1 //===- UnrollLoopPeel.cpp - Loop peeling utilities ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for peeling loops 11 // with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for 12 // unrolling loops with compile-time constant trip counts. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/ScalarEvolution.h" 23 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include "llvm/Transforms/Utils/Cloning.h" 41 #include "llvm/Transforms/Utils/LoopSimplify.h" 42 #include "llvm/Transforms/Utils/LoopUtils.h" 43 #include "llvm/Transforms/Utils/UnrollLoop.h" 44 #include "llvm/Transforms/Utils/ValueMapper.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstdint> 48 #include <limits> 49 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "loop-unroll" 54 55 STATISTIC(NumPeeled, "Number of loops peeled"); 56 57 static cl::opt<unsigned> UnrollPeelMaxCount( 58 "unroll-peel-max-count", cl::init(7), cl::Hidden, 59 cl::desc("Max average trip count which will cause loop peeling.")); 60 61 static cl::opt<unsigned> UnrollForcePeelCount( 62 "unroll-force-peel-count", cl::init(0), cl::Hidden, 63 cl::desc("Force a peel count regardless of profiling information.")); 64 65 // Designates that a Phi is estimated to become invariant after an "infinite" 66 // number of loop iterations (i.e. only may become an invariant if the loop is 67 // fully unrolled). 68 static const unsigned InfiniteIterationsToInvariance = 69 std::numeric_limits<unsigned>::max(); 70 71 // Check whether we are capable of peeling this loop. 72 bool llvm::canPeel(Loop *L) { 73 // Make sure the loop is in simplified form 74 if (!L->isLoopSimplifyForm()) 75 return false; 76 77 // Only peel loops that contain a single exit 78 if (!L->getExitingBlock() || !L->getUniqueExitBlock()) 79 return false; 80 81 // Don't try to peel loops where the latch is not the exiting block. 82 // This can be an indication of two different things: 83 // 1) The loop is not rotated. 84 // 2) The loop contains irreducible control flow that involves the latch. 85 if (L->getLoopLatch() != L->getExitingBlock()) 86 return false; 87 88 return true; 89 } 90 91 // This function calculates the number of iterations after which the given Phi 92 // becomes an invariant. The pre-calculated values are memorized in the map. The 93 // function (shortcut is I) is calculated according to the following definition: 94 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. 95 // If %y is a loop invariant, then I(%x) = 1. 96 // If %y is a Phi from the loop header, I(%x) = I(%y) + 1. 97 // Otherwise, I(%x) is infinite. 98 // TODO: Actually if %y is an expression that depends only on Phi %z and some 99 // loop invariants, we can estimate I(%x) = I(%z) + 1. The example 100 // looks like: 101 // %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration. 102 // %y = phi(0, 5), 103 // %a = %y + 1. 104 static unsigned calculateIterationsToInvariance( 105 PHINode *Phi, Loop *L, BasicBlock *BackEdge, 106 SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) { 107 assert(Phi->getParent() == L->getHeader() && 108 "Non-loop Phi should not be checked for turning into invariant."); 109 assert(BackEdge == L->getLoopLatch() && "Wrong latch?"); 110 // If we already know the answer, take it from the map. 111 auto I = IterationsToInvariance.find(Phi); 112 if (I != IterationsToInvariance.end()) 113 return I->second; 114 115 // Otherwise we need to analyze the input from the back edge. 116 Value *Input = Phi->getIncomingValueForBlock(BackEdge); 117 // Place infinity to map to avoid infinite recursion for cycled Phis. Such 118 // cycles can never stop on an invariant. 119 IterationsToInvariance[Phi] = InfiniteIterationsToInvariance; 120 unsigned ToInvariance = InfiniteIterationsToInvariance; 121 122 if (L->isLoopInvariant(Input)) 123 ToInvariance = 1u; 124 else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) { 125 // Only consider Phis in header block. 126 if (IncPhi->getParent() != L->getHeader()) 127 return InfiniteIterationsToInvariance; 128 // If the input becomes an invariant after X iterations, then our Phi 129 // becomes an invariant after X + 1 iterations. 130 unsigned InputToInvariance = calculateIterationsToInvariance( 131 IncPhi, L, BackEdge, IterationsToInvariance); 132 if (InputToInvariance != InfiniteIterationsToInvariance) 133 ToInvariance = InputToInvariance + 1u; 134 } 135 136 // If we found that this Phi lies in an invariant chain, update the map. 137 if (ToInvariance != InfiniteIterationsToInvariance) 138 IterationsToInvariance[Phi] = ToInvariance; 139 return ToInvariance; 140 } 141 142 // Return the number of iterations to peel off that make conditions in the 143 // body true/false. For example, if we peel 2 iterations off the loop below, 144 // the condition i < 2 can be evaluated at compile time. 145 // for (i = 0; i < n; i++) 146 // if (i < 2) 147 // .. 148 // else 149 // .. 150 // } 151 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, 152 ScalarEvolution &SE) { 153 assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); 154 unsigned DesiredPeelCount = 0; 155 156 for (auto *BB : L.blocks()) { 157 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 158 if (!BI || BI->isUnconditional()) 159 continue; 160 161 // Ignore loop exit condition. 162 if (L.getLoopLatch() == BB) 163 continue; 164 165 Value *Condition = BI->getCondition(); 166 Value *LeftVal, *RightVal; 167 CmpInst::Predicate Pred; 168 if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) 169 continue; 170 171 const SCEV *LeftSCEV = SE.getSCEV(LeftVal); 172 const SCEV *RightSCEV = SE.getSCEV(RightVal); 173 174 // Do not consider predicates that are known to be true or false 175 // independently of the loop iteration. 176 if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) || 177 SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV, 178 RightSCEV)) 179 continue; 180 181 // Check if we have a condition with one AddRec and one non AddRec 182 // expression. Normalize LeftSCEV to be the AddRec. 183 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 184 if (isa<SCEVAddRecExpr>(RightSCEV)) { 185 std::swap(LeftSCEV, RightSCEV); 186 Pred = ICmpInst::getSwappedPredicate(Pred); 187 } else 188 continue; 189 } 190 191 const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV); 192 193 // Avoid huge SCEV computations in the loop below, make sure we only 194 // consider AddRecs of the loop we are trying to peel and avoid 195 // non-monotonic predicates, as we will not be able to simplify the loop 196 // body. 197 // FIXME: For the non-monotonic predicates ICMP_EQ and ICMP_NE we can 198 // simplify the loop, if we peel 1 additional iteration, if there 199 // is no wrapping. 200 bool Increasing; 201 if (!LeftAR->isAffine() || LeftAR->getLoop() != &L || 202 !SE.isMonotonicPredicate(LeftAR, Pred, Increasing)) 203 continue; 204 (void)Increasing; 205 206 // Check if extending the current DesiredPeelCount lets us evaluate Pred 207 // or !Pred in the loop body statically. 208 unsigned NewPeelCount = DesiredPeelCount; 209 210 const SCEV *IterVal = LeftAR->evaluateAtIteration( 211 SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); 212 213 // If the original condition is not known, get the negated predicate 214 // (which holds on the else branch) and check if it is known. This allows 215 // us to peel of iterations that make the original condition false. 216 if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 217 Pred = ICmpInst::getInversePredicate(Pred); 218 219 const SCEV *Step = LeftAR->getStepRecurrence(SE); 220 while (NewPeelCount < MaxPeelCount && 221 SE.isKnownPredicate(Pred, IterVal, RightSCEV)) { 222 IterVal = SE.getAddExpr(IterVal, Step); 223 NewPeelCount++; 224 } 225 226 // Only peel the loop if the monotonic predicate !Pred becomes known in the 227 // first iteration of the loop body after peeling. 228 if (NewPeelCount > DesiredPeelCount && 229 SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, 230 RightSCEV)) 231 DesiredPeelCount = NewPeelCount; 232 } 233 234 return DesiredPeelCount; 235 } 236 237 // Return the number of iterations we want to peel off. 238 void llvm::computePeelCount(Loop *L, unsigned LoopSize, 239 TargetTransformInfo::UnrollingPreferences &UP, 240 unsigned &TripCount, ScalarEvolution &SE) { 241 assert(LoopSize > 0 && "Zero loop size is not allowed!"); 242 // Save the UP.PeelCount value set by the target in 243 // TTI.getUnrollingPreferences or by the flag -unroll-peel-count. 244 unsigned TargetPeelCount = UP.PeelCount; 245 UP.PeelCount = 0; 246 if (!canPeel(L)) 247 return; 248 249 // Only try to peel innermost loops. 250 if (!L->empty()) 251 return; 252 253 // If the user provided a peel count, use that. 254 bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; 255 if (UserPeelCount) { 256 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount 257 << " iterations.\n"); 258 UP.PeelCount = UnrollForcePeelCount; 259 return; 260 } 261 262 // Skip peeling if it's disabled. 263 if (!UP.AllowPeeling) 264 return; 265 266 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N 267 // iterations of the loop. For this we compute the number for iterations after 268 // which every Phi is guaranteed to become an invariant, and try to peel the 269 // maximum number of iterations among these values, thus turning all those 270 // Phis into invariants. 271 // First, check that we can peel at least one iteration. 272 if (2 * LoopSize <= UP.Threshold && UnrollPeelMaxCount > 0) { 273 // Store the pre-calculated values here. 274 SmallDenseMap<PHINode *, unsigned> IterationsToInvariance; 275 // Now go through all Phis to calculate their the number of iterations they 276 // need to become invariants. 277 // Start the max computation with the UP.PeelCount value set by the target 278 // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count. 279 unsigned DesiredPeelCount = TargetPeelCount; 280 BasicBlock *BackEdge = L->getLoopLatch(); 281 assert(BackEdge && "Loop is not in simplified form?"); 282 for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) { 283 PHINode *Phi = cast<PHINode>(&*BI); 284 unsigned ToInvariance = calculateIterationsToInvariance( 285 Phi, L, BackEdge, IterationsToInvariance); 286 if (ToInvariance != InfiniteIterationsToInvariance) 287 DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance); 288 } 289 290 // Pay respect to limitations implied by loop size and the max peel count. 291 unsigned MaxPeelCount = UnrollPeelMaxCount; 292 MaxPeelCount = std::min(MaxPeelCount, UP.Threshold / LoopSize - 1); 293 294 DesiredPeelCount = std::max(DesiredPeelCount, 295 countToEliminateCompares(*L, MaxPeelCount, SE)); 296 297 if (DesiredPeelCount > 0) { 298 DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); 299 // Consider max peel count limitation. 300 assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); 301 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount 302 << " iteration(s) to turn" 303 << " some Phis into invariants.\n"); 304 UP.PeelCount = DesiredPeelCount; 305 return; 306 } 307 } 308 309 // Bail if we know the statically calculated trip count. 310 // In this case we rather prefer partial unrolling. 311 if (TripCount) 312 return; 313 314 // If we don't know the trip count, but have reason to believe the average 315 // trip count is low, peeling should be beneficial, since we will usually 316 // hit the peeled section. 317 // We only do this in the presence of profile information, since otherwise 318 // our estimates of the trip count are not reliable enough. 319 if (L->getHeader()->getParent()->hasProfileData()) { 320 Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L); 321 if (!PeelCount) 322 return; 323 324 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount 325 << "\n"); 326 327 if (*PeelCount) { 328 if ((*PeelCount <= UnrollPeelMaxCount) && 329 (LoopSize * (*PeelCount + 1) <= UP.Threshold)) { 330 LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount 331 << " iterations.\n"); 332 UP.PeelCount = *PeelCount; 333 return; 334 } 335 LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n"); 336 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); 337 LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1) 338 << "\n"); 339 LLVM_DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n"); 340 } 341 } 342 } 343 344 /// Update the branch weights of the latch of a peeled-off loop 345 /// iteration. 346 /// This sets the branch weights for the latch of the recently peeled off loop 347 /// iteration correctly. 348 /// Our goal is to make sure that: 349 /// a) The total weight of all the copies of the loop body is preserved. 350 /// b) The total weight of the loop exit is preserved. 351 /// c) The body weight is reasonably distributed between the peeled iterations. 352 /// 353 /// \param Header The copy of the header block that belongs to next iteration. 354 /// \param LatchBR The copy of the latch branch that belongs to this iteration. 355 /// \param IterNumber The serial number of the iteration that was just 356 /// peeled off. 357 /// \param AvgIters The average number of iterations we expect the loop to have. 358 /// \param[in,out] PeeledHeaderWeight The total number of dynamic loop 359 /// iterations that are unaccounted for. As an input, it represents the number 360 /// of times we expect to enter the header of the iteration currently being 361 /// peeled off. The output is the number of times we expect to enter the 362 /// header of the next iteration. 363 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 364 unsigned IterNumber, unsigned AvgIters, 365 uint64_t &PeeledHeaderWeight) { 366 // FIXME: Pick a more realistic distribution. 367 // Currently the proportion of weight we assign to the fall-through 368 // side of the branch drops linearly with the iteration number, and we use 369 // a 0.9 fudge factor to make the drop-off less sharp... 370 if (PeeledHeaderWeight) { 371 uint64_t FallThruWeight = 372 PeeledHeaderWeight * ((float)(AvgIters - IterNumber) / AvgIters * 0.9); 373 uint64_t ExitWeight = PeeledHeaderWeight - FallThruWeight; 374 PeeledHeaderWeight -= ExitWeight; 375 376 unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); 377 MDBuilder MDB(LatchBR->getContext()); 378 MDNode *WeightNode = 379 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThruWeight) 380 : MDB.createBranchWeights(FallThruWeight, ExitWeight); 381 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 382 } 383 } 384 385 /// Clones the body of the loop L, putting it between \p InsertTop and \p 386 /// InsertBot. 387 /// \param IterNumber The serial number of the iteration currently being 388 /// peeled off. 389 /// \param Exit The exit block of the original loop. 390 /// \param[out] NewBlocks A list of the blocks in the newly created clone 391 /// \param[out] VMap The value map between the loop and the new clone. 392 /// \param LoopBlocks A helper for DFS-traversal of the loop. 393 /// \param LVMap A value-map that maps instructions from the original loop to 394 /// instructions in the last peeled-off iteration. 395 static void cloneLoopBlocks(Loop *L, unsigned IterNumber, BasicBlock *InsertTop, 396 BasicBlock *InsertBot, BasicBlock *Exit, 397 SmallVectorImpl<BasicBlock *> &NewBlocks, 398 LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, 399 ValueToValueMapTy &LVMap, DominatorTree *DT, 400 LoopInfo *LI) { 401 BasicBlock *Header = L->getHeader(); 402 BasicBlock *Latch = L->getLoopLatch(); 403 BasicBlock *PreHeader = L->getLoopPreheader(); 404 405 Function *F = Header->getParent(); 406 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 407 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 408 Loop *ParentLoop = L->getParentLoop(); 409 410 // For each block in the original loop, create a new copy, 411 // and update the value map with the newly created values. 412 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 413 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); 414 NewBlocks.push_back(NewBB); 415 416 if (ParentLoop) 417 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 418 419 VMap[*BB] = NewBB; 420 421 // If dominator tree is available, insert nodes to represent cloned blocks. 422 if (DT) { 423 if (Header == *BB) 424 DT->addNewBlock(NewBB, InsertTop); 425 else { 426 DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); 427 // VMap must contain entry for IDom, as the iteration order is RPO. 428 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()])); 429 } 430 } 431 } 432 433 // Hook-up the control flow for the newly inserted blocks. 434 // The new header is hooked up directly to the "top", which is either 435 // the original loop preheader (for the first iteration) or the previous 436 // iteration's exiting block (for every other iteration) 437 InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); 438 439 // Similarly, for the latch: 440 // The original exiting edge is still hooked up to the loop exit. 441 // The backedge now goes to the "bottom", which is either the loop's real 442 // header (for the last peeled iteration) or the copied header of the next 443 // iteration (for every other iteration) 444 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 445 BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator()); 446 unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); 447 LatchBR->setSuccessor(HeaderIdx, InsertBot); 448 LatchBR->setSuccessor(1 - HeaderIdx, Exit); 449 if (DT) 450 DT->changeImmediateDominator(InsertBot, NewLatch); 451 452 // The new copy of the loop body starts with a bunch of PHI nodes 453 // that pick an incoming value from either the preheader, or the previous 454 // loop iteration. Since this copy is no longer part of the loop, we 455 // resolve this statically: 456 // For the first iteration, we use the value from the preheader directly. 457 // For any other iteration, we replace the phi with the value generated by 458 // the immediately preceding clone of the loop body (which represents 459 // the previous iteration). 460 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 461 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 462 if (IterNumber == 0) { 463 VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); 464 } else { 465 Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); 466 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 467 if (LatchInst && L->contains(LatchInst)) 468 VMap[&*I] = LVMap[LatchInst]; 469 else 470 VMap[&*I] = LatchVal; 471 } 472 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 473 } 474 475 // Fix up the outgoing values - we need to add a value for the iteration 476 // we've just created. Note that this must happen *after* the incoming 477 // values are adjusted, since the value going out of the latch may also be 478 // a value coming into the header. 479 for (BasicBlock::iterator I = Exit->begin(); isa<PHINode>(I); ++I) { 480 PHINode *PHI = cast<PHINode>(I); 481 Value *LatchVal = PHI->getIncomingValueForBlock(Latch); 482 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 483 if (LatchInst && L->contains(LatchInst)) 484 LatchVal = VMap[LatchVal]; 485 PHI->addIncoming(LatchVal, cast<BasicBlock>(VMap[Latch])); 486 } 487 488 // LastValueMap is updated with the values for the current loop 489 // which are used the next time this function is called. 490 for (const auto &KV : VMap) 491 LVMap[KV.first] = KV.second; 492 } 493 494 /// Peel off the first \p PeelCount iterations of loop \p L. 495 /// 496 /// Note that this does not peel them off as a single straight-line block. 497 /// Rather, each iteration is peeled off separately, and needs to check the 498 /// exit condition. 499 /// For loops that dynamically execute \p PeelCount iterations or less 500 /// this provides a benefit, since the peeled off iterations, which account 501 /// for the bulk of dynamic execution, can be further simplified by scalar 502 /// optimizations. 503 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, 504 ScalarEvolution *SE, DominatorTree *DT, 505 AssumptionCache *AC, bool PreserveLCSSA) { 506 assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); 507 assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); 508 509 LoopBlocksDFS LoopBlocks(L); 510 LoopBlocks.perform(LI); 511 512 BasicBlock *Header = L->getHeader(); 513 BasicBlock *PreHeader = L->getLoopPreheader(); 514 BasicBlock *Latch = L->getLoopLatch(); 515 BasicBlock *Exit = L->getUniqueExitBlock(); 516 517 Function *F = Header->getParent(); 518 519 // Set up all the necessary basic blocks. It is convenient to split the 520 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop 521 // body, and a new preheader for the "real" loop. 522 523 // Peeling the first iteration transforms. 524 // 525 // PreHeader: 526 // ... 527 // Header: 528 // LoopBody 529 // If (cond) goto Header 530 // Exit: 531 // 532 // into 533 // 534 // InsertTop: 535 // LoopBody 536 // If (!cond) goto Exit 537 // InsertBot: 538 // NewPreHeader: 539 // ... 540 // Header: 541 // LoopBody 542 // If (cond) goto Header 543 // Exit: 544 // 545 // Each following iteration will split the current bottom anchor in two, 546 // and put the new copy of the loop body between these two blocks. That is, 547 // after peeling another iteration from the example above, we'll split 548 // InsertBot, and get: 549 // 550 // InsertTop: 551 // LoopBody 552 // If (!cond) goto Exit 553 // InsertBot: 554 // LoopBody 555 // If (!cond) goto Exit 556 // InsertBot.next: 557 // NewPreHeader: 558 // ... 559 // Header: 560 // LoopBody 561 // If (cond) goto Header 562 // Exit: 563 564 BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI); 565 BasicBlock *InsertBot = 566 SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI); 567 BasicBlock *NewPreHeader = 568 SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); 569 570 InsertTop->setName(Header->getName() + ".peel.begin"); 571 InsertBot->setName(Header->getName() + ".peel.next"); 572 NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); 573 574 ValueToValueMapTy LVMap; 575 576 // If we have branch weight information, we'll want to update it for the 577 // newly created branches. 578 BranchInst *LatchBR = 579 cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator()); 580 unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); 581 582 uint64_t TrueWeight, FalseWeight; 583 uint64_t ExitWeight = 0, CurHeaderWeight = 0; 584 if (LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) { 585 ExitWeight = HeaderIdx ? TrueWeight : FalseWeight; 586 // The # of times the loop body executes is the sum of the exit block 587 // weight and the # of times the backedges are taken. 588 CurHeaderWeight = TrueWeight + FalseWeight; 589 } 590 591 // For each peeled-off iteration, make a copy of the loop. 592 for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { 593 SmallVector<BasicBlock *, 8> NewBlocks; 594 ValueToValueMapTy VMap; 595 596 // Subtract the exit weight from the current header weight -- the exit 597 // weight is exactly the weight of the previous iteration's header. 598 // FIXME: due to the way the distribution is constructed, we need a 599 // guard here to make sure we don't end up with non-positive weights. 600 if (ExitWeight < CurHeaderWeight) 601 CurHeaderWeight -= ExitWeight; 602 else 603 CurHeaderWeight = 1; 604 605 cloneLoopBlocks(L, Iter, InsertTop, InsertBot, Exit, 606 NewBlocks, LoopBlocks, VMap, LVMap, DT, LI); 607 608 // Remap to use values from the current iteration instead of the 609 // previous one. 610 remapInstructionsInBlocks(NewBlocks, VMap); 611 612 if (DT) { 613 // Latches of the cloned loops dominate over the loop exit, so idom of the 614 // latter is the first cloned loop body, as original PreHeader dominates 615 // the original loop body. 616 if (Iter == 0) 617 DT->changeImmediateDominator(Exit, cast<BasicBlock>(LVMap[Latch])); 618 #ifdef EXPENSIVE_CHECKS 619 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 620 #endif 621 } 622 623 auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]); 624 updateBranchWeights(InsertBot, LatchBRCopy, Iter, 625 PeelCount, ExitWeight); 626 // Remove Loop metadata from the latch branch instruction 627 // because it is not the Loop's latch branch anymore. 628 LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr); 629 630 InsertTop = InsertBot; 631 InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); 632 InsertBot->setName(Header->getName() + ".peel.next"); 633 634 F->getBasicBlockList().splice(InsertTop->getIterator(), 635 F->getBasicBlockList(), 636 NewBlocks[0]->getIterator(), F->end()); 637 } 638 639 // Now adjust the phi nodes in the loop header to get their initial values 640 // from the last peeled-off iteration instead of the preheader. 641 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 642 PHINode *PHI = cast<PHINode>(I); 643 Value *NewVal = PHI->getIncomingValueForBlock(Latch); 644 Instruction *LatchInst = dyn_cast<Instruction>(NewVal); 645 if (LatchInst && L->contains(LatchInst)) 646 NewVal = LVMap[LatchInst]; 647 648 PHI->setIncomingValue(PHI->getBasicBlockIndex(NewPreHeader), NewVal); 649 } 650 651 // Adjust the branch weights on the loop exit. 652 if (ExitWeight) { 653 // The backedge count is the difference of current header weight and 654 // current loop exit weight. If the current header weight is smaller than 655 // the current loop exit weight, we mark the loop backedge weight as 1. 656 uint64_t BackEdgeWeight = 0; 657 if (ExitWeight < CurHeaderWeight) 658 BackEdgeWeight = CurHeaderWeight - ExitWeight; 659 else 660 BackEdgeWeight = 1; 661 MDBuilder MDB(LatchBR->getContext()); 662 MDNode *WeightNode = 663 HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight) 664 : MDB.createBranchWeights(BackEdgeWeight, ExitWeight); 665 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 666 } 667 668 // If the loop is nested, we changed the parent loop, update SE. 669 if (Loop *ParentLoop = L->getParentLoop()) { 670 SE->forgetLoop(ParentLoop); 671 672 // FIXME: Incrementally update loop-simplify 673 simplifyLoop(ParentLoop, DT, LI, SE, AC, PreserveLCSSA); 674 } else { 675 // FIXME: Incrementally update loop-simplify 676 simplifyLoop(L, DT, LI, SE, AC, PreserveLCSSA); 677 } 678 679 NumPeeled++; 680 681 return true; 682 } 683