1 //===- UnrollLoopPeel.cpp - Loop peeling utilities ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for peeling loops 11 // with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for 12 // unrolling loops with compile-time constant trip counts. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/ScalarEvolution.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include "llvm/Transforms/Utils/LoopSimplify.h" 40 #include "llvm/Transforms/Utils/LoopUtils.h" 41 #include "llvm/Transforms/Utils/UnrollLoop.h" 42 #include "llvm/Transforms/Utils/ValueMapper.h" 43 #include <algorithm> 44 #include <cassert> 45 #include <cstdint> 46 #include <limits> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "loop-unroll" 51 52 STATISTIC(NumPeeled, "Number of loops peeled"); 53 54 static cl::opt<unsigned> UnrollPeelMaxCount( 55 "unroll-peel-max-count", cl::init(7), cl::Hidden, 56 cl::desc("Max average trip count which will cause loop peeling.")); 57 58 static cl::opt<unsigned> UnrollForcePeelCount( 59 "unroll-force-peel-count", cl::init(0), cl::Hidden, 60 cl::desc("Force a peel count regardless of profiling information.")); 61 62 // Designates that a Phi is estimated to become invariant after an "infinite" 63 // number of loop iterations (i.e. only may become an invariant if the loop is 64 // fully unrolled). 65 static const unsigned InfiniteIterationsToInvariance = 66 std::numeric_limits<unsigned>::max(); 67 68 // Check whether we are capable of peeling this loop. 69 static bool canPeel(Loop *L) { 70 // Make sure the loop is in simplified form 71 if (!L->isLoopSimplifyForm()) 72 return false; 73 74 // Only peel loops that contain a single exit 75 if (!L->getExitingBlock() || !L->getUniqueExitBlock()) 76 return false; 77 78 // Don't try to peel loops where the latch is not the exiting block. 79 // This can be an indication of two different things: 80 // 1) The loop is not rotated. 81 // 2) The loop contains irreducible control flow that involves the latch. 82 if (L->getLoopLatch() != L->getExitingBlock()) 83 return false; 84 85 return true; 86 } 87 88 // This function calculates the number of iterations after which the given Phi 89 // becomes an invariant. The pre-calculated values are memorized in the map. The 90 // function (shortcut is I) is calculated according to the following definition: 91 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. 92 // If %y is a loop invariant, then I(%x) = 1. 93 // If %y is a Phi from the loop header, I(%x) = I(%y) + 1. 94 // Otherwise, I(%x) is infinite. 95 // TODO: Actually if %y is an expression that depends only on Phi %z and some 96 // loop invariants, we can estimate I(%x) = I(%z) + 1. The example 97 // looks like: 98 // %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration. 99 // %y = phi(0, 5), 100 // %a = %y + 1. 101 static unsigned calculateIterationsToInvariance( 102 PHINode *Phi, Loop *L, BasicBlock *BackEdge, 103 SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) { 104 assert(Phi->getParent() == L->getHeader() && 105 "Non-loop Phi should not be checked for turning into invariant."); 106 assert(BackEdge == L->getLoopLatch() && "Wrong latch?"); 107 // If we already know the answer, take it from the map. 108 auto I = IterationsToInvariance.find(Phi); 109 if (I != IterationsToInvariance.end()) 110 return I->second; 111 112 // Otherwise we need to analyze the input from the back edge. 113 Value *Input = Phi->getIncomingValueForBlock(BackEdge); 114 // Place infinity to map to avoid infinite recursion for cycled Phis. Such 115 // cycles can never stop on an invariant. 116 IterationsToInvariance[Phi] = InfiniteIterationsToInvariance; 117 unsigned ToInvariance = InfiniteIterationsToInvariance; 118 119 if (L->isLoopInvariant(Input)) 120 ToInvariance = 1u; 121 else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) { 122 // Only consider Phis in header block. 123 if (IncPhi->getParent() != L->getHeader()) 124 return InfiniteIterationsToInvariance; 125 // If the input becomes an invariant after X iterations, then our Phi 126 // becomes an invariant after X + 1 iterations. 127 unsigned InputToInvariance = calculateIterationsToInvariance( 128 IncPhi, L, BackEdge, IterationsToInvariance); 129 if (InputToInvariance != InfiniteIterationsToInvariance) 130 ToInvariance = InputToInvariance + 1u; 131 } 132 133 // If we found that this Phi lies in an invariant chain, update the map. 134 if (ToInvariance != InfiniteIterationsToInvariance) 135 IterationsToInvariance[Phi] = ToInvariance; 136 return ToInvariance; 137 } 138 139 // Return the number of iterations we want to peel off. 140 void llvm::computePeelCount(Loop *L, unsigned LoopSize, 141 TargetTransformInfo::UnrollingPreferences &UP, 142 unsigned &TripCount) { 143 assert(LoopSize > 0 && "Zero loop size is not allowed!"); 144 UP.PeelCount = 0; 145 if (!canPeel(L)) 146 return; 147 148 // Only try to peel innermost loops. 149 if (!L->empty()) 150 return; 151 152 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N 153 // iterations of the loop. For this we compute the number for iterations after 154 // which every Phi is guaranteed to become an invariant, and try to peel the 155 // maximum number of iterations among these values, thus turning all those 156 // Phis into invariants. 157 // First, check that we can peel at least one iteration. 158 if (2 * LoopSize <= UP.Threshold && UnrollPeelMaxCount > 0) { 159 // Store the pre-calculated values here. 160 SmallDenseMap<PHINode *, unsigned> IterationsToInvariance; 161 // Now go through all Phis to calculate their the number of iterations they 162 // need to become invariants. 163 unsigned DesiredPeelCount = 0; 164 BasicBlock *BackEdge = L->getLoopLatch(); 165 assert(BackEdge && "Loop is not in simplified form?"); 166 for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) { 167 PHINode *Phi = cast<PHINode>(&*BI); 168 unsigned ToInvariance = calculateIterationsToInvariance( 169 Phi, L, BackEdge, IterationsToInvariance); 170 if (ToInvariance != InfiniteIterationsToInvariance) 171 DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance); 172 } 173 if (DesiredPeelCount > 0) { 174 // Pay respect to limitations implied by loop size and the max peel count. 175 unsigned MaxPeelCount = UnrollPeelMaxCount; 176 MaxPeelCount = std::min(MaxPeelCount, UP.Threshold / LoopSize - 1); 177 DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); 178 // Consider max peel count limitation. 179 assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); 180 DEBUG(dbgs() << "Peel " << DesiredPeelCount << " iteration(s) to turn" 181 << " some Phis into invariants.\n"); 182 UP.PeelCount = DesiredPeelCount; 183 return; 184 } 185 } 186 187 // Bail if we know the statically calculated trip count. 188 // In this case we rather prefer partial unrolling. 189 if (TripCount) 190 return; 191 192 // If the user provided a peel count, use that. 193 bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; 194 if (UserPeelCount) { 195 DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount 196 << " iterations.\n"); 197 UP.PeelCount = UnrollForcePeelCount; 198 return; 199 } 200 201 // If we don't know the trip count, but have reason to believe the average 202 // trip count is low, peeling should be beneficial, since we will usually 203 // hit the peeled section. 204 // We only do this in the presence of profile information, since otherwise 205 // our estimates of the trip count are not reliable enough. 206 if (UP.AllowPeeling && L->getHeader()->getParent()->hasProfileData()) { 207 Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L); 208 if (!PeelCount) 209 return; 210 211 DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount 212 << "\n"); 213 214 if (*PeelCount) { 215 if ((*PeelCount <= UnrollPeelMaxCount) && 216 (LoopSize * (*PeelCount + 1) <= UP.Threshold)) { 217 DEBUG(dbgs() << "Peeling first " << *PeelCount << " iterations.\n"); 218 UP.PeelCount = *PeelCount; 219 return; 220 } 221 DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n"); 222 DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); 223 DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1) << "\n"); 224 DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n"); 225 } 226 } 227 } 228 229 /// \brief Update the branch weights of the latch of a peeled-off loop 230 /// iteration. 231 /// This sets the branch weights for the latch of the recently peeled off loop 232 /// iteration correctly. 233 /// Our goal is to make sure that: 234 /// a) The total weight of all the copies of the loop body is preserved. 235 /// b) The total weight of the loop exit is preserved. 236 /// c) The body weight is reasonably distributed between the peeled iterations. 237 /// 238 /// \param Header The copy of the header block that belongs to next iteration. 239 /// \param LatchBR The copy of the latch branch that belongs to this iteration. 240 /// \param IterNumber The serial number of the iteration that was just 241 /// peeled off. 242 /// \param AvgIters The average number of iterations we expect the loop to have. 243 /// \param[in,out] PeeledHeaderWeight The total number of dynamic loop 244 /// iterations that are unaccounted for. As an input, it represents the number 245 /// of times we expect to enter the header of the iteration currently being 246 /// peeled off. The output is the number of times we expect to enter the 247 /// header of the next iteration. 248 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 249 unsigned IterNumber, unsigned AvgIters, 250 uint64_t &PeeledHeaderWeight) { 251 // FIXME: Pick a more realistic distribution. 252 // Currently the proportion of weight we assign to the fall-through 253 // side of the branch drops linearly with the iteration number, and we use 254 // a 0.9 fudge factor to make the drop-off less sharp... 255 if (PeeledHeaderWeight) { 256 uint64_t FallThruWeight = 257 PeeledHeaderWeight * ((float)(AvgIters - IterNumber) / AvgIters * 0.9); 258 uint64_t ExitWeight = PeeledHeaderWeight - FallThruWeight; 259 PeeledHeaderWeight -= ExitWeight; 260 261 unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); 262 MDBuilder MDB(LatchBR->getContext()); 263 MDNode *WeightNode = 264 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThruWeight) 265 : MDB.createBranchWeights(FallThruWeight, ExitWeight); 266 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 267 } 268 } 269 270 /// \brief Clones the body of the loop L, putting it between \p InsertTop and \p 271 /// InsertBot. 272 /// \param IterNumber The serial number of the iteration currently being 273 /// peeled off. 274 /// \param Exit The exit block of the original loop. 275 /// \param[out] NewBlocks A list of the the blocks in the newly created clone 276 /// \param[out] VMap The value map between the loop and the new clone. 277 /// \param LoopBlocks A helper for DFS-traversal of the loop. 278 /// \param LVMap A value-map that maps instructions from the original loop to 279 /// instructions in the last peeled-off iteration. 280 static void cloneLoopBlocks(Loop *L, unsigned IterNumber, BasicBlock *InsertTop, 281 BasicBlock *InsertBot, BasicBlock *Exit, 282 SmallVectorImpl<BasicBlock *> &NewBlocks, 283 LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, 284 ValueToValueMapTy &LVMap, DominatorTree *DT, 285 LoopInfo *LI) { 286 BasicBlock *Header = L->getHeader(); 287 BasicBlock *Latch = L->getLoopLatch(); 288 BasicBlock *PreHeader = L->getLoopPreheader(); 289 290 Function *F = Header->getParent(); 291 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 292 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 293 Loop *ParentLoop = L->getParentLoop(); 294 295 // For each block in the original loop, create a new copy, 296 // and update the value map with the newly created values. 297 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 298 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); 299 NewBlocks.push_back(NewBB); 300 301 if (ParentLoop) 302 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 303 304 VMap[*BB] = NewBB; 305 306 // If dominator tree is available, insert nodes to represent cloned blocks. 307 if (DT) { 308 if (Header == *BB) 309 DT->addNewBlock(NewBB, InsertTop); 310 else { 311 DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); 312 // VMap must contain entry for IDom, as the iteration order is RPO. 313 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()])); 314 } 315 } 316 } 317 318 // Hook-up the control flow for the newly inserted blocks. 319 // The new header is hooked up directly to the "top", which is either 320 // the original loop preheader (for the first iteration) or the previous 321 // iteration's exiting block (for every other iteration) 322 InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); 323 324 // Similarly, for the latch: 325 // The original exiting edge is still hooked up to the loop exit. 326 // The backedge now goes to the "bottom", which is either the loop's real 327 // header (for the last peeled iteration) or the copied header of the next 328 // iteration (for every other iteration) 329 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 330 BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator()); 331 unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); 332 LatchBR->setSuccessor(HeaderIdx, InsertBot); 333 LatchBR->setSuccessor(1 - HeaderIdx, Exit); 334 if (DT) 335 DT->changeImmediateDominator(InsertBot, NewLatch); 336 337 // The new copy of the loop body starts with a bunch of PHI nodes 338 // that pick an incoming value from either the preheader, or the previous 339 // loop iteration. Since this copy is no longer part of the loop, we 340 // resolve this statically: 341 // For the first iteration, we use the value from the preheader directly. 342 // For any other iteration, we replace the phi with the value generated by 343 // the immediately preceding clone of the loop body (which represents 344 // the previous iteration). 345 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 346 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 347 if (IterNumber == 0) { 348 VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); 349 } else { 350 Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); 351 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 352 if (LatchInst && L->contains(LatchInst)) 353 VMap[&*I] = LVMap[LatchInst]; 354 else 355 VMap[&*I] = LatchVal; 356 } 357 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 358 } 359 360 // Fix up the outgoing values - we need to add a value for the iteration 361 // we've just created. Note that this must happen *after* the incoming 362 // values are adjusted, since the value going out of the latch may also be 363 // a value coming into the header. 364 for (BasicBlock::iterator I = Exit->begin(); isa<PHINode>(I); ++I) { 365 PHINode *PHI = cast<PHINode>(I); 366 Value *LatchVal = PHI->getIncomingValueForBlock(Latch); 367 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 368 if (LatchInst && L->contains(LatchInst)) 369 LatchVal = VMap[LatchVal]; 370 PHI->addIncoming(LatchVal, cast<BasicBlock>(VMap[Latch])); 371 } 372 373 // LastValueMap is updated with the values for the current loop 374 // which are used the next time this function is called. 375 for (const auto &KV : VMap) 376 LVMap[KV.first] = KV.second; 377 } 378 379 /// \brief Peel off the first \p PeelCount iterations of loop \p L. 380 /// 381 /// Note that this does not peel them off as a single straight-line block. 382 /// Rather, each iteration is peeled off separately, and needs to check the 383 /// exit condition. 384 /// For loops that dynamically execute \p PeelCount iterations or less 385 /// this provides a benefit, since the peeled off iterations, which account 386 /// for the bulk of dynamic execution, can be further simplified by scalar 387 /// optimizations. 388 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, 389 ScalarEvolution *SE, DominatorTree *DT, 390 AssumptionCache *AC, bool PreserveLCSSA) { 391 if (!canPeel(L)) 392 return false; 393 394 LoopBlocksDFS LoopBlocks(L); 395 LoopBlocks.perform(LI); 396 397 BasicBlock *Header = L->getHeader(); 398 BasicBlock *PreHeader = L->getLoopPreheader(); 399 BasicBlock *Latch = L->getLoopLatch(); 400 BasicBlock *Exit = L->getUniqueExitBlock(); 401 402 Function *F = Header->getParent(); 403 404 // Set up all the necessary basic blocks. It is convenient to split the 405 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop 406 // body, and a new preheader for the "real" loop. 407 408 // Peeling the first iteration transforms. 409 // 410 // PreHeader: 411 // ... 412 // Header: 413 // LoopBody 414 // If (cond) goto Header 415 // Exit: 416 // 417 // into 418 // 419 // InsertTop: 420 // LoopBody 421 // If (!cond) goto Exit 422 // InsertBot: 423 // NewPreHeader: 424 // ... 425 // Header: 426 // LoopBody 427 // If (cond) goto Header 428 // Exit: 429 // 430 // Each following iteration will split the current bottom anchor in two, 431 // and put the new copy of the loop body between these two blocks. That is, 432 // after peeling another iteration from the example above, we'll split 433 // InsertBot, and get: 434 // 435 // InsertTop: 436 // LoopBody 437 // If (!cond) goto Exit 438 // InsertBot: 439 // LoopBody 440 // If (!cond) goto Exit 441 // InsertBot.next: 442 // NewPreHeader: 443 // ... 444 // Header: 445 // LoopBody 446 // If (cond) goto Header 447 // Exit: 448 449 BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI); 450 BasicBlock *InsertBot = 451 SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI); 452 BasicBlock *NewPreHeader = 453 SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); 454 455 InsertTop->setName(Header->getName() + ".peel.begin"); 456 InsertBot->setName(Header->getName() + ".peel.next"); 457 NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); 458 459 ValueToValueMapTy LVMap; 460 461 // If we have branch weight information, we'll want to update it for the 462 // newly created branches. 463 BranchInst *LatchBR = 464 cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator()); 465 unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); 466 467 uint64_t TrueWeight, FalseWeight; 468 uint64_t ExitWeight = 0, CurHeaderWeight = 0; 469 if (LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) { 470 ExitWeight = HeaderIdx ? TrueWeight : FalseWeight; 471 // The # of times the loop body executes is the sum of the exit block 472 // weight and the # of times the backedges are taken. 473 CurHeaderWeight = TrueWeight + FalseWeight; 474 } 475 476 // For each peeled-off iteration, make a copy of the loop. 477 for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { 478 SmallVector<BasicBlock *, 8> NewBlocks; 479 ValueToValueMapTy VMap; 480 481 // Subtract the exit weight from the current header weight -- the exit 482 // weight is exactly the weight of the previous iteration's header. 483 // FIXME: due to the way the distribution is constructed, we need a 484 // guard here to make sure we don't end up with non-positive weights. 485 if (ExitWeight < CurHeaderWeight) 486 CurHeaderWeight -= ExitWeight; 487 else 488 CurHeaderWeight = 1; 489 490 cloneLoopBlocks(L, Iter, InsertTop, InsertBot, Exit, 491 NewBlocks, LoopBlocks, VMap, LVMap, DT, LI); 492 493 // Remap to use values from the current iteration instead of the 494 // previous one. 495 remapInstructionsInBlocks(NewBlocks, VMap); 496 497 if (DT) { 498 // Latches of the cloned loops dominate over the loop exit, so idom of the 499 // latter is the first cloned loop body, as original PreHeader dominates 500 // the original loop body. 501 if (Iter == 0) 502 DT->changeImmediateDominator(Exit, cast<BasicBlock>(LVMap[Latch])); 503 #ifndef NDEBUG 504 if (VerifyDomInfo) 505 DT->verifyDomTree(); 506 #endif 507 } 508 509 updateBranchWeights(InsertBot, cast<BranchInst>(VMap[LatchBR]), Iter, 510 PeelCount, ExitWeight); 511 512 InsertTop = InsertBot; 513 InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); 514 InsertBot->setName(Header->getName() + ".peel.next"); 515 516 F->getBasicBlockList().splice(InsertTop->getIterator(), 517 F->getBasicBlockList(), 518 NewBlocks[0]->getIterator(), F->end()); 519 } 520 521 // Now adjust the phi nodes in the loop header to get their initial values 522 // from the last peeled-off iteration instead of the preheader. 523 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 524 PHINode *PHI = cast<PHINode>(I); 525 Value *NewVal = PHI->getIncomingValueForBlock(Latch); 526 Instruction *LatchInst = dyn_cast<Instruction>(NewVal); 527 if (LatchInst && L->contains(LatchInst)) 528 NewVal = LVMap[LatchInst]; 529 530 PHI->setIncomingValue(PHI->getBasicBlockIndex(NewPreHeader), NewVal); 531 } 532 533 // Adjust the branch weights on the loop exit. 534 if (ExitWeight) { 535 // The backedge count is the difference of current header weight and 536 // current loop exit weight. If the current header weight is smaller than 537 // the current loop exit weight, we mark the loop backedge weight as 1. 538 uint64_t BackEdgeWeight = 0; 539 if (ExitWeight < CurHeaderWeight) 540 BackEdgeWeight = CurHeaderWeight - ExitWeight; 541 else 542 BackEdgeWeight = 1; 543 MDBuilder MDB(LatchBR->getContext()); 544 MDNode *WeightNode = 545 HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight) 546 : MDB.createBranchWeights(BackEdgeWeight, ExitWeight); 547 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 548 } 549 550 // If the loop is nested, we changed the parent loop, update SE. 551 if (Loop *ParentLoop = L->getParentLoop()) { 552 SE->forgetLoop(ParentLoop); 553 554 // FIXME: Incrementally update loop-simplify 555 simplifyLoop(ParentLoop, DT, LI, SE, AC, PreserveLCSSA); 556 } else { 557 // FIXME: Incrementally update loop-simplify 558 simplifyLoop(L, DT, LI, SE, AC, PreserveLCSSA); 559 } 560 561 NumPeeled++; 562 563 return true; 564 } 565