1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Cloning.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/LoopSimplify.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-unroll" 44 45 // TODO: Should these be here or in LoopUnroll? 46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 48 49 static cl::opt<bool> 50 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, 51 cl::desc("Allow runtime unrolled loops to be unrolled " 52 "with epilog instead of prolog.")); 53 54 /// Convert the instruction operands from referencing the current values into 55 /// those specified by VMap. 56 static inline void remapInstruction(Instruction *I, 57 ValueToValueMapTy &VMap) { 58 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 59 Value *Op = I->getOperand(op); 60 ValueToValueMapTy::iterator It = VMap.find(Op); 61 if (It != VMap.end()) 62 I->setOperand(op, It->second); 63 } 64 65 if (PHINode *PN = dyn_cast<PHINode>(I)) { 66 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 67 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 68 if (It != VMap.end()) 69 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 70 } 71 } 72 } 73 74 /// Folds a basic block into its predecessor if it only has one predecessor, and 75 /// that predecessor only has one successor. 76 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 77 /// successful references to the containing loop must be removed from 78 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 79 /// references to the eliminated BB. The argument ForgottenLoops contains a set 80 /// of loops that have already been forgotten to prevent redundant, expensive 81 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 82 static BasicBlock * 83 foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE, 84 SmallPtrSetImpl<Loop *> &ForgottenLoops, 85 DominatorTree *DT) { 86 // Merge basic blocks into their predecessor if there is only one distinct 87 // pred, and if there is only one distinct successor of the predecessor, and 88 // if there are no PHI nodes. 89 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 90 if (!OnlyPred) return nullptr; 91 92 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 93 return nullptr; 94 95 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 96 97 // Resolve any PHI nodes at the start of the block. They are all 98 // guaranteed to have exactly one entry if they exist, unless there are 99 // multiple duplicate (but guaranteed to be equal) entries for the 100 // incoming edges. This occurs when there are multiple edges from 101 // OnlyPred to OnlySucc. 102 FoldSingleEntryPHINodes(BB); 103 104 // Delete the unconditional branch from the predecessor... 105 OnlyPred->getInstList().pop_back(); 106 107 // Make all PHI nodes that referred to BB now refer to Pred as their 108 // source... 109 BB->replaceAllUsesWith(OnlyPred); 110 111 // Move all definitions in the successor to the predecessor... 112 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 113 114 // OldName will be valid until erased. 115 StringRef OldName = BB->getName(); 116 117 // Erase the old block and update dominator info. 118 if (DT) 119 if (DomTreeNode *DTN = DT->getNode(BB)) { 120 DomTreeNode *PredDTN = DT->getNode(OnlyPred); 121 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 122 for (auto *DI : Children) 123 DT->changeImmediateDominator(DI, PredDTN); 124 125 DT->eraseNode(BB); 126 } 127 128 // ScalarEvolution holds references to loop exit blocks. 129 if (SE) { 130 if (Loop *L = LI->getLoopFor(BB)) { 131 if (ForgottenLoops.insert(L).second) 132 SE->forgetLoop(L); 133 } 134 } 135 LI->removeBlock(BB); 136 137 // Inherit predecessor's name if it exists... 138 if (!OldName.empty() && !OnlyPred->hasName()) 139 OnlyPred->setName(OldName); 140 141 BB->eraseFromParent(); 142 143 return OnlyPred; 144 } 145 146 /// Check if unrolling created a situation where we need to insert phi nodes to 147 /// preserve LCSSA form. 148 /// \param Blocks is a vector of basic blocks representing unrolled loop. 149 /// \param L is the outer loop. 150 /// It's possible that some of the blocks are in L, and some are not. In this 151 /// case, if there is a use is outside L, and definition is inside L, we need to 152 /// insert a phi-node, otherwise LCSSA will be broken. 153 /// The function is just a helper function for llvm::UnrollLoop that returns 154 /// true if this situation occurs, indicating that LCSSA needs to be fixed. 155 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, 156 LoopInfo *LI) { 157 for (BasicBlock *BB : Blocks) { 158 if (LI->getLoopFor(BB) == L) 159 continue; 160 for (Instruction &I : *BB) { 161 for (Use &U : I.operands()) { 162 if (auto Def = dyn_cast<Instruction>(U)) { 163 Loop *DefLoop = LI->getLoopFor(Def->getParent()); 164 if (!DefLoop) 165 continue; 166 if (DefLoop->contains(L)) 167 return true; 168 } 169 } 170 } 171 } 172 return false; 173 } 174 175 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary 176 /// and adds a mapping from the original loop to the new loop to NewLoops. 177 /// Returns nullptr if no new loop was created and a pointer to the 178 /// original loop OriginalBB was part of otherwise. 179 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, 180 BasicBlock *ClonedBB, LoopInfo *LI, 181 NewLoopsMap &NewLoops) { 182 // Figure out which loop New is in. 183 const Loop *OldLoop = LI->getLoopFor(OriginalBB); 184 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 185 186 Loop *&NewLoop = NewLoops[OldLoop]; 187 if (!NewLoop) { 188 // Found a new sub-loop. 189 assert(OriginalBB == OldLoop->getHeader() && 190 "Header should be first in RPO"); 191 192 NewLoop = new Loop(); 193 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 194 195 if (NewLoopParent) 196 NewLoopParent->addChildLoop(NewLoop); 197 else 198 LI->addTopLevelLoop(NewLoop); 199 200 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 201 return OldLoop; 202 } else { 203 NewLoop->addBasicBlockToLoop(ClonedBB, *LI); 204 return nullptr; 205 } 206 } 207 208 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 209 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 210 /// can only fail when the loop's latch block is not terminated by a conditional 211 /// branch instruction. However, if the trip count (and multiple) are not known, 212 /// loop unrolling will mostly produce more code that is no faster. 213 /// 214 /// TripCount is the upper bound of the iteration on which control exits 215 /// LatchBlock. Control may exit the loop prior to TripCount iterations either 216 /// via an early branch in other loop block or via LatchBlock terminator. This 217 /// is relaxed from the general definition of trip count which is the number of 218 /// times the loop header executes. Note that UnrollLoop assumes that the loop 219 /// counter test is in LatchBlock in order to remove unnecesssary instances of 220 /// the test. If control can exit the loop from the LatchBlock's terminator 221 /// prior to TripCount iterations, flag PreserveCondBr needs to be set. 222 /// 223 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock 224 /// needs to be preserved. It is needed when we use trip count upper bound to 225 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first 226 /// conditional branch needs to be preserved. 227 /// 228 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 229 /// execute without exiting the loop. 230 /// 231 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 232 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 233 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 234 /// iterations before branching into the unrolled loop. UnrollLoop will not 235 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 236 /// AllowExpensiveTripCount is false. 237 /// 238 /// If we want to perform PGO-based loop peeling, PeelCount is set to the 239 /// number of iterations we want to peel off. 240 /// 241 /// The LoopInfo Analysis that is passed will be kept consistent. 242 /// 243 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 244 /// DominatorTree if they are non-null. 245 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force, 246 bool AllowRuntime, bool AllowExpensiveTripCount, 247 bool PreserveCondBr, bool PreserveOnlyFirst, 248 unsigned TripMultiple, unsigned PeelCount, LoopInfo *LI, 249 ScalarEvolution *SE, DominatorTree *DT, 250 AssumptionCache *AC, OptimizationRemarkEmitter *ORE, 251 bool PreserveLCSSA) { 252 253 BasicBlock *Preheader = L->getLoopPreheader(); 254 if (!Preheader) { 255 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 256 return false; 257 } 258 259 BasicBlock *LatchBlock = L->getLoopLatch(); 260 if (!LatchBlock) { 261 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 262 return false; 263 } 264 265 // Loops with indirectbr cannot be cloned. 266 if (!L->isSafeToClone()) { 267 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 268 return false; 269 } 270 271 BasicBlock *Header = L->getHeader(); 272 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 273 274 if (!BI || BI->isUnconditional()) { 275 // The loop-rotate pass can be helpful to avoid this in many cases. 276 DEBUG(dbgs() << 277 " Can't unroll; loop not terminated by a conditional branch.\n"); 278 return false; 279 } 280 281 if (Header->hasAddressTaken()) { 282 // The loop-rotate pass can be helpful to avoid this in many cases. 283 DEBUG(dbgs() << 284 " Won't unroll loop: address of header block is taken.\n"); 285 return false; 286 } 287 288 if (TripCount != 0) 289 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 290 if (TripMultiple != 1) 291 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 292 293 // Effectively "DCE" unrolled iterations that are beyond the tripcount 294 // and will never be executed. 295 if (TripCount != 0 && Count > TripCount) 296 Count = TripCount; 297 298 // Don't enter the unroll code if there is nothing to do. 299 if (TripCount == 0 && Count < 2 && PeelCount == 0) 300 return false; 301 302 assert(Count > 0); 303 assert(TripMultiple > 0); 304 assert(TripCount == 0 || TripCount % TripMultiple == 0); 305 306 // Are we eliminating the loop control altogether? 307 bool CompletelyUnroll = Count == TripCount; 308 SmallVector<BasicBlock *, 4> ExitBlocks; 309 L->getExitBlocks(ExitBlocks); 310 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); 311 312 // Go through all exits of L and see if there are any phi-nodes there. We just 313 // conservatively assume that they're inserted to preserve LCSSA form, which 314 // means that complete unrolling might break this form. We need to either fix 315 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 316 // now we just recompute LCSSA for the outer loop, but it should be possible 317 // to fix it in-place. 318 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && 319 any_of(ExitBlocks, [](const BasicBlock *BB) { 320 return isa<PHINode>(BB->begin()); 321 }); 322 323 // We assume a run-time trip count if the compiler cannot 324 // figure out the loop trip count and the unroll-runtime 325 // flag is specified. 326 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 327 328 assert((!RuntimeTripCount || !PeelCount) && 329 "Did not expect runtime trip-count unrolling " 330 "and peeling for the same loop"); 331 332 if (PeelCount) 333 peelLoop(L, PeelCount, LI, SE, DT, PreserveLCSSA); 334 335 // Loops containing convergent instructions must have a count that divides 336 // their TripMultiple. 337 DEBUG( 338 { 339 bool HasConvergent = false; 340 for (auto &BB : L->blocks()) 341 for (auto &I : *BB) 342 if (auto CS = CallSite(&I)) 343 HasConvergent |= CS.isConvergent(); 344 assert((!HasConvergent || TripMultiple % Count == 0) && 345 "Unroll count must divide trip multiple if loop contains a " 346 "convergent operation."); 347 }); 348 349 if (RuntimeTripCount && TripMultiple % Count != 0 && 350 !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount, 351 UnrollRuntimeEpilog, LI, SE, DT, 352 PreserveLCSSA)) { 353 if (Force) 354 RuntimeTripCount = false; 355 else 356 return false; 357 } 358 359 // Notify ScalarEvolution that the loop will be substantially changed, 360 // if not outright eliminated. 361 if (SE) 362 SE->forgetLoop(L); 363 364 // If we know the trip count, we know the multiple... 365 unsigned BreakoutTrip = 0; 366 if (TripCount != 0) { 367 BreakoutTrip = TripCount % Count; 368 TripMultiple = 0; 369 } else { 370 // Figure out what multiple to use. 371 BreakoutTrip = TripMultiple = 372 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 373 } 374 375 using namespace ore; 376 // Report the unrolling decision. 377 if (CompletelyUnroll) { 378 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 379 << " with trip count " << TripCount << "!\n"); 380 ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), 381 L->getHeader()) 382 << "completely unrolled loop with " 383 << NV("UnrollCount", TripCount) << " iterations"); 384 } else if (PeelCount) { 385 DEBUG(dbgs() << "PEELING loop %" << Header->getName() 386 << " with iteration count " << PeelCount << "!\n"); 387 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 388 L->getHeader()) 389 << " peeled loop by " << NV("PeelCount", PeelCount) 390 << " iterations"); 391 } else { 392 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), 393 L->getHeader()); 394 Diag << "unrolled loop by a factor of " << NV("UnrollCount", Count); 395 396 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 397 << " by " << Count); 398 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 399 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 400 ORE->emit(Diag << " with a breakout at trip " 401 << NV("BreakoutTrip", BreakoutTrip)); 402 } else if (TripMultiple != 1) { 403 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 404 ORE->emit(Diag << " with " << NV("TripMultiple", TripMultiple) 405 << " trips per branch"); 406 } else if (RuntimeTripCount) { 407 DEBUG(dbgs() << " with run-time trip count"); 408 ORE->emit(Diag << " with run-time trip count"); 409 } 410 DEBUG(dbgs() << "!\n"); 411 } 412 413 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 414 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 415 416 // For the first iteration of the loop, we should use the precloned values for 417 // PHI nodes. Insert associations now. 418 ValueToValueMapTy LastValueMap; 419 std::vector<PHINode*> OrigPHINode; 420 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 421 OrigPHINode.push_back(cast<PHINode>(I)); 422 } 423 424 std::vector<BasicBlock*> Headers; 425 std::vector<BasicBlock*> Latches; 426 Headers.push_back(Header); 427 Latches.push_back(LatchBlock); 428 429 // The current on-the-fly SSA update requires blocks to be processed in 430 // reverse postorder so that LastValueMap contains the correct value at each 431 // exit. 432 LoopBlocksDFS DFS(L); 433 DFS.perform(LI); 434 435 // Stash the DFS iterators before adding blocks to the loop. 436 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 437 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 438 439 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); 440 441 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we 442 // might break loop-simplified form for these loops (as they, e.g., would 443 // share the same exit blocks). We'll keep track of loops for which we can 444 // break this so that later we can re-simplify them. 445 SmallSetVector<Loop *, 4> LoopsToSimplify; 446 for (Loop *SubLoop : *L) 447 LoopsToSimplify.insert(SubLoop); 448 449 for (unsigned It = 1; It != Count; ++It) { 450 std::vector<BasicBlock*> NewBlocks; 451 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 452 NewLoops[L] = L; 453 454 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 455 ValueToValueMapTy VMap; 456 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 457 Header->getParent()->getBasicBlockList().push_back(New); 458 459 // Tell LI about New. 460 if (*BB == Header) { 461 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 462 L->addBasicBlockToLoop(New, *LI); 463 } else { 464 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); 465 if (OldLoop) { 466 LoopsToSimplify.insert(NewLoops[OldLoop]); 467 468 // Forget the old loop, since its inputs may have changed. 469 if (SE) 470 SE->forgetLoop(OldLoop); 471 } 472 } 473 474 if (*BB == Header) 475 // Loop over all of the PHI nodes in the block, changing them to use 476 // the incoming values from the previous block. 477 for (PHINode *OrigPHI : OrigPHINode) { 478 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); 479 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 480 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 481 if (It > 1 && L->contains(InValI)) 482 InVal = LastValueMap[InValI]; 483 VMap[OrigPHI] = InVal; 484 New->getInstList().erase(NewPHI); 485 } 486 487 // Update our running map of newest clones 488 LastValueMap[*BB] = New; 489 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 490 VI != VE; ++VI) 491 LastValueMap[VI->first] = VI->second; 492 493 // Add phi entries for newly created values to all exit blocks. 494 for (BasicBlock *Succ : successors(*BB)) { 495 if (L->contains(Succ)) 496 continue; 497 for (BasicBlock::iterator BBI = Succ->begin(); 498 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 499 Value *Incoming = phi->getIncomingValueForBlock(*BB); 500 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 501 if (It != LastValueMap.end()) 502 Incoming = It->second; 503 phi->addIncoming(Incoming, New); 504 } 505 } 506 // Keep track of new headers and latches as we create them, so that 507 // we can insert the proper branches later. 508 if (*BB == Header) 509 Headers.push_back(New); 510 if (*BB == LatchBlock) 511 Latches.push_back(New); 512 513 NewBlocks.push_back(New); 514 UnrolledLoopBlocks.push_back(New); 515 516 // Update DomTree: since we just copy the loop body, and each copy has a 517 // dedicated entry block (copy of the header block), this header's copy 518 // dominates all copied blocks. That means, dominance relations in the 519 // copied body are the same as in the original body. 520 if (DT) { 521 if (*BB == Header) 522 DT->addNewBlock(New, Latches[It - 1]); 523 else { 524 auto BBDomNode = DT->getNode(*BB); 525 auto BBIDom = BBDomNode->getIDom(); 526 BasicBlock *OriginalBBIDom = BBIDom->getBlock(); 527 DT->addNewBlock( 528 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); 529 } 530 } 531 } 532 533 // Remap all instructions in the most recent iteration 534 for (BasicBlock *NewBlock : NewBlocks) { 535 for (Instruction &I : *NewBlock) { 536 ::remapInstruction(&I, LastValueMap); 537 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 538 if (II->getIntrinsicID() == Intrinsic::assume) 539 AC->registerAssumption(II); 540 } 541 } 542 } 543 544 // Loop over the PHI nodes in the original block, setting incoming values. 545 for (PHINode *PN : OrigPHINode) { 546 if (CompletelyUnroll) { 547 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 548 Header->getInstList().erase(PN); 549 } 550 else if (Count > 1) { 551 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 552 // If this value was defined in the loop, take the value defined by the 553 // last iteration of the loop. 554 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 555 if (L->contains(InValI)) 556 InVal = LastValueMap[InVal]; 557 } 558 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 559 PN->addIncoming(InVal, Latches.back()); 560 } 561 } 562 563 // Now that all the basic blocks for the unrolled iterations are in place, 564 // set up the branches to connect them. 565 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 566 // The original branch was replicated in each unrolled iteration. 567 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 568 569 // The branch destination. 570 unsigned j = (i + 1) % e; 571 BasicBlock *Dest = Headers[j]; 572 bool NeedConditional = true; 573 574 if (RuntimeTripCount && j != 0) { 575 NeedConditional = false; 576 } 577 578 // For a complete unroll, make the last iteration end with a branch 579 // to the exit block. 580 if (CompletelyUnroll) { 581 if (j == 0) 582 Dest = LoopExit; 583 // If using trip count upper bound to completely unroll, we need to keep 584 // the conditional branch except the last one because the loop may exit 585 // after any iteration. 586 assert(NeedConditional && 587 "NeedCondition cannot be modified by both complete " 588 "unrolling and runtime unrolling"); 589 NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0)); 590 } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 591 // If we know the trip count or a multiple of it, we can safely use an 592 // unconditional branch for some iterations. 593 NeedConditional = false; 594 } 595 596 if (NeedConditional) { 597 // Update the conditional branch's successor for the following 598 // iteration. 599 Term->setSuccessor(!ContinueOnTrue, Dest); 600 } else { 601 // Remove phi operands at this loop exit 602 if (Dest != LoopExit) { 603 BasicBlock *BB = Latches[i]; 604 for (BasicBlock *Succ: successors(BB)) { 605 if (Succ == Headers[i]) 606 continue; 607 for (BasicBlock::iterator BBI = Succ->begin(); 608 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 609 Phi->removeIncomingValue(BB, false); 610 } 611 } 612 } 613 // Replace the conditional branch with an unconditional one. 614 BranchInst::Create(Dest, Term); 615 Term->eraseFromParent(); 616 } 617 } 618 // Update dominators of blocks we might reach through exits. 619 // Immediate dominator of such block might change, because we add more 620 // routes which can lead to the exit: we can now reach it from the copied 621 // iterations too. Thus, the new idom of the block will be the nearest 622 // common dominator of the previous idom and common dominator of all copies of 623 // the previous idom. This is equivalent to the nearest common dominator of 624 // the previous idom and the first latch, which dominates all copies of the 625 // previous idom. 626 if (DT && Count > 1) { 627 for (auto *BB : OriginalLoopBlocks) { 628 auto *BBDomNode = DT->getNode(BB); 629 SmallVector<BasicBlock *, 16> ChildrenToUpdate; 630 for (auto *ChildDomNode : BBDomNode->getChildren()) { 631 auto *ChildBB = ChildDomNode->getBlock(); 632 if (!L->contains(ChildBB)) 633 ChildrenToUpdate.push_back(ChildBB); 634 } 635 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]); 636 for (auto *ChildBB : ChildrenToUpdate) 637 DT->changeImmediateDominator(ChildBB, NewIDom); 638 } 639 } 640 641 // Merge adjacent basic blocks, if possible. 642 SmallPtrSet<Loop *, 4> ForgottenLoops; 643 for (BasicBlock *Latch : Latches) { 644 BranchInst *Term = cast<BranchInst>(Latch->getTerminator()); 645 if (Term->isUnconditional()) { 646 BasicBlock *Dest = Term->getSuccessor(0); 647 if (BasicBlock *Fold = 648 foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) { 649 // Dest has been folded into Fold. Update our worklists accordingly. 650 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 651 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), 652 UnrolledLoopBlocks.end(), Dest), 653 UnrolledLoopBlocks.end()); 654 } 655 } 656 } 657 658 // FIXME: We only preserve DT info for complete unrolling now. Incrementally 659 // updating domtree after partial loop unrolling should also be easy. 660 if (DT && !CompletelyUnroll) 661 DT->recalculate(*L->getHeader()->getParent()); 662 else if (DT) 663 DEBUG(DT->verifyDomTree()); 664 665 // Simplify any new induction variables in the partially unrolled loop. 666 if (SE && !CompletelyUnroll && Count > 1) { 667 SmallVector<WeakVH, 16> DeadInsts; 668 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 669 670 // Aggressively clean up dead instructions that simplifyLoopIVs already 671 // identified. Any remaining should be cleaned up below. 672 while (!DeadInsts.empty()) 673 if (Instruction *Inst = 674 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 675 RecursivelyDeleteTriviallyDeadInstructions(Inst); 676 } 677 678 // At this point, the code is well formed. We now do a quick sweep over the 679 // inserted code, doing constant propagation and dead code elimination as we 680 // go. 681 const DataLayout &DL = Header->getModule()->getDataLayout(); 682 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 683 for (BasicBlock *BB : NewLoopBlocks) { 684 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 685 Instruction *Inst = &*I++; 686 687 if (Value *V = SimplifyInstruction(Inst, DL)) 688 if (LI->replacementPreservesLCSSAForm(Inst, V)) 689 Inst->replaceAllUsesWith(V); 690 if (isInstructionTriviallyDead(Inst)) 691 BB->getInstList().erase(Inst); 692 } 693 } 694 695 // TODO: after peeling or unrolling, previously loop variant conditions are 696 // likely to fold to constants, eagerly propagating those here will require 697 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be 698 // appropriate. 699 700 NumCompletelyUnrolled += CompletelyUnroll; 701 ++NumUnrolled; 702 703 Loop *OuterL = L->getParentLoop(); 704 // Update LoopInfo if the loop is completely removed. 705 if (CompletelyUnroll) 706 LI->markAsRemoved(L); 707 708 // After complete unrolling most of the blocks should be contained in OuterL. 709 // However, some of them might happen to be out of OuterL (e.g. if they 710 // precede a loop exit). In this case we might need to insert PHI nodes in 711 // order to preserve LCSSA form. 712 // We don't need to check this if we already know that we need to fix LCSSA 713 // form. 714 // TODO: For now we just recompute LCSSA for the outer loop in this case, but 715 // it should be possible to fix it in-place. 716 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) 717 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); 718 719 // If we have a pass and a DominatorTree we should re-simplify impacted loops 720 // to ensure subsequent analyses can rely on this form. We want to simplify 721 // at least one layer outside of the loop that was unrolled so that any 722 // changes to the parent loop exposed by the unrolling are considered. 723 if (DT) { 724 if (!OuterL && !CompletelyUnroll) 725 OuterL = L; 726 if (OuterL) { 727 // OuterL includes all loops for which we can break loop-simplify, so 728 // it's sufficient to simplify only it (it'll recursively simplify inner 729 // loops too). 730 // TODO: That potentially might be compile-time expensive. We should try 731 // to fix the loop-simplified form incrementally. 732 simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 733 734 // LCSSA must be performed on the outermost affected loop. The unrolled 735 // loop's last loop latch is guaranteed to be in the outermost loop after 736 // LoopInfo's been updated by markAsRemoved. 737 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 738 if (!OuterL->contains(LatchLoop)) 739 while (OuterL->getParentLoop() != LatchLoop) 740 OuterL = OuterL->getParentLoop(); 741 742 if (NeedToFixLCSSA) 743 formLCSSARecursively(*OuterL, *DT, LI, SE); 744 else 745 assert(OuterL->isLCSSAForm(*DT) && 746 "Loops should be in LCSSA form after loop-unroll."); 747 } else { 748 // Simplify loops for which we might've broken loop-simplify form. 749 for (Loop *SubLoop : LoopsToSimplify) 750 simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA); 751 } 752 } 753 754 return true; 755 } 756 757 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 758 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 759 /// such metadata node exists, then nullptr is returned. 760 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 761 // First operand should refer to the loop id itself. 762 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 763 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 764 765 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 766 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 767 if (!MD) 768 continue; 769 770 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 771 if (!S) 772 continue; 773 774 if (Name.equals(S->getString())) 775 return MD; 776 } 777 return nullptr; 778 } 779