1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Cloning.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CallGraph.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/EHPersonalities.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/DIBuilder.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include "llvm/Support/CommandLine.h" 44 #include <algorithm> 45 46 using namespace llvm; 47 48 static cl::opt<bool> 49 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 50 cl::Hidden, 51 cl::desc("Convert noalias attributes to metadata during inlining.")); 52 53 static cl::opt<bool> 54 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", 55 cl::init(true), cl::Hidden, 56 cl::desc("Convert align attributes to assumptions during inlining.")); 57 58 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 59 AAResults *CalleeAAR, bool InsertLifetime) { 60 return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime); 61 } 62 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 63 AAResults *CalleeAAR, bool InsertLifetime) { 64 return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime); 65 } 66 67 namespace { 68 /// A class for recording information about inlining a landing pad. 69 class LandingPadInliningInfo { 70 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 71 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 72 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 73 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 74 SmallVector<Value*, 8> UnwindDestPHIValues; 75 76 public: 77 LandingPadInliningInfo(InvokeInst *II) 78 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 79 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 80 // If there are PHI nodes in the unwind destination block, we need to keep 81 // track of which values came into them from the invoke before removing 82 // the edge from this block. 83 llvm::BasicBlock *InvokeBB = II->getParent(); 84 BasicBlock::iterator I = OuterResumeDest->begin(); 85 for (; isa<PHINode>(I); ++I) { 86 // Save the value to use for this edge. 87 PHINode *PHI = cast<PHINode>(I); 88 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 89 } 90 91 CallerLPad = cast<LandingPadInst>(I); 92 } 93 94 /// The outer unwind destination is the target of 95 /// unwind edges introduced for calls within the inlined function. 96 BasicBlock *getOuterResumeDest() const { 97 return OuterResumeDest; 98 } 99 100 BasicBlock *getInnerResumeDest(); 101 102 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 103 104 /// Forward the 'resume' instruction to the caller's landing pad block. 105 /// When the landing pad block has only one predecessor, this is 106 /// a simple branch. When there is more than one predecessor, we need to 107 /// split the landing pad block after the landingpad instruction and jump 108 /// to there. 109 void forwardResume(ResumeInst *RI, 110 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 111 112 /// Add incoming-PHI values to the unwind destination block for the given 113 /// basic block, using the values for the original invoke's source block. 114 void addIncomingPHIValuesFor(BasicBlock *BB) const { 115 addIncomingPHIValuesForInto(BB, OuterResumeDest); 116 } 117 118 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 119 BasicBlock::iterator I = dest->begin(); 120 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 121 PHINode *phi = cast<PHINode>(I); 122 phi->addIncoming(UnwindDestPHIValues[i], src); 123 } 124 } 125 }; 126 } // anonymous namespace 127 128 /// Get or create a target for the branch from ResumeInsts. 129 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { 130 if (InnerResumeDest) return InnerResumeDest; 131 132 // Split the landing pad. 133 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); 134 InnerResumeDest = 135 OuterResumeDest->splitBasicBlock(SplitPoint, 136 OuterResumeDest->getName() + ".body"); 137 138 // The number of incoming edges we expect to the inner landing pad. 139 const unsigned PHICapacity = 2; 140 141 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 142 Instruction *InsertPoint = &InnerResumeDest->front(); 143 BasicBlock::iterator I = OuterResumeDest->begin(); 144 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 145 PHINode *OuterPHI = cast<PHINode>(I); 146 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 147 OuterPHI->getName() + ".lpad-body", 148 InsertPoint); 149 OuterPHI->replaceAllUsesWith(InnerPHI); 150 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 151 } 152 153 // Create a PHI for the exception values. 154 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 155 "eh.lpad-body", InsertPoint); 156 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 157 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 158 159 // All done. 160 return InnerResumeDest; 161 } 162 163 /// Forward the 'resume' instruction to the caller's landing pad block. 164 /// When the landing pad block has only one predecessor, this is a simple 165 /// branch. When there is more than one predecessor, we need to split the 166 /// landing pad block after the landingpad instruction and jump to there. 167 void LandingPadInliningInfo::forwardResume( 168 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { 169 BasicBlock *Dest = getInnerResumeDest(); 170 BasicBlock *Src = RI->getParent(); 171 172 BranchInst::Create(Dest, Src); 173 174 // Update the PHIs in the destination. They were inserted in an order which 175 // makes this work. 176 addIncomingPHIValuesForInto(Src, Dest); 177 178 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 179 RI->eraseFromParent(); 180 } 181 182 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper. 183 static Value *getParentPad(Value *EHPad) { 184 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 185 return FPI->getParentPad(); 186 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 187 } 188 189 typedef DenseMap<Instruction *, Value *> UnwindDestMemoTy; 190 191 /// Helper for getUnwindDestToken that does the descendant-ward part of 192 /// the search. 193 static Value *getUnwindDestTokenHelper(Instruction *EHPad, 194 UnwindDestMemoTy &MemoMap) { 195 SmallVector<Instruction *, 8> Worklist(1, EHPad); 196 197 while (!Worklist.empty()) { 198 Instruction *CurrentPad = Worklist.pop_back_val(); 199 // We only put pads on the worklist that aren't in the MemoMap. When 200 // we find an unwind dest for a pad we may update its ancestors, but 201 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, 202 // so they should never get updated while queued on the worklist. 203 assert(!MemoMap.count(CurrentPad)); 204 Value *UnwindDestToken = nullptr; 205 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { 206 if (CatchSwitch->hasUnwindDest()) { 207 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); 208 } else { 209 // Catchswitch doesn't have a 'nounwind' variant, and one might be 210 // annotated as "unwinds to caller" when really it's nounwind (see 211 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the 212 // parent's unwind dest from this. We can check its catchpads' 213 // descendants, since they might include a cleanuppad with an 214 // "unwinds to caller" cleanupret, which can be trusted. 215 for (auto HI = CatchSwitch->handler_begin(), 216 HE = CatchSwitch->handler_end(); 217 HI != HE && !UnwindDestToken; ++HI) { 218 BasicBlock *HandlerBlock = *HI; 219 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); 220 for (User *Child : CatchPad->users()) { 221 // Intentionally ignore invokes here -- since the catchswitch is 222 // marked "unwind to caller", it would be a verifier error if it 223 // contained an invoke which unwinds out of it, so any invoke we'd 224 // encounter must unwind to some child of the catch. 225 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) 226 continue; 227 228 Instruction *ChildPad = cast<Instruction>(Child); 229 auto Memo = MemoMap.find(ChildPad); 230 if (Memo == MemoMap.end()) { 231 // Haven't figure out this child pad yet; queue it. 232 Worklist.push_back(ChildPad); 233 continue; 234 } 235 // We've already checked this child, but might have found that 236 // it offers no proof either way. 237 Value *ChildUnwindDestToken = Memo->second; 238 if (!ChildUnwindDestToken) 239 continue; 240 // We already know the child's unwind dest, which can either 241 // be ConstantTokenNone to indicate unwind to caller, or can 242 // be another child of the catchpad. Only the former indicates 243 // the unwind dest of the catchswitch. 244 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { 245 UnwindDestToken = ChildUnwindDestToken; 246 break; 247 } 248 assert(getParentPad(ChildUnwindDestToken) == CatchPad); 249 } 250 } 251 } 252 } else { 253 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); 254 for (User *U : CleanupPad->users()) { 255 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 256 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) 257 UnwindDestToken = RetUnwindDest->getFirstNonPHI(); 258 else 259 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); 260 break; 261 } 262 Value *ChildUnwindDestToken; 263 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 264 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); 265 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { 266 Instruction *ChildPad = cast<Instruction>(U); 267 auto Memo = MemoMap.find(ChildPad); 268 if (Memo == MemoMap.end()) { 269 // Haven't resolved this child yet; queue it and keep searching. 270 Worklist.push_back(ChildPad); 271 continue; 272 } 273 // We've checked this child, but still need to ignore it if it 274 // had no proof either way. 275 ChildUnwindDestToken = Memo->second; 276 if (!ChildUnwindDestToken) 277 continue; 278 } else { 279 // Not a relevant user of the cleanuppad 280 continue; 281 } 282 // In a well-formed program, the child/invoke must either unwind to 283 // an(other) child of the cleanup, or exit the cleanup. In the 284 // first case, continue searching. 285 if (isa<Instruction>(ChildUnwindDestToken) && 286 getParentPad(ChildUnwindDestToken) == CleanupPad) 287 continue; 288 UnwindDestToken = ChildUnwindDestToken; 289 break; 290 } 291 } 292 // If we haven't found an unwind dest for CurrentPad, we may have queued its 293 // children, so move on to the next in the worklist. 294 if (!UnwindDestToken) 295 continue; 296 297 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits 298 // any ancestors of CurrentPad up to but not including UnwindDestToken's 299 // parent pad. Record this in the memo map, and check to see if the 300 // original EHPad being queried is one of the ones exited. 301 Value *UnwindParent; 302 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) 303 UnwindParent = getParentPad(UnwindPad); 304 else 305 UnwindParent = nullptr; 306 bool ExitedOriginalPad = false; 307 for (Instruction *ExitedPad = CurrentPad; 308 ExitedPad && ExitedPad != UnwindParent; 309 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { 310 // Skip over catchpads since they just follow their catchswitches. 311 if (isa<CatchPadInst>(ExitedPad)) 312 continue; 313 MemoMap[ExitedPad] = UnwindDestToken; 314 ExitedOriginalPad |= (ExitedPad == EHPad); 315 } 316 317 if (ExitedOriginalPad) 318 return UnwindDestToken; 319 320 // Continue the search. 321 } 322 323 // No definitive information is contained within this funclet. 324 return nullptr; 325 } 326 327 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, 328 /// return that pad instruction. If it unwinds to caller, return 329 /// ConstantTokenNone. If it does not have a definitive unwind destination, 330 /// return nullptr. 331 /// 332 /// This routine gets invoked for calls in funclets in inlinees when inlining 333 /// an invoke. Since many funclets don't have calls inside them, it's queried 334 /// on-demand rather than building a map of pads to unwind dests up front. 335 /// Determining a funclet's unwind dest may require recursively searching its 336 /// descendants, and also ancestors and cousins if the descendants don't provide 337 /// an answer. Since most funclets will have their unwind dest immediately 338 /// available as the unwind dest of a catchswitch or cleanupret, this routine 339 /// searches top-down from the given pad and then up. To avoid worst-case 340 /// quadratic run-time given that approach, it uses a memo map to avoid 341 /// re-processing funclet trees. The callers that rewrite the IR as they go 342 /// take advantage of this, for correctness, by checking/forcing rewritten 343 /// pads' entries to match the original callee view. 344 static Value *getUnwindDestToken(Instruction *EHPad, 345 UnwindDestMemoTy &MemoMap) { 346 // Catchpads unwind to the same place as their catchswitch; 347 // redirct any queries on catchpads so the code below can 348 // deal with just catchswitches and cleanuppads. 349 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) 350 EHPad = CPI->getCatchSwitch(); 351 352 // Check if we've already determined the unwind dest for this pad. 353 auto Memo = MemoMap.find(EHPad); 354 if (Memo != MemoMap.end()) 355 return Memo->second; 356 357 // Search EHPad and, if necessary, its descendants. 358 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); 359 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); 360 if (UnwindDestToken) 361 return UnwindDestToken; 362 363 // No information is available for this EHPad from itself or any of its 364 // descendants. An unwind all the way out to a pad in the caller would 365 // need also to agree with the unwind dest of the parent funclet, so 366 // search up the chain to try to find a funclet with information. Put 367 // null entries in the memo map to avoid re-processing as we go up. 368 MemoMap[EHPad] = nullptr; 369 Instruction *LastUselessPad = EHPad; 370 Value *AncestorToken; 371 for (AncestorToken = getParentPad(EHPad); 372 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); 373 AncestorToken = getParentPad(AncestorToken)) { 374 // Skip over catchpads since they just follow their catchswitches. 375 if (isa<CatchPadInst>(AncestorPad)) 376 continue; 377 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); 378 auto AncestorMemo = MemoMap.find(AncestorPad); 379 if (AncestorMemo == MemoMap.end()) { 380 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); 381 } else { 382 UnwindDestToken = AncestorMemo->second; 383 } 384 if (UnwindDestToken) 385 break; 386 LastUselessPad = AncestorPad; 387 } 388 389 // Since the whole tree under LastUselessPad has no information, it all must 390 // match UnwindDestToken; record that to avoid repeating the search. 391 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); 392 while (!Worklist.empty()) { 393 Instruction *UselessPad = Worklist.pop_back_val(); 394 assert(!MemoMap.count(UselessPad) || MemoMap[UselessPad] == nullptr); 395 MemoMap[UselessPad] = UnwindDestToken; 396 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { 397 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) 398 for (User *U : HandlerBlock->getFirstNonPHI()->users()) 399 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 400 Worklist.push_back(cast<Instruction>(U)); 401 } else { 402 assert(isa<CleanupPadInst>(UselessPad)); 403 for (User *U : UselessPad->users()) 404 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) 405 Worklist.push_back(cast<Instruction>(U)); 406 } 407 } 408 409 return UnwindDestToken; 410 } 411 412 /// When we inline a basic block into an invoke, 413 /// we have to turn all of the calls that can throw into invokes. 414 /// This function analyze BB to see if there are any calls, and if so, 415 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 416 /// nodes in that block with the values specified in InvokeDestPHIValues. 417 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( 418 BasicBlock *BB, BasicBlock *UnwindEdge, 419 UnwindDestMemoTy *FuncletUnwindMap = nullptr) { 420 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 421 Instruction *I = &*BBI++; 422 423 // We only need to check for function calls: inlined invoke 424 // instructions require no special handling. 425 CallInst *CI = dyn_cast<CallInst>(I); 426 427 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 428 continue; 429 430 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { 431 // This call is nested inside a funclet. If that funclet has an unwind 432 // destination within the inlinee, then unwinding out of this call would 433 // be UB. Rewriting this call to an invoke which targets the inlined 434 // invoke's unwind dest would give the call's parent funclet multiple 435 // unwind destinations, which is something that subsequent EH table 436 // generation can't handle and that the veirifer rejects. So when we 437 // see such a call, leave it as a call. 438 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); 439 Value *UnwindDestToken = 440 getUnwindDestToken(FuncletPad, *FuncletUnwindMap); 441 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 442 continue; 443 #ifndef NDEBUG 444 Instruction *MemoKey; 445 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 446 MemoKey = CatchPad->getCatchSwitch(); 447 else 448 MemoKey = FuncletPad; 449 assert(FuncletUnwindMap->count(MemoKey) && 450 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && 451 "must get memoized to avoid confusing later searches"); 452 #endif // NDEBUG 453 } 454 455 // Convert this function call into an invoke instruction. First, split the 456 // basic block. 457 BasicBlock *Split = 458 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 459 460 // Delete the unconditional branch inserted by splitBasicBlock 461 BB->getInstList().pop_back(); 462 463 // Create the new invoke instruction. 464 SmallVector<Value*, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 465 SmallVector<OperandBundleDef, 1> OpBundles; 466 467 CI->getOperandBundlesAsDefs(OpBundles); 468 469 // Note: we're round tripping operand bundles through memory here, and that 470 // can potentially be avoided with a cleverer API design that we do not have 471 // as of this time. 472 473 InvokeInst *II = 474 InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, InvokeArgs, 475 OpBundles, CI->getName(), BB); 476 II->setDebugLoc(CI->getDebugLoc()); 477 II->setCallingConv(CI->getCallingConv()); 478 II->setAttributes(CI->getAttributes()); 479 480 // Make sure that anything using the call now uses the invoke! This also 481 // updates the CallGraph if present, because it uses a WeakVH. 482 CI->replaceAllUsesWith(II); 483 484 // Delete the original call 485 Split->getInstList().pop_front(); 486 return BB; 487 } 488 return nullptr; 489 } 490 491 /// If we inlined an invoke site, we need to convert calls 492 /// in the body of the inlined function into invokes. 493 /// 494 /// II is the invoke instruction being inlined. FirstNewBlock is the first 495 /// block of the inlined code (the last block is the end of the function), 496 /// and InlineCodeInfo is information about the code that got inlined. 497 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, 498 ClonedCodeInfo &InlinedCodeInfo) { 499 BasicBlock *InvokeDest = II->getUnwindDest(); 500 501 Function *Caller = FirstNewBlock->getParent(); 502 503 // The inlined code is currently at the end of the function, scan from the 504 // start of the inlined code to its end, checking for stuff we need to 505 // rewrite. 506 LandingPadInliningInfo Invoke(II); 507 508 // Get all of the inlined landing pad instructions. 509 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 510 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); 511 I != E; ++I) 512 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 513 InlinedLPads.insert(II->getLandingPadInst()); 514 515 // Append the clauses from the outer landing pad instruction into the inlined 516 // landing pad instructions. 517 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 518 for (LandingPadInst *InlinedLPad : InlinedLPads) { 519 unsigned OuterNum = OuterLPad->getNumClauses(); 520 InlinedLPad->reserveClauses(OuterNum); 521 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 522 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 523 if (OuterLPad->isCleanup()) 524 InlinedLPad->setCleanup(true); 525 } 526 527 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 528 BB != E; ++BB) { 529 if (InlinedCodeInfo.ContainsCalls) 530 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 531 &*BB, Invoke.getOuterResumeDest())) 532 // Update any PHI nodes in the exceptional block to indicate that there 533 // is now a new entry in them. 534 Invoke.addIncomingPHIValuesFor(NewBB); 535 536 // Forward any resumes that are remaining here. 537 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 538 Invoke.forwardResume(RI, InlinedLPads); 539 } 540 541 // Now that everything is happy, we have one final detail. The PHI nodes in 542 // the exception destination block still have entries due to the original 543 // invoke instruction. Eliminate these entries (which might even delete the 544 // PHI node) now. 545 InvokeDest->removePredecessor(II->getParent()); 546 } 547 548 /// If we inlined an invoke site, we need to convert calls 549 /// in the body of the inlined function into invokes. 550 /// 551 /// II is the invoke instruction being inlined. FirstNewBlock is the first 552 /// block of the inlined code (the last block is the end of the function), 553 /// and InlineCodeInfo is information about the code that got inlined. 554 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, 555 ClonedCodeInfo &InlinedCodeInfo) { 556 BasicBlock *UnwindDest = II->getUnwindDest(); 557 Function *Caller = FirstNewBlock->getParent(); 558 559 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); 560 561 // If there are PHI nodes in the unwind destination block, we need to keep 562 // track of which values came into them from the invoke before removing the 563 // edge from this block. 564 SmallVector<Value *, 8> UnwindDestPHIValues; 565 llvm::BasicBlock *InvokeBB = II->getParent(); 566 for (Instruction &I : *UnwindDest) { 567 // Save the value to use for this edge. 568 PHINode *PHI = dyn_cast<PHINode>(&I); 569 if (!PHI) 570 break; 571 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 572 } 573 574 // Add incoming-PHI values to the unwind destination block for the given basic 575 // block, using the values for the original invoke's source block. 576 auto UpdatePHINodes = [&](BasicBlock *Src) { 577 BasicBlock::iterator I = UnwindDest->begin(); 578 for (Value *V : UnwindDestPHIValues) { 579 PHINode *PHI = cast<PHINode>(I); 580 PHI->addIncoming(V, Src); 581 ++I; 582 } 583 }; 584 585 // This connects all the instructions which 'unwind to caller' to the invoke 586 // destination. 587 UnwindDestMemoTy FuncletUnwindMap; 588 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); 589 BB != E; ++BB) { 590 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 591 if (CRI->unwindsToCaller()) { 592 auto *CleanupPad = CRI->getCleanupPad(); 593 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); 594 CRI->eraseFromParent(); 595 UpdatePHINodes(&*BB); 596 // Finding a cleanupret with an unwind destination would confuse 597 // subsequent calls to getUnwindDestToken, so map the cleanuppad 598 // to short-circuit any such calls and recognize this as an "unwind 599 // to caller" cleanup. 600 assert(!FuncletUnwindMap.count(CleanupPad) || 601 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); 602 FuncletUnwindMap[CleanupPad] = 603 ConstantTokenNone::get(Caller->getContext()); 604 } 605 } 606 607 Instruction *I = BB->getFirstNonPHI(); 608 if (!I->isEHPad()) 609 continue; 610 611 Instruction *Replacement = nullptr; 612 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 613 if (CatchSwitch->unwindsToCaller()) { 614 Value *UnwindDestToken; 615 if (auto *ParentPad = 616 dyn_cast<Instruction>(CatchSwitch->getParentPad())) { 617 // This catchswitch is nested inside another funclet. If that 618 // funclet has an unwind destination within the inlinee, then 619 // unwinding out of this catchswitch would be UB. Rewriting this 620 // catchswitch to unwind to the inlined invoke's unwind dest would 621 // give the parent funclet multiple unwind destinations, which is 622 // something that subsequent EH table generation can't handle and 623 // that the veirifer rejects. So when we see such a call, leave it 624 // as "unwind to caller". 625 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); 626 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) 627 continue; 628 } else { 629 // This catchswitch has no parent to inherit constraints from, and 630 // none of its descendants can have an unwind edge that exits it and 631 // targets another funclet in the inlinee. It may or may not have a 632 // descendant that definitively has an unwind to caller. In either 633 // case, we'll have to assume that any unwinds out of it may need to 634 // be routed to the caller, so treat it as though it has a definitive 635 // unwind to caller. 636 UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); 637 } 638 auto *NewCatchSwitch = CatchSwitchInst::Create( 639 CatchSwitch->getParentPad(), UnwindDest, 640 CatchSwitch->getNumHandlers(), CatchSwitch->getName(), 641 CatchSwitch); 642 for (BasicBlock *PadBB : CatchSwitch->handlers()) 643 NewCatchSwitch->addHandler(PadBB); 644 // Propagate info for the old catchswitch over to the new one in 645 // the unwind map. This also serves to short-circuit any subsequent 646 // checks for the unwind dest of this catchswitch, which would get 647 // confused if they found the outer handler in the callee. 648 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; 649 Replacement = NewCatchSwitch; 650 } 651 } else if (!isa<FuncletPadInst>(I)) { 652 llvm_unreachable("unexpected EHPad!"); 653 } 654 655 if (Replacement) { 656 Replacement->takeName(I); 657 I->replaceAllUsesWith(Replacement); 658 I->eraseFromParent(); 659 UpdatePHINodes(&*BB); 660 } 661 } 662 663 if (InlinedCodeInfo.ContainsCalls) 664 for (Function::iterator BB = FirstNewBlock->getIterator(), 665 E = Caller->end(); 666 BB != E; ++BB) 667 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( 668 &*BB, UnwindDest, &FuncletUnwindMap)) 669 // Update any PHI nodes in the exceptional block to indicate that there 670 // is now a new entry in them. 671 UpdatePHINodes(NewBB); 672 673 // Now that everything is happy, we have one final detail. The PHI nodes in 674 // the exception destination block still have entries due to the original 675 // invoke instruction. Eliminate these entries (which might even delete the 676 // PHI node) now. 677 UnwindDest->removePredecessor(InvokeBB); 678 } 679 680 /// When inlining a function that contains noalias scope metadata, 681 /// this metadata needs to be cloned so that the inlined blocks 682 /// have different "unqiue scopes" at every call site. Were this not done, then 683 /// aliasing scopes from a function inlined into a caller multiple times could 684 /// not be differentiated (and this would lead to miscompiles because the 685 /// non-aliasing property communicated by the metadata could have 686 /// call-site-specific control dependencies). 687 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 688 const Function *CalledFunc = CS.getCalledFunction(); 689 SetVector<const MDNode *> MD; 690 691 // Note: We could only clone the metadata if it is already used in the 692 // caller. I'm omitting that check here because it might confuse 693 // inter-procedural alias analysis passes. We can revisit this if it becomes 694 // an efficiency or overhead problem. 695 696 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 697 I != IE; ++I) 698 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 699 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 700 MD.insert(M); 701 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 702 MD.insert(M); 703 } 704 705 if (MD.empty()) 706 return; 707 708 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 709 // the set. 710 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); 711 while (!Queue.empty()) { 712 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 713 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 714 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 715 if (MD.insert(M1)) 716 Queue.push_back(M1); 717 } 718 719 // Now we have a complete set of all metadata in the chains used to specify 720 // the noalias scopes and the lists of those scopes. 721 SmallVector<TempMDTuple, 16> DummyNodes; 722 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; 723 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 724 I != IE; ++I) { 725 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); 726 MDMap[*I].reset(DummyNodes.back().get()); 727 } 728 729 // Create new metadata nodes to replace the dummy nodes, replacing old 730 // metadata references with either a dummy node or an already-created new 731 // node. 732 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 733 I != IE; ++I) { 734 SmallVector<Metadata *, 4> NewOps; 735 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 736 const Metadata *V = (*I)->getOperand(i); 737 if (const MDNode *M = dyn_cast<MDNode>(V)) 738 NewOps.push_back(MDMap[M]); 739 else 740 NewOps.push_back(const_cast<Metadata *>(V)); 741 } 742 743 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); 744 MDTuple *TempM = cast<MDTuple>(MDMap[*I]); 745 assert(TempM->isTemporary() && "Expected temporary node"); 746 747 TempM->replaceAllUsesWith(NewM); 748 } 749 750 // Now replace the metadata in the new inlined instructions with the 751 // repacements from the map. 752 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 753 VMI != VMIE; ++VMI) { 754 if (!VMI->second) 755 continue; 756 757 Instruction *NI = dyn_cast<Instruction>(VMI->second); 758 if (!NI) 759 continue; 760 761 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 762 MDNode *NewMD = MDMap[M]; 763 // If the call site also had alias scope metadata (a list of scopes to 764 // which instructions inside it might belong), propagate those scopes to 765 // the inlined instructions. 766 if (MDNode *CSM = 767 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 768 NewMD = MDNode::concatenate(NewMD, CSM); 769 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 770 } else if (NI->mayReadOrWriteMemory()) { 771 if (MDNode *M = 772 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 773 NI->setMetadata(LLVMContext::MD_alias_scope, M); 774 } 775 776 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 777 MDNode *NewMD = MDMap[M]; 778 // If the call site also had noalias metadata (a list of scopes with 779 // which instructions inside it don't alias), propagate those scopes to 780 // the inlined instructions. 781 if (MDNode *CSM = 782 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 783 NewMD = MDNode::concatenate(NewMD, CSM); 784 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 785 } else if (NI->mayReadOrWriteMemory()) { 786 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 787 NI->setMetadata(LLVMContext::MD_noalias, M); 788 } 789 } 790 } 791 792 /// If the inlined function has noalias arguments, 793 /// then add new alias scopes for each noalias argument, tag the mapped noalias 794 /// parameters with noalias metadata specifying the new scope, and tag all 795 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 796 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 797 const DataLayout &DL, AAResults *CalleeAAR) { 798 if (!EnableNoAliasConversion) 799 return; 800 801 const Function *CalledFunc = CS.getCalledFunction(); 802 SmallVector<const Argument *, 4> NoAliasArgs; 803 804 for (const Argument &I : CalledFunc->args()) { 805 if (I.hasNoAliasAttr() && !I.hasNUses(0)) 806 NoAliasArgs.push_back(&I); 807 } 808 809 if (NoAliasArgs.empty()) 810 return; 811 812 // To do a good job, if a noalias variable is captured, we need to know if 813 // the capture point dominates the particular use we're considering. 814 DominatorTree DT; 815 DT.recalculate(const_cast<Function&>(*CalledFunc)); 816 817 // noalias indicates that pointer values based on the argument do not alias 818 // pointer values which are not based on it. So we add a new "scope" for each 819 // noalias function argument. Accesses using pointers based on that argument 820 // become part of that alias scope, accesses using pointers not based on that 821 // argument are tagged as noalias with that scope. 822 823 DenseMap<const Argument *, MDNode *> NewScopes; 824 MDBuilder MDB(CalledFunc->getContext()); 825 826 // Create a new scope domain for this function. 827 MDNode *NewDomain = 828 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 829 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 830 const Argument *A = NoAliasArgs[i]; 831 832 std::string Name = CalledFunc->getName(); 833 if (A->hasName()) { 834 Name += ": %"; 835 Name += A->getName(); 836 } else { 837 Name += ": argument "; 838 Name += utostr(i); 839 } 840 841 // Note: We always create a new anonymous root here. This is true regardless 842 // of the linkage of the callee because the aliasing "scope" is not just a 843 // property of the callee, but also all control dependencies in the caller. 844 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 845 NewScopes.insert(std::make_pair(A, NewScope)); 846 } 847 848 // Iterate over all new instructions in the map; for all memory-access 849 // instructions, add the alias scope metadata. 850 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 851 VMI != VMIE; ++VMI) { 852 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 853 if (!VMI->second) 854 continue; 855 856 Instruction *NI = dyn_cast<Instruction>(VMI->second); 857 if (!NI) 858 continue; 859 860 bool IsArgMemOnlyCall = false, IsFuncCall = false; 861 SmallVector<const Value *, 2> PtrArgs; 862 863 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 864 PtrArgs.push_back(LI->getPointerOperand()); 865 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 866 PtrArgs.push_back(SI->getPointerOperand()); 867 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 868 PtrArgs.push_back(VAAI->getPointerOperand()); 869 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 870 PtrArgs.push_back(CXI->getPointerOperand()); 871 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 872 PtrArgs.push_back(RMWI->getPointerOperand()); 873 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 874 // If we know that the call does not access memory, then we'll still 875 // know that about the inlined clone of this call site, and we don't 876 // need to add metadata. 877 if (ICS.doesNotAccessMemory()) 878 continue; 879 880 IsFuncCall = true; 881 if (CalleeAAR) { 882 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS); 883 if (MRB == FMRB_OnlyAccessesArgumentPointees || 884 MRB == FMRB_OnlyReadsArgumentPointees) 885 IsArgMemOnlyCall = true; 886 } 887 888 for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(), 889 AE = ICS.arg_end(); AI != AE; ++AI) { 890 // We need to check the underlying objects of all arguments, not just 891 // the pointer arguments, because we might be passing pointers as 892 // integers, etc. 893 // However, if we know that the call only accesses pointer arguments, 894 // then we only need to check the pointer arguments. 895 if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy()) 896 continue; 897 898 PtrArgs.push_back(*AI); 899 } 900 } 901 902 // If we found no pointers, then this instruction is not suitable for 903 // pairing with an instruction to receive aliasing metadata. 904 // However, if this is a call, this we might just alias with none of the 905 // noalias arguments. 906 if (PtrArgs.empty() && !IsFuncCall) 907 continue; 908 909 // It is possible that there is only one underlying object, but you 910 // need to go through several PHIs to see it, and thus could be 911 // repeated in the Objects list. 912 SmallPtrSet<const Value *, 4> ObjSet; 913 SmallVector<Metadata *, 4> Scopes, NoAliases; 914 915 SmallSetVector<const Argument *, 4> NAPtrArgs; 916 for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { 917 SmallVector<Value *, 4> Objects; 918 GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), 919 Objects, DL, /* LI = */ nullptr); 920 921 for (Value *O : Objects) 922 ObjSet.insert(O); 923 } 924 925 // Figure out if we're derived from anything that is not a noalias 926 // argument. 927 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 928 for (const Value *V : ObjSet) { 929 // Is this value a constant that cannot be derived from any pointer 930 // value (we need to exclude constant expressions, for example, that 931 // are formed from arithmetic on global symbols). 932 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 933 isa<ConstantPointerNull>(V) || 934 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 935 if (IsNonPtrConst) 936 continue; 937 938 // If this is anything other than a noalias argument, then we cannot 939 // completely describe the aliasing properties using alias.scope 940 // metadata (and, thus, won't add any). 941 if (const Argument *A = dyn_cast<Argument>(V)) { 942 if (!A->hasNoAliasAttr()) 943 UsesAliasingPtr = true; 944 } else { 945 UsesAliasingPtr = true; 946 } 947 948 // If this is not some identified function-local object (which cannot 949 // directly alias a noalias argument), or some other argument (which, 950 // by definition, also cannot alias a noalias argument), then we could 951 // alias a noalias argument that has been captured). 952 if (!isa<Argument>(V) && 953 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 954 CanDeriveViaCapture = true; 955 } 956 957 // A function call can always get captured noalias pointers (via other 958 // parameters, globals, etc.). 959 if (IsFuncCall && !IsArgMemOnlyCall) 960 CanDeriveViaCapture = true; 961 962 // First, we want to figure out all of the sets with which we definitely 963 // don't alias. Iterate over all noalias set, and add those for which: 964 // 1. The noalias argument is not in the set of objects from which we 965 // definitely derive. 966 // 2. The noalias argument has not yet been captured. 967 // An arbitrary function that might load pointers could see captured 968 // noalias arguments via other noalias arguments or globals, and so we 969 // must always check for prior capture. 970 for (const Argument *A : NoAliasArgs) { 971 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 972 // It might be tempting to skip the 973 // PointerMayBeCapturedBefore check if 974 // A->hasNoCaptureAttr() is true, but this is 975 // incorrect because nocapture only guarantees 976 // that no copies outlive the function, not 977 // that the value cannot be locally captured. 978 !PointerMayBeCapturedBefore(A, 979 /* ReturnCaptures */ false, 980 /* StoreCaptures */ false, I, &DT))) 981 NoAliases.push_back(NewScopes[A]); 982 } 983 984 if (!NoAliases.empty()) 985 NI->setMetadata(LLVMContext::MD_noalias, 986 MDNode::concatenate( 987 NI->getMetadata(LLVMContext::MD_noalias), 988 MDNode::get(CalledFunc->getContext(), NoAliases))); 989 990 // Next, we want to figure out all of the sets to which we might belong. 991 // We might belong to a set if the noalias argument is in the set of 992 // underlying objects. If there is some non-noalias argument in our list 993 // of underlying objects, then we cannot add a scope because the fact 994 // that some access does not alias with any set of our noalias arguments 995 // cannot itself guarantee that it does not alias with this access 996 // (because there is some pointer of unknown origin involved and the 997 // other access might also depend on this pointer). We also cannot add 998 // scopes to arbitrary functions unless we know they don't access any 999 // non-parameter pointer-values. 1000 bool CanAddScopes = !UsesAliasingPtr; 1001 if (CanAddScopes && IsFuncCall) 1002 CanAddScopes = IsArgMemOnlyCall; 1003 1004 if (CanAddScopes) 1005 for (const Argument *A : NoAliasArgs) { 1006 if (ObjSet.count(A)) 1007 Scopes.push_back(NewScopes[A]); 1008 } 1009 1010 if (!Scopes.empty()) 1011 NI->setMetadata( 1012 LLVMContext::MD_alias_scope, 1013 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), 1014 MDNode::get(CalledFunc->getContext(), Scopes))); 1015 } 1016 } 1017 } 1018 1019 /// If the inlined function has non-byval align arguments, then 1020 /// add @llvm.assume-based alignment assumptions to preserve this information. 1021 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { 1022 if (!PreserveAlignmentAssumptions) 1023 return; 1024 auto &DL = CS.getCaller()->getParent()->getDataLayout(); 1025 1026 // To avoid inserting redundant assumptions, we should check for assumptions 1027 // already in the caller. To do this, we might need a DT of the caller. 1028 DominatorTree DT; 1029 bool DTCalculated = false; 1030 1031 Function *CalledFunc = CS.getCalledFunction(); 1032 for (Function::arg_iterator I = CalledFunc->arg_begin(), 1033 E = CalledFunc->arg_end(); 1034 I != E; ++I) { 1035 unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0; 1036 if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) { 1037 if (!DTCalculated) { 1038 DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent() 1039 ->getParent())); 1040 DTCalculated = true; 1041 } 1042 1043 // If we can already prove the asserted alignment in the context of the 1044 // caller, then don't bother inserting the assumption. 1045 Value *Arg = CS.getArgument(I->getArgNo()); 1046 if (getKnownAlignment(Arg, DL, CS.getInstruction(), 1047 &IFI.ACT->getAssumptionCache(*CS.getCaller()), 1048 &DT) >= Align) 1049 continue; 1050 1051 IRBuilder<>(CS.getInstruction()) 1052 .CreateAlignmentAssumption(DL, Arg, Align); 1053 } 1054 } 1055 } 1056 1057 /// Once we have cloned code over from a callee into the caller, 1058 /// update the specified callgraph to reflect the changes we made. 1059 /// Note that it's possible that not all code was copied over, so only 1060 /// some edges of the callgraph may remain. 1061 static void UpdateCallGraphAfterInlining(CallSite CS, 1062 Function::iterator FirstNewBlock, 1063 ValueToValueMapTy &VMap, 1064 InlineFunctionInfo &IFI) { 1065 CallGraph &CG = *IFI.CG; 1066 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 1067 const Function *Callee = CS.getCalledFunction(); 1068 CallGraphNode *CalleeNode = CG[Callee]; 1069 CallGraphNode *CallerNode = CG[Caller]; 1070 1071 // Since we inlined some uninlined call sites in the callee into the caller, 1072 // add edges from the caller to all of the callees of the callee. 1073 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 1074 1075 // Consider the case where CalleeNode == CallerNode. 1076 CallGraphNode::CalledFunctionsVector CallCache; 1077 if (CalleeNode == CallerNode) { 1078 CallCache.assign(I, E); 1079 I = CallCache.begin(); 1080 E = CallCache.end(); 1081 } 1082 1083 for (; I != E; ++I) { 1084 const Value *OrigCall = I->first; 1085 1086 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 1087 // Only copy the edge if the call was inlined! 1088 if (VMI == VMap.end() || VMI->second == nullptr) 1089 continue; 1090 1091 // If the call was inlined, but then constant folded, there is no edge to 1092 // add. Check for this case. 1093 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 1094 if (!NewCall) 1095 continue; 1096 1097 // We do not treat intrinsic calls like real function calls because we 1098 // expect them to become inline code; do not add an edge for an intrinsic. 1099 CallSite CS = CallSite(NewCall); 1100 if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic()) 1101 continue; 1102 1103 // Remember that this call site got inlined for the client of 1104 // InlineFunction. 1105 IFI.InlinedCalls.push_back(NewCall); 1106 1107 // It's possible that inlining the callsite will cause it to go from an 1108 // indirect to a direct call by resolving a function pointer. If this 1109 // happens, set the callee of the new call site to a more precise 1110 // destination. This can also happen if the call graph node of the caller 1111 // was just unnecessarily imprecise. 1112 if (!I->second->getFunction()) 1113 if (Function *F = CallSite(NewCall).getCalledFunction()) { 1114 // Indirect call site resolved to direct call. 1115 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 1116 1117 continue; 1118 } 1119 1120 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 1121 } 1122 1123 // Update the call graph by deleting the edge from Callee to Caller. We must 1124 // do this after the loop above in case Caller and Callee are the same. 1125 CallerNode->removeCallEdgeFor(CS); 1126 } 1127 1128 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 1129 BasicBlock *InsertBlock, 1130 InlineFunctionInfo &IFI) { 1131 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 1132 IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); 1133 1134 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); 1135 1136 // Always generate a memcpy of alignment 1 here because we don't know 1137 // the alignment of the src pointer. Other optimizations can infer 1138 // better alignment. 1139 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); 1140 } 1141 1142 /// When inlining a call site that has a byval argument, 1143 /// we have to make the implicit memcpy explicit by adding it. 1144 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 1145 const Function *CalledFunc, 1146 InlineFunctionInfo &IFI, 1147 unsigned ByValAlignment) { 1148 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 1149 Type *AggTy = ArgTy->getElementType(); 1150 1151 Function *Caller = TheCall->getParent()->getParent(); 1152 1153 // If the called function is readonly, then it could not mutate the caller's 1154 // copy of the byval'd memory. In this case, it is safe to elide the copy and 1155 // temporary. 1156 if (CalledFunc->onlyReadsMemory()) { 1157 // If the byval argument has a specified alignment that is greater than the 1158 // passed in pointer, then we either have to round up the input pointer or 1159 // give up on this transformation. 1160 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 1161 return Arg; 1162 1163 const DataLayout &DL = Caller->getParent()->getDataLayout(); 1164 1165 // If the pointer is already known to be sufficiently aligned, or if we can 1166 // round it up to a larger alignment, then we don't need a temporary. 1167 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, 1168 &IFI.ACT->getAssumptionCache(*Caller)) >= 1169 ByValAlignment) 1170 return Arg; 1171 1172 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 1173 // for code quality, but rarely happens and is required for correctness. 1174 } 1175 1176 // Create the alloca. If we have DataLayout, use nice alignment. 1177 unsigned Align = 1178 Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy); 1179 1180 // If the byval had an alignment specified, we *must* use at least that 1181 // alignment, as it is required by the byval argument (and uses of the 1182 // pointer inside the callee). 1183 Align = std::max(Align, ByValAlignment); 1184 1185 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 1186 &*Caller->begin()->begin()); 1187 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 1188 1189 // Uses of the argument in the function should use our new alloca 1190 // instead. 1191 return NewAlloca; 1192 } 1193 1194 // Check whether this Value is used by a lifetime intrinsic. 1195 static bool isUsedByLifetimeMarker(Value *V) { 1196 for (User *U : V->users()) { 1197 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 1198 switch (II->getIntrinsicID()) { 1199 default: break; 1200 case Intrinsic::lifetime_start: 1201 case Intrinsic::lifetime_end: 1202 return true; 1203 } 1204 } 1205 } 1206 return false; 1207 } 1208 1209 // Check whether the given alloca already has 1210 // lifetime.start or lifetime.end intrinsics. 1211 static bool hasLifetimeMarkers(AllocaInst *AI) { 1212 Type *Ty = AI->getType(); 1213 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 1214 Ty->getPointerAddressSpace()); 1215 if (Ty == Int8PtrTy) 1216 return isUsedByLifetimeMarker(AI); 1217 1218 // Do a scan to find all the casts to i8*. 1219 for (User *U : AI->users()) { 1220 if (U->getType() != Int8PtrTy) continue; 1221 if (U->stripPointerCasts() != AI) continue; 1222 if (isUsedByLifetimeMarker(U)) 1223 return true; 1224 } 1225 return false; 1226 } 1227 1228 /// Rebuild the entire inlined-at chain for this instruction so that the top of 1229 /// the chain now is inlined-at the new call site. 1230 static DebugLoc 1231 updateInlinedAtInfo(DebugLoc DL, DILocation *InlinedAtNode, LLVMContext &Ctx, 1232 DenseMap<const DILocation *, DILocation *> &IANodes) { 1233 SmallVector<DILocation *, 3> InlinedAtLocations; 1234 DILocation *Last = InlinedAtNode; 1235 DILocation *CurInlinedAt = DL; 1236 1237 // Gather all the inlined-at nodes 1238 while (DILocation *IA = CurInlinedAt->getInlinedAt()) { 1239 // Skip any we've already built nodes for 1240 if (DILocation *Found = IANodes[IA]) { 1241 Last = Found; 1242 break; 1243 } 1244 1245 InlinedAtLocations.push_back(IA); 1246 CurInlinedAt = IA; 1247 } 1248 1249 // Starting from the top, rebuild the nodes to point to the new inlined-at 1250 // location (then rebuilding the rest of the chain behind it) and update the 1251 // map of already-constructed inlined-at nodes. 1252 for (const DILocation *MD : make_range(InlinedAtLocations.rbegin(), 1253 InlinedAtLocations.rend())) { 1254 Last = IANodes[MD] = DILocation::getDistinct( 1255 Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last); 1256 } 1257 1258 // And finally create the normal location for this instruction, referring to 1259 // the new inlined-at chain. 1260 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last); 1261 } 1262 1263 /// Update inlined instructions' line numbers to 1264 /// to encode location where these instructions are inlined. 1265 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 1266 Instruction *TheCall) { 1267 DebugLoc TheCallDL = TheCall->getDebugLoc(); 1268 if (!TheCallDL) 1269 return; 1270 1271 auto &Ctx = Fn->getContext(); 1272 DILocation *InlinedAtNode = TheCallDL; 1273 1274 // Create a unique call site, not to be confused with any other call from the 1275 // same location. 1276 InlinedAtNode = DILocation::getDistinct( 1277 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), 1278 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); 1279 1280 // Cache the inlined-at nodes as they're built so they are reused, without 1281 // this every instruction's inlined-at chain would become distinct from each 1282 // other. 1283 DenseMap<const DILocation *, DILocation *> IANodes; 1284 1285 for (; FI != Fn->end(); ++FI) { 1286 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1287 BI != BE; ++BI) { 1288 DebugLoc DL = BI->getDebugLoc(); 1289 if (!DL) { 1290 // If the inlined instruction has no line number, make it look as if it 1291 // originates from the call location. This is important for 1292 // ((__always_inline__, __nodebug__)) functions which must use caller 1293 // location for all instructions in their function body. 1294 1295 // Don't update static allocas, as they may get moved later. 1296 if (auto *AI = dyn_cast<AllocaInst>(BI)) 1297 if (isa<Constant>(AI->getArraySize())) 1298 continue; 1299 1300 BI->setDebugLoc(TheCallDL); 1301 } else { 1302 BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes)); 1303 } 1304 } 1305 } 1306 } 1307 1308 /// This function inlines the called function into the basic block of the 1309 /// caller. This returns false if it is not possible to inline this call. 1310 /// The program is still in a well defined state if this occurs though. 1311 /// 1312 /// Note that this only does one level of inlining. For example, if the 1313 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 1314 /// exists in the instruction stream. Similarly this will inline a recursive 1315 /// function by one level. 1316 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 1317 AAResults *CalleeAAR, bool InsertLifetime) { 1318 Instruction *TheCall = CS.getInstruction(); 1319 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 1320 "Instruction not in function!"); 1321 1322 // If IFI has any state in it, zap it before we fill it in. 1323 IFI.reset(); 1324 1325 const Function *CalledFunc = CS.getCalledFunction(); 1326 if (!CalledFunc || // Can't inline external function or indirect 1327 CalledFunc->isDeclaration() || // call, or call to a vararg function! 1328 CalledFunc->getFunctionType()->isVarArg()) return false; 1329 1330 // The inliner does not know how to inline through calls with operand bundles 1331 // in general ... 1332 if (CS.hasOperandBundles()) { 1333 for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1334 uint32_t Tag = CS.getOperandBundleAt(i).getTagID(); 1335 // ... but it knows how to inline through "deopt" operand bundles ... 1336 if (Tag == LLVMContext::OB_deopt) 1337 continue; 1338 // ... and "funclet" operand bundles. 1339 if (Tag == LLVMContext::OB_funclet) 1340 continue; 1341 1342 return false; 1343 } 1344 } 1345 1346 // If the call to the callee cannot throw, set the 'nounwind' flag on any 1347 // calls that we inline. 1348 bool MarkNoUnwind = CS.doesNotThrow(); 1349 1350 BasicBlock *OrigBB = TheCall->getParent(); 1351 Function *Caller = OrigBB->getParent(); 1352 1353 // GC poses two hazards to inlining, which only occur when the callee has GC: 1354 // 1. If the caller has no GC, then the callee's GC must be propagated to the 1355 // caller. 1356 // 2. If the caller has a differing GC, it is invalid to inline. 1357 if (CalledFunc->hasGC()) { 1358 if (!Caller->hasGC()) 1359 Caller->setGC(CalledFunc->getGC()); 1360 else if (CalledFunc->getGC() != Caller->getGC()) 1361 return false; 1362 } 1363 1364 // Get the personality function from the callee if it contains a landing pad. 1365 Constant *CalledPersonality = 1366 CalledFunc->hasPersonalityFn() 1367 ? CalledFunc->getPersonalityFn()->stripPointerCasts() 1368 : nullptr; 1369 1370 // Find the personality function used by the landing pads of the caller. If it 1371 // exists, then check to see that it matches the personality function used in 1372 // the callee. 1373 Constant *CallerPersonality = 1374 Caller->hasPersonalityFn() 1375 ? Caller->getPersonalityFn()->stripPointerCasts() 1376 : nullptr; 1377 if (CalledPersonality) { 1378 if (!CallerPersonality) 1379 Caller->setPersonalityFn(CalledPersonality); 1380 // If the personality functions match, then we can perform the 1381 // inlining. Otherwise, we can't inline. 1382 // TODO: This isn't 100% true. Some personality functions are proper 1383 // supersets of others and can be used in place of the other. 1384 else if (CalledPersonality != CallerPersonality) 1385 return false; 1386 } 1387 1388 // We need to figure out which funclet the callsite was in so that we may 1389 // properly nest the callee. 1390 Instruction *CallSiteEHPad = nullptr; 1391 if (CallerPersonality) { 1392 EHPersonality Personality = classifyEHPersonality(CallerPersonality); 1393 if (isFuncletEHPersonality(Personality)) { 1394 Optional<OperandBundleUse> ParentFunclet = 1395 CS.getOperandBundle(LLVMContext::OB_funclet); 1396 if (ParentFunclet) 1397 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); 1398 1399 // OK, the inlining site is legal. What about the target function? 1400 1401 if (CallSiteEHPad) { 1402 if (Personality == EHPersonality::MSVC_CXX) { 1403 // The MSVC personality cannot tolerate catches getting inlined into 1404 // cleanup funclets. 1405 if (isa<CleanupPadInst>(CallSiteEHPad)) { 1406 // Ok, the call site is within a cleanuppad. Let's check the callee 1407 // for catchpads. 1408 for (const BasicBlock &CalledBB : *CalledFunc) { 1409 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) 1410 return false; 1411 } 1412 } 1413 } else if (isAsynchronousEHPersonality(Personality)) { 1414 // SEH is even less tolerant, there may not be any sort of exceptional 1415 // funclet in the callee. 1416 for (const BasicBlock &CalledBB : *CalledFunc) { 1417 if (CalledBB.isEHPad()) 1418 return false; 1419 } 1420 } 1421 } 1422 } 1423 } 1424 1425 // Get an iterator to the last basic block in the function, which will have 1426 // the new function inlined after it. 1427 Function::iterator LastBlock = --Caller->end(); 1428 1429 // Make sure to capture all of the return instructions from the cloned 1430 // function. 1431 SmallVector<ReturnInst*, 8> Returns; 1432 ClonedCodeInfo InlinedFunctionInfo; 1433 Function::iterator FirstNewBlock; 1434 1435 { // Scope to destroy VMap after cloning. 1436 ValueToValueMapTy VMap; 1437 // Keep a list of pair (dst, src) to emit byval initializations. 1438 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 1439 1440 auto &DL = Caller->getParent()->getDataLayout(); 1441 1442 assert(CalledFunc->arg_size() == CS.arg_size() && 1443 "No varargs calls can be inlined!"); 1444 1445 // Calculate the vector of arguments to pass into the function cloner, which 1446 // matches up the formal to the actual argument values. 1447 CallSite::arg_iterator AI = CS.arg_begin(); 1448 unsigned ArgNo = 0; 1449 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 1450 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 1451 Value *ActualArg = *AI; 1452 1453 // When byval arguments actually inlined, we need to make the copy implied 1454 // by them explicit. However, we don't do this if the callee is readonly 1455 // or readnone, because the copy would be unneeded: the callee doesn't 1456 // modify the struct. 1457 if (CS.isByValArgument(ArgNo)) { 1458 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 1459 CalledFunc->getParamAlignment(ArgNo+1)); 1460 if (ActualArg != *AI) 1461 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 1462 } 1463 1464 VMap[&*I] = ActualArg; 1465 } 1466 1467 // Add alignment assumptions if necessary. We do this before the inlined 1468 // instructions are actually cloned into the caller so that we can easily 1469 // check what will be known at the start of the inlined code. 1470 AddAlignmentAssumptions(CS, IFI); 1471 1472 // We want the inliner to prune the code as it copies. We would LOVE to 1473 // have no dead or constant instructions leftover after inlining occurs 1474 // (which can happen, e.g., because an argument was constant), but we'll be 1475 // happy with whatever the cloner can do. 1476 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1477 /*ModuleLevelChanges=*/false, Returns, ".i", 1478 &InlinedFunctionInfo, TheCall); 1479 1480 // Remember the first block that is newly cloned over. 1481 FirstNewBlock = LastBlock; ++FirstNewBlock; 1482 1483 // Inject byval arguments initialization. 1484 for (std::pair<Value*, Value*> &Init : ByValInit) 1485 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 1486 &*FirstNewBlock, IFI); 1487 1488 Optional<OperandBundleUse> ParentDeopt = 1489 CS.getOperandBundle(LLVMContext::OB_deopt); 1490 if (ParentDeopt) { 1491 SmallVector<OperandBundleDef, 2> OpDefs; 1492 1493 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { 1494 Instruction *I = dyn_cast_or_null<Instruction>(VH); 1495 if (!I) continue; // instruction was DCE'd or RAUW'ed to undef 1496 1497 OpDefs.clear(); 1498 1499 CallSite ICS(I); 1500 OpDefs.reserve(ICS.getNumOperandBundles()); 1501 1502 for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) { 1503 auto ChildOB = ICS.getOperandBundleAt(i); 1504 if (ChildOB.getTagID() != LLVMContext::OB_deopt) { 1505 // If the inlined call has other operand bundles, let them be 1506 OpDefs.emplace_back(ChildOB); 1507 continue; 1508 } 1509 1510 // It may be useful to separate this logic (of handling operand 1511 // bundles) out to a separate "policy" component if this gets crowded. 1512 // Prepend the parent's deoptimization continuation to the newly 1513 // inlined call's deoptimization continuation. 1514 std::vector<Value *> MergedDeoptArgs; 1515 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + 1516 ChildOB.Inputs.size()); 1517 1518 MergedDeoptArgs.insert(MergedDeoptArgs.end(), 1519 ParentDeopt->Inputs.begin(), 1520 ParentDeopt->Inputs.end()); 1521 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), 1522 ChildOB.Inputs.end()); 1523 1524 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); 1525 } 1526 1527 Instruction *NewI = nullptr; 1528 if (isa<CallInst>(I)) 1529 NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I); 1530 else 1531 NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I); 1532 1533 // Note: the RAUW does the appropriate fixup in VMap, so we need to do 1534 // this even if the call returns void. 1535 I->replaceAllUsesWith(NewI); 1536 1537 VH = nullptr; 1538 I->eraseFromParent(); 1539 } 1540 } 1541 1542 // Update the callgraph if requested. 1543 if (IFI.CG) 1544 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1545 1546 // Update inlined instructions' line number information. 1547 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 1548 1549 // Clone existing noalias metadata if necessary. 1550 CloneAliasScopeMetadata(CS, VMap); 1551 1552 // Add noalias metadata if necessary. 1553 AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); 1554 1555 // FIXME: We could register any cloned assumptions instead of clearing the 1556 // whole function's cache. 1557 if (IFI.ACT) 1558 IFI.ACT->getAssumptionCache(*Caller).clear(); 1559 } 1560 1561 // If there are any alloca instructions in the block that used to be the entry 1562 // block for the callee, move them to the entry block of the caller. First 1563 // calculate which instruction they should be inserted before. We insert the 1564 // instructions at the end of the current alloca list. 1565 { 1566 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1567 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1568 E = FirstNewBlock->end(); I != E; ) { 1569 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1570 if (!AI) continue; 1571 1572 // If the alloca is now dead, remove it. This often occurs due to code 1573 // specialization. 1574 if (AI->use_empty()) { 1575 AI->eraseFromParent(); 1576 continue; 1577 } 1578 1579 if (!isa<Constant>(AI->getArraySize())) 1580 continue; 1581 1582 // Keep track of the static allocas that we inline into the caller. 1583 IFI.StaticAllocas.push_back(AI); 1584 1585 // Scan for the block of allocas that we can move over, and move them 1586 // all at once. 1587 while (isa<AllocaInst>(I) && 1588 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1589 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1590 ++I; 1591 } 1592 1593 // Transfer all of the allocas over in a block. Using splice means 1594 // that the instructions aren't removed from the symbol table, then 1595 // reinserted. 1596 Caller->getEntryBlock().getInstList().splice( 1597 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); 1598 } 1599 // Move any dbg.declares describing the allocas into the entry basic block. 1600 DIBuilder DIB(*Caller->getParent()); 1601 for (auto &AI : IFI.StaticAllocas) 1602 replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false); 1603 } 1604 1605 bool InlinedMustTailCalls = false; 1606 if (InlinedFunctionInfo.ContainsCalls) { 1607 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 1608 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 1609 CallSiteTailKind = CI->getTailCallKind(); 1610 1611 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 1612 ++BB) { 1613 for (Instruction &I : *BB) { 1614 CallInst *CI = dyn_cast<CallInst>(&I); 1615 if (!CI) 1616 continue; 1617 1618 // We need to reduce the strength of any inlined tail calls. For 1619 // musttail, we have to avoid introducing potential unbounded stack 1620 // growth. For example, if functions 'f' and 'g' are mutually recursive 1621 // with musttail, we can inline 'g' into 'f' so long as we preserve 1622 // musttail on the cloned call to 'f'. If either the inlined call site 1623 // or the cloned call site is *not* musttail, the program already has 1624 // one frame of stack growth, so it's safe to remove musttail. Here is 1625 // a table of example transformations: 1626 // 1627 // f -> musttail g -> musttail f ==> f -> musttail f 1628 // f -> musttail g -> tail f ==> f -> tail f 1629 // f -> g -> musttail f ==> f -> f 1630 // f -> g -> tail f ==> f -> f 1631 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 1632 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 1633 CI->setTailCallKind(ChildTCK); 1634 InlinedMustTailCalls |= CI->isMustTailCall(); 1635 1636 // Calls inlined through a 'nounwind' call site should be marked 1637 // 'nounwind'. 1638 if (MarkNoUnwind) 1639 CI->setDoesNotThrow(); 1640 } 1641 } 1642 } 1643 1644 // Leave lifetime markers for the static alloca's, scoping them to the 1645 // function we just inlined. 1646 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 1647 IRBuilder<> builder(&FirstNewBlock->front()); 1648 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1649 AllocaInst *AI = IFI.StaticAllocas[ai]; 1650 1651 // If the alloca is already scoped to something smaller than the whole 1652 // function then there's no need to add redundant, less accurate markers. 1653 if (hasLifetimeMarkers(AI)) 1654 continue; 1655 1656 // Try to determine the size of the allocation. 1657 ConstantInt *AllocaSize = nullptr; 1658 if (ConstantInt *AIArraySize = 1659 dyn_cast<ConstantInt>(AI->getArraySize())) { 1660 auto &DL = Caller->getParent()->getDataLayout(); 1661 Type *AllocaType = AI->getAllocatedType(); 1662 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); 1663 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 1664 1665 // Don't add markers for zero-sized allocas. 1666 if (AllocaArraySize == 0) 1667 continue; 1668 1669 // Check that array size doesn't saturate uint64_t and doesn't 1670 // overflow when it's multiplied by type size. 1671 if (AllocaArraySize != ~0ULL && 1672 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 1673 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 1674 AllocaArraySize * AllocaTypeSize); 1675 } 1676 } 1677 1678 builder.CreateLifetimeStart(AI, AllocaSize); 1679 for (ReturnInst *RI : Returns) { 1680 // Don't insert llvm.lifetime.end calls between a musttail call and a 1681 // return. The return kills all local allocas. 1682 if (InlinedMustTailCalls && 1683 RI->getParent()->getTerminatingMustTailCall()) 1684 continue; 1685 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 1686 } 1687 } 1688 } 1689 1690 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1691 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1692 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1693 Module *M = Caller->getParent(); 1694 // Get the two intrinsics we care about. 1695 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1696 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1697 1698 // Insert the llvm.stacksave. 1699 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) 1700 .CreateCall(StackSave, {}, "savedstack"); 1701 1702 // Insert a call to llvm.stackrestore before any return instructions in the 1703 // inlined function. 1704 for (ReturnInst *RI : Returns) { 1705 // Don't insert llvm.stackrestore calls between a musttail call and a 1706 // return. The return will restore the stack pointer. 1707 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 1708 continue; 1709 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 1710 } 1711 } 1712 1713 // If we are inlining for an invoke instruction, we must make sure to rewrite 1714 // any call instructions into invoke instructions. This is sensitive to which 1715 // funclet pads were top-level in the inlinee, so must be done before 1716 // rewriting the "parent pad" links. 1717 if (auto *II = dyn_cast<InvokeInst>(TheCall)) { 1718 BasicBlock *UnwindDest = II->getUnwindDest(); 1719 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); 1720 if (isa<LandingPadInst>(FirstNonPHI)) { 1721 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); 1722 } else { 1723 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); 1724 } 1725 } 1726 1727 // Update the lexical scopes of the new funclets and callsites. 1728 // Anything that had 'none' as its parent is now nested inside the callsite's 1729 // EHPad. 1730 1731 if (CallSiteEHPad) { 1732 for (Function::iterator BB = FirstNewBlock->getIterator(), 1733 E = Caller->end(); 1734 BB != E; ++BB) { 1735 // Add bundle operands to any top-level call sites. 1736 SmallVector<OperandBundleDef, 1> OpBundles; 1737 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { 1738 Instruction *I = &*BBI++; 1739 CallSite CS(I); 1740 if (!CS) 1741 continue; 1742 1743 // Skip call sites which are nounwind intrinsics. 1744 auto *CalledFn = 1745 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); 1746 if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow()) 1747 continue; 1748 1749 // Skip call sites which already have a "funclet" bundle. 1750 if (CS.getOperandBundle(LLVMContext::OB_funclet)) 1751 continue; 1752 1753 CS.getOperandBundlesAsDefs(OpBundles); 1754 OpBundles.emplace_back("funclet", CallSiteEHPad); 1755 1756 Instruction *NewInst; 1757 if (CS.isCall()) 1758 NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I); 1759 else 1760 NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I); 1761 NewInst->setDebugLoc(I->getDebugLoc()); 1762 NewInst->takeName(I); 1763 I->replaceAllUsesWith(NewInst); 1764 I->eraseFromParent(); 1765 1766 OpBundles.clear(); 1767 } 1768 1769 Instruction *I = BB->getFirstNonPHI(); 1770 if (!I->isEHPad()) 1771 continue; 1772 1773 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { 1774 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) 1775 CatchSwitch->setParentPad(CallSiteEHPad); 1776 } else { 1777 auto *FPI = cast<FuncletPadInst>(I); 1778 if (isa<ConstantTokenNone>(FPI->getParentPad())) 1779 FPI->setParentPad(CallSiteEHPad); 1780 } 1781 } 1782 } 1783 1784 // Handle any inlined musttail call sites. In order for a new call site to be 1785 // musttail, the source of the clone and the inlined call site must have been 1786 // musttail. Therefore it's safe to return without merging control into the 1787 // phi below. 1788 if (InlinedMustTailCalls) { 1789 // Check if we need to bitcast the result of any musttail calls. 1790 Type *NewRetTy = Caller->getReturnType(); 1791 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 1792 1793 // Handle the returns preceded by musttail calls separately. 1794 SmallVector<ReturnInst *, 8> NormalReturns; 1795 for (ReturnInst *RI : Returns) { 1796 CallInst *ReturnedMustTail = 1797 RI->getParent()->getTerminatingMustTailCall(); 1798 if (!ReturnedMustTail) { 1799 NormalReturns.push_back(RI); 1800 continue; 1801 } 1802 if (!NeedBitCast) 1803 continue; 1804 1805 // Delete the old return and any preceding bitcast. 1806 BasicBlock *CurBB = RI->getParent(); 1807 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 1808 RI->eraseFromParent(); 1809 if (OldCast) 1810 OldCast->eraseFromParent(); 1811 1812 // Insert a new bitcast and return with the right type. 1813 IRBuilder<> Builder(CurBB); 1814 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 1815 } 1816 1817 // Leave behind the normal returns so we can merge control flow. 1818 std::swap(Returns, NormalReturns); 1819 } 1820 1821 // If we cloned in _exactly one_ basic block, and if that block ends in a 1822 // return instruction, we splice the body of the inlined callee directly into 1823 // the calling basic block. 1824 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1825 // Move all of the instructions right before the call. 1826 OrigBB->getInstList().splice(TheCall->getIterator(), 1827 FirstNewBlock->getInstList(), 1828 FirstNewBlock->begin(), FirstNewBlock->end()); 1829 // Remove the cloned basic block. 1830 Caller->getBasicBlockList().pop_back(); 1831 1832 // If the call site was an invoke instruction, add a branch to the normal 1833 // destination. 1834 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1835 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1836 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 1837 } 1838 1839 // If the return instruction returned a value, replace uses of the call with 1840 // uses of the returned value. 1841 if (!TheCall->use_empty()) { 1842 ReturnInst *R = Returns[0]; 1843 if (TheCall == R->getReturnValue()) 1844 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1845 else 1846 TheCall->replaceAllUsesWith(R->getReturnValue()); 1847 } 1848 // Since we are now done with the Call/Invoke, we can delete it. 1849 TheCall->eraseFromParent(); 1850 1851 // Since we are now done with the return instruction, delete it also. 1852 Returns[0]->eraseFromParent(); 1853 1854 // We are now done with the inlining. 1855 return true; 1856 } 1857 1858 // Otherwise, we have the normal case, of more than one block to inline or 1859 // multiple return sites. 1860 1861 // We want to clone the entire callee function into the hole between the 1862 // "starter" and "ender" blocks. How we accomplish this depends on whether 1863 // this is an invoke instruction or a call instruction. 1864 BasicBlock *AfterCallBB; 1865 BranchInst *CreatedBranchToNormalDest = nullptr; 1866 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1867 1868 // Add an unconditional branch to make this look like the CallInst case... 1869 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 1870 1871 // Split the basic block. This guarantees that no PHI nodes will have to be 1872 // updated due to new incoming edges, and make the invoke case more 1873 // symmetric to the call case. 1874 AfterCallBB = 1875 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), 1876 CalledFunc->getName() + ".exit"); 1877 1878 } else { // It's a call 1879 // If this is a call instruction, we need to split the basic block that 1880 // the call lives in. 1881 // 1882 AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(), 1883 CalledFunc->getName() + ".exit"); 1884 } 1885 1886 // Change the branch that used to go to AfterCallBB to branch to the first 1887 // basic block of the inlined function. 1888 // 1889 TerminatorInst *Br = OrigBB->getTerminator(); 1890 assert(Br && Br->getOpcode() == Instruction::Br && 1891 "splitBasicBlock broken!"); 1892 Br->setOperand(0, &*FirstNewBlock); 1893 1894 // Now that the function is correct, make it a little bit nicer. In 1895 // particular, move the basic blocks inserted from the end of the function 1896 // into the space made by splitting the source basic block. 1897 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), 1898 Caller->getBasicBlockList(), FirstNewBlock, 1899 Caller->end()); 1900 1901 // Handle all of the return instructions that we just cloned in, and eliminate 1902 // any users of the original call/invoke instruction. 1903 Type *RTy = CalledFunc->getReturnType(); 1904 1905 PHINode *PHI = nullptr; 1906 if (Returns.size() > 1) { 1907 // The PHI node should go at the front of the new basic block to merge all 1908 // possible incoming values. 1909 if (!TheCall->use_empty()) { 1910 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1911 &AfterCallBB->front()); 1912 // Anything that used the result of the function call should now use the 1913 // PHI node as their operand. 1914 TheCall->replaceAllUsesWith(PHI); 1915 } 1916 1917 // Loop over all of the return instructions adding entries to the PHI node 1918 // as appropriate. 1919 if (PHI) { 1920 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1921 ReturnInst *RI = Returns[i]; 1922 assert(RI->getReturnValue()->getType() == PHI->getType() && 1923 "Ret value not consistent in function!"); 1924 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1925 } 1926 } 1927 1928 // Add a branch to the merge points and remove return instructions. 1929 DebugLoc Loc; 1930 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1931 ReturnInst *RI = Returns[i]; 1932 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 1933 Loc = RI->getDebugLoc(); 1934 BI->setDebugLoc(Loc); 1935 RI->eraseFromParent(); 1936 } 1937 // We need to set the debug location to *somewhere* inside the 1938 // inlined function. The line number may be nonsensical, but the 1939 // instruction will at least be associated with the right 1940 // function. 1941 if (CreatedBranchToNormalDest) 1942 CreatedBranchToNormalDest->setDebugLoc(Loc); 1943 } else if (!Returns.empty()) { 1944 // Otherwise, if there is exactly one return value, just replace anything 1945 // using the return value of the call with the computed value. 1946 if (!TheCall->use_empty()) { 1947 if (TheCall == Returns[0]->getReturnValue()) 1948 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1949 else 1950 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1951 } 1952 1953 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1954 BasicBlock *ReturnBB = Returns[0]->getParent(); 1955 ReturnBB->replaceAllUsesWith(AfterCallBB); 1956 1957 // Splice the code from the return block into the block that it will return 1958 // to, which contains the code that was after the call. 1959 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1960 ReturnBB->getInstList()); 1961 1962 if (CreatedBranchToNormalDest) 1963 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 1964 1965 // Delete the return instruction now and empty ReturnBB now. 1966 Returns[0]->eraseFromParent(); 1967 ReturnBB->eraseFromParent(); 1968 } else if (!TheCall->use_empty()) { 1969 // No returns, but something is using the return value of the call. Just 1970 // nuke the result. 1971 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1972 } 1973 1974 // Since we are now done with the Call/Invoke, we can delete it. 1975 TheCall->eraseFromParent(); 1976 1977 // If we inlined any musttail calls and the original return is now 1978 // unreachable, delete it. It can only contain a bitcast and ret. 1979 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 1980 AfterCallBB->eraseFromParent(); 1981 1982 // We should always be able to fold the entry block of the function into the 1983 // single predecessor of the block... 1984 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1985 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1986 1987 // Splice the code entry block into calling block, right before the 1988 // unconditional branch. 1989 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1990 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); 1991 1992 // Remove the unconditional branch. 1993 OrigBB->getInstList().erase(Br); 1994 1995 // Now we can remove the CalleeEntry block, which is now empty. 1996 Caller->getBasicBlockList().erase(CalleeEntry); 1997 1998 // If we inserted a phi node, check to see if it has a single value (e.g. all 1999 // the entries are the same or undef). If so, remove the PHI so it doesn't 2000 // block other optimizations. 2001 if (PHI) { 2002 auto &DL = Caller->getParent()->getDataLayout(); 2003 if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr, 2004 &IFI.ACT->getAssumptionCache(*Caller))) { 2005 PHI->replaceAllUsesWith(V); 2006 PHI->eraseFromParent(); 2007 } 2008 } 2009 2010 return true; 2011 } 2012