefValue::get(Builder.getInt32Ty()), DVI->getVariable(), 587 DVI->getExpression(), DVI->getDebugLoc(), ExitBlock->getFirstNonPHI()); 588 589 // Remove the block from the reference counting scheme, so that we can 590 // delete it freely later. 591 for (auto *Block : L->blocks()) 592 Block->dropAllReferences(); 593 594 if (LI) { 595 // Erase the instructions and the blocks without having to worry 596 // about ordering because we already dropped the references. 597 // NOTE: This iteration is safe because erasing the block does not remove 598 // its entry from the loop's block list. We do that in the next section. 599 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); 600 LpI != LpE; ++LpI) 601 (*LpI)->eraseFromParent(); 602 603 // Finally, the blocks from loopinfo. This has to happen late because 604 // otherwise our loop iterators won't work. 605 606 SmallPtrSet<BasicBlock *, 8> blocks; 607 blocks.insert(L->block_begin(), L->block_end()); 608 for (BasicBlock *BB : blocks) 609 LI->removeBlock(BB); 610 611 // The last step is to update LoopInfo now that we've eliminated this loop. 612 LI->erase(L); 613 } 614 } 615 616 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { 617 // Only support loops with a unique exiting block, and a latch. 618 if (!L->getExitingBlock()) 619 return None; 620 621 // Get the branch weights for the loop's backedge. 622 BranchInst *LatchBR = 623 dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator()); 624 if (!LatchBR || LatchBR->getNumSuccessors() != 2) 625 return None; 626 627 assert((LatchBR->getSuccessor(0) == L->getHeader() || 628 LatchBR->getSuccessor(1) == L->getHeader()) && 629 "At least one edge out of the latch must go to the header"); 630 631 // To estimate the number of times the loop body was executed, we want to 632 // know the number of times the backedge was taken, vs. the number of times 633 // we exited the loop. 634 uint64_t TrueVal, FalseVal; 635 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) 636 return None; 637 638 if (!TrueVal || !FalseVal) 639 return 0; 640 641 // Divide the count of the backedge by the count of the edge exiting the loop, 642 // rounding to nearest. 643 if (LatchBR->getSuccessor(0) == L->getHeader()) 644 return (TrueVal + (FalseVal / 2)) / FalseVal; 645 else 646 return (FalseVal + (TrueVal / 2)) / TrueVal; 647 } 648 649 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, 650 ScalarEvolution &SE) { 651 Loop *OuterL = InnerLoop->getParentLoop(); 652 if (!OuterL) 653 return true; 654 655 // Get the backedge taken count for the inner loop 656 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 657 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); 658 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || 659 !InnerLoopBECountSC->getType()->isIntegerTy()) 660 return false; 661 662 // Get whether count is invariant to the outer loop 663 ScalarEvolution::LoopDisposition LD = 664 SE.getLoopDisposition(InnerLoopBECountSC, OuterL); 665 if (LD != ScalarEvolution::LoopInvariant) 666 return false; 667 668 return true; 669 } 670 671 /// Adds a 'fast' flag to floating point operations. 672 static Value *addFastMathFlag(Value *V) { 673 if (isa<FPMathOperator>(V)) { 674 FastMathFlags Flags; 675 Flags.setFast(); 676 cast<Instruction>(V)->setFastMathFlags(Flags); 677 } 678 return V; 679 } 680 681 Value *llvm::createMinMaxOp(IRBuilder<> &Builder, 682 RecurrenceDescriptor::MinMaxRecurrenceKind RK, 683 Value *Left, Value *Right) { 684 CmpInst::Predicate P = CmpInst::ICMP_NE; 685 switch (RK) { 686 default: 687 llvm_unreachable("Unknown min/max recurrence kind"); 688 case RecurrenceDescriptor::MRK_UIntMin: 689 P = CmpInst::ICMP_ULT; 690 break; 691 case RecurrenceDescriptor::MRK_UIntMax: 692 P = CmpInst::ICMP_UGT; 693 break; 694 case RecurrenceDescriptor::MRK_SIntMin: 695 P = CmpInst::ICMP_SLT; 696 break; 697 case RecurrenceDescriptor::MRK_SIntMax: 698 P = CmpInst::ICMP_SGT; 699 break; 700 case RecurrenceDescriptor::MRK_FloatMin: 701 P = CmpInst::FCMP_OLT; 702 break; 703 case RecurrenceDescriptor::MRK_FloatMax: 704 P = CmpInst::FCMP_OGT; 705 break; 706 } 707 708 // We only match FP sequences that are 'fast', so we can unconditionally 709 // set it on any generated instructions. 710 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 711 FastMathFlags FMF; 712 FMF.setFast(); 713 Builder.setFastMathFlags(FMF); 714 715 Value *Cmp; 716 if (RK == RecurrenceDescriptor::MRK_FloatMin || 717 RK == RecurrenceDescriptor::MRK_FloatMax) 718 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 719 else 720 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 721 722 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 723 return Select; 724 } 725 726 // Helper to generate an ordered reduction. 727 Value * 728 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, 729 unsigned Op, 730 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 731 ArrayRef<Value *> RedOps) { 732 unsigned VF = Src->getType()->getVectorNumElements(); 733 734 // Extract and apply reduction ops in ascending order: 735 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] 736 Value *Result = Acc; 737 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { 738 Value *Ext = 739 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); 740 741 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 742 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, 743 "bin.rdx"); 744 } else { 745 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 746 "Invalid min/max"); 747 Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); 748 } 749 750 if (!RedOps.empty()) 751 propagateIRFlags(Result, RedOps); 752 } 753 754 return Result; 755 } 756 757 // Helper to generate a log2 shuffle reduction. 758 Value * 759 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, 760 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, 761 ArrayRef<Value *> RedOps) { 762 unsigned VF = Src->getType()->getVectorNumElements(); 763 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 764 // and vector ops, reducing the set of values being computed by half each 765 // round. 766 assert(isPowerOf2_32(VF) && 767 "Reduction emission only supported for pow2 vectors!"); 768 Value *TmpVec = Src; 769 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 770 for (unsigned i = VF; i != 1; i >>= 1) { 771 // Move the upper half of the vector to the lower half. 772 for (unsigned j = 0; j != i / 2; ++j) 773 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 774 775 // Fill the rest of the mask with undef. 776 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 777 UndefValue::get(Builder.getInt32Ty())); 778 779 Value *Shuf = Builder.CreateShuffleVector( 780 TmpVec, UndefValue::get(TmpVec->getType()), 781 ConstantVector::get(ShuffleMask), "rdx.shuf"); 782 783 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 784 // Floating point operations had to be 'fast' to enable the reduction. 785 TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op, 786 TmpVec, Shuf, "bin.rdx")); 787 } else { 788 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && 789 "Invalid min/max"); 790 TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); 791 } 792 if (!RedOps.empty()) 793 propagateIRFlags(TmpVec, RedOps); 794 } 795 // The result is in the first element of the vector. 796 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 797 } 798 799 /// Create a simple vector reduction specified by an opcode and some 800 /// flags (if generating min/max reductions). 801 Value *llvm::createSimpleTargetReduction( 802 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, 803 Value *Src, TargetTransformInfo::ReductionFlags Flags, 804 ArrayRef<Value *> RedOps) { 805 assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); 806 807 Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType()); 808 std::function<Value *()> BuildFunc; 809 using RD = RecurrenceDescriptor; 810 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; 811 // TODO: Support creating ordered reductions. 812 FastMathFlags FMFFast; 813 FMFFast.setFast(); 814 815 switch (Opcode) { 816 case Instruction::Add: 817 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; 818 break; 819 case Instruction::Mul: 820 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; 821 break; 822 case Instruction::And: 823 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; 824 break; 825 case Instruction::Or: 826 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; 827 break; 828 case Instruction::Xor: 829 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; 830 break; 831 case Instruction::FAdd: 832 BuildFunc = [&]() { 833 auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src); 834 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); 835 return Rdx; 836 }; 837 break; 838 case Instruction::FMul: 839 BuildFunc = [&]() { 840 auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src); 841 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); 842 return Rdx; 843 }; 844 break; 845 case Instruction::ICmp: 846 if (Flags.IsMaxOp) { 847 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; 848 BuildFunc = [&]() { 849 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); 850 }; 851 } else { 852 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; 853 BuildFunc = [&]() { 854 return Builder.CreateIntMinReduce(Src, Flags.IsSigned); 855 }; 856 } 857 break; 858 case Instruction::FCmp: 859 if (Flags.IsMaxOp) { 860 MinMaxKind = RD::MRK_FloatMax; 861 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; 862 } else { 863 MinMaxKind = RD::MRK_FloatMin; 864 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; 865 } 866 break; 867 default: 868 llvm_unreachable("Unhandled opcode"); 869 break; 870 } 871 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) 872 return BuildFunc(); 873 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); 874 } 875 876 /// Create a vector reduction using a given recurrence descriptor. 877 Value *llvm::createTargetReduction(IRBuilder<> &B, 878 const TargetTransformInfo *TTI, 879 RecurrenceDescriptor &Desc, Value *Src, 880 bool NoNaN) { 881 // TODO: Support in-order reductions based on the recurrence descriptor. 882 using RD = RecurrenceDescriptor; 883 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); 884 TargetTransformInfo::ReductionFlags Flags; 885 Flags.NoNaN = NoNaN; 886 switch (RecKind) { 887 case RD::RK_FloatAdd: 888 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); 889 case RD::RK_FloatMult: 890 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); 891 case RD::RK_IntegerAdd: 892 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); 893 case RD::RK_IntegerMult: 894 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); 895 case RD::RK_IntegerAnd: 896 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); 897 case RD::RK_IntegerOr: 898 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); 899 case RD::RK_IntegerXor: 900 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); 901 case RD::RK_IntegerMinMax: { 902 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); 903 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); 904 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); 905 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); 906 } 907 case RD::RK_FloatMinMax: { 908 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; 909 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); 910 } 911 default: 912 llvm_unreachable("Unhandled RecKind"); 913 } 914 } 915 916 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { 917 auto *VecOp = dyn_cast<Instruction>(I); 918 if (!VecOp) 919 return; 920 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) 921 : dyn_cast<Instruction>(OpValue); 922 if (!Intersection) 923 return; 924 const unsigned Opcode = Intersection->getOpcode(); 925 VecOp->copyIRFlags(Intersection); 926 for (auto *V : VL) { 927 auto *Instr = dyn_cast<Instruction>(V); 928 if (!Instr) 929 continue; 930 if (OpValue == nullptr || Opcode == Instr->getOpcode()) 931 VecOp->andIRFlags(V); 932 } 933 } 934 935 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, 936 ScalarEvolution &SE) { 937 const SCEV *Zero = SE.getZero(S->getType()); 938 return SE.isAvailableAtLoopEntry(S, L) && 939 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); 940 } 941 942 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, 943 ScalarEvolution &SE) { 944 const SCEV *Zero = SE.getZero(S->getType()); 945 return SE.isAvailableAtLoopEntry(S, L) && 946 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); 947 } 948 949 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 950 bool Signed) { 951 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 952 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : 953 APInt::getMinValue(BitWidth); 954 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 955 return SE.isAvailableAtLoopEntry(S, L) && 956 SE.isLoopEntryGuardedByCond(L, Predicate, S, 957 SE.getConstant(Min)); 958 } 959 960 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, 961 bool Signed) { 962 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); 963 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : 964 APInt::getMaxValue(BitWidth); 965 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 966 return SE.isAvailableAtLoopEntry(S, L) && 967 SE.isLoopEntryGuardedByCond(L, Predicate, S, 968 SE.getConstant(Max)); 969 } 970