1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs several transformations to transform natural loops into a 11 // simpler form, which makes subsequent analyses and transformations simpler and 12 // more effective. 13 // 14 // Loop pre-header insertion guarantees that there is a single, non-critical 15 // entry edge from outside of the loop to the loop header. This simplifies a 16 // number of analyses and transformations, such as LICM. 17 // 18 // Loop exit-block insertion guarantees that all exit blocks from the loop 19 // (blocks which are outside of the loop that have predecessors inside of the 20 // loop) only have predecessors from inside of the loop (and are thus dominated 21 // by the loop header). This simplifies transformations such as store-sinking 22 // that are built into LICM. 23 // 24 // This pass also guarantees that loops will have exactly one backedge. 25 // 26 // Indirectbr instructions introduce several complications. If the loop 27 // contains or is entered by an indirectbr instruction, it may not be possible 28 // to transform the loop and make these guarantees. Client code should check 29 // that these conditions are true before relying on them. 30 // 31 // Note that the simplifycfg pass will clean up blocks which are split out but 32 // end up being unnecessary, so usage of this pass should not pessimize 33 // generated code. 34 // 35 // This pass obviously modifies the CFG, but updates loop information and 36 // dominator information. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #define DEBUG_TYPE "loopsimplify" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Constants.h" 43 #include "llvm/Instructions.h" 44 #include "llvm/IntrinsicInst.h" 45 #include "llvm/Function.h" 46 #include "llvm/LLVMContext.h" 47 #include "llvm/Type.h" 48 #include "llvm/Analysis/AliasAnalysis.h" 49 #include "llvm/Analysis/Dominators.h" 50 #include "llvm/Analysis/LoopPass.h" 51 #include "llvm/Analysis/ScalarEvolution.h" 52 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 53 #include "llvm/Transforms/Utils/Local.h" 54 #include "llvm/Support/CFG.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/ADT/SetOperations.h" 57 #include "llvm/ADT/SetVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/DepthFirstIterator.h" 60 using namespace llvm; 61 62 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); 63 STATISTIC(NumNested , "Number of nested loops split out"); 64 65 namespace { 66 struct LoopSimplify : public LoopPass { 67 static char ID; // Pass identification, replacement for typeid 68 LoopSimplify() : LoopPass(&ID) {} 69 70 // AA - If we have an alias analysis object to update, this is it, otherwise 71 // this is null. 72 AliasAnalysis *AA; 73 LoopInfo *LI; 74 DominatorTree *DT; 75 Loop *L; 76 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 77 78 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 79 // We need loop information to identify the loops... 80 AU.addRequiredTransitive<LoopInfo>(); 81 AU.addRequiredTransitive<DominatorTree>(); 82 83 AU.addPreserved<LoopInfo>(); 84 AU.addPreserved<DominatorTree>(); 85 AU.addPreserved<DominanceFrontier>(); 86 AU.addPreserved<AliasAnalysis>(); 87 AU.addPreserved<ScalarEvolution>(); 88 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. 89 } 90 91 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. 92 void verifyAnalysis() const; 93 94 private: 95 bool ProcessLoop(Loop *L, LPPassManager &LPM); 96 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); 97 BasicBlock *InsertPreheaderForLoop(Loop *L); 98 Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM); 99 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader); 100 void PlaceSplitBlockCarefully(BasicBlock *NewBB, 101 SmallVectorImpl<BasicBlock*> &SplitPreds, 102 Loop *L); 103 }; 104 } 105 106 char LoopSimplify::ID = 0; 107 static RegisterPass<LoopSimplify> 108 X("loopsimplify", "Canonicalize natural loops", true); 109 110 // Publically exposed interface to pass... 111 const PassInfo *const llvm::LoopSimplifyID = &X; 112 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } 113 114 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do 115 /// it in any convenient order) inserting preheaders... 116 /// 117 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) { 118 L = l; 119 bool Changed = false; 120 LI = &getAnalysis<LoopInfo>(); 121 AA = getAnalysisIfAvailable<AliasAnalysis>(); 122 DT = &getAnalysis<DominatorTree>(); 123 124 Changed |= ProcessLoop(L, LPM); 125 126 return Changed; 127 } 128 129 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that 130 /// all loops have preheaders. 131 /// 132 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) { 133 bool Changed = false; 134 ReprocessLoop: 135 136 // Check to see that no blocks (other than the header) in this loop have 137 // predecessors that are not in the loop. This is not valid for natural 138 // loops, but can occur if the blocks are unreachable. Since they are 139 // unreachable we can just shamelessly delete those CFG edges! 140 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 141 BB != E; ++BB) { 142 if (*BB == L->getHeader()) continue; 143 144 SmallPtrSet<BasicBlock *, 4> BadPreds; 145 for (pred_iterator PI = pred_begin(*BB), PE = pred_end(*BB); PI != PE; ++PI){ 146 BasicBlock *P = *PI; 147 if (!L->contains(P)) 148 BadPreds.insert(P); 149 } 150 151 // Delete each unique out-of-loop (and thus dead) predecessor. 152 for (SmallPtrSet<BasicBlock *, 4>::iterator I = BadPreds.begin(), 153 E = BadPreds.end(); I != E; ++I) { 154 155 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "; 156 WriteAsOperand(dbgs(), *I, false); 157 dbgs() << "\n"); 158 159 // Inform each successor of each dead pred. 160 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) 161 (*SI)->removePredecessor(*I); 162 // Zap the dead pred's terminator and replace it with unreachable. 163 TerminatorInst *TI = (*I)->getTerminator(); 164 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 165 (*I)->getTerminator()->eraseFromParent(); 166 new UnreachableInst((*I)->getContext(), *I); 167 Changed = true; 168 } 169 } 170 171 // If there are exiting blocks with branches on undef, resolve the undef in 172 // the direction which will exit the loop. This will help simplify loop 173 // trip count computations. 174 SmallVector<BasicBlock*, 8> ExitingBlocks; 175 L->getExitingBlocks(ExitingBlocks); 176 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 177 E = ExitingBlocks.end(); I != E; ++I) 178 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) 179 if (BI->isConditional()) { 180 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { 181 182 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "; 183 WriteAsOperand(dbgs(), *I, false); 184 dbgs() << "\n"); 185 186 BI->setCondition(ConstantInt::get(Cond->getType(), 187 !L->contains(BI->getSuccessor(0)))); 188 Changed = true; 189 } 190 } 191 192 // Does the loop already have a preheader? If so, don't insert one. 193 BasicBlock *Preheader = L->getLoopPreheader(); 194 if (!Preheader) { 195 Preheader = InsertPreheaderForLoop(L); 196 if (Preheader) { 197 ++NumInserted; 198 Changed = true; 199 } 200 } 201 202 // Next, check to make sure that all exit nodes of the loop only have 203 // predecessors that are inside of the loop. This check guarantees that the 204 // loop preheader/header will dominate the exit blocks. If the exit block has 205 // predecessors from outside of the loop, split the edge now. 206 SmallVector<BasicBlock*, 8> ExitBlocks; 207 L->getExitBlocks(ExitBlocks); 208 209 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), 210 ExitBlocks.end()); 211 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), 212 E = ExitBlockSet.end(); I != E; ++I) { 213 BasicBlock *ExitBlock = *I; 214 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); 215 PI != PE; ++PI) 216 // Must be exactly this loop: no subloops, parent loops, or non-loop preds 217 // allowed. 218 if (!L->contains(*PI)) { 219 if (RewriteLoopExitBlock(L, ExitBlock)) { 220 ++NumInserted; 221 Changed = true; 222 } 223 break; 224 } 225 } 226 227 // If the header has more than two predecessors at this point (from the 228 // preheader and from multiple backedges), we must adjust the loop. 229 BasicBlock *LoopLatch = L->getLoopLatch(); 230 if (!LoopLatch) { 231 // If this is really a nested loop, rip it out into a child loop. Don't do 232 // this for loops with a giant number of backedges, just factor them into a 233 // common backedge instead. 234 if (L->getNumBackEdges() < 8) { 235 if (SeparateNestedLoop(L, LPM)) { 236 ++NumNested; 237 // This is a big restructuring change, reprocess the whole loop. 238 Changed = true; 239 // GCC doesn't tail recursion eliminate this. 240 goto ReprocessLoop; 241 } 242 } 243 244 // If we either couldn't, or didn't want to, identify nesting of the loops, 245 // insert a new block that all backedges target, then make it jump to the 246 // loop header. 247 LoopLatch = InsertUniqueBackedgeBlock(L, Preheader); 248 if (LoopLatch) { 249 ++NumInserted; 250 Changed = true; 251 } 252 } 253 254 // Scan over the PHI nodes in the loop header. Since they now have only two 255 // incoming values (the loop is canonicalized), we may have simplified the PHI 256 // down to 'X = phi [X, Y]', which should be replaced with 'Y'. 257 PHINode *PN; 258 for (BasicBlock::iterator I = L->getHeader()->begin(); 259 (PN = dyn_cast<PHINode>(I++)); ) 260 if (Value *V = PN->hasConstantValue(DT)) { 261 if (AA) AA->deleteValue(PN); 262 PN->replaceAllUsesWith(V); 263 PN->eraseFromParent(); 264 } 265 266 // If this loop has multiple exits and the exits all go to the same 267 // block, attempt to merge the exits. This helps several passes, such 268 // as LoopRotation, which do not support loops with multiple exits. 269 // SimplifyCFG also does this (and this code uses the same utility 270 // function), however this code is loop-aware, where SimplifyCFG is 271 // not. That gives it the advantage of being able to hoist 272 // loop-invariant instructions out of the way to open up more 273 // opportunities, and the disadvantage of having the responsibility 274 // to preserve dominator information. 275 bool UniqueExit = true; 276 if (!ExitBlocks.empty()) 277 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) 278 if (ExitBlocks[i] != ExitBlocks[0]) { 279 UniqueExit = false; 280 break; 281 } 282 if (UniqueExit) { 283 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 284 BasicBlock *ExitingBlock = ExitingBlocks[i]; 285 if (!ExitingBlock->getSinglePredecessor()) continue; 286 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 287 if (!BI || !BI->isConditional()) continue; 288 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); 289 if (!CI || CI->getParent() != ExitingBlock) continue; 290 291 // Attempt to hoist out all instructions except for the 292 // comparison and the branch. 293 bool AllInvariant = true; 294 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { 295 Instruction *Inst = I++; 296 // Skip debug info intrinsics. 297 if (isa<DbgInfoIntrinsic>(Inst)) 298 continue; 299 if (Inst == CI) 300 continue; 301 if (!L->makeLoopInvariant(Inst, Changed, 302 Preheader ? Preheader->getTerminator() : 0)) { 303 AllInvariant = false; 304 break; 305 } 306 } 307 if (!AllInvariant) continue; 308 309 // The block has now been cleared of all instructions except for 310 // a comparison and a conditional branch. SimplifyCFG may be able 311 // to fold it now. 312 if (!FoldBranchToCommonDest(BI)) continue; 313 314 // Success. The block is now dead, so remove it from the loop, 315 // update the dominator tree and dominance frontier, and delete it. 316 317 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "; 318 WriteAsOperand(dbgs(), ExitingBlock, false); 319 dbgs() << "\n"); 320 321 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); 322 Changed = true; 323 LI->removeBlock(ExitingBlock); 324 325 DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>(); 326 DomTreeNode *Node = DT->getNode(ExitingBlock); 327 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = 328 Node->getChildren(); 329 while (!Children.empty()) { 330 DomTreeNode *Child = Children.front(); 331 DT->changeImmediateDominator(Child, Node->getIDom()); 332 if (DF) DF->changeImmediateDominator(Child->getBlock(), 333 Node->getIDom()->getBlock(), 334 DT); 335 } 336 DT->eraseNode(ExitingBlock); 337 if (DF) DF->removeBlock(ExitingBlock); 338 339 BI->getSuccessor(0)->removePredecessor(ExitingBlock); 340 BI->getSuccessor(1)->removePredecessor(ExitingBlock); 341 ExitingBlock->eraseFromParent(); 342 } 343 } 344 345 return Changed; 346 } 347 348 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a 349 /// preheader, this method is called to insert one. This method has two phases: 350 /// preheader insertion and analysis updating. 351 /// 352 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) { 353 BasicBlock *Header = L->getHeader(); 354 355 // Compute the set of predecessors of the loop that are not in the loop. 356 SmallVector<BasicBlock*, 8> OutsideBlocks; 357 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); 358 PI != PE; ++PI) { 359 BasicBlock *P = *PI; 360 if (!L->contains(P)) { // Coming in from outside the loop? 361 // If the loop is branched to from an indirect branch, we won't 362 // be able to fully transform the loop, because it prohibits 363 // edge splitting. 364 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 365 366 // Keep track of it. 367 OutsideBlocks.push_back(P); 368 } 369 } 370 371 // Split out the loop pre-header. 372 BasicBlock *NewBB = 373 SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(), 374 ".preheader", this); 375 376 DEBUG(dbgs() << "LoopSimplify: Creating pre-header "; 377 WriteAsOperand(dbgs(), NewBB, false); 378 dbgs() << "\n"); 379 380 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 381 // code layout too horribly. 382 PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L); 383 384 return NewBB; 385 } 386 387 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit 388 /// blocks. This method is used to split exit blocks that have predecessors 389 /// outside of the loop. 390 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) { 391 SmallVector<BasicBlock*, 8> LoopBlocks; 392 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { 393 BasicBlock *P = *I; 394 if (L->contains(P)) { 395 // Don't do this if the loop is exited via an indirect branch. 396 if (isa<IndirectBrInst>(P->getTerminator())) return 0; 397 398 LoopBlocks.push_back(P); 399 } 400 } 401 402 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); 403 BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0], 404 LoopBlocks.size(), ".loopexit", 405 this); 406 407 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "; 408 WriteAsOperand(dbgs(), NewBB, false); 409 dbgs() << "\n"); 410 411 return NewBB; 412 } 413 414 /// AddBlockAndPredsToSet - Add the specified block, and all of its 415 /// predecessors, to the specified set, if it's not already in there. Stop 416 /// predecessor traversal when we reach StopBlock. 417 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, 418 std::set<BasicBlock*> &Blocks) { 419 std::vector<BasicBlock *> WorkList; 420 WorkList.push_back(InputBB); 421 do { 422 BasicBlock *BB = WorkList.back(); WorkList.pop_back(); 423 if (Blocks.insert(BB).second && BB != StopBlock) 424 // If BB is not already processed and it is not a stop block then 425 // insert its predecessor in the work list 426 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 427 BasicBlock *WBB = *I; 428 WorkList.push_back(WBB); 429 } 430 } while(!WorkList.empty()); 431 } 432 433 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a 434 /// PHI node that tells us how to partition the loops. 435 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT, 436 AliasAnalysis *AA) { 437 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { 438 PHINode *PN = cast<PHINode>(I); 439 ++I; 440 if (Value *V = PN->hasConstantValue(DT)) { 441 // This is a degenerate PHI already, don't modify it! 442 PN->replaceAllUsesWith(V); 443 if (AA) AA->deleteValue(PN); 444 PN->eraseFromParent(); 445 continue; 446 } 447 448 // Scan this PHI node looking for a use of the PHI node by itself. 449 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 450 if (PN->getIncomingValue(i) == PN && 451 L->contains(PN->getIncomingBlock(i))) 452 // We found something tasty to remove. 453 return PN; 454 } 455 return 0; 456 } 457 458 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to 459 // right after some 'outside block' block. This prevents the preheader from 460 // being placed inside the loop body, e.g. when the loop hasn't been rotated. 461 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB, 462 SmallVectorImpl<BasicBlock*> &SplitPreds, 463 Loop *L) { 464 // Check to see if NewBB is already well placed. 465 Function::iterator BBI = NewBB; --BBI; 466 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 467 if (&*BBI == SplitPreds[i]) 468 return; 469 } 470 471 // If it isn't already after an outside block, move it after one. This is 472 // always good as it makes the uncond branch from the outside block into a 473 // fall-through. 474 475 // Figure out *which* outside block to put this after. Prefer an outside 476 // block that neighbors a BB actually in the loop. 477 BasicBlock *FoundBB = 0; 478 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { 479 Function::iterator BBI = SplitPreds[i]; 480 if (++BBI != NewBB->getParent()->end() && 481 L->contains(BBI)) { 482 FoundBB = SplitPreds[i]; 483 break; 484 } 485 } 486 487 // If our heuristic for a *good* bb to place this after doesn't find 488 // anything, just pick something. It's likely better than leaving it within 489 // the loop. 490 if (!FoundBB) 491 FoundBB = SplitPreds[0]; 492 NewBB->moveAfter(FoundBB); 493 } 494 495 496 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of 497 /// them out into a nested loop. This is important for code that looks like 498 /// this: 499 /// 500 /// Loop: 501 /// ... 502 /// br cond, Loop, Next 503 /// ... 504 /// br cond2, Loop, Out 505 /// 506 /// To identify this common case, we look at the PHI nodes in the header of the 507 /// loop. PHI nodes with unchanging values on one backedge correspond to values 508 /// that change in the "outer" loop, but not in the "inner" loop. 509 /// 510 /// If we are able to separate out a loop, return the new outer loop that was 511 /// created. 512 /// 513 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) { 514 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA); 515 if (PN == 0) return 0; // No known way to partition. 516 517 // Pull out all predecessors that have varying values in the loop. This 518 // handles the case when a PHI node has multiple instances of itself as 519 // arguments. 520 SmallVector<BasicBlock*, 8> OuterLoopPreds; 521 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 522 if (PN->getIncomingValue(i) != PN || 523 !L->contains(PN->getIncomingBlock(i))) { 524 // We can't split indirectbr edges. 525 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) 526 return 0; 527 528 OuterLoopPreds.push_back(PN->getIncomingBlock(i)); 529 } 530 531 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); 532 533 BasicBlock *Header = L->getHeader(); 534 BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0], 535 OuterLoopPreds.size(), 536 ".outer", this); 537 538 // Make sure that NewBB is put someplace intelligent, which doesn't mess up 539 // code layout too horribly. 540 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L); 541 542 // Create the new outer loop. 543 Loop *NewOuter = new Loop(); 544 545 // Change the parent loop to use the outer loop as its child now. 546 if (Loop *Parent = L->getParentLoop()) 547 Parent->replaceChildLoopWith(L, NewOuter); 548 else 549 LI->changeTopLevelLoop(L, NewOuter); 550 551 // L is now a subloop of our outer loop. 552 NewOuter->addChildLoop(L); 553 554 // Add the new loop to the pass manager queue. 555 LPM.insertLoopIntoQueue(NewOuter); 556 557 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 558 I != E; ++I) 559 NewOuter->addBlockEntry(*I); 560 561 // Now reset the header in L, which had been moved by 562 // SplitBlockPredecessors for the outer loop. 563 L->moveToHeader(Header); 564 565 // Determine which blocks should stay in L and which should be moved out to 566 // the Outer loop now. 567 std::set<BasicBlock*> BlocksInL; 568 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { 569 BasicBlock *P = *PI; 570 if (DT->dominates(Header, P)) 571 AddBlockAndPredsToSet(P, Header, BlocksInL); 572 } 573 574 // Scan all of the loop children of L, moving them to OuterLoop if they are 575 // not part of the inner loop. 576 const std::vector<Loop*> &SubLoops = L->getSubLoops(); 577 for (size_t I = 0; I != SubLoops.size(); ) 578 if (BlocksInL.count(SubLoops[I]->getHeader())) 579 ++I; // Loop remains in L 580 else 581 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); 582 583 // Now that we know which blocks are in L and which need to be moved to 584 // OuterLoop, move any blocks that need it. 585 for (unsigned i = 0; i != L->getBlocks().size(); ++i) { 586 BasicBlock *BB = L->getBlocks()[i]; 587 if (!BlocksInL.count(BB)) { 588 // Move this block to the parent, updating the exit blocks sets 589 L->removeBlockFromLoop(BB); 590 if ((*LI)[BB] == L) 591 LI->changeLoopFor(BB, NewOuter); 592 --i; 593 } 594 } 595 596 return NewOuter; 597 } 598 599 600 601 /// InsertUniqueBackedgeBlock - This method is called when the specified loop 602 /// has more than one backedge in it. If this occurs, revector all of these 603 /// backedges to target a new basic block and have that block branch to the loop 604 /// header. This ensures that loops have exactly one backedge. 605 /// 606 BasicBlock * 607 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) { 608 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); 609 610 // Get information about the loop 611 BasicBlock *Header = L->getHeader(); 612 Function *F = Header->getParent(); 613 614 // Unique backedge insertion currently depends on having a preheader. 615 if (!Preheader) 616 return 0; 617 618 // Figure out which basic blocks contain back-edges to the loop header. 619 std::vector<BasicBlock*> BackedgeBlocks; 620 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ 621 BasicBlock *P = *I; 622 if (P != Preheader) BackedgeBlocks.push_back(P); 623 } 624 625 // Create and insert the new backedge block... 626 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), 627 Header->getName()+".backedge", F); 628 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); 629 630 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "; 631 WriteAsOperand(dbgs(), BEBlock, false); 632 dbgs() << "\n"); 633 634 // Move the new backedge block to right after the last backedge block. 635 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; 636 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); 637 638 // Now that the block has been inserted into the function, create PHI nodes in 639 // the backedge block which correspond to any PHI nodes in the header block. 640 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 641 PHINode *PN = cast<PHINode>(I); 642 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be", 643 BETerminator); 644 NewPN->reserveOperandSpace(BackedgeBlocks.size()); 645 if (AA) AA->copyValue(PN, NewPN); 646 647 // Loop over the PHI node, moving all entries except the one for the 648 // preheader over to the new PHI node. 649 unsigned PreheaderIdx = ~0U; 650 bool HasUniqueIncomingValue = true; 651 Value *UniqueValue = 0; 652 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 653 BasicBlock *IBB = PN->getIncomingBlock(i); 654 Value *IV = PN->getIncomingValue(i); 655 if (IBB == Preheader) { 656 PreheaderIdx = i; 657 } else { 658 NewPN->addIncoming(IV, IBB); 659 if (HasUniqueIncomingValue) { 660 if (UniqueValue == 0) 661 UniqueValue = IV; 662 else if (UniqueValue != IV) 663 HasUniqueIncomingValue = false; 664 } 665 } 666 } 667 668 // Delete all of the incoming values from the old PN except the preheader's 669 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); 670 if (PreheaderIdx != 0) { 671 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); 672 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); 673 } 674 // Nuke all entries except the zero'th. 675 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) 676 PN->removeIncomingValue(e-i, false); 677 678 // Finally, add the newly constructed PHI node as the entry for the BEBlock. 679 PN->addIncoming(NewPN, BEBlock); 680 681 // As an optimization, if all incoming values in the new PhiNode (which is a 682 // subset of the incoming values of the old PHI node) have the same value, 683 // eliminate the PHI Node. 684 if (HasUniqueIncomingValue) { 685 NewPN->replaceAllUsesWith(UniqueValue); 686 if (AA) AA->deleteValue(NewPN); 687 BEBlock->getInstList().erase(NewPN); 688 } 689 } 690 691 // Now that all of the PHI nodes have been inserted and adjusted, modify the 692 // backedge blocks to just to the BEBlock instead of the header. 693 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { 694 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); 695 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) 696 if (TI->getSuccessor(Op) == Header) 697 TI->setSuccessor(Op, BEBlock); 698 } 699 700 //===--- Update all analyses which we must preserve now -----------------===// 701 702 // Update Loop Information - we know that this block is now in the current 703 // loop and all parent loops. 704 L->addBasicBlockToLoop(BEBlock, LI->getBase()); 705 706 // Update dominator information 707 DT->splitBlock(BEBlock); 708 if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>()) 709 DF->splitBlock(BEBlock); 710 711 return BEBlock; 712 } 713 714 void LoopSimplify::verifyAnalysis() const { 715 // It used to be possible to just assert L->isLoopSimplifyForm(), however 716 // with the introduction of indirectbr, there are now cases where it's 717 // not possible to transform a loop as necessary. We can at least check 718 // that there is an indirectbr near any time there's trouble. 719 720 // Indirectbr can interfere with preheader and unique backedge insertion. 721 if (!L->getLoopPreheader() || !L->getLoopLatch()) { 722 bool HasIndBrPred = false; 723 for (pred_iterator PI = pred_begin(L->getHeader()), 724 PE = pred_end(L->getHeader()); PI != PE; ++PI) 725 if (isa<IndirectBrInst>((*PI)->getTerminator())) { 726 HasIndBrPred = true; 727 break; 728 } 729 assert(HasIndBrPred && 730 "LoopSimplify has no excuse for missing loop header info!"); 731 } 732 733 // Indirectbr can interfere with exit block canonicalization. 734 if (!L->hasDedicatedExits()) { 735 bool HasIndBrExiting = false; 736 SmallVector<BasicBlock*, 8> ExitingBlocks; 737 L->getExitingBlocks(ExitingBlocks); 738 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) 739 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { 740 HasIndBrExiting = true; 741 break; 742 } 743 assert(HasIndBrExiting && 744 "LoopSimplify has no excuse for missing exit block info!"); 745 } 746 } 747