1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/CallGraph.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DIBuilder.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/MDBuilder.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Transforms/Utils/Cloning.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include <algorithm>
48 
49 using namespace llvm;
50 
51 static cl::opt<bool>
52 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
53   cl::Hidden,
54   cl::desc("Convert noalias attributes to metadata during inlining."));
55 
56 static cl::opt<bool>
57 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
58   cl::init(true), cl::Hidden,
59   cl::desc("Convert align attributes to assumptions during inlining."));
60 
61 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
62                           AAResults *CalleeAAR, bool InsertLifetime) {
63   return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
64 }
65 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
66                           AAResults *CalleeAAR, bool InsertLifetime) {
67   return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
68 }
69 
70 namespace {
71   /// A class for recording information about inlining a landing pad.
72   class LandingPadInliningInfo {
73     BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
74     BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
75     LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
76     PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
77     SmallVector<Value*, 8> UnwindDestPHIValues;
78 
79   public:
80     LandingPadInliningInfo(InvokeInst *II)
81       : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
82         CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
83       // If there are PHI nodes in the unwind destination block, we need to keep
84       // track of which values came into them from the invoke before removing
85       // the edge from this block.
86       llvm::BasicBlock *InvokeBB = II->getParent();
87       BasicBlock::iterator I = OuterResumeDest->begin();
88       for (; isa<PHINode>(I); ++I) {
89         // Save the value to use for this edge.
90         PHINode *PHI = cast<PHINode>(I);
91         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
92       }
93 
94       CallerLPad = cast<LandingPadInst>(I);
95     }
96 
97     /// The outer unwind destination is the target of
98     /// unwind edges introduced for calls within the inlined function.
99     BasicBlock *getOuterResumeDest() const {
100       return OuterResumeDest;
101     }
102 
103     BasicBlock *getInnerResumeDest();
104 
105     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
106 
107     /// Forward the 'resume' instruction to the caller's landing pad block.
108     /// When the landing pad block has only one predecessor, this is
109     /// a simple branch. When there is more than one predecessor, we need to
110     /// split the landing pad block after the landingpad instruction and jump
111     /// to there.
112     void forwardResume(ResumeInst *RI,
113                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
114 
115     /// Add incoming-PHI values to the unwind destination block for the given
116     /// basic block, using the values for the original invoke's source block.
117     void addIncomingPHIValuesFor(BasicBlock *BB) const {
118       addIncomingPHIValuesForInto(BB, OuterResumeDest);
119     }
120 
121     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
122       BasicBlock::iterator I = dest->begin();
123       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
124         PHINode *phi = cast<PHINode>(I);
125         phi->addIncoming(UnwindDestPHIValues[i], src);
126       }
127     }
128   };
129 } // anonymous namespace
130 
131 /// Get or create a target for the branch from ResumeInsts.
132 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
133   if (InnerResumeDest) return InnerResumeDest;
134 
135   // Split the landing pad.
136   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
137   InnerResumeDest =
138     OuterResumeDest->splitBasicBlock(SplitPoint,
139                                      OuterResumeDest->getName() + ".body");
140 
141   // The number of incoming edges we expect to the inner landing pad.
142   const unsigned PHICapacity = 2;
143 
144   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
145   Instruction *InsertPoint = &InnerResumeDest->front();
146   BasicBlock::iterator I = OuterResumeDest->begin();
147   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
148     PHINode *OuterPHI = cast<PHINode>(I);
149     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
150                                         OuterPHI->getName() + ".lpad-body",
151                                         InsertPoint);
152     OuterPHI->replaceAllUsesWith(InnerPHI);
153     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
154   }
155 
156   // Create a PHI for the exception values.
157   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
158                                      "eh.lpad-body", InsertPoint);
159   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
160   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
161 
162   // All done.
163   return InnerResumeDest;
164 }
165 
166 /// Forward the 'resume' instruction to the caller's landing pad block.
167 /// When the landing pad block has only one predecessor, this is a simple
168 /// branch. When there is more than one predecessor, we need to split the
169 /// landing pad block after the landingpad instruction and jump to there.
170 void LandingPadInliningInfo::forwardResume(
171     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
172   BasicBlock *Dest = getInnerResumeDest();
173   BasicBlock *Src = RI->getParent();
174 
175   BranchInst::Create(Dest, Src);
176 
177   // Update the PHIs in the destination. They were inserted in an order which
178   // makes this work.
179   addIncomingPHIValuesForInto(Src, Dest);
180 
181   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
182   RI->eraseFromParent();
183 }
184 
185 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
186 static Value *getParentPad(Value *EHPad) {
187   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
188     return FPI->getParentPad();
189   return cast<CatchSwitchInst>(EHPad)->getParentPad();
190 }
191 
192 typedef DenseMap<Instruction *, Value *> UnwindDestMemoTy;
193 
194 /// Helper for getUnwindDestToken that does the descendant-ward part of
195 /// the search.
196 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
197                                        UnwindDestMemoTy &MemoMap) {
198   SmallVector<Instruction *, 8> Worklist(1, EHPad);
199 
200   while (!Worklist.empty()) {
201     Instruction *CurrentPad = Worklist.pop_back_val();
202     // We only put pads on the worklist that aren't in the MemoMap.  When
203     // we find an unwind dest for a pad we may update its ancestors, but
204     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
205     // so they should never get updated while queued on the worklist.
206     assert(!MemoMap.count(CurrentPad));
207     Value *UnwindDestToken = nullptr;
208     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
209       if (CatchSwitch->hasUnwindDest()) {
210         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
211       } else {
212         // Catchswitch doesn't have a 'nounwind' variant, and one might be
213         // annotated as "unwinds to caller" when really it's nounwind (see
214         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
215         // parent's unwind dest from this.  We can check its catchpads'
216         // descendants, since they might include a cleanuppad with an
217         // "unwinds to caller" cleanupret, which can be trusted.
218         for (auto HI = CatchSwitch->handler_begin(),
219                   HE = CatchSwitch->handler_end();
220              HI != HE && !UnwindDestToken; ++HI) {
221           BasicBlock *HandlerBlock = *HI;
222           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
223           for (User *Child : CatchPad->users()) {
224             // Intentionally ignore invokes here -- since the catchswitch is
225             // marked "unwind to caller", it would be a verifier error if it
226             // contained an invoke which unwinds out of it, so any invoke we'd
227             // encounter must unwind to some child of the catch.
228             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
229               continue;
230 
231             Instruction *ChildPad = cast<Instruction>(Child);
232             auto Memo = MemoMap.find(ChildPad);
233             if (Memo == MemoMap.end()) {
234               // Haven't figured out this child pad yet; queue it.
235               Worklist.push_back(ChildPad);
236               continue;
237             }
238             // We've already checked this child, but might have found that
239             // it offers no proof either way.
240             Value *ChildUnwindDestToken = Memo->second;
241             if (!ChildUnwindDestToken)
242               continue;
243             // We already know the child's unwind dest, which can either
244             // be ConstantTokenNone to indicate unwind to caller, or can
245             // be another child of the catchpad.  Only the former indicates
246             // the unwind dest of the catchswitch.
247             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
248               UnwindDestToken = ChildUnwindDestToken;
249               break;
250             }
251             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
252           }
253         }
254       }
255     } else {
256       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
257       for (User *U : CleanupPad->users()) {
258         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
259           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
260             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
261           else
262             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
263           break;
264         }
265         Value *ChildUnwindDestToken;
266         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
267           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
268         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
269           Instruction *ChildPad = cast<Instruction>(U);
270           auto Memo = MemoMap.find(ChildPad);
271           if (Memo == MemoMap.end()) {
272             // Haven't resolved this child yet; queue it and keep searching.
273             Worklist.push_back(ChildPad);
274             continue;
275           }
276           // We've checked this child, but still need to ignore it if it
277           // had no proof either way.
278           ChildUnwindDestToken = Memo->second;
279           if (!ChildUnwindDestToken)
280             continue;
281         } else {
282           // Not a relevant user of the cleanuppad
283           continue;
284         }
285         // In a well-formed program, the child/invoke must either unwind to
286         // an(other) child of the cleanup, or exit the cleanup.  In the
287         // first case, continue searching.
288         if (isa<Instruction>(ChildUnwindDestToken) &&
289             getParentPad(ChildUnwindDestToken) == CleanupPad)
290           continue;
291         UnwindDestToken = ChildUnwindDestToken;
292         break;
293       }
294     }
295     // If we haven't found an unwind dest for CurrentPad, we may have queued its
296     // children, so move on to the next in the worklist.
297     if (!UnwindDestToken)
298       continue;
299 
300     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
301     // any ancestors of CurrentPad up to but not including UnwindDestToken's
302     // parent pad.  Record this in the memo map, and check to see if the
303     // original EHPad being queried is one of the ones exited.
304     Value *UnwindParent;
305     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
306       UnwindParent = getParentPad(UnwindPad);
307     else
308       UnwindParent = nullptr;
309     bool ExitedOriginalPad = false;
310     for (Instruction *ExitedPad = CurrentPad;
311          ExitedPad && ExitedPad != UnwindParent;
312          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
313       // Skip over catchpads since they just follow their catchswitches.
314       if (isa<CatchPadInst>(ExitedPad))
315         continue;
316       MemoMap[ExitedPad] = UnwindDestToken;
317       ExitedOriginalPad |= (ExitedPad == EHPad);
318     }
319 
320     if (ExitedOriginalPad)
321       return UnwindDestToken;
322 
323     // Continue the search.
324   }
325 
326   // No definitive information is contained within this funclet.
327   return nullptr;
328 }
329 
330 /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
331 /// return that pad instruction.  If it unwinds to caller, return
332 /// ConstantTokenNone.  If it does not have a definitive unwind destination,
333 /// return nullptr.
334 ///
335 /// This routine gets invoked for calls in funclets in inlinees when inlining
336 /// an invoke.  Since many funclets don't have calls inside them, it's queried
337 /// on-demand rather than building a map of pads to unwind dests up front.
338 /// Determining a funclet's unwind dest may require recursively searching its
339 /// descendants, and also ancestors and cousins if the descendants don't provide
340 /// an answer.  Since most funclets will have their unwind dest immediately
341 /// available as the unwind dest of a catchswitch or cleanupret, this routine
342 /// searches top-down from the given pad and then up. To avoid worst-case
343 /// quadratic run-time given that approach, it uses a memo map to avoid
344 /// re-processing funclet trees.  The callers that rewrite the IR as they go
345 /// take advantage of this, for correctness, by checking/forcing rewritten
346 /// pads' entries to match the original callee view.
347 static Value *getUnwindDestToken(Instruction *EHPad,
348                                  UnwindDestMemoTy &MemoMap) {
349   // Catchpads unwind to the same place as their catchswitch;
350   // redirct any queries on catchpads so the code below can
351   // deal with just catchswitches and cleanuppads.
352   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
353     EHPad = CPI->getCatchSwitch();
354 
355   // Check if we've already determined the unwind dest for this pad.
356   auto Memo = MemoMap.find(EHPad);
357   if (Memo != MemoMap.end())
358     return Memo->second;
359 
360   // Search EHPad and, if necessary, its descendants.
361   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
362   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
363   if (UnwindDestToken)
364     return UnwindDestToken;
365 
366   // No information is available for this EHPad from itself or any of its
367   // descendants.  An unwind all the way out to a pad in the caller would
368   // need also to agree with the unwind dest of the parent funclet, so
369   // search up the chain to try to find a funclet with information.  Put
370   // null entries in the memo map to avoid re-processing as we go up.
371   MemoMap[EHPad] = nullptr;
372 #ifndef NDEBUG
373   SmallPtrSet<Instruction *, 4> TempMemos;
374   TempMemos.insert(EHPad);
375 #endif
376   Instruction *LastUselessPad = EHPad;
377   Value *AncestorToken;
378   for (AncestorToken = getParentPad(EHPad);
379        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
380        AncestorToken = getParentPad(AncestorToken)) {
381     // Skip over catchpads since they just follow their catchswitches.
382     if (isa<CatchPadInst>(AncestorPad))
383       continue;
384     // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
385     // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
386     // call to getUnwindDestToken, that would mean that AncestorPad had no
387     // information in itself, its descendants, or its ancestors.  If that
388     // were the case, then we should also have recorded the lack of information
389     // for the descendant that we're coming from.  So assert that we don't
390     // find a null entry in the MemoMap for AncestorPad.
391     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
392     auto AncestorMemo = MemoMap.find(AncestorPad);
393     if (AncestorMemo == MemoMap.end()) {
394       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
395     } else {
396       UnwindDestToken = AncestorMemo->second;
397     }
398     if (UnwindDestToken)
399       break;
400     LastUselessPad = AncestorPad;
401     MemoMap[LastUselessPad] = nullptr;
402 #ifndef NDEBUG
403     TempMemos.insert(LastUselessPad);
404 #endif
405   }
406 
407   // We know that getUnwindDestTokenHelper was called on LastUselessPad and
408   // returned nullptr (and likewise for EHPad and any of its ancestors up to
409   // LastUselessPad), so LastUselessPad has no information from below.  Since
410   // getUnwindDestTokenHelper must investigate all downward paths through
411   // no-information nodes to prove that a node has no information like this,
412   // and since any time it finds information it records it in the MemoMap for
413   // not just the immediately-containing funclet but also any ancestors also
414   // exited, it must be the case that, walking downward from LastUselessPad,
415   // visiting just those nodes which have not been mapped to an unwind dest
416   // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
417   // they are just used to keep getUnwindDestTokenHelper from repeating work),
418   // any node visited must have been exhaustively searched with no information
419   // for it found.
420   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
421   while (!Worklist.empty()) {
422     Instruction *UselessPad = Worklist.pop_back_val();
423     auto Memo = MemoMap.find(UselessPad);
424     if (Memo != MemoMap.end() && Memo->second) {
425       // Here the name 'UselessPad' is a bit of a misnomer, because we've found
426       // that it is a funclet that does have information about unwinding to
427       // a particular destination; its parent was a useless pad.
428       // Since its parent has no information, the unwind edge must not escape
429       // the parent, and must target a sibling of this pad.  This local unwind
430       // gives us no information about EHPad.  Leave it and the subtree rooted
431       // at it alone.
432       assert(getParentPad(Memo->second) == getParentPad(UselessPad));
433       continue;
434     }
435     // We know we don't have information for UselesPad.  If it has an entry in
436     // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
437     // added on this invocation of getUnwindDestToken; if a previous invocation
438     // recorded nullptr, it would have had to prove that the ancestors of
439     // UselessPad, which include LastUselessPad, had no information, and that
440     // in turn would have required proving that the descendants of
441     // LastUselesPad, which include EHPad, have no information about
442     // LastUselessPad, which would imply that EHPad was mapped to nullptr in
443     // the MemoMap on that invocation, which isn't the case if we got here.
444     assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
445     // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
446     // information that we'd be contradicting by making a map entry for it
447     // (which is something that getUnwindDestTokenHelper must have proved for
448     // us to get here).  Just assert on is direct users here; the checks in
449     // this downward walk at its descendants will verify that they don't have
450     // any unwind edges that exit 'UselessPad' either (i.e. they either have no
451     // unwind edges or unwind to a sibling).
452     MemoMap[UselessPad] = UnwindDestToken;
453     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
454       assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
455       for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
456         auto *CatchPad = HandlerBlock->getFirstNonPHI();
457         for (User *U : CatchPad->users()) {
458           assert(
459               (!isa<InvokeInst>(U) ||
460                (getParentPad(
461                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
462                 CatchPad)) &&
463               "Expected useless pad");
464           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
465             Worklist.push_back(cast<Instruction>(U));
466         }
467       }
468     } else {
469       assert(isa<CleanupPadInst>(UselessPad));
470       for (User *U : UselessPad->users()) {
471         assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
472         assert((!isa<InvokeInst>(U) ||
473                 (getParentPad(
474                      cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
475                  UselessPad)) &&
476                "Expected useless pad");
477         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
478           Worklist.push_back(cast<Instruction>(U));
479       }
480     }
481   }
482 
483   return UnwindDestToken;
484 }
485 
486 /// When we inline a basic block into an invoke,
487 /// we have to turn all of the calls that can throw into invokes.
488 /// This function analyze BB to see if there are any calls, and if so,
489 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
490 /// nodes in that block with the values specified in InvokeDestPHIValues.
491 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
492     BasicBlock *BB, BasicBlock *UnwindEdge,
493     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
494   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
495     Instruction *I = &*BBI++;
496 
497     // We only need to check for function calls: inlined invoke
498     // instructions require no special handling.
499     CallInst *CI = dyn_cast<CallInst>(I);
500 
501     if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
502       continue;
503 
504     // We do not need to (and in fact, cannot) convert possibly throwing calls
505     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
506     // invokes.  The caller's "segment" of the deoptimization continuation
507     // attached to the newly inlined @llvm.experimental_deoptimize
508     // (resp. @llvm.experimental.guard) call should contain the exception
509     // handling logic, if any.
510     if (auto *F = CI->getCalledFunction())
511       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
512           F->getIntrinsicID() == Intrinsic::experimental_guard)
513         continue;
514 
515     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
516       // This call is nested inside a funclet.  If that funclet has an unwind
517       // destination within the inlinee, then unwinding out of this call would
518       // be UB.  Rewriting this call to an invoke which targets the inlined
519       // invoke's unwind dest would give the call's parent funclet multiple
520       // unwind destinations, which is something that subsequent EH table
521       // generation can't handle and that the veirifer rejects.  So when we
522       // see such a call, leave it as a call.
523       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
524       Value *UnwindDestToken =
525           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
526       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
527         continue;
528 #ifndef NDEBUG
529       Instruction *MemoKey;
530       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
531         MemoKey = CatchPad->getCatchSwitch();
532       else
533         MemoKey = FuncletPad;
534       assert(FuncletUnwindMap->count(MemoKey) &&
535              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
536              "must get memoized to avoid confusing later searches");
537 #endif // NDEBUG
538     }
539 
540     changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
541     return BB;
542   }
543   return nullptr;
544 }
545 
546 /// If we inlined an invoke site, we need to convert calls
547 /// in the body of the inlined function into invokes.
548 ///
549 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
550 /// block of the inlined code (the last block is the end of the function),
551 /// and InlineCodeInfo is information about the code that got inlined.
552 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
553                                     ClonedCodeInfo &InlinedCodeInfo) {
554   BasicBlock *InvokeDest = II->getUnwindDest();
555 
556   Function *Caller = FirstNewBlock->getParent();
557 
558   // The inlined code is currently at the end of the function, scan from the
559   // start of the inlined code to its end, checking for stuff we need to
560   // rewrite.
561   LandingPadInliningInfo Invoke(II);
562 
563   // Get all of the inlined landing pad instructions.
564   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
565   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
566        I != E; ++I)
567     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
568       InlinedLPads.insert(II->getLandingPadInst());
569 
570   // Append the clauses from the outer landing pad instruction into the inlined
571   // landing pad instructions.
572   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
573   for (LandingPadInst *InlinedLPad : InlinedLPads) {
574     unsigned OuterNum = OuterLPad->getNumClauses();
575     InlinedLPad->reserveClauses(OuterNum);
576     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
577       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
578     if (OuterLPad->isCleanup())
579       InlinedLPad->setCleanup(true);
580   }
581 
582   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
583        BB != E; ++BB) {
584     if (InlinedCodeInfo.ContainsCalls)
585       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
586               &*BB, Invoke.getOuterResumeDest()))
587         // Update any PHI nodes in the exceptional block to indicate that there
588         // is now a new entry in them.
589         Invoke.addIncomingPHIValuesFor(NewBB);
590 
591     // Forward any resumes that are remaining here.
592     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
593       Invoke.forwardResume(RI, InlinedLPads);
594   }
595 
596   // Now that everything is happy, we have one final detail.  The PHI nodes in
597   // the exception destination block still have entries due to the original
598   // invoke instruction. Eliminate these entries (which might even delete the
599   // PHI node) now.
600   InvokeDest->removePredecessor(II->getParent());
601 }
602 
603 /// If we inlined an invoke site, we need to convert calls
604 /// in the body of the inlined function into invokes.
605 ///
606 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
607 /// block of the inlined code (the last block is the end of the function),
608 /// and InlineCodeInfo is information about the code that got inlined.
609 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
610                                ClonedCodeInfo &InlinedCodeInfo) {
611   BasicBlock *UnwindDest = II->getUnwindDest();
612   Function *Caller = FirstNewBlock->getParent();
613 
614   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
615 
616   // If there are PHI nodes in the unwind destination block, we need to keep
617   // track of which values came into them from the invoke before removing the
618   // edge from this block.
619   SmallVector<Value *, 8> UnwindDestPHIValues;
620   llvm::BasicBlock *InvokeBB = II->getParent();
621   for (Instruction &I : *UnwindDest) {
622     // Save the value to use for this edge.
623     PHINode *PHI = dyn_cast<PHINode>(&I);
624     if (!PHI)
625       break;
626     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
627   }
628 
629   // Add incoming-PHI values to the unwind destination block for the given basic
630   // block, using the values for the original invoke's source block.
631   auto UpdatePHINodes = [&](BasicBlock *Src) {
632     BasicBlock::iterator I = UnwindDest->begin();
633     for (Value *V : UnwindDestPHIValues) {
634       PHINode *PHI = cast<PHINode>(I);
635       PHI->addIncoming(V, Src);
636       ++I;
637     }
638   };
639 
640   // This connects all the instructions which 'unwind to caller' to the invoke
641   // destination.
642   UnwindDestMemoTy FuncletUnwindMap;
643   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
644        BB != E; ++BB) {
645     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
646       if (CRI->unwindsToCaller()) {
647         auto *CleanupPad = CRI->getCleanupPad();
648         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
649         CRI->eraseFromParent();
650         UpdatePHINodes(&*BB);
651         // Finding a cleanupret with an unwind destination would confuse
652         // subsequent calls to getUnwindDestToken, so map the cleanuppad
653         // to short-circuit any such calls and recognize this as an "unwind
654         // to caller" cleanup.
655         assert(!FuncletUnwindMap.count(CleanupPad) ||
656                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
657         FuncletUnwindMap[CleanupPad] =
658             ConstantTokenNone::get(Caller->getContext());
659       }
660     }
661 
662     Instruction *I = BB->getFirstNonPHI();
663     if (!I->isEHPad())
664       continue;
665 
666     Instruction *Replacement = nullptr;
667     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
668       if (CatchSwitch->unwindsToCaller()) {
669         Value *UnwindDestToken;
670         if (auto *ParentPad =
671                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
672           // This catchswitch is nested inside another funclet.  If that
673           // funclet has an unwind destination within the inlinee, then
674           // unwinding out of this catchswitch would be UB.  Rewriting this
675           // catchswitch to unwind to the inlined invoke's unwind dest would
676           // give the parent funclet multiple unwind destinations, which is
677           // something that subsequent EH table generation can't handle and
678           // that the veirifer rejects.  So when we see such a call, leave it
679           // as "unwind to caller".
680           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
681           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
682             continue;
683         } else {
684           // This catchswitch has no parent to inherit constraints from, and
685           // none of its descendants can have an unwind edge that exits it and
686           // targets another funclet in the inlinee.  It may or may not have a
687           // descendant that definitively has an unwind to caller.  In either
688           // case, we'll have to assume that any unwinds out of it may need to
689           // be routed to the caller, so treat it as though it has a definitive
690           // unwind to caller.
691           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
692         }
693         auto *NewCatchSwitch = CatchSwitchInst::Create(
694             CatchSwitch->getParentPad(), UnwindDest,
695             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
696             CatchSwitch);
697         for (BasicBlock *PadBB : CatchSwitch->handlers())
698           NewCatchSwitch->addHandler(PadBB);
699         // Propagate info for the old catchswitch over to the new one in
700         // the unwind map.  This also serves to short-circuit any subsequent
701         // checks for the unwind dest of this catchswitch, which would get
702         // confused if they found the outer handler in the callee.
703         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
704         Replacement = NewCatchSwitch;
705       }
706     } else if (!isa<FuncletPadInst>(I)) {
707       llvm_unreachable("unexpected EHPad!");
708     }
709 
710     if (Replacement) {
711       Replacement->takeName(I);
712       I->replaceAllUsesWith(Replacement);
713       I->eraseFromParent();
714       UpdatePHINodes(&*BB);
715     }
716   }
717 
718   if (InlinedCodeInfo.ContainsCalls)
719     for (Function::iterator BB = FirstNewBlock->getIterator(),
720                             E = Caller->end();
721          BB != E; ++BB)
722       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
723               &*BB, UnwindDest, &FuncletUnwindMap))
724         // Update any PHI nodes in the exceptional block to indicate that there
725         // is now a new entry in them.
726         UpdatePHINodes(NewBB);
727 
728   // Now that everything is happy, we have one final detail.  The PHI nodes in
729   // the exception destination block still have entries due to the original
730   // invoke instruction. Eliminate these entries (which might even delete the
731   // PHI node) now.
732   UnwindDest->removePredecessor(InvokeBB);
733 }
734 
735 /// When inlining a call site that has !llvm.mem.parallel_loop_access metadata,
736 /// that metadata should be propagated to all memory-accessing cloned
737 /// instructions.
738 static void PropagateParallelLoopAccessMetadata(CallSite CS,
739                                                 ValueToValueMapTy &VMap) {
740   MDNode *M =
741     CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
742   if (!M)
743     return;
744 
745   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
746        VMI != VMIE; ++VMI) {
747     if (!VMI->second)
748       continue;
749 
750     Instruction *NI = dyn_cast<Instruction>(VMI->second);
751     if (!NI)
752       continue;
753 
754     if (MDNode *PM = NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
755         M = MDNode::concatenate(PM, M);
756       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
757     } else if (NI->mayReadOrWriteMemory()) {
758       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
759     }
760   }
761 }
762 
763 /// When inlining a function that contains noalias scope metadata,
764 /// this metadata needs to be cloned so that the inlined blocks
765 /// have different "unique scopes" at every call site. Were this not done, then
766 /// aliasing scopes from a function inlined into a caller multiple times could
767 /// not be differentiated (and this would lead to miscompiles because the
768 /// non-aliasing property communicated by the metadata could have
769 /// call-site-specific control dependencies).
770 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
771   const Function *CalledFunc = CS.getCalledFunction();
772   SetVector<const MDNode *> MD;
773 
774   // Note: We could only clone the metadata if it is already used in the
775   // caller. I'm omitting that check here because it might confuse
776   // inter-procedural alias analysis passes. We can revisit this if it becomes
777   // an efficiency or overhead problem.
778 
779   for (const BasicBlock &I : *CalledFunc)
780     for (const Instruction &J : I) {
781       if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
782         MD.insert(M);
783       if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
784         MD.insert(M);
785     }
786 
787   if (MD.empty())
788     return;
789 
790   // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
791   // the set.
792   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
793   while (!Queue.empty()) {
794     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
795     for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
796       if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
797         if (MD.insert(M1))
798           Queue.push_back(M1);
799   }
800 
801   // Now we have a complete set of all metadata in the chains used to specify
802   // the noalias scopes and the lists of those scopes.
803   SmallVector<TempMDTuple, 16> DummyNodes;
804   DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
805   for (const MDNode *I : MD) {
806     DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
807     MDMap[I].reset(DummyNodes.back().get());
808   }
809 
810   // Create new metadata nodes to replace the dummy nodes, replacing old
811   // metadata references with either a dummy node or an already-created new
812   // node.
813   for (const MDNode *I : MD) {
814     SmallVector<Metadata *, 4> NewOps;
815     for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
816       const Metadata *V = I->getOperand(i);
817       if (const MDNode *M = dyn_cast<MDNode>(V))
818         NewOps.push_back(MDMap[M]);
819       else
820         NewOps.push_back(const_cast<Metadata *>(V));
821     }
822 
823     MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
824     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
825     assert(TempM->isTemporary() && "Expected temporary node");
826 
827     TempM->replaceAllUsesWith(NewM);
828   }
829 
830   // Now replace the metadata in the new inlined instructions with the
831   // repacements from the map.
832   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
833        VMI != VMIE; ++VMI) {
834     if (!VMI->second)
835       continue;
836 
837     Instruction *NI = dyn_cast<Instruction>(VMI->second);
838     if (!NI)
839       continue;
840 
841     if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
842       MDNode *NewMD = MDMap[M];
843       // If the call site also had alias scope metadata (a list of scopes to
844       // which instructions inside it might belong), propagate those scopes to
845       // the inlined instructions.
846       if (MDNode *CSM =
847               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
848         NewMD = MDNode::concatenate(NewMD, CSM);
849       NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
850     } else if (NI->mayReadOrWriteMemory()) {
851       if (MDNode *M =
852               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
853         NI->setMetadata(LLVMContext::MD_alias_scope, M);
854     }
855 
856     if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
857       MDNode *NewMD = MDMap[M];
858       // If the call site also had noalias metadata (a list of scopes with
859       // which instructions inside it don't alias), propagate those scopes to
860       // the inlined instructions.
861       if (MDNode *CSM =
862               CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
863         NewMD = MDNode::concatenate(NewMD, CSM);
864       NI->setMetadata(LLVMContext::MD_noalias, NewMD);
865     } else if (NI->mayReadOrWriteMemory()) {
866       if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
867         NI->setMetadata(LLVMContext::MD_noalias, M);
868     }
869   }
870 }
871 
872 /// If the inlined function has noalias arguments,
873 /// then add new alias scopes for each noalias argument, tag the mapped noalias
874 /// parameters with noalias metadata specifying the new scope, and tag all
875 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
876 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
877                                   const DataLayout &DL, AAResults *CalleeAAR) {
878   if (!EnableNoAliasConversion)
879     return;
880 
881   const Function *CalledFunc = CS.getCalledFunction();
882   SmallVector<const Argument *, 4> NoAliasArgs;
883 
884   for (const Argument &Arg : CalledFunc->args())
885     if (Arg.hasNoAliasAttr() && !Arg.use_empty())
886       NoAliasArgs.push_back(&Arg);
887 
888   if (NoAliasArgs.empty())
889     return;
890 
891   // To do a good job, if a noalias variable is captured, we need to know if
892   // the capture point dominates the particular use we're considering.
893   DominatorTree DT;
894   DT.recalculate(const_cast<Function&>(*CalledFunc));
895 
896   // noalias indicates that pointer values based on the argument do not alias
897   // pointer values which are not based on it. So we add a new "scope" for each
898   // noalias function argument. Accesses using pointers based on that argument
899   // become part of that alias scope, accesses using pointers not based on that
900   // argument are tagged as noalias with that scope.
901 
902   DenseMap<const Argument *, MDNode *> NewScopes;
903   MDBuilder MDB(CalledFunc->getContext());
904 
905   // Create a new scope domain for this function.
906   MDNode *NewDomain =
907     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
908   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
909     const Argument *A = NoAliasArgs[i];
910 
911     std::string Name = CalledFunc->getName();
912     if (A->hasName()) {
913       Name += ": %";
914       Name += A->getName();
915     } else {
916       Name += ": argument ";
917       Name += utostr(i);
918     }
919 
920     // Note: We always create a new anonymous root here. This is true regardless
921     // of the linkage of the callee because the aliasing "scope" is not just a
922     // property of the callee, but also all control dependencies in the caller.
923     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
924     NewScopes.insert(std::make_pair(A, NewScope));
925   }
926 
927   // Iterate over all new instructions in the map; for all memory-access
928   // instructions, add the alias scope metadata.
929   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
930        VMI != VMIE; ++VMI) {
931     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
932       if (!VMI->second)
933         continue;
934 
935       Instruction *NI = dyn_cast<Instruction>(VMI->second);
936       if (!NI)
937         continue;
938 
939       bool IsArgMemOnlyCall = false, IsFuncCall = false;
940       SmallVector<const Value *, 2> PtrArgs;
941 
942       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
943         PtrArgs.push_back(LI->getPointerOperand());
944       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
945         PtrArgs.push_back(SI->getPointerOperand());
946       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
947         PtrArgs.push_back(VAAI->getPointerOperand());
948       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
949         PtrArgs.push_back(CXI->getPointerOperand());
950       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
951         PtrArgs.push_back(RMWI->getPointerOperand());
952       else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
953         // If we know that the call does not access memory, then we'll still
954         // know that about the inlined clone of this call site, and we don't
955         // need to add metadata.
956         if (ICS.doesNotAccessMemory())
957           continue;
958 
959         IsFuncCall = true;
960         if (CalleeAAR) {
961           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS);
962           if (MRB == FMRB_OnlyAccessesArgumentPointees ||
963               MRB == FMRB_OnlyReadsArgumentPointees)
964             IsArgMemOnlyCall = true;
965         }
966 
967         for (Value *Arg : ICS.args()) {
968           // We need to check the underlying objects of all arguments, not just
969           // the pointer arguments, because we might be passing pointers as
970           // integers, etc.
971           // However, if we know that the call only accesses pointer arguments,
972           // then we only need to check the pointer arguments.
973           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
974             continue;
975 
976           PtrArgs.push_back(Arg);
977         }
978       }
979 
980       // If we found no pointers, then this instruction is not suitable for
981       // pairing with an instruction to receive aliasing metadata.
982       // However, if this is a call, this we might just alias with none of the
983       // noalias arguments.
984       if (PtrArgs.empty() && !IsFuncCall)
985         continue;
986 
987       // It is possible that there is only one underlying object, but you
988       // need to go through several PHIs to see it, and thus could be
989       // repeated in the Objects list.
990       SmallPtrSet<const Value *, 4> ObjSet;
991       SmallVector<Metadata *, 4> Scopes, NoAliases;
992 
993       SmallSetVector<const Argument *, 4> NAPtrArgs;
994       for (const Value *V : PtrArgs) {
995         SmallVector<Value *, 4> Objects;
996         GetUnderlyingObjects(const_cast<Value*>(V),
997                              Objects, DL, /* LI = */ nullptr);
998 
999         for (Value *O : Objects)
1000           ObjSet.insert(O);
1001       }
1002 
1003       // Figure out if we're derived from anything that is not a noalias
1004       // argument.
1005       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1006       for (const Value *V : ObjSet) {
1007         // Is this value a constant that cannot be derived from any pointer
1008         // value (we need to exclude constant expressions, for example, that
1009         // are formed from arithmetic on global symbols).
1010         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1011                              isa<ConstantPointerNull>(V) ||
1012                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1013         if (IsNonPtrConst)
1014           continue;
1015 
1016         // If this is anything other than a noalias argument, then we cannot
1017         // completely describe the aliasing properties using alias.scope
1018         // metadata (and, thus, won't add any).
1019         if (const Argument *A = dyn_cast<Argument>(V)) {
1020           if (!A->hasNoAliasAttr())
1021             UsesAliasingPtr = true;
1022         } else {
1023           UsesAliasingPtr = true;
1024         }
1025 
1026         // If this is not some identified function-local object (which cannot
1027         // directly alias a noalias argument), or some other argument (which,
1028         // by definition, also cannot alias a noalias argument), then we could
1029         // alias a noalias argument that has been captured).
1030         if (!isa<Argument>(V) &&
1031             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1032           CanDeriveViaCapture = true;
1033       }
1034 
1035       // A function call can always get captured noalias pointers (via other
1036       // parameters, globals, etc.).
1037       if (IsFuncCall && !IsArgMemOnlyCall)
1038         CanDeriveViaCapture = true;
1039 
1040       // First, we want to figure out all of the sets with which we definitely
1041       // don't alias. Iterate over all noalias set, and add those for which:
1042       //   1. The noalias argument is not in the set of objects from which we
1043       //      definitely derive.
1044       //   2. The noalias argument has not yet been captured.
1045       // An arbitrary function that might load pointers could see captured
1046       // noalias arguments via other noalias arguments or globals, and so we
1047       // must always check for prior capture.
1048       for (const Argument *A : NoAliasArgs) {
1049         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1050                                  // It might be tempting to skip the
1051                                  // PointerMayBeCapturedBefore check if
1052                                  // A->hasNoCaptureAttr() is true, but this is
1053                                  // incorrect because nocapture only guarantees
1054                                  // that no copies outlive the function, not
1055                                  // that the value cannot be locally captured.
1056                                  !PointerMayBeCapturedBefore(A,
1057                                    /* ReturnCaptures */ false,
1058                                    /* StoreCaptures */ false, I, &DT)))
1059           NoAliases.push_back(NewScopes[A]);
1060       }
1061 
1062       if (!NoAliases.empty())
1063         NI->setMetadata(LLVMContext::MD_noalias,
1064                         MDNode::concatenate(
1065                             NI->getMetadata(LLVMContext::MD_noalias),
1066                             MDNode::get(CalledFunc->getContext(), NoAliases)));
1067 
1068       // Next, we want to figure out all of the sets to which we might belong.
1069       // We might belong to a set if the noalias argument is in the set of
1070       // underlying objects. If there is some non-noalias argument in our list
1071       // of underlying objects, then we cannot add a scope because the fact
1072       // that some access does not alias with any set of our noalias arguments
1073       // cannot itself guarantee that it does not alias with this access
1074       // (because there is some pointer of unknown origin involved and the
1075       // other access might also depend on this pointer). We also cannot add
1076       // scopes to arbitrary functions unless we know they don't access any
1077       // non-parameter pointer-values.
1078       bool CanAddScopes = !UsesAliasingPtr;
1079       if (CanAddScopes && IsFuncCall)
1080         CanAddScopes = IsArgMemOnlyCall;
1081 
1082       if (CanAddScopes)
1083         for (const Argument *A : NoAliasArgs) {
1084           if (ObjSet.count(A))
1085             Scopes.push_back(NewScopes[A]);
1086         }
1087 
1088       if (!Scopes.empty())
1089         NI->setMetadata(
1090             LLVMContext::MD_alias_scope,
1091             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1092                                 MDNode::get(CalledFunc->getContext(), Scopes)));
1093     }
1094   }
1095 }
1096 
1097 /// If the inlined function has non-byval align arguments, then
1098 /// add @llvm.assume-based alignment assumptions to preserve this information.
1099 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
1100   if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1101     return;
1102 
1103   AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller());
1104   auto &DL = CS.getCaller()->getParent()->getDataLayout();
1105 
1106   // To avoid inserting redundant assumptions, we should check for assumptions
1107   // already in the caller. To do this, we might need a DT of the caller.
1108   DominatorTree DT;
1109   bool DTCalculated = false;
1110 
1111   Function *CalledFunc = CS.getCalledFunction();
1112   for (Argument &Arg : CalledFunc->args()) {
1113     unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1114     if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) {
1115       if (!DTCalculated) {
1116         DT.recalculate(*CS.getCaller());
1117         DTCalculated = true;
1118       }
1119 
1120       // If we can already prove the asserted alignment in the context of the
1121       // caller, then don't bother inserting the assumption.
1122       Value *ArgVal = CS.getArgument(Arg.getArgNo());
1123       if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align)
1124         continue;
1125 
1126       CallInst *NewAsmp = IRBuilder<>(CS.getInstruction())
1127                               .CreateAlignmentAssumption(DL, ArgVal, Align);
1128       AC->registerAssumption(NewAsmp);
1129     }
1130   }
1131 }
1132 
1133 /// Once we have cloned code over from a callee into the caller,
1134 /// update the specified callgraph to reflect the changes we made.
1135 /// Note that it's possible that not all code was copied over, so only
1136 /// some edges of the callgraph may remain.
1137 static void UpdateCallGraphAfterInlining(CallSite CS,
1138                                          Function::iterator FirstNewBlock,
1139                                          ValueToValueMapTy &VMap,
1140                                          InlineFunctionInfo &IFI) {
1141   CallGraph &CG = *IFI.CG;
1142   const Function *Caller = CS.getCaller();
1143   const Function *Callee = CS.getCalledFunction();
1144   CallGraphNode *CalleeNode = CG[Callee];
1145   CallGraphNode *CallerNode = CG[Caller];
1146 
1147   // Since we inlined some uninlined call sites in the callee into the caller,
1148   // add edges from the caller to all of the callees of the callee.
1149   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1150 
1151   // Consider the case where CalleeNode == CallerNode.
1152   CallGraphNode::CalledFunctionsVector CallCache;
1153   if (CalleeNode == CallerNode) {
1154     CallCache.assign(I, E);
1155     I = CallCache.begin();
1156     E = CallCache.end();
1157   }
1158 
1159   for (; I != E; ++I) {
1160     const Value *OrigCall = I->first;
1161 
1162     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1163     // Only copy the edge if the call was inlined!
1164     if (VMI == VMap.end() || VMI->second == nullptr)
1165       continue;
1166 
1167     // If the call was inlined, but then constant folded, there is no edge to
1168     // add.  Check for this case.
1169     Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
1170     if (!NewCall)
1171       continue;
1172 
1173     // We do not treat intrinsic calls like real function calls because we
1174     // expect them to become inline code; do not add an edge for an intrinsic.
1175     CallSite CS = CallSite(NewCall);
1176     if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
1177       continue;
1178 
1179     // Remember that this call site got inlined for the client of
1180     // InlineFunction.
1181     IFI.InlinedCalls.push_back(NewCall);
1182 
1183     // It's possible that inlining the callsite will cause it to go from an
1184     // indirect to a direct call by resolving a function pointer.  If this
1185     // happens, set the callee of the new call site to a more precise
1186     // destination.  This can also happen if the call graph node of the caller
1187     // was just unnecessarily imprecise.
1188     if (!I->second->getFunction())
1189       if (Function *F = CallSite(NewCall).getCalledFunction()) {
1190         // Indirect call site resolved to direct call.
1191         CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
1192 
1193         continue;
1194       }
1195 
1196     CallerNode->addCalledFunction(CallSite(NewCall), I->second);
1197   }
1198 
1199   // Update the call graph by deleting the edge from Callee to Caller.  We must
1200   // do this after the loop above in case Caller and Callee are the same.
1201   CallerNode->removeCallEdgeFor(CS);
1202 }
1203 
1204 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1205                                     BasicBlock *InsertBlock,
1206                                     InlineFunctionInfo &IFI) {
1207   Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1208   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1209 
1210   Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1211 
1212   // Always generate a memcpy of alignment 1 here because we don't know
1213   // the alignment of the src pointer.  Other optimizations can infer
1214   // better alignment.
1215   Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1);
1216 }
1217 
1218 /// When inlining a call site that has a byval argument,
1219 /// we have to make the implicit memcpy explicit by adding it.
1220 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1221                                   const Function *CalledFunc,
1222                                   InlineFunctionInfo &IFI,
1223                                   unsigned ByValAlignment) {
1224   PointerType *ArgTy = cast<PointerType>(Arg->getType());
1225   Type *AggTy = ArgTy->getElementType();
1226 
1227   Function *Caller = TheCall->getFunction();
1228   const DataLayout &DL = Caller->getParent()->getDataLayout();
1229 
1230   // If the called function is readonly, then it could not mutate the caller's
1231   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1232   // temporary.
1233   if (CalledFunc->onlyReadsMemory()) {
1234     // If the byval argument has a specified alignment that is greater than the
1235     // passed in pointer, then we either have to round up the input pointer or
1236     // give up on this transformation.
1237     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1238       return Arg;
1239 
1240     AssumptionCache *AC =
1241         IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
1242 
1243     // If the pointer is already known to be sufficiently aligned, or if we can
1244     // round it up to a larger alignment, then we don't need a temporary.
1245     if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >=
1246         ByValAlignment)
1247       return Arg;
1248 
1249     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1250     // for code quality, but rarely happens and is required for correctness.
1251   }
1252 
1253   // Create the alloca.  If we have DataLayout, use nice alignment.
1254   unsigned Align = DL.getPrefTypeAlignment(AggTy);
1255 
1256   // If the byval had an alignment specified, we *must* use at least that
1257   // alignment, as it is required by the byval argument (and uses of the
1258   // pointer inside the callee).
1259   Align = std::max(Align, ByValAlignment);
1260 
1261   Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(),
1262                                     nullptr, Align, Arg->getName(),
1263                                     &*Caller->begin()->begin());
1264   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1265 
1266   // Uses of the argument in the function should use our new alloca
1267   // instead.
1268   return NewAlloca;
1269 }
1270 
1271 // Check whether this Value is used by a lifetime intrinsic.
1272 static bool isUsedByLifetimeMarker(Value *V) {
1273   for (User *U : V->users()) {
1274     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
1275       switch (II->getIntrinsicID()) {
1276       default: break;
1277       case Intrinsic::lifetime_start:
1278       case Intrinsic::lifetime_end:
1279         return true;
1280       }
1281     }
1282   }
1283   return false;
1284 }
1285 
1286 // Check whether the given alloca already has
1287 // lifetime.start or lifetime.end intrinsics.
1288 static bool hasLifetimeMarkers(AllocaInst *AI) {
1289   Type *Ty = AI->getType();
1290   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1291                                        Ty->getPointerAddressSpace());
1292   if (Ty == Int8PtrTy)
1293     return isUsedByLifetimeMarker(AI);
1294 
1295   // Do a scan to find all the casts to i8*.
1296   for (User *U : AI->users()) {
1297     if (U->getType() != Int8PtrTy) continue;
1298     if (U->stripPointerCasts() != AI) continue;
1299     if (isUsedByLifetimeMarker(U))
1300       return true;
1301   }
1302   return false;
1303 }
1304 
1305 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1306 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1307 /// cannot be static.
1308 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1309   return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1310 }
1311 
1312 /// Update inlined instructions' line numbers to
1313 /// to encode location where these instructions are inlined.
1314 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1315                              Instruction *TheCall, bool CalleeHasDebugInfo) {
1316   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1317   if (!TheCallDL)
1318     return;
1319 
1320   auto &Ctx = Fn->getContext();
1321   DILocation *InlinedAtNode = TheCallDL;
1322 
1323   // Create a unique call site, not to be confused with any other call from the
1324   // same location.
1325   InlinedAtNode = DILocation::getDistinct(
1326       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1327       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1328 
1329   // Cache the inlined-at nodes as they're built so they are reused, without
1330   // this every instruction's inlined-at chain would become distinct from each
1331   // other.
1332   DenseMap<const MDNode *, MDNode *> IANodes;
1333 
1334   for (; FI != Fn->end(); ++FI) {
1335     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1336          BI != BE; ++BI) {
1337       if (DebugLoc DL = BI->getDebugLoc()) {
1338         auto IA = DebugLoc::appendInlinedAt(DL, InlinedAtNode, BI->getContext(),
1339                                             IANodes);
1340         auto IDL = DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), IA);
1341         BI->setDebugLoc(IDL);
1342         continue;
1343       }
1344 
1345       if (CalleeHasDebugInfo)
1346         continue;
1347 
1348       // If the inlined instruction has no line number, make it look as if it
1349       // originates from the call location. This is important for
1350       // ((__always_inline__, __nodebug__)) functions which must use caller
1351       // location for all instructions in their function body.
1352 
1353       // Don't update static allocas, as they may get moved later.
1354       if (auto *AI = dyn_cast<AllocaInst>(BI))
1355         if (allocaWouldBeStaticInEntry(AI))
1356           continue;
1357 
1358       BI->setDebugLoc(TheCallDL);
1359     }
1360   }
1361 }
1362 /// Update the block frequencies of the caller after a callee has been inlined.
1363 ///
1364 /// Each block cloned into the caller has its block frequency scaled by the
1365 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1366 /// callee's entry block gets the same frequency as the callsite block and the
1367 /// relative frequencies of all cloned blocks remain the same after cloning.
1368 static void updateCallerBFI(BasicBlock *CallSiteBlock,
1369                             const ValueToValueMapTy &VMap,
1370                             BlockFrequencyInfo *CallerBFI,
1371                             BlockFrequencyInfo *CalleeBFI,
1372                             const BasicBlock &CalleeEntryBlock) {
1373   SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1374   for (auto const &Entry : VMap) {
1375     if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1376       continue;
1377     auto *OrigBB = cast<BasicBlock>(Entry.first);
1378     auto *ClonedBB = cast<BasicBlock>(Entry.second);
1379     uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1380     if (!ClonedBBs.insert(ClonedBB).second) {
1381       // Multiple blocks in the callee might get mapped to one cloned block in
1382       // the caller since we prune the callee as we clone it. When that happens,
1383       // we want to use the maximum among the original blocks' frequencies.
1384       uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1385       if (NewFreq > Freq)
1386         Freq = NewFreq;
1387     }
1388     CallerBFI->setBlockFreq(ClonedBB, Freq);
1389   }
1390   BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1391   CallerBFI->setBlockFreqAndScale(
1392       EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1393       ClonedBBs);
1394 }
1395 
1396 /// Update the branch metadata for cloned call instructions.
1397 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1398                               const Optional<uint64_t> &CalleeEntryCount,
1399                               const Instruction *TheCall,
1400                               ProfileSummaryInfo *PSI,
1401                               BlockFrequencyInfo *CallerBFI) {
1402   if (!CalleeEntryCount.hasValue() || CalleeEntryCount.getValue() < 1)
1403     return;
1404   Optional<uint64_t> CallSiteCount =
1405       PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
1406   uint64_t CallCount =
1407       std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0,
1408                CalleeEntryCount.getValue());
1409 
1410   for (auto const &Entry : VMap)
1411     if (isa<CallInst>(Entry.first))
1412       if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1413         CI->updateProfWeight(CallCount, CalleeEntryCount.getValue());
1414   for (BasicBlock &BB : *Callee)
1415     // No need to update the callsite if it is pruned during inlining.
1416     if (VMap.count(&BB))
1417       for (Instruction &I : BB)
1418         if (CallInst *CI = dyn_cast<CallInst>(&I))
1419           CI->updateProfWeight(CalleeEntryCount.getValue() - CallCount,
1420                                CalleeEntryCount.getValue());
1421 }
1422 
1423 /// Update the entry count of callee after inlining.
1424 ///
1425 /// The callsite's block count is subtracted from the callee's function entry
1426 /// count.
1427 static void updateCalleeCount(BlockFrequencyInfo *CallerBFI, BasicBlock *CallBB,
1428                               Instruction *CallInst, Function *Callee,
1429                               ProfileSummaryInfo *PSI) {
1430   // If the callee has a original count of N, and the estimated count of
1431   // callsite is M, the new callee count is set to N - M. M is estimated from
1432   // the caller's entry count, its entry block frequency and the block frequency
1433   // of the callsite.
1434   Optional<uint64_t> CalleeCount = Callee->getEntryCount();
1435   if (!CalleeCount.hasValue() || !PSI)
1436     return;
1437   Optional<uint64_t> CallCount = PSI->getProfileCount(CallInst, CallerBFI);
1438   if (!CallCount.hasValue())
1439     return;
1440   // Since CallSiteCount is an estimate, it could exceed the original callee
1441   // count and has to be set to 0.
1442   if (CallCount.getValue() > CalleeCount.getValue())
1443     Callee->setEntryCount(0);
1444   else
1445     Callee->setEntryCount(CalleeCount.getValue() - CallCount.getValue());
1446 }
1447 
1448 /// This function inlines the called function into the basic block of the
1449 /// caller. This returns false if it is not possible to inline this call.
1450 /// The program is still in a well defined state if this occurs though.
1451 ///
1452 /// Note that this only does one level of inlining.  For example, if the
1453 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1454 /// exists in the instruction stream.  Similarly this will inline a recursive
1455 /// function by one level.
1456 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
1457                           AAResults *CalleeAAR, bool InsertLifetime) {
1458   Instruction *TheCall = CS.getInstruction();
1459   assert(TheCall->getParent() && TheCall->getFunction()
1460          && "Instruction not in function!");
1461 
1462   // If IFI has any state in it, zap it before we fill it in.
1463   IFI.reset();
1464 
1465   Function *CalledFunc = CS.getCalledFunction();
1466   if (!CalledFunc ||              // Can't inline external function or indirect
1467       CalledFunc->isDeclaration() || // call, or call to a vararg function!
1468       CalledFunc->getFunctionType()->isVarArg()) return false;
1469 
1470   // The inliner does not know how to inline through calls with operand bundles
1471   // in general ...
1472   if (CS.hasOperandBundles()) {
1473     for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1474       uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
1475       // ... but it knows how to inline through "deopt" operand bundles ...
1476       if (Tag == LLVMContext::OB_deopt)
1477         continue;
1478       // ... and "funclet" operand bundles.
1479       if (Tag == LLVMContext::OB_funclet)
1480         continue;
1481 
1482       return false;
1483     }
1484   }
1485 
1486   // If the call to the callee cannot throw, set the 'nounwind' flag on any
1487   // calls that we inline.
1488   bool MarkNoUnwind = CS.doesNotThrow();
1489 
1490   BasicBlock *OrigBB = TheCall->getParent();
1491   Function *Caller = OrigBB->getParent();
1492 
1493   // GC poses two hazards to inlining, which only occur when the callee has GC:
1494   //  1. If the caller has no GC, then the callee's GC must be propagated to the
1495   //     caller.
1496   //  2. If the caller has a differing GC, it is invalid to inline.
1497   if (CalledFunc->hasGC()) {
1498     if (!Caller->hasGC())
1499       Caller->setGC(CalledFunc->getGC());
1500     else if (CalledFunc->getGC() != Caller->getGC())
1501       return false;
1502   }
1503 
1504   // Get the personality function from the callee if it contains a landing pad.
1505   Constant *CalledPersonality =
1506       CalledFunc->hasPersonalityFn()
1507           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1508           : nullptr;
1509 
1510   // Find the personality function used by the landing pads of the caller. If it
1511   // exists, then check to see that it matches the personality function used in
1512   // the callee.
1513   Constant *CallerPersonality =
1514       Caller->hasPersonalityFn()
1515           ? Caller->getPersonalityFn()->stripPointerCasts()
1516           : nullptr;
1517   if (CalledPersonality) {
1518     if (!CallerPersonality)
1519       Caller->setPersonalityFn(CalledPersonality);
1520     // If the personality functions match, then we can perform the
1521     // inlining. Otherwise, we can't inline.
1522     // TODO: This isn't 100% true. Some personality functions are proper
1523     //       supersets of others and can be used in place of the other.
1524     else if (CalledPersonality != CallerPersonality)
1525       return false;
1526   }
1527 
1528   // We need to figure out which funclet the callsite was in so that we may
1529   // properly nest the callee.
1530   Instruction *CallSiteEHPad = nullptr;
1531   if (CallerPersonality) {
1532     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1533     if (isFuncletEHPersonality(Personality)) {
1534       Optional<OperandBundleUse> ParentFunclet =
1535           CS.getOperandBundle(LLVMContext::OB_funclet);
1536       if (ParentFunclet)
1537         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1538 
1539       // OK, the inlining site is legal.  What about the target function?
1540 
1541       if (CallSiteEHPad) {
1542         if (Personality == EHPersonality::MSVC_CXX) {
1543           // The MSVC personality cannot tolerate catches getting inlined into
1544           // cleanup funclets.
1545           if (isa<CleanupPadInst>(CallSiteEHPad)) {
1546             // Ok, the call site is within a cleanuppad.  Let's check the callee
1547             // for catchpads.
1548             for (const BasicBlock &CalledBB : *CalledFunc) {
1549               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1550                 return false;
1551             }
1552           }
1553         } else if (isAsynchronousEHPersonality(Personality)) {
1554           // SEH is even less tolerant, there may not be any sort of exceptional
1555           // funclet in the callee.
1556           for (const BasicBlock &CalledBB : *CalledFunc) {
1557             if (CalledBB.isEHPad())
1558               return false;
1559           }
1560         }
1561       }
1562     }
1563   }
1564 
1565   // Determine if we are dealing with a call in an EHPad which does not unwind
1566   // to caller.
1567   bool EHPadForCallUnwindsLocally = false;
1568   if (CallSiteEHPad && CS.isCall()) {
1569     UnwindDestMemoTy FuncletUnwindMap;
1570     Value *CallSiteUnwindDestToken =
1571         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1572 
1573     EHPadForCallUnwindsLocally =
1574         CallSiteUnwindDestToken &&
1575         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1576   }
1577 
1578   // Get an iterator to the last basic block in the function, which will have
1579   // the new function inlined after it.
1580   Function::iterator LastBlock = --Caller->end();
1581 
1582   // Make sure to capture all of the return instructions from the cloned
1583   // function.
1584   SmallVector<ReturnInst*, 8> Returns;
1585   ClonedCodeInfo InlinedFunctionInfo;
1586   Function::iterator FirstNewBlock;
1587 
1588   { // Scope to destroy VMap after cloning.
1589     ValueToValueMapTy VMap;
1590     // Keep a list of pair (dst, src) to emit byval initializations.
1591     SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1592 
1593     auto &DL = Caller->getParent()->getDataLayout();
1594 
1595     assert(CalledFunc->arg_size() == CS.arg_size() &&
1596            "No varargs calls can be inlined!");
1597 
1598     // Calculate the vector of arguments to pass into the function cloner, which
1599     // matches up the formal to the actual argument values.
1600     CallSite::arg_iterator AI = CS.arg_begin();
1601     unsigned ArgNo = 0;
1602     for (Function::arg_iterator I = CalledFunc->arg_begin(),
1603          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1604       Value *ActualArg = *AI;
1605 
1606       // When byval arguments actually inlined, we need to make the copy implied
1607       // by them explicit.  However, we don't do this if the callee is readonly
1608       // or readnone, because the copy would be unneeded: the callee doesn't
1609       // modify the struct.
1610       if (CS.isByValArgument(ArgNo)) {
1611         ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
1612                                         CalledFunc->getParamAlignment(ArgNo));
1613         if (ActualArg != *AI)
1614           ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1615       }
1616 
1617       VMap[&*I] = ActualArg;
1618     }
1619 
1620     // Add alignment assumptions if necessary. We do this before the inlined
1621     // instructions are actually cloned into the caller so that we can easily
1622     // check what will be known at the start of the inlined code.
1623     AddAlignmentAssumptions(CS, IFI);
1624 
1625     // We want the inliner to prune the code as it copies.  We would LOVE to
1626     // have no dead or constant instructions leftover after inlining occurs
1627     // (which can happen, e.g., because an argument was constant), but we'll be
1628     // happy with whatever the cloner can do.
1629     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1630                               /*ModuleLevelChanges=*/false, Returns, ".i",
1631                               &InlinedFunctionInfo, TheCall);
1632     // Remember the first block that is newly cloned over.
1633     FirstNewBlock = LastBlock; ++FirstNewBlock;
1634 
1635     if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
1636       // Update the BFI of blocks cloned into the caller.
1637       updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
1638                       CalledFunc->front());
1639 
1640     updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall,
1641                       IFI.PSI, IFI.CallerBFI);
1642     // Update the profile count of callee.
1643     updateCalleeCount(IFI.CallerBFI, OrigBB, TheCall, CalledFunc, IFI.PSI);
1644 
1645     // Inject byval arguments initialization.
1646     for (std::pair<Value*, Value*> &Init : ByValInit)
1647       HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1648                               &*FirstNewBlock, IFI);
1649 
1650     Optional<OperandBundleUse> ParentDeopt =
1651         CS.getOperandBundle(LLVMContext::OB_deopt);
1652     if (ParentDeopt) {
1653       SmallVector<OperandBundleDef, 2> OpDefs;
1654 
1655       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1656         Instruction *I = dyn_cast_or_null<Instruction>(VH);
1657         if (!I) continue;  // instruction was DCE'd or RAUW'ed to undef
1658 
1659         OpDefs.clear();
1660 
1661         CallSite ICS(I);
1662         OpDefs.reserve(ICS.getNumOperandBundles());
1663 
1664         for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
1665           auto ChildOB = ICS.getOperandBundleAt(i);
1666           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1667             // If the inlined call has other operand bundles, let them be
1668             OpDefs.emplace_back(ChildOB);
1669             continue;
1670           }
1671 
1672           // It may be useful to separate this logic (of handling operand
1673           // bundles) out to a separate "policy" component if this gets crowded.
1674           // Prepend the parent's deoptimization continuation to the newly
1675           // inlined call's deoptimization continuation.
1676           std::vector<Value *> MergedDeoptArgs;
1677           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1678                                   ChildOB.Inputs.size());
1679 
1680           MergedDeoptArgs.insert(MergedDeoptArgs.end(),
1681                                  ParentDeopt->Inputs.begin(),
1682                                  ParentDeopt->Inputs.end());
1683           MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
1684                                  ChildOB.Inputs.end());
1685 
1686           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
1687         }
1688 
1689         Instruction *NewI = nullptr;
1690         if (isa<CallInst>(I))
1691           NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
1692         else
1693           NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
1694 
1695         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
1696         // this even if the call returns void.
1697         I->replaceAllUsesWith(NewI);
1698 
1699         VH = nullptr;
1700         I->eraseFromParent();
1701       }
1702     }
1703 
1704     // Update the callgraph if requested.
1705     if (IFI.CG)
1706       UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1707 
1708     // For 'nodebug' functions, the associated DISubprogram is always null.
1709     // Conservatively avoid propagating the callsite debug location to
1710     // instructions inlined from a function whose DISubprogram is not null.
1711     fixupLineNumbers(Caller, FirstNewBlock, TheCall,
1712                      CalledFunc->getSubprogram() != nullptr);
1713 
1714     // Clone existing noalias metadata if necessary.
1715     CloneAliasScopeMetadata(CS, VMap);
1716 
1717     // Add noalias metadata if necessary.
1718     AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
1719 
1720     // Propagate llvm.mem.parallel_loop_access if necessary.
1721     PropagateParallelLoopAccessMetadata(CS, VMap);
1722 
1723     // Register any cloned assumptions.
1724     if (IFI.GetAssumptionCache)
1725       for (BasicBlock &NewBlock :
1726            make_range(FirstNewBlock->getIterator(), Caller->end()))
1727         for (Instruction &I : NewBlock) {
1728           if (auto *II = dyn_cast<IntrinsicInst>(&I))
1729             if (II->getIntrinsicID() == Intrinsic::assume)
1730               (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II);
1731         }
1732   }
1733 
1734   // If there are any alloca instructions in the block that used to be the entry
1735   // block for the callee, move them to the entry block of the caller.  First
1736   // calculate which instruction they should be inserted before.  We insert the
1737   // instructions at the end of the current alloca list.
1738   {
1739     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1740     for (BasicBlock::iterator I = FirstNewBlock->begin(),
1741          E = FirstNewBlock->end(); I != E; ) {
1742       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1743       if (!AI) continue;
1744 
1745       // If the alloca is now dead, remove it.  This often occurs due to code
1746       // specialization.
1747       if (AI->use_empty()) {
1748         AI->eraseFromParent();
1749         continue;
1750       }
1751 
1752       if (!allocaWouldBeStaticInEntry(AI))
1753         continue;
1754 
1755       // Keep track of the static allocas that we inline into the caller.
1756       IFI.StaticAllocas.push_back(AI);
1757 
1758       // Scan for the block of allocas that we can move over, and move them
1759       // all at once.
1760       while (isa<AllocaInst>(I) &&
1761              allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
1762         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1763         ++I;
1764       }
1765 
1766       // Transfer all of the allocas over in a block.  Using splice means
1767       // that the instructions aren't removed from the symbol table, then
1768       // reinserted.
1769       Caller->getEntryBlock().getInstList().splice(
1770           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
1771     }
1772     // Move any dbg.declares describing the allocas into the entry basic block.
1773     DIBuilder DIB(*Caller->getParent());
1774     for (auto &AI : IFI.StaticAllocas)
1775       replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false);
1776   }
1777 
1778   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
1779   if (InlinedFunctionInfo.ContainsCalls) {
1780     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1781     if (CallInst *CI = dyn_cast<CallInst>(TheCall))
1782       CallSiteTailKind = CI->getTailCallKind();
1783 
1784     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
1785          ++BB) {
1786       for (Instruction &I : *BB) {
1787         CallInst *CI = dyn_cast<CallInst>(&I);
1788         if (!CI)
1789           continue;
1790 
1791         if (Function *F = CI->getCalledFunction())
1792           InlinedDeoptimizeCalls |=
1793               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
1794 
1795         // We need to reduce the strength of any inlined tail calls.  For
1796         // musttail, we have to avoid introducing potential unbounded stack
1797         // growth.  For example, if functions 'f' and 'g' are mutually recursive
1798         // with musttail, we can inline 'g' into 'f' so long as we preserve
1799         // musttail on the cloned call to 'f'.  If either the inlined call site
1800         // or the cloned call site is *not* musttail, the program already has
1801         // one frame of stack growth, so it's safe to remove musttail.  Here is
1802         // a table of example transformations:
1803         //
1804         //    f -> musttail g -> musttail f  ==>  f -> musttail f
1805         //    f -> musttail g ->     tail f  ==>  f ->     tail f
1806         //    f ->          g -> musttail f  ==>  f ->          f
1807         //    f ->          g ->     tail f  ==>  f ->          f
1808         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
1809         ChildTCK = std::min(CallSiteTailKind, ChildTCK);
1810         CI->setTailCallKind(ChildTCK);
1811         InlinedMustTailCalls |= CI->isMustTailCall();
1812 
1813         // Calls inlined through a 'nounwind' call site should be marked
1814         // 'nounwind'.
1815         if (MarkNoUnwind)
1816           CI->setDoesNotThrow();
1817       }
1818     }
1819   }
1820 
1821   // Leave lifetime markers for the static alloca's, scoping them to the
1822   // function we just inlined.
1823   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
1824     IRBuilder<> builder(&FirstNewBlock->front());
1825     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1826       AllocaInst *AI = IFI.StaticAllocas[ai];
1827       // Don't mark swifterror allocas. They can't have bitcast uses.
1828       if (AI->isSwiftError())
1829         continue;
1830 
1831       // If the alloca is already scoped to something smaller than the whole
1832       // function then there's no need to add redundant, less accurate markers.
1833       if (hasLifetimeMarkers(AI))
1834         continue;
1835 
1836       // Try to determine the size of the allocation.
1837       ConstantInt *AllocaSize = nullptr;
1838       if (ConstantInt *AIArraySize =
1839           dyn_cast<ConstantInt>(AI->getArraySize())) {
1840         auto &DL = Caller->getParent()->getDataLayout();
1841         Type *AllocaType = AI->getAllocatedType();
1842         uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
1843         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
1844 
1845         // Don't add markers for zero-sized allocas.
1846         if (AllocaArraySize == 0)
1847           continue;
1848 
1849         // Check that array size doesn't saturate uint64_t and doesn't
1850         // overflow when it's multiplied by type size.
1851         if (AllocaArraySize != ~0ULL &&
1852             UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
1853           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
1854                                         AllocaArraySize * AllocaTypeSize);
1855         }
1856       }
1857 
1858       builder.CreateLifetimeStart(AI, AllocaSize);
1859       for (ReturnInst *RI : Returns) {
1860         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
1861         // call and a return.  The return kills all local allocas.
1862         if (InlinedMustTailCalls &&
1863             RI->getParent()->getTerminatingMustTailCall())
1864           continue;
1865         if (InlinedDeoptimizeCalls &&
1866             RI->getParent()->getTerminatingDeoptimizeCall())
1867           continue;
1868         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
1869       }
1870     }
1871   }
1872 
1873   // If the inlined code contained dynamic alloca instructions, wrap the inlined
1874   // code with llvm.stacksave/llvm.stackrestore intrinsics.
1875   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
1876     Module *M = Caller->getParent();
1877     // Get the two intrinsics we care about.
1878     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
1879     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
1880 
1881     // Insert the llvm.stacksave.
1882     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
1883                              .CreateCall(StackSave, {}, "savedstack");
1884 
1885     // Insert a call to llvm.stackrestore before any return instructions in the
1886     // inlined function.
1887     for (ReturnInst *RI : Returns) {
1888       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
1889       // call and a return.  The return will restore the stack pointer.
1890       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
1891         continue;
1892       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
1893         continue;
1894       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
1895     }
1896   }
1897 
1898   // If we are inlining for an invoke instruction, we must make sure to rewrite
1899   // any call instructions into invoke instructions.  This is sensitive to which
1900   // funclet pads were top-level in the inlinee, so must be done before
1901   // rewriting the "parent pad" links.
1902   if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
1903     BasicBlock *UnwindDest = II->getUnwindDest();
1904     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
1905     if (isa<LandingPadInst>(FirstNonPHI)) {
1906       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1907     } else {
1908       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1909     }
1910   }
1911 
1912   // Update the lexical scopes of the new funclets and callsites.
1913   // Anything that had 'none' as its parent is now nested inside the callsite's
1914   // EHPad.
1915 
1916   if (CallSiteEHPad) {
1917     for (Function::iterator BB = FirstNewBlock->getIterator(),
1918                             E = Caller->end();
1919          BB != E; ++BB) {
1920       // Add bundle operands to any top-level call sites.
1921       SmallVector<OperandBundleDef, 1> OpBundles;
1922       for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
1923         Instruction *I = &*BBI++;
1924         CallSite CS(I);
1925         if (!CS)
1926           continue;
1927 
1928         // Skip call sites which are nounwind intrinsics.
1929         auto *CalledFn =
1930             dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
1931         if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
1932           continue;
1933 
1934         // Skip call sites which already have a "funclet" bundle.
1935         if (CS.getOperandBundle(LLVMContext::OB_funclet))
1936           continue;
1937 
1938         CS.getOperandBundlesAsDefs(OpBundles);
1939         OpBundles.emplace_back("funclet", CallSiteEHPad);
1940 
1941         Instruction *NewInst;
1942         if (CS.isCall())
1943           NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
1944         else
1945           NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
1946         NewInst->takeName(I);
1947         I->replaceAllUsesWith(NewInst);
1948         I->eraseFromParent();
1949 
1950         OpBundles.clear();
1951       }
1952 
1953       // It is problematic if the inlinee has a cleanupret which unwinds to
1954       // caller and we inline it into a call site which doesn't unwind but into
1955       // an EH pad that does.  Such an edge must be dynamically unreachable.
1956       // As such, we replace the cleanupret with unreachable.
1957       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
1958         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
1959           changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
1960 
1961       Instruction *I = BB->getFirstNonPHI();
1962       if (!I->isEHPad())
1963         continue;
1964 
1965       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
1966         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
1967           CatchSwitch->setParentPad(CallSiteEHPad);
1968       } else {
1969         auto *FPI = cast<FuncletPadInst>(I);
1970         if (isa<ConstantTokenNone>(FPI->getParentPad()))
1971           FPI->setParentPad(CallSiteEHPad);
1972       }
1973     }
1974   }
1975 
1976   if (InlinedDeoptimizeCalls) {
1977     // We need to at least remove the deoptimizing returns from the Return set,
1978     // so that the control flow from those returns does not get merged into the
1979     // caller (but terminate it instead).  If the caller's return type does not
1980     // match the callee's return type, we also need to change the return type of
1981     // the intrinsic.
1982     if (Caller->getReturnType() == TheCall->getType()) {
1983       auto NewEnd = remove_if(Returns, [](ReturnInst *RI) {
1984         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
1985       });
1986       Returns.erase(NewEnd, Returns.end());
1987     } else {
1988       SmallVector<ReturnInst *, 8> NormalReturns;
1989       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
1990           Caller->getParent(), Intrinsic::experimental_deoptimize,
1991           {Caller->getReturnType()});
1992 
1993       for (ReturnInst *RI : Returns) {
1994         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
1995         if (!DeoptCall) {
1996           NormalReturns.push_back(RI);
1997           continue;
1998         }
1999 
2000         // The calling convention on the deoptimize call itself may be bogus,
2001         // since the code we're inlining may have undefined behavior (and may
2002         // never actually execute at runtime); but all
2003         // @llvm.experimental.deoptimize declarations have to have the same
2004         // calling convention in a well-formed module.
2005         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2006         NewDeoptIntrinsic->setCallingConv(CallingConv);
2007         auto *CurBB = RI->getParent();
2008         RI->eraseFromParent();
2009 
2010         SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
2011                                          DeoptCall->arg_end());
2012 
2013         SmallVector<OperandBundleDef, 1> OpBundles;
2014         DeoptCall->getOperandBundlesAsDefs(OpBundles);
2015         DeoptCall->eraseFromParent();
2016         assert(!OpBundles.empty() &&
2017                "Expected at least the deopt operand bundle");
2018 
2019         IRBuilder<> Builder(CurBB);
2020         CallInst *NewDeoptCall =
2021             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2022         NewDeoptCall->setCallingConv(CallingConv);
2023         if (NewDeoptCall->getType()->isVoidTy())
2024           Builder.CreateRetVoid();
2025         else
2026           Builder.CreateRet(NewDeoptCall);
2027       }
2028 
2029       // Leave behind the normal returns so we can merge control flow.
2030       std::swap(Returns, NormalReturns);
2031     }
2032   }
2033 
2034   // Handle any inlined musttail call sites.  In order for a new call site to be
2035   // musttail, the source of the clone and the inlined call site must have been
2036   // musttail.  Therefore it's safe to return without merging control into the
2037   // phi below.
2038   if (InlinedMustTailCalls) {
2039     // Check if we need to bitcast the result of any musttail calls.
2040     Type *NewRetTy = Caller->getReturnType();
2041     bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
2042 
2043     // Handle the returns preceded by musttail calls separately.
2044     SmallVector<ReturnInst *, 8> NormalReturns;
2045     for (ReturnInst *RI : Returns) {
2046       CallInst *ReturnedMustTail =
2047           RI->getParent()->getTerminatingMustTailCall();
2048       if (!ReturnedMustTail) {
2049         NormalReturns.push_back(RI);
2050         continue;
2051       }
2052       if (!NeedBitCast)
2053         continue;
2054 
2055       // Delete the old return and any preceding bitcast.
2056       BasicBlock *CurBB = RI->getParent();
2057       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2058       RI->eraseFromParent();
2059       if (OldCast)
2060         OldCast->eraseFromParent();
2061 
2062       // Insert a new bitcast and return with the right type.
2063       IRBuilder<> Builder(CurBB);
2064       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2065     }
2066 
2067     // Leave behind the normal returns so we can merge control flow.
2068     std::swap(Returns, NormalReturns);
2069   }
2070 
2071   // Now that all of the transforms on the inlined code have taken place but
2072   // before we splice the inlined code into the CFG and lose track of which
2073   // blocks were actually inlined, collect the call sites. We only do this if
2074   // call graph updates weren't requested, as those provide value handle based
2075   // tracking of inlined call sites instead.
2076   if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2077     // Otherwise just collect the raw call sites that were inlined.
2078     for (BasicBlock &NewBB :
2079          make_range(FirstNewBlock->getIterator(), Caller->end()))
2080       for (Instruction &I : NewBB)
2081         if (auto CS = CallSite(&I))
2082           IFI.InlinedCallSites.push_back(CS);
2083   }
2084 
2085   // If we cloned in _exactly one_ basic block, and if that block ends in a
2086   // return instruction, we splice the body of the inlined callee directly into
2087   // the calling basic block.
2088   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2089     // Move all of the instructions right before the call.
2090     OrigBB->getInstList().splice(TheCall->getIterator(),
2091                                  FirstNewBlock->getInstList(),
2092                                  FirstNewBlock->begin(), FirstNewBlock->end());
2093     // Remove the cloned basic block.
2094     Caller->getBasicBlockList().pop_back();
2095 
2096     // If the call site was an invoke instruction, add a branch to the normal
2097     // destination.
2098     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2099       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
2100       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2101     }
2102 
2103     // If the return instruction returned a value, replace uses of the call with
2104     // uses of the returned value.
2105     if (!TheCall->use_empty()) {
2106       ReturnInst *R = Returns[0];
2107       if (TheCall == R->getReturnValue())
2108         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2109       else
2110         TheCall->replaceAllUsesWith(R->getReturnValue());
2111     }
2112     // Since we are now done with the Call/Invoke, we can delete it.
2113     TheCall->eraseFromParent();
2114 
2115     // Since we are now done with the return instruction, delete it also.
2116     Returns[0]->eraseFromParent();
2117 
2118     // We are now done with the inlining.
2119     return true;
2120   }
2121 
2122   // Otherwise, we have the normal case, of more than one block to inline or
2123   // multiple return sites.
2124 
2125   // We want to clone the entire callee function into the hole between the
2126   // "starter" and "ender" blocks.  How we accomplish this depends on whether
2127   // this is an invoke instruction or a call instruction.
2128   BasicBlock *AfterCallBB;
2129   BranchInst *CreatedBranchToNormalDest = nullptr;
2130   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2131 
2132     // Add an unconditional branch to make this look like the CallInst case...
2133     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
2134 
2135     // Split the basic block.  This guarantees that no PHI nodes will have to be
2136     // updated due to new incoming edges, and make the invoke case more
2137     // symmetric to the call case.
2138     AfterCallBB =
2139         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2140                                 CalledFunc->getName() + ".exit");
2141 
2142   } else {  // It's a call
2143     // If this is a call instruction, we need to split the basic block that
2144     // the call lives in.
2145     //
2146     AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
2147                                           CalledFunc->getName() + ".exit");
2148   }
2149 
2150   if (IFI.CallerBFI) {
2151     // Copy original BB's block frequency to AfterCallBB
2152     IFI.CallerBFI->setBlockFreq(
2153         AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2154   }
2155 
2156   // Change the branch that used to go to AfterCallBB to branch to the first
2157   // basic block of the inlined function.
2158   //
2159   TerminatorInst *Br = OrigBB->getTerminator();
2160   assert(Br && Br->getOpcode() == Instruction::Br &&
2161          "splitBasicBlock broken!");
2162   Br->setOperand(0, &*FirstNewBlock);
2163 
2164   // Now that the function is correct, make it a little bit nicer.  In
2165   // particular, move the basic blocks inserted from the end of the function
2166   // into the space made by splitting the source basic block.
2167   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2168                                      Caller->getBasicBlockList(), FirstNewBlock,
2169                                      Caller->end());
2170 
2171   // Handle all of the return instructions that we just cloned in, and eliminate
2172   // any users of the original call/invoke instruction.
2173   Type *RTy = CalledFunc->getReturnType();
2174 
2175   PHINode *PHI = nullptr;
2176   if (Returns.size() > 1) {
2177     // The PHI node should go at the front of the new basic block to merge all
2178     // possible incoming values.
2179     if (!TheCall->use_empty()) {
2180       PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
2181                             &AfterCallBB->front());
2182       // Anything that used the result of the function call should now use the
2183       // PHI node as their operand.
2184       TheCall->replaceAllUsesWith(PHI);
2185     }
2186 
2187     // Loop over all of the return instructions adding entries to the PHI node
2188     // as appropriate.
2189     if (PHI) {
2190       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2191         ReturnInst *RI = Returns[i];
2192         assert(RI->getReturnValue()->getType() == PHI->getType() &&
2193                "Ret value not consistent in function!");
2194         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2195       }
2196     }
2197 
2198     // Add a branch to the merge points and remove return instructions.
2199     DebugLoc Loc;
2200     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2201       ReturnInst *RI = Returns[i];
2202       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2203       Loc = RI->getDebugLoc();
2204       BI->setDebugLoc(Loc);
2205       RI->eraseFromParent();
2206     }
2207     // We need to set the debug location to *somewhere* inside the
2208     // inlined function. The line number may be nonsensical, but the
2209     // instruction will at least be associated with the right
2210     // function.
2211     if (CreatedBranchToNormalDest)
2212       CreatedBranchToNormalDest->setDebugLoc(Loc);
2213   } else if (!Returns.empty()) {
2214     // Otherwise, if there is exactly one return value, just replace anything
2215     // using the return value of the call with the computed value.
2216     if (!TheCall->use_empty()) {
2217       if (TheCall == Returns[0]->getReturnValue())
2218         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2219       else
2220         TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
2221     }
2222 
2223     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2224     BasicBlock *ReturnBB = Returns[0]->getParent();
2225     ReturnBB->replaceAllUsesWith(AfterCallBB);
2226 
2227     // Splice the code from the return block into the block that it will return
2228     // to, which contains the code that was after the call.
2229     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2230                                       ReturnBB->getInstList());
2231 
2232     if (CreatedBranchToNormalDest)
2233       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2234 
2235     // Delete the return instruction now and empty ReturnBB now.
2236     Returns[0]->eraseFromParent();
2237     ReturnBB->eraseFromParent();
2238   } else if (!TheCall->use_empty()) {
2239     // No returns, but something is using the return value of the call.  Just
2240     // nuke the result.
2241     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2242   }
2243 
2244   // Since we are now done with the Call/Invoke, we can delete it.
2245   TheCall->eraseFromParent();
2246 
2247   // If we inlined any musttail calls and the original return is now
2248   // unreachable, delete it.  It can only contain a bitcast and ret.
2249   if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
2250     AfterCallBB->eraseFromParent();
2251 
2252   // We should always be able to fold the entry block of the function into the
2253   // single predecessor of the block...
2254   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2255   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2256 
2257   // Splice the code entry block into calling block, right before the
2258   // unconditional branch.
2259   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2260   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2261 
2262   // Remove the unconditional branch.
2263   OrigBB->getInstList().erase(Br);
2264 
2265   // Now we can remove the CalleeEntry block, which is now empty.
2266   Caller->getBasicBlockList().erase(CalleeEntry);
2267 
2268   // If we inserted a phi node, check to see if it has a single value (e.g. all
2269   // the entries are the same or undef).  If so, remove the PHI so it doesn't
2270   // block other optimizations.
2271   if (PHI) {
2272     AssumptionCache *AC =
2273         IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
2274     auto &DL = Caller->getParent()->getDataLayout();
2275     if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2276       PHI->replaceAllUsesWith(V);
2277       PHI->eraseFromParent();
2278     }
2279   }
2280 
2281   return true;
2282 }
2283