1f22ef01cSRoman Divacky //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2f22ef01cSRoman Divacky //
3f22ef01cSRoman Divacky //                     The LLVM Compiler Infrastructure
4f22ef01cSRoman Divacky //
5f22ef01cSRoman Divacky // This file is distributed under the University of Illinois Open Source
6f22ef01cSRoman Divacky // License. See LICENSE.TXT for details.
7f22ef01cSRoman Divacky //
8f22ef01cSRoman Divacky //===----------------------------------------------------------------------===//
9f22ef01cSRoman Divacky //
10f22ef01cSRoman Divacky // This pass performs several transformations to transform natural loops into a
11f22ef01cSRoman Divacky // simpler form, which makes subsequent analyses and transformations simpler and
12f22ef01cSRoman Divacky // more effective.
13f22ef01cSRoman Divacky //
14f22ef01cSRoman Divacky // Loop pre-header insertion guarantees that there is a single, non-critical
15f22ef01cSRoman Divacky // entry edge from outside of the loop to the loop header.  This simplifies a
16f22ef01cSRoman Divacky // number of analyses and transformations, such as LICM.
17f22ef01cSRoman Divacky //
18f22ef01cSRoman Divacky // Loop exit-block insertion guarantees that all exit blocks from the loop
19f22ef01cSRoman Divacky // (blocks which are outside of the loop that have predecessors inside of the
20f22ef01cSRoman Divacky // loop) only have predecessors from inside of the loop (and are thus dominated
21f22ef01cSRoman Divacky // by the loop header).  This simplifies transformations such as store-sinking
22f22ef01cSRoman Divacky // that are built into LICM.
23f22ef01cSRoman Divacky //
24f22ef01cSRoman Divacky // This pass also guarantees that loops will have exactly one backedge.
25f22ef01cSRoman Divacky //
26f22ef01cSRoman Divacky // Indirectbr instructions introduce several complications. If the loop
27f22ef01cSRoman Divacky // contains or is entered by an indirectbr instruction, it may not be possible
28f22ef01cSRoman Divacky // to transform the loop and make these guarantees. Client code should check
29f22ef01cSRoman Divacky // that these conditions are true before relying on them.
30f22ef01cSRoman Divacky //
31f22ef01cSRoman Divacky // Note that the simplifycfg pass will clean up blocks which are split out but
32f22ef01cSRoman Divacky // end up being unnecessary, so usage of this pass should not pessimize
33f22ef01cSRoman Divacky // generated code.
34f22ef01cSRoman Divacky //
35f22ef01cSRoman Divacky // This pass obviously modifies the CFG, but updates loop information and
36f22ef01cSRoman Divacky // dominator information.
37f22ef01cSRoman Divacky //
38f22ef01cSRoman Divacky //===----------------------------------------------------------------------===//
39f22ef01cSRoman Divacky 
403ca95b02SDimitry Andric #include "llvm/Transforms/Utils/LoopSimplify.h"
41139f7f9bSDimitry Andric #include "llvm/ADT/DepthFirstIterator.h"
42139f7f9bSDimitry Andric #include "llvm/ADT/SetOperations.h"
43139f7f9bSDimitry Andric #include "llvm/ADT/SetVector.h"
4491bc56edSDimitry Andric #include "llvm/ADT/SmallVector.h"
45139f7f9bSDimitry Andric #include "llvm/ADT/Statistic.h"
46f22ef01cSRoman Divacky #include "llvm/Analysis/AliasAnalysis.h"
4739d628a0SDimitry Andric #include "llvm/Analysis/AssumptionCache.h"
48db17bf38SDimitry Andric #include "llvm/Analysis/BasicAliasAnalysis.h"
493861d79fSDimitry Andric #include "llvm/Analysis/DependenceAnalysis.h"
507d523365SDimitry Andric #include "llvm/Analysis/GlobalsModRef.h"
512754fe60SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h"
5291bc56edSDimitry Andric #include "llvm/Analysis/LoopInfo.h"
532754fe60SDimitry Andric #include "llvm/Analysis/ScalarEvolution.h"
547d523365SDimitry Andric #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
554ba319b5SDimitry Andric #include "llvm/Transforms/Utils/Local.h"
5691bc56edSDimitry Andric #include "llvm/IR/CFG.h"
57139f7f9bSDimitry Andric #include "llvm/IR/Constants.h"
5891bc56edSDimitry Andric #include "llvm/IR/DataLayout.h"
5991bc56edSDimitry Andric #include "llvm/IR/Dominators.h"
60139f7f9bSDimitry Andric #include "llvm/IR/Function.h"
61139f7f9bSDimitry Andric #include "llvm/IR/Instructions.h"
62139f7f9bSDimitry Andric #include "llvm/IR/IntrinsicInst.h"
63139f7f9bSDimitry Andric #include "llvm/IR/LLVMContext.h"
64ff0cc061SDimitry Andric #include "llvm/IR/Module.h"
65139f7f9bSDimitry Andric #include "llvm/IR/Type.h"
66f22ef01cSRoman Divacky #include "llvm/Support/Debug.h"
67ff0cc061SDimitry Andric #include "llvm/Support/raw_ostream.h"
684ba319b5SDimitry Andric #include "llvm/Transforms/Utils.h"
69139f7f9bSDimitry Andric #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70f785676fSDimitry Andric #include "llvm/Transforms/Utils/LoopUtils.h"
71f22ef01cSRoman Divacky using namespace llvm;
72f22ef01cSRoman Divacky 
7391bc56edSDimitry Andric #define DEBUG_TYPE "loop-simplify"
7491bc56edSDimitry Andric 
75f22ef01cSRoman Divacky STATISTIC(NumNested  , "Number of nested loops split out");
76f22ef01cSRoman Divacky 
7791bc56edSDimitry Andric // If the block isn't already, move the new block to right after some 'outside
7891bc56edSDimitry Andric // block' block.  This prevents the preheader from being placed inside the loop
7991bc56edSDimitry Andric // body, e.g. when the loop hasn't been rotated.
placeSplitBlockCarefully(BasicBlock * NewBB,SmallVectorImpl<BasicBlock * > & SplitPreds,Loop * L)8091bc56edSDimitry Andric static void placeSplitBlockCarefully(BasicBlock *NewBB,
81f785676fSDimitry Andric                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
8291bc56edSDimitry Andric                                      Loop *L) {
8391bc56edSDimitry Andric   // Check to see if NewBB is already well placed.
847d523365SDimitry Andric   Function::iterator BBI = --NewBB->getIterator();
8591bc56edSDimitry Andric   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
8691bc56edSDimitry Andric     if (&*BBI == SplitPreds[i])
8791bc56edSDimitry Andric       return;
88f22ef01cSRoman Divacky   }
89f22ef01cSRoman Divacky 
9091bc56edSDimitry Andric   // If it isn't already after an outside block, move it after one.  This is
9191bc56edSDimitry Andric   // always good as it makes the uncond branch from the outside block into a
9291bc56edSDimitry Andric   // fall-through.
9391bc56edSDimitry Andric 
9491bc56edSDimitry Andric   // Figure out *which* outside block to put this after.  Prefer an outside
9591bc56edSDimitry Andric   // block that neighbors a BB actually in the loop.
9691bc56edSDimitry Andric   BasicBlock *FoundBB = nullptr;
9791bc56edSDimitry Andric   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
987d523365SDimitry Andric     Function::iterator BBI = SplitPreds[i]->getIterator();
997d523365SDimitry Andric     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
10091bc56edSDimitry Andric       FoundBB = SplitPreds[i];
10191bc56edSDimitry Andric       break;
10291bc56edSDimitry Andric     }
10391bc56edSDimitry Andric   }
10491bc56edSDimitry Andric 
10591bc56edSDimitry Andric   // If our heuristic for a *good* bb to place this after doesn't find
10691bc56edSDimitry Andric   // anything, just pick something.  It's likely better than leaving it within
10791bc56edSDimitry Andric   // the loop.
10891bc56edSDimitry Andric   if (!FoundBB)
10991bc56edSDimitry Andric     FoundBB = SplitPreds[0];
11091bc56edSDimitry Andric   NewBB->moveAfter(FoundBB);
11191bc56edSDimitry Andric }
11291bc56edSDimitry Andric 
11391bc56edSDimitry Andric /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
11491bc56edSDimitry Andric /// preheader, this method is called to insert one.  This method has two phases:
11591bc56edSDimitry Andric /// preheader insertion and analysis updating.
116f22ef01cSRoman Divacky ///
InsertPreheaderForLoop(Loop * L,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)1177d523365SDimitry Andric BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
1187d523365SDimitry Andric                                          LoopInfo *LI, bool PreserveLCSSA) {
11991bc56edSDimitry Andric   BasicBlock *Header = L->getHeader();
12091bc56edSDimitry Andric 
12191bc56edSDimitry Andric   // Compute the set of predecessors of the loop that are not in the loop.
12291bc56edSDimitry Andric   SmallVector<BasicBlock*, 8> OutsideBlocks;
12391bc56edSDimitry Andric   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
12491bc56edSDimitry Andric        PI != PE; ++PI) {
12591bc56edSDimitry Andric     BasicBlock *P = *PI;
12691bc56edSDimitry Andric     if (!L->contains(P)) {         // Coming in from outside the loop?
12791bc56edSDimitry Andric       // If the loop is branched to from an indirect branch, we won't
12891bc56edSDimitry Andric       // be able to fully transform the loop, because it prohibits
12991bc56edSDimitry Andric       // edge splitting.
13091bc56edSDimitry Andric       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
13191bc56edSDimitry Andric 
13291bc56edSDimitry Andric       // Keep track of it.
13391bc56edSDimitry Andric       OutsideBlocks.push_back(P);
13491bc56edSDimitry Andric     }
13591bc56edSDimitry Andric   }
13691bc56edSDimitry Andric 
13791bc56edSDimitry Andric   // Split out the loop pre-header.
13891bc56edSDimitry Andric   BasicBlock *PreheaderBB;
1397d523365SDimitry Andric   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
140*b5893f02SDimitry Andric                                        LI, nullptr, PreserveLCSSA);
1417d523365SDimitry Andric   if (!PreheaderBB)
1427d523365SDimitry Andric     return nullptr;
14391bc56edSDimitry Andric 
1444ba319b5SDimitry Andric   LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
14591bc56edSDimitry Andric                     << PreheaderBB->getName() << "\n");
14691bc56edSDimitry Andric 
14791bc56edSDimitry Andric   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
14891bc56edSDimitry Andric   // code layout too horribly.
14991bc56edSDimitry Andric   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
15091bc56edSDimitry Andric 
15191bc56edSDimitry Andric   return PreheaderBB;
15291bc56edSDimitry Andric }
15391bc56edSDimitry Andric 
15491bc56edSDimitry Andric /// Add the specified block, and all of its predecessors, to the specified set,
15591bc56edSDimitry Andric /// if it's not already in there.  Stop predecessor traversal when we reach
15691bc56edSDimitry Andric /// StopBlock.
addBlockAndPredsToSet(BasicBlock * InputBB,BasicBlock * StopBlock,std::set<BasicBlock * > & Blocks)15791bc56edSDimitry Andric static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
15891bc56edSDimitry Andric                                   std::set<BasicBlock*> &Blocks) {
15991bc56edSDimitry Andric   SmallVector<BasicBlock *, 8> Worklist;
16091bc56edSDimitry Andric   Worklist.push_back(InputBB);
16191bc56edSDimitry Andric   do {
16291bc56edSDimitry Andric     BasicBlock *BB = Worklist.pop_back_val();
16391bc56edSDimitry Andric     if (Blocks.insert(BB).second && BB != StopBlock)
16491bc56edSDimitry Andric       // If BB is not already processed and it is not a stop block then
16591bc56edSDimitry Andric       // insert its predecessor in the work list
16691bc56edSDimitry Andric       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
16791bc56edSDimitry Andric         BasicBlock *WBB = *I;
16891bc56edSDimitry Andric         Worklist.push_back(WBB);
16991bc56edSDimitry Andric       }
17091bc56edSDimitry Andric   } while (!Worklist.empty());
17191bc56edSDimitry Andric }
17291bc56edSDimitry Andric 
1734ba319b5SDimitry Andric /// The first part of loop-nestification is to find a PHI node that tells
17491bc56edSDimitry Andric /// us how to partition the loops.
findPHIToPartitionLoops(Loop * L,DominatorTree * DT,AssumptionCache * AC)1757d523365SDimitry Andric static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
17639d628a0SDimitry Andric                                         AssumptionCache *AC) {
177ff0cc061SDimitry Andric   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
17891bc56edSDimitry Andric   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
17991bc56edSDimitry Andric     PHINode *PN = cast<PHINode>(I);
18091bc56edSDimitry Andric     ++I;
181f37b6182SDimitry Andric     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
18291bc56edSDimitry Andric       // This is a degenerate PHI already, don't modify it!
18391bc56edSDimitry Andric       PN->replaceAllUsesWith(V);
18491bc56edSDimitry Andric       PN->eraseFromParent();
18591bc56edSDimitry Andric       continue;
18691bc56edSDimitry Andric     }
18791bc56edSDimitry Andric 
18891bc56edSDimitry Andric     // Scan this PHI node looking for a use of the PHI node by itself.
18991bc56edSDimitry Andric     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
19091bc56edSDimitry Andric       if (PN->getIncomingValue(i) == PN &&
19191bc56edSDimitry Andric           L->contains(PN->getIncomingBlock(i)))
19291bc56edSDimitry Andric         // We found something tasty to remove.
19391bc56edSDimitry Andric         return PN;
19491bc56edSDimitry Andric   }
19591bc56edSDimitry Andric   return nullptr;
19691bc56edSDimitry Andric }
19791bc56edSDimitry Andric 
1984ba319b5SDimitry Andric /// If this loop has multiple backedges, try to pull one of them out into
19991bc56edSDimitry Andric /// a nested loop.
20091bc56edSDimitry Andric ///
20191bc56edSDimitry Andric /// This is important for code that looks like
20291bc56edSDimitry Andric /// this:
20391bc56edSDimitry Andric ///
20491bc56edSDimitry Andric ///  Loop:
20591bc56edSDimitry Andric ///     ...
20691bc56edSDimitry Andric ///     br cond, Loop, Next
20791bc56edSDimitry Andric ///     ...
20891bc56edSDimitry Andric ///     br cond2, Loop, Out
20991bc56edSDimitry Andric ///
21091bc56edSDimitry Andric /// To identify this common case, we look at the PHI nodes in the header of the
21191bc56edSDimitry Andric /// loop.  PHI nodes with unchanging values on one backedge correspond to values
21291bc56edSDimitry Andric /// that change in the "outer" loop, but not in the "inner" loop.
21391bc56edSDimitry Andric ///
21491bc56edSDimitry Andric /// If we are able to separate out a loop, return the new outer loop that was
21591bc56edSDimitry Andric /// created.
21691bc56edSDimitry Andric ///
separateNestedLoop(Loop * L,BasicBlock * Preheader,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,bool PreserveLCSSA,AssumptionCache * AC)21791bc56edSDimitry Andric static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
2187d523365SDimitry Andric                                 DominatorTree *DT, LoopInfo *LI,
2197d523365SDimitry Andric                                 ScalarEvolution *SE, bool PreserveLCSSA,
22039d628a0SDimitry Andric                                 AssumptionCache *AC) {
22191bc56edSDimitry Andric   // Don't try to separate loops without a preheader.
22291bc56edSDimitry Andric   if (!Preheader)
22391bc56edSDimitry Andric     return nullptr;
22491bc56edSDimitry Andric 
22591bc56edSDimitry Andric   // The header is not a landing pad; preheader insertion should ensure this.
2267d523365SDimitry Andric   BasicBlock *Header = L->getHeader();
2277d523365SDimitry Andric   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
22891bc56edSDimitry Andric 
2297d523365SDimitry Andric   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
23091bc56edSDimitry Andric   if (!PN) return nullptr;  // No known way to partition.
23191bc56edSDimitry Andric 
23291bc56edSDimitry Andric   // Pull out all predecessors that have varying values in the loop.  This
23391bc56edSDimitry Andric   // handles the case when a PHI node has multiple instances of itself as
23491bc56edSDimitry Andric   // arguments.
23591bc56edSDimitry Andric   SmallVector<BasicBlock*, 8> OuterLoopPreds;
23691bc56edSDimitry Andric   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
23791bc56edSDimitry Andric     if (PN->getIncomingValue(i) != PN ||
23891bc56edSDimitry Andric         !L->contains(PN->getIncomingBlock(i))) {
23991bc56edSDimitry Andric       // We can't split indirectbr edges.
24091bc56edSDimitry Andric       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
24191bc56edSDimitry Andric         return nullptr;
24291bc56edSDimitry Andric       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
24391bc56edSDimitry Andric     }
24491bc56edSDimitry Andric   }
2454ba319b5SDimitry Andric   LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
24691bc56edSDimitry Andric 
24791bc56edSDimitry Andric   // If ScalarEvolution is around and knows anything about values in
24891bc56edSDimitry Andric   // this loop, tell it to forget them, because we're about to
24991bc56edSDimitry Andric   // substantially change it.
25091bc56edSDimitry Andric   if (SE)
25191bc56edSDimitry Andric     SE->forgetLoop(L);
25291bc56edSDimitry Andric 
253ff0cc061SDimitry Andric   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
254*b5893f02SDimitry Andric                                              DT, LI, nullptr, PreserveLCSSA);
25591bc56edSDimitry Andric 
25691bc56edSDimitry Andric   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
25791bc56edSDimitry Andric   // code layout too horribly.
25891bc56edSDimitry Andric   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
25991bc56edSDimitry Andric 
26091bc56edSDimitry Andric   // Create the new outer loop.
2612cab237bSDimitry Andric   Loop *NewOuter = LI->AllocateLoop();
26291bc56edSDimitry Andric 
26391bc56edSDimitry Andric   // Change the parent loop to use the outer loop as its child now.
26491bc56edSDimitry Andric   if (Loop *Parent = L->getParentLoop())
26591bc56edSDimitry Andric     Parent->replaceChildLoopWith(L, NewOuter);
26691bc56edSDimitry Andric   else
26791bc56edSDimitry Andric     LI->changeTopLevelLoop(L, NewOuter);
26891bc56edSDimitry Andric 
26991bc56edSDimitry Andric   // L is now a subloop of our outer loop.
27091bc56edSDimitry Andric   NewOuter->addChildLoop(L);
27191bc56edSDimitry Andric 
27291bc56edSDimitry Andric   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
27391bc56edSDimitry Andric        I != E; ++I)
27491bc56edSDimitry Andric     NewOuter->addBlockEntry(*I);
27591bc56edSDimitry Andric 
27691bc56edSDimitry Andric   // Now reset the header in L, which had been moved by
27791bc56edSDimitry Andric   // SplitBlockPredecessors for the outer loop.
27891bc56edSDimitry Andric   L->moveToHeader(Header);
27991bc56edSDimitry Andric 
28091bc56edSDimitry Andric   // Determine which blocks should stay in L and which should be moved out to
28191bc56edSDimitry Andric   // the Outer loop now.
28291bc56edSDimitry Andric   std::set<BasicBlock*> BlocksInL;
28391bc56edSDimitry Andric   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
28491bc56edSDimitry Andric     BasicBlock *P = *PI;
28591bc56edSDimitry Andric     if (DT->dominates(Header, P))
28691bc56edSDimitry Andric       addBlockAndPredsToSet(P, Header, BlocksInL);
28791bc56edSDimitry Andric   }
28891bc56edSDimitry Andric 
28991bc56edSDimitry Andric   // Scan all of the loop children of L, moving them to OuterLoop if they are
29091bc56edSDimitry Andric   // not part of the inner loop.
29191bc56edSDimitry Andric   const std::vector<Loop*> &SubLoops = L->getSubLoops();
29291bc56edSDimitry Andric   for (size_t I = 0; I != SubLoops.size(); )
29391bc56edSDimitry Andric     if (BlocksInL.count(SubLoops[I]->getHeader()))
29491bc56edSDimitry Andric       ++I;   // Loop remains in L
29591bc56edSDimitry Andric     else
29691bc56edSDimitry Andric       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
29791bc56edSDimitry Andric 
2986c4bc1bdSDimitry Andric   SmallVector<BasicBlock *, 8> OuterLoopBlocks;
2996c4bc1bdSDimitry Andric   OuterLoopBlocks.push_back(NewBB);
30091bc56edSDimitry Andric   // Now that we know which blocks are in L and which need to be moved to
30191bc56edSDimitry Andric   // OuterLoop, move any blocks that need it.
30291bc56edSDimitry Andric   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
30391bc56edSDimitry Andric     BasicBlock *BB = L->getBlocks()[i];
30491bc56edSDimitry Andric     if (!BlocksInL.count(BB)) {
30591bc56edSDimitry Andric       // Move this block to the parent, updating the exit blocks sets
30691bc56edSDimitry Andric       L->removeBlockFromLoop(BB);
3076c4bc1bdSDimitry Andric       if ((*LI)[BB] == L) {
30891bc56edSDimitry Andric         LI->changeLoopFor(BB, NewOuter);
3096c4bc1bdSDimitry Andric         OuterLoopBlocks.push_back(BB);
3106c4bc1bdSDimitry Andric       }
31191bc56edSDimitry Andric       --i;
31291bc56edSDimitry Andric     }
31391bc56edSDimitry Andric   }
31491bc56edSDimitry Andric 
3156c4bc1bdSDimitry Andric   // Split edges to exit blocks from the inner loop, if they emerged in the
3166c4bc1bdSDimitry Andric   // process of separating the outer one.
317edd7eaddSDimitry Andric   formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA);
3186c4bc1bdSDimitry Andric 
3196c4bc1bdSDimitry Andric   if (PreserveLCSSA) {
3206c4bc1bdSDimitry Andric     // Fix LCSSA form for L. Some values, which previously were only used inside
3216c4bc1bdSDimitry Andric     // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
3226c4bc1bdSDimitry Andric     // in corresponding exit blocks.
323d88c1a5aSDimitry Andric     // We don't need to form LCSSA recursively, because there cannot be uses
324d88c1a5aSDimitry Andric     // inside a newly created loop of defs from inner loops as those would
325d88c1a5aSDimitry Andric     // already be a use of an LCSSA phi node.
326d88c1a5aSDimitry Andric     formLCSSA(*L, *DT, LI, SE);
3276c4bc1bdSDimitry Andric 
328d88c1a5aSDimitry Andric     assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
3296c4bc1bdSDimitry Andric            "LCSSA is broken after separating nested loops!");
3306c4bc1bdSDimitry Andric   }
3316c4bc1bdSDimitry Andric 
33291bc56edSDimitry Andric   return NewOuter;
33391bc56edSDimitry Andric }
33491bc56edSDimitry Andric 
3354ba319b5SDimitry Andric /// This method is called when the specified loop has more than one
33691bc56edSDimitry Andric /// backedge in it.
33791bc56edSDimitry Andric ///
33891bc56edSDimitry Andric /// If this occurs, revector all of these backedges to target a new basic block
33991bc56edSDimitry Andric /// and have that block branch to the loop header.  This ensures that loops
34091bc56edSDimitry Andric /// have exactly one backedge.
insertUniqueBackedgeBlock(Loop * L,BasicBlock * Preheader,DominatorTree * DT,LoopInfo * LI)34191bc56edSDimitry Andric static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
34291bc56edSDimitry Andric                                              DominatorTree *DT, LoopInfo *LI) {
34391bc56edSDimitry Andric   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
34491bc56edSDimitry Andric 
34591bc56edSDimitry Andric   // Get information about the loop
34691bc56edSDimitry Andric   BasicBlock *Header = L->getHeader();
34791bc56edSDimitry Andric   Function *F = Header->getParent();
34891bc56edSDimitry Andric 
34991bc56edSDimitry Andric   // Unique backedge insertion currently depends on having a preheader.
35091bc56edSDimitry Andric   if (!Preheader)
35191bc56edSDimitry Andric     return nullptr;
35291bc56edSDimitry Andric 
3537d523365SDimitry Andric   // The header is not an EH pad; preheader insertion should ensure this.
3547d523365SDimitry Andric   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
35591bc56edSDimitry Andric 
35691bc56edSDimitry Andric   // Figure out which basic blocks contain back-edges to the loop header.
35791bc56edSDimitry Andric   std::vector<BasicBlock*> BackedgeBlocks;
35891bc56edSDimitry Andric   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
35991bc56edSDimitry Andric     BasicBlock *P = *I;
36091bc56edSDimitry Andric 
36191bc56edSDimitry Andric     // Indirectbr edges cannot be split, so we must fail if we find one.
36291bc56edSDimitry Andric     if (isa<IndirectBrInst>(P->getTerminator()))
36391bc56edSDimitry Andric       return nullptr;
36491bc56edSDimitry Andric 
36591bc56edSDimitry Andric     if (P != Preheader) BackedgeBlocks.push_back(P);
36691bc56edSDimitry Andric   }
36791bc56edSDimitry Andric 
36891bc56edSDimitry Andric   // Create and insert the new backedge block...
36991bc56edSDimitry Andric   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
37091bc56edSDimitry Andric                                            Header->getName() + ".backedge", F);
37191bc56edSDimitry Andric   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
3723dac3a9bSDimitry Andric   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
37391bc56edSDimitry Andric 
3744ba319b5SDimitry Andric   LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
37591bc56edSDimitry Andric                     << BEBlock->getName() << "\n");
37691bc56edSDimitry Andric 
37791bc56edSDimitry Andric   // Move the new backedge block to right after the last backedge block.
3787d523365SDimitry Andric   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
37991bc56edSDimitry Andric   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
38091bc56edSDimitry Andric 
38191bc56edSDimitry Andric   // Now that the block has been inserted into the function, create PHI nodes in
38291bc56edSDimitry Andric   // the backedge block which correspond to any PHI nodes in the header block.
38391bc56edSDimitry Andric   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
38491bc56edSDimitry Andric     PHINode *PN = cast<PHINode>(I);
38591bc56edSDimitry Andric     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
38691bc56edSDimitry Andric                                      PN->getName()+".be", BETerminator);
38791bc56edSDimitry Andric 
38891bc56edSDimitry Andric     // Loop over the PHI node, moving all entries except the one for the
38991bc56edSDimitry Andric     // preheader over to the new PHI node.
39091bc56edSDimitry Andric     unsigned PreheaderIdx = ~0U;
39191bc56edSDimitry Andric     bool HasUniqueIncomingValue = true;
39291bc56edSDimitry Andric     Value *UniqueValue = nullptr;
39391bc56edSDimitry Andric     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
39491bc56edSDimitry Andric       BasicBlock *IBB = PN->getIncomingBlock(i);
39591bc56edSDimitry Andric       Value *IV = PN->getIncomingValue(i);
39691bc56edSDimitry Andric       if (IBB == Preheader) {
39791bc56edSDimitry Andric         PreheaderIdx = i;
39891bc56edSDimitry Andric       } else {
39991bc56edSDimitry Andric         NewPN->addIncoming(IV, IBB);
40091bc56edSDimitry Andric         if (HasUniqueIncomingValue) {
40191bc56edSDimitry Andric           if (!UniqueValue)
40291bc56edSDimitry Andric             UniqueValue = IV;
40391bc56edSDimitry Andric           else if (UniqueValue != IV)
40491bc56edSDimitry Andric             HasUniqueIncomingValue = false;
40591bc56edSDimitry Andric         }
40691bc56edSDimitry Andric       }
40791bc56edSDimitry Andric     }
40891bc56edSDimitry Andric 
40991bc56edSDimitry Andric     // Delete all of the incoming values from the old PN except the preheader's
41091bc56edSDimitry Andric     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
41191bc56edSDimitry Andric     if (PreheaderIdx != 0) {
41291bc56edSDimitry Andric       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
41391bc56edSDimitry Andric       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
41491bc56edSDimitry Andric     }
41591bc56edSDimitry Andric     // Nuke all entries except the zero'th.
41691bc56edSDimitry Andric     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
41791bc56edSDimitry Andric       PN->removeIncomingValue(e-i, false);
41891bc56edSDimitry Andric 
41991bc56edSDimitry Andric     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
42091bc56edSDimitry Andric     PN->addIncoming(NewPN, BEBlock);
42191bc56edSDimitry Andric 
42291bc56edSDimitry Andric     // As an optimization, if all incoming values in the new PhiNode (which is a
42391bc56edSDimitry Andric     // subset of the incoming values of the old PHI node) have the same value,
42491bc56edSDimitry Andric     // eliminate the PHI Node.
42591bc56edSDimitry Andric     if (HasUniqueIncomingValue) {
42691bc56edSDimitry Andric       NewPN->replaceAllUsesWith(UniqueValue);
42791bc56edSDimitry Andric       BEBlock->getInstList().erase(NewPN);
42891bc56edSDimitry Andric     }
42991bc56edSDimitry Andric   }
43091bc56edSDimitry Andric 
43191bc56edSDimitry Andric   // Now that all of the PHI nodes have been inserted and adjusted, modify the
432d88c1a5aSDimitry Andric   // backedge blocks to jump to the BEBlock instead of the header.
433d88c1a5aSDimitry Andric   // If one of the backedges has llvm.loop metadata attached, we remove
434d88c1a5aSDimitry Andric   // it from the backedge and add it to BEBlock.
435d88c1a5aSDimitry Andric   unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
436d88c1a5aSDimitry Andric   MDNode *LoopMD = nullptr;
43791bc56edSDimitry Andric   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
438*b5893f02SDimitry Andric     Instruction *TI = BackedgeBlocks[i]->getTerminator();
439d88c1a5aSDimitry Andric     if (!LoopMD)
440d88c1a5aSDimitry Andric       LoopMD = TI->getMetadata(LoopMDKind);
441d88c1a5aSDimitry Andric     TI->setMetadata(LoopMDKind, nullptr);
44291bc56edSDimitry Andric     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
44391bc56edSDimitry Andric       if (TI->getSuccessor(Op) == Header)
44491bc56edSDimitry Andric         TI->setSuccessor(Op, BEBlock);
44591bc56edSDimitry Andric   }
446d88c1a5aSDimitry Andric   BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
44791bc56edSDimitry Andric 
44891bc56edSDimitry Andric   //===--- Update all analyses which we must preserve now -----------------===//
44991bc56edSDimitry Andric 
45091bc56edSDimitry Andric   // Update Loop Information - we know that this block is now in the current
45191bc56edSDimitry Andric   // loop and all parent loops.
452ff0cc061SDimitry Andric   L->addBasicBlockToLoop(BEBlock, *LI);
45391bc56edSDimitry Andric 
45491bc56edSDimitry Andric   // Update dominator information
45591bc56edSDimitry Andric   DT->splitBlock(BEBlock);
45691bc56edSDimitry Andric 
45791bc56edSDimitry Andric   return BEBlock;
45891bc56edSDimitry Andric }
45991bc56edSDimitry Andric 
4604ba319b5SDimitry Andric /// Simplify one loop and queue further loops for simplification.
simplifyOneLoop(Loop * L,SmallVectorImpl<Loop * > & Worklist,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,bool PreserveLCSSA)46191bc56edSDimitry Andric static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
4627d523365SDimitry Andric                             DominatorTree *DT, LoopInfo *LI,
4637d523365SDimitry Andric                             ScalarEvolution *SE, AssumptionCache *AC,
4647d523365SDimitry Andric                             bool PreserveLCSSA) {
465f22ef01cSRoman Divacky   bool Changed = false;
466f22ef01cSRoman Divacky ReprocessLoop:
467f22ef01cSRoman Divacky 
468f22ef01cSRoman Divacky   // Check to see that no blocks (other than the header) in this loop have
469f22ef01cSRoman Divacky   // predecessors that are not in the loop.  This is not valid for natural
470f22ef01cSRoman Divacky   // loops, but can occur if the blocks are unreachable.  Since they are
471f22ef01cSRoman Divacky   // unreachable we can just shamelessly delete those CFG edges!
472f22ef01cSRoman Divacky   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
473f22ef01cSRoman Divacky        BB != E; ++BB) {
474f22ef01cSRoman Divacky     if (*BB == L->getHeader()) continue;
475f22ef01cSRoman Divacky 
476f22ef01cSRoman Divacky     SmallPtrSet<BasicBlock*, 4> BadPreds;
477e580952dSDimitry Andric     for (pred_iterator PI = pred_begin(*BB),
478e580952dSDimitry Andric          PE = pred_end(*BB); PI != PE; ++PI) {
479ffd1746dSEd Schouten       BasicBlock *P = *PI;
480ffd1746dSEd Schouten       if (!L->contains(P))
481ffd1746dSEd Schouten         BadPreds.insert(P);
482ffd1746dSEd Schouten     }
483f22ef01cSRoman Divacky 
484f22ef01cSRoman Divacky     // Delete each unique out-of-loop (and thus dead) predecessor.
48539d628a0SDimitry Andric     for (BasicBlock *P : BadPreds) {
486f22ef01cSRoman Divacky 
4874ba319b5SDimitry Andric       LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
48839d628a0SDimitry Andric                         << P->getName() << "\n");
489f22ef01cSRoman Divacky 
490f22ef01cSRoman Divacky       // Zap the dead pred's terminator and replace it with unreachable.
491*b5893f02SDimitry Andric       Instruction *TI = P->getTerminator();
492d88c1a5aSDimitry Andric       changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA);
493f22ef01cSRoman Divacky       Changed = true;
494f22ef01cSRoman Divacky     }
495f22ef01cSRoman Divacky   }
496f22ef01cSRoman Divacky 
497f22ef01cSRoman Divacky   // If there are exiting blocks with branches on undef, resolve the undef in
498f22ef01cSRoman Divacky   // the direction which will exit the loop. This will help simplify loop
499f22ef01cSRoman Divacky   // trip count computations.
500f22ef01cSRoman Divacky   SmallVector<BasicBlock*, 8> ExitingBlocks;
501f22ef01cSRoman Divacky   L->getExitingBlocks(ExitingBlocks);
5023ca95b02SDimitry Andric   for (BasicBlock *ExitingBlock : ExitingBlocks)
5033ca95b02SDimitry Andric     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
504f22ef01cSRoman Divacky       if (BI->isConditional()) {
505f22ef01cSRoman Divacky         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
506f22ef01cSRoman Divacky 
5074ba319b5SDimitry Andric           LLVM_DEBUG(dbgs()
5084ba319b5SDimitry Andric                      << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
5093ca95b02SDimitry Andric                      << ExitingBlock->getName() << "\n");
510f22ef01cSRoman Divacky 
511f22ef01cSRoman Divacky           BI->setCondition(ConstantInt::get(Cond->getType(),
512f22ef01cSRoman Divacky                                             !L->contains(BI->getSuccessor(0))));
5133861d79fSDimitry Andric 
514f22ef01cSRoman Divacky           Changed = true;
515f22ef01cSRoman Divacky         }
516f22ef01cSRoman Divacky       }
517f22ef01cSRoman Divacky 
518f22ef01cSRoman Divacky   // Does the loop already have a preheader?  If so, don't insert one.
519f22ef01cSRoman Divacky   BasicBlock *Preheader = L->getLoopPreheader();
520f22ef01cSRoman Divacky   if (!Preheader) {
5217d523365SDimitry Andric     Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
522edd7eaddSDimitry Andric     if (Preheader)
523f22ef01cSRoman Divacky       Changed = true;
524f22ef01cSRoman Divacky   }
525f22ef01cSRoman Divacky 
526f22ef01cSRoman Divacky   // Next, check to make sure that all exit nodes of the loop only have
527f22ef01cSRoman Divacky   // predecessors that are inside of the loop.  This check guarantees that the
528f22ef01cSRoman Divacky   // loop preheader/header will dominate the exit blocks.  If the exit block has
529f22ef01cSRoman Divacky   // predecessors from outside of the loop, split the edge now.
530edd7eaddSDimitry Andric   if (formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA))
531f22ef01cSRoman Divacky     Changed = true;
532f22ef01cSRoman Divacky 
533f22ef01cSRoman Divacky   // If the header has more than two predecessors at this point (from the
534f22ef01cSRoman Divacky   // preheader and from multiple backedges), we must adjust the loop.
535f22ef01cSRoman Divacky   BasicBlock *LoopLatch = L->getLoopLatch();
536f22ef01cSRoman Divacky   if (!LoopLatch) {
537f22ef01cSRoman Divacky     // If this is really a nested loop, rip it out into a child loop.  Don't do
538f22ef01cSRoman Divacky     // this for loops with a giant number of backedges, just factor them into a
539f22ef01cSRoman Divacky     // common backedge instead.
540f22ef01cSRoman Divacky     if (L->getNumBackEdges() < 8) {
54139d628a0SDimitry Andric       if (Loop *OuterL =
5427d523365SDimitry Andric               separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) {
543f22ef01cSRoman Divacky         ++NumNested;
54491bc56edSDimitry Andric         // Enqueue the outer loop as it should be processed next in our
54591bc56edSDimitry Andric         // depth-first nest walk.
54691bc56edSDimitry Andric         Worklist.push_back(OuterL);
54791bc56edSDimitry Andric 
548f22ef01cSRoman Divacky         // This is a big restructuring change, reprocess the whole loop.
549f22ef01cSRoman Divacky         Changed = true;
550f22ef01cSRoman Divacky         // GCC doesn't tail recursion eliminate this.
55191bc56edSDimitry Andric         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
552f22ef01cSRoman Divacky         goto ReprocessLoop;
553f22ef01cSRoman Divacky       }
554f22ef01cSRoman Divacky     }
555f22ef01cSRoman Divacky 
556f22ef01cSRoman Divacky     // If we either couldn't, or didn't want to, identify nesting of the loops,
557f22ef01cSRoman Divacky     // insert a new block that all backedges target, then make it jump to the
558f22ef01cSRoman Divacky     // loop header.
5597d523365SDimitry Andric     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI);
560edd7eaddSDimitry Andric     if (LoopLatch)
561f22ef01cSRoman Divacky       Changed = true;
562f22ef01cSRoman Divacky   }
563f22ef01cSRoman Divacky 
564ff0cc061SDimitry Andric   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
565ff0cc061SDimitry Andric 
566f22ef01cSRoman Divacky   // Scan over the PHI nodes in the loop header.  Since they now have only two
567f22ef01cSRoman Divacky   // incoming values (the loop is canonicalized), we may have simplified the PHI
568f22ef01cSRoman Divacky   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
569f22ef01cSRoman Divacky   PHINode *PN;
570f22ef01cSRoman Divacky   for (BasicBlock::iterator I = L->getHeader()->begin();
571f22ef01cSRoman Divacky        (PN = dyn_cast<PHINode>(I++)); )
572f37b6182SDimitry Andric     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
5732754fe60SDimitry Andric       if (SE) SE->forgetValue(PN);
574d88c1a5aSDimitry Andric       if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
575f22ef01cSRoman Divacky         PN->replaceAllUsesWith(V);
576f22ef01cSRoman Divacky         PN->eraseFromParent();
577f22ef01cSRoman Divacky       }
578d88c1a5aSDimitry Andric     }
579f22ef01cSRoman Divacky 
580f22ef01cSRoman Divacky   // If this loop has multiple exits and the exits all go to the same
581f22ef01cSRoman Divacky   // block, attempt to merge the exits. This helps several passes, such
582f22ef01cSRoman Divacky   // as LoopRotation, which do not support loops with multiple exits.
583f22ef01cSRoman Divacky   // SimplifyCFG also does this (and this code uses the same utility
584f22ef01cSRoman Divacky   // function), however this code is loop-aware, where SimplifyCFG is
585f22ef01cSRoman Divacky   // not. That gives it the advantage of being able to hoist
586f22ef01cSRoman Divacky   // loop-invariant instructions out of the way to open up more
587f22ef01cSRoman Divacky   // opportunities, and the disadvantage of having the responsibility
588f22ef01cSRoman Divacky   // to preserve dominator information.
589edd7eaddSDimitry Andric   auto HasUniqueExitBlock = [&]() {
590edd7eaddSDimitry Andric     BasicBlock *UniqueExit = nullptr;
591edd7eaddSDimitry Andric     for (auto *ExitingBB : ExitingBlocks)
592edd7eaddSDimitry Andric       for (auto *SuccBB : successors(ExitingBB)) {
593edd7eaddSDimitry Andric         if (L->contains(SuccBB))
594edd7eaddSDimitry Andric           continue;
595edd7eaddSDimitry Andric 
596edd7eaddSDimitry Andric         if (!UniqueExit)
597edd7eaddSDimitry Andric           UniqueExit = SuccBB;
598edd7eaddSDimitry Andric         else if (UniqueExit != SuccBB)
599edd7eaddSDimitry Andric           return false;
600edd7eaddSDimitry Andric       }
601edd7eaddSDimitry Andric 
602edd7eaddSDimitry Andric     return true;
603edd7eaddSDimitry Andric   };
604edd7eaddSDimitry Andric   if (HasUniqueExitBlock()) {
605f22ef01cSRoman Divacky     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
606f22ef01cSRoman Divacky       BasicBlock *ExitingBlock = ExitingBlocks[i];
607f22ef01cSRoman Divacky       if (!ExitingBlock->getSinglePredecessor()) continue;
608f22ef01cSRoman Divacky       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
609f22ef01cSRoman Divacky       if (!BI || !BI->isConditional()) continue;
610f22ef01cSRoman Divacky       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
611f22ef01cSRoman Divacky       if (!CI || CI->getParent() != ExitingBlock) continue;
612f22ef01cSRoman Divacky 
613f22ef01cSRoman Divacky       // Attempt to hoist out all instructions except for the
614f22ef01cSRoman Divacky       // comparison and the branch.
615f22ef01cSRoman Divacky       bool AllInvariant = true;
61691bc56edSDimitry Andric       bool AnyInvariant = false;
6174ba319b5SDimitry Andric       for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
6187d523365SDimitry Andric         Instruction *Inst = &*I++;
619f22ef01cSRoman Divacky         if (Inst == CI)
620f22ef01cSRoman Divacky           continue;
62191bc56edSDimitry Andric         if (!L->makeLoopInvariant(Inst, AnyInvariant,
62291bc56edSDimitry Andric                                   Preheader ? Preheader->getTerminator()
62391bc56edSDimitry Andric                                             : nullptr)) {
624f22ef01cSRoman Divacky           AllInvariant = false;
625f22ef01cSRoman Divacky           break;
626f22ef01cSRoman Divacky         }
627f22ef01cSRoman Divacky       }
62891bc56edSDimitry Andric       if (AnyInvariant) {
62991bc56edSDimitry Andric         Changed = true;
63091bc56edSDimitry Andric         // The loop disposition of all SCEV expressions that depend on any
63191bc56edSDimitry Andric         // hoisted values have also changed.
63291bc56edSDimitry Andric         if (SE)
63391bc56edSDimitry Andric           SE->forgetLoopDispositions(L);
63491bc56edSDimitry Andric       }
635f22ef01cSRoman Divacky       if (!AllInvariant) continue;
636f22ef01cSRoman Divacky 
637f22ef01cSRoman Divacky       // The block has now been cleared of all instructions except for
638f22ef01cSRoman Divacky       // a comparison and a conditional branch. SimplifyCFG may be able
639f22ef01cSRoman Divacky       // to fold it now.
640ff0cc061SDimitry Andric       if (!FoldBranchToCommonDest(BI))
641ff0cc061SDimitry Andric         continue;
642f22ef01cSRoman Divacky 
643f22ef01cSRoman Divacky       // Success. The block is now dead, so remove it from the loop,
6442754fe60SDimitry Andric       // update the dominator tree and delete it.
6454ba319b5SDimitry Andric       LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
6462754fe60SDimitry Andric                         << ExitingBlock->getName() << "\n");
647f22ef01cSRoman Divacky 
648f22ef01cSRoman Divacky       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
649f22ef01cSRoman Divacky       Changed = true;
650f22ef01cSRoman Divacky       LI->removeBlock(ExitingBlock);
651f22ef01cSRoman Divacky 
652f22ef01cSRoman Divacky       DomTreeNode *Node = DT->getNode(ExitingBlock);
653f22ef01cSRoman Divacky       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
654f22ef01cSRoman Divacky         Node->getChildren();
655f22ef01cSRoman Divacky       while (!Children.empty()) {
656f22ef01cSRoman Divacky         DomTreeNode *Child = Children.front();
657f22ef01cSRoman Divacky         DT->changeImmediateDominator(Child, Node->getIDom());
658f22ef01cSRoman Divacky       }
659f22ef01cSRoman Divacky       DT->eraseNode(ExitingBlock);
660f22ef01cSRoman Divacky 
6613ca95b02SDimitry Andric       BI->getSuccessor(0)->removePredecessor(
6623ca95b02SDimitry Andric           ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
6633ca95b02SDimitry Andric       BI->getSuccessor(1)->removePredecessor(
6643ca95b02SDimitry Andric           ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
665f22ef01cSRoman Divacky       ExitingBlock->eraseFromParent();
666f22ef01cSRoman Divacky     }
667f22ef01cSRoman Divacky   }
668f22ef01cSRoman Divacky 
6694ba319b5SDimitry Andric   // Changing exit conditions for blocks may affect exit counts of this loop and
6704ba319b5SDimitry Andric   // any of its paretns, so we must invalidate the entire subtree if we've made
6714ba319b5SDimitry Andric   // any changes.
6724ba319b5SDimitry Andric   if (Changed && SE)
6734ba319b5SDimitry Andric     SE->forgetTopmostLoop(L);
6744ba319b5SDimitry Andric 
675f22ef01cSRoman Divacky   return Changed;
676f22ef01cSRoman Divacky }
677f22ef01cSRoman Divacky 
simplifyLoop(Loop * L,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,bool PreserveLCSSA)6787d523365SDimitry Andric bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
6797d523365SDimitry Andric                         ScalarEvolution *SE, AssumptionCache *AC,
6807d523365SDimitry Andric                         bool PreserveLCSSA) {
68191bc56edSDimitry Andric   bool Changed = false;
68291bc56edSDimitry Andric 
6837a7e6055SDimitry Andric #ifndef NDEBUG
6847a7e6055SDimitry Andric   // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
6857a7e6055SDimitry Andric   // form.
6867a7e6055SDimitry Andric   if (PreserveLCSSA) {
6877a7e6055SDimitry Andric     assert(DT && "DT not available.");
6887a7e6055SDimitry Andric     assert(LI && "LI not available.");
6897a7e6055SDimitry Andric     assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
6907a7e6055SDimitry Andric            "Requested to preserve LCSSA, but it's already broken.");
6917a7e6055SDimitry Andric   }
6927a7e6055SDimitry Andric #endif
6937a7e6055SDimitry Andric 
69491bc56edSDimitry Andric   // Worklist maintains our depth-first queue of loops in this nest to process.
69591bc56edSDimitry Andric   SmallVector<Loop *, 4> Worklist;
69691bc56edSDimitry Andric   Worklist.push_back(L);
69791bc56edSDimitry Andric 
69891bc56edSDimitry Andric   // Walk the worklist from front to back, pushing newly found sub loops onto
69991bc56edSDimitry Andric   // the back. This will let us process loops from back to front in depth-first
70091bc56edSDimitry Andric   // order. We can use this simple process because loops form a tree.
70191bc56edSDimitry Andric   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
70291bc56edSDimitry Andric     Loop *L2 = Worklist[Idx];
703ff0cc061SDimitry Andric     Worklist.append(L2->begin(), L2->end());
70491bc56edSDimitry Andric   }
70591bc56edSDimitry Andric 
70691bc56edSDimitry Andric   while (!Worklist.empty())
7077d523365SDimitry Andric     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
7087d523365SDimitry Andric                                AC, PreserveLCSSA);
70991bc56edSDimitry Andric 
71091bc56edSDimitry Andric   return Changed;
71191bc56edSDimitry Andric }
71291bc56edSDimitry Andric 
71391bc56edSDimitry Andric namespace {
71491bc56edSDimitry Andric   struct LoopSimplify : public FunctionPass {
71591bc56edSDimitry Andric     static char ID; // Pass identification, replacement for typeid
LoopSimplify__anon8263db7a0211::LoopSimplify71691bc56edSDimitry Andric     LoopSimplify() : FunctionPass(ID) {
71791bc56edSDimitry Andric       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
71891bc56edSDimitry Andric     }
71991bc56edSDimitry Andric 
72091bc56edSDimitry Andric     bool runOnFunction(Function &F) override;
72191bc56edSDimitry Andric 
getAnalysisUsage__anon8263db7a0211::LoopSimplify72291bc56edSDimitry Andric     void getAnalysisUsage(AnalysisUsage &AU) const override {
72339d628a0SDimitry Andric       AU.addRequired<AssumptionCacheTracker>();
72439d628a0SDimitry Andric 
72591bc56edSDimitry Andric       // We need loop information to identify the loops...
72691bc56edSDimitry Andric       AU.addRequired<DominatorTreeWrapperPass>();
72791bc56edSDimitry Andric       AU.addPreserved<DominatorTreeWrapperPass>();
72891bc56edSDimitry Andric 
729ff0cc061SDimitry Andric       AU.addRequired<LoopInfoWrapperPass>();
730ff0cc061SDimitry Andric       AU.addPreserved<LoopInfoWrapperPass>();
73191bc56edSDimitry Andric 
7327d523365SDimitry Andric       AU.addPreserved<BasicAAWrapperPass>();
7337d523365SDimitry Andric       AU.addPreserved<AAResultsWrapperPass>();
7347d523365SDimitry Andric       AU.addPreserved<GlobalsAAWrapperPass>();
7357d523365SDimitry Andric       AU.addPreserved<ScalarEvolutionWrapperPass>();
7367d523365SDimitry Andric       AU.addPreserved<SCEVAAWrapperPass>();
7373ca95b02SDimitry Andric       AU.addPreservedID(LCSSAID);
7383ca95b02SDimitry Andric       AU.addPreserved<DependenceAnalysisWrapperPass>();
73991bc56edSDimitry Andric       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
74091bc56edSDimitry Andric     }
74191bc56edSDimitry Andric 
74291bc56edSDimitry Andric     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
74391bc56edSDimitry Andric     void verifyAnalysis() const override;
74491bc56edSDimitry Andric   };
7453dac3a9bSDimitry Andric }
74691bc56edSDimitry Andric 
74791bc56edSDimitry Andric char LoopSimplify::ID = 0;
74891bc56edSDimitry Andric INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
74939d628a0SDimitry Andric                 "Canonicalize natural loops", false, false)
75039d628a0SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
75191bc56edSDimitry Andric INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
752ff0cc061SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
75391bc56edSDimitry Andric INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
75439d628a0SDimitry Andric                 "Canonicalize natural loops", false, false)
75591bc56edSDimitry Andric 
75691bc56edSDimitry Andric // Publicly exposed interface to pass...
75791bc56edSDimitry Andric char &llvm::LoopSimplifyID = LoopSimplify::ID;
createLoopSimplifyPass()75891bc56edSDimitry Andric Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
75991bc56edSDimitry Andric 
76091bc56edSDimitry Andric /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
76191bc56edSDimitry Andric /// it in any convenient order) inserting preheaders...
762f22ef01cSRoman Divacky ///
runOnFunction(Function & F)76391bc56edSDimitry Andric bool LoopSimplify::runOnFunction(Function &F) {
76491bc56edSDimitry Andric   bool Changed = false;
7653ca95b02SDimitry Andric   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
7663ca95b02SDimitry Andric   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
7677d523365SDimitry Andric   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
7683ca95b02SDimitry Andric   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
7693ca95b02SDimitry Andric   AssumptionCache *AC =
7703ca95b02SDimitry Andric       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
7713ca95b02SDimitry Andric 
7727d523365SDimitry Andric   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
773f22ef01cSRoman Divacky 
77491bc56edSDimitry Andric   // Simplify each loop nest in the function.
77591bc56edSDimitry Andric   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7767d523365SDimitry Andric     Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA);
777f22ef01cSRoman Divacky 
7783ca95b02SDimitry Andric #ifndef NDEBUG
7793ca95b02SDimitry Andric   if (PreserveLCSSA) {
780d88c1a5aSDimitry Andric     bool InLCSSA = all_of(
781d88c1a5aSDimitry Andric         *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
7823ca95b02SDimitry Andric     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
7833ca95b02SDimitry Andric   }
7843ca95b02SDimitry Andric #endif
78591bc56edSDimitry Andric   return Changed;
786f22ef01cSRoman Divacky }
787f22ef01cSRoman Divacky 
run(Function & F,FunctionAnalysisManager & AM)7883ca95b02SDimitry Andric PreservedAnalyses LoopSimplifyPass::run(Function &F,
789d88c1a5aSDimitry Andric                                         FunctionAnalysisManager &AM) {
7903ca95b02SDimitry Andric   bool Changed = false;
7913ca95b02SDimitry Andric   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
7923ca95b02SDimitry Andric   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
7933ca95b02SDimitry Andric   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
7943ca95b02SDimitry Andric   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
7953ca95b02SDimitry Andric 
7967a7e6055SDimitry Andric   // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
7977a7e6055SDimitry Andric   // after simplifying the loops.
7983ca95b02SDimitry Andric   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7997a7e6055SDimitry Andric     Changed |= simplifyLoop(*I, DT, LI, SE, AC, /*PreserveLCSSA*/ false);
800d88c1a5aSDimitry Andric 
8013ca95b02SDimitry Andric   if (!Changed)
8023ca95b02SDimitry Andric     return PreservedAnalyses::all();
8037a7e6055SDimitry Andric 
8043ca95b02SDimitry Andric   PreservedAnalyses PA;
8053ca95b02SDimitry Andric   PA.preserve<DominatorTreeAnalysis>();
8063ca95b02SDimitry Andric   PA.preserve<LoopAnalysis>();
8073ca95b02SDimitry Andric   PA.preserve<BasicAA>();
8083ca95b02SDimitry Andric   PA.preserve<GlobalsAA>();
8093ca95b02SDimitry Andric   PA.preserve<SCEVAA>();
8103ca95b02SDimitry Andric   PA.preserve<ScalarEvolutionAnalysis>();
8113ca95b02SDimitry Andric   PA.preserve<DependenceAnalysis>();
8123ca95b02SDimitry Andric   return PA;
8133ca95b02SDimitry Andric }
8143ca95b02SDimitry Andric 
81591bc56edSDimitry Andric // FIXME: Restore this code when we re-enable verification in verifyAnalysis
81691bc56edSDimitry Andric // below.
81791bc56edSDimitry Andric #if 0
81891bc56edSDimitry Andric static void verifyLoop(Loop *L) {
81991bc56edSDimitry Andric   // Verify subloops.
82091bc56edSDimitry Andric   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
82191bc56edSDimitry Andric     verifyLoop(*I);
822f22ef01cSRoman Divacky 
823f22ef01cSRoman Divacky   // It used to be possible to just assert L->isLoopSimplifyForm(), however
824f22ef01cSRoman Divacky   // with the introduction of indirectbr, there are now cases where it's
825f22ef01cSRoman Divacky   // not possible to transform a loop as necessary. We can at least check
826f22ef01cSRoman Divacky   // that there is an indirectbr near any time there's trouble.
827f22ef01cSRoman Divacky 
828f22ef01cSRoman Divacky   // Indirectbr can interfere with preheader and unique backedge insertion.
829f22ef01cSRoman Divacky   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
830f22ef01cSRoman Divacky     bool HasIndBrPred = false;
831f22ef01cSRoman Divacky     for (pred_iterator PI = pred_begin(L->getHeader()),
832f22ef01cSRoman Divacky          PE = pred_end(L->getHeader()); PI != PE; ++PI)
833f22ef01cSRoman Divacky       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
834f22ef01cSRoman Divacky         HasIndBrPred = true;
835f22ef01cSRoman Divacky         break;
836f22ef01cSRoman Divacky       }
837f22ef01cSRoman Divacky     assert(HasIndBrPred &&
838f22ef01cSRoman Divacky            "LoopSimplify has no excuse for missing loop header info!");
8396122f3e6SDimitry Andric     (void)HasIndBrPred;
840f22ef01cSRoman Divacky   }
841f22ef01cSRoman Divacky 
842f22ef01cSRoman Divacky   // Indirectbr can interfere with exit block canonicalization.
843f22ef01cSRoman Divacky   if (!L->hasDedicatedExits()) {
844f22ef01cSRoman Divacky     bool HasIndBrExiting = false;
845f22ef01cSRoman Divacky     SmallVector<BasicBlock*, 8> ExitingBlocks;
846f22ef01cSRoman Divacky     L->getExitingBlocks(ExitingBlocks);
8476122f3e6SDimitry Andric     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
848f22ef01cSRoman Divacky       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
849f22ef01cSRoman Divacky         HasIndBrExiting = true;
850f22ef01cSRoman Divacky         break;
851f22ef01cSRoman Divacky       }
8526122f3e6SDimitry Andric     }
8536122f3e6SDimitry Andric 
854f22ef01cSRoman Divacky     assert(HasIndBrExiting &&
855f22ef01cSRoman Divacky            "LoopSimplify has no excuse for missing exit block info!");
8566122f3e6SDimitry Andric     (void)HasIndBrExiting;
857f22ef01cSRoman Divacky   }
858f22ef01cSRoman Divacky }
85991bc56edSDimitry Andric #endif
86091bc56edSDimitry Andric 
verifyAnalysis() const86191bc56edSDimitry Andric void LoopSimplify::verifyAnalysis() const {
86291bc56edSDimitry Andric   // FIXME: This routine is being called mid-way through the loop pass manager
86391bc56edSDimitry Andric   // as loop passes destroy this analysis. That's actually fine, but we have no
86491bc56edSDimitry Andric   // way of expressing that here. Once all of the passes that destroy this are
86591bc56edSDimitry Andric   // hoisted out of the loop pass manager we can add back verification here.
86691bc56edSDimitry Andric #if 0
86791bc56edSDimitry Andric   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
86891bc56edSDimitry Andric     verifyLoop(*I);
86991bc56edSDimitry Andric #endif
87091bc56edSDimitry Andric }
871