1 //===- FunctionComparator.h - Function Comparator -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the FunctionComparator and GlobalNumberState classes 11 // which are used by the MergeFunctions pass for comparing functions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/FunctionComparator.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/IR/Attributes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalValue.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <cassert> 48 #include <cstddef> 49 #include <cstdint> 50 #include <utility> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "functioncomparator" 55 56 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { 57 if (L < R) return -1; 58 if (L > R) return 1; 59 return 0; 60 } 61 62 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { 63 if ((int)L < (int)R) return -1; 64 if ((int)L > (int)R) return 1; 65 return 0; 66 } 67 68 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { 69 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) 70 return Res; 71 if (L.ugt(R)) return 1; 72 if (R.ugt(L)) return -1; 73 return 0; 74 } 75 76 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { 77 // Floats are ordered first by semantics (i.e. float, double, half, etc.), 78 // then by value interpreted as a bitstring (aka APInt). 79 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); 80 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), 81 APFloat::semanticsPrecision(SR))) 82 return Res; 83 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), 84 APFloat::semanticsMaxExponent(SR))) 85 return Res; 86 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), 87 APFloat::semanticsMinExponent(SR))) 88 return Res; 89 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), 90 APFloat::semanticsSizeInBits(SR))) 91 return Res; 92 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); 93 } 94 95 int FunctionComparator::cmpMem(StringRef L, StringRef R) const { 96 // Prevent heavy comparison, compare sizes first. 97 if (int Res = cmpNumbers(L.size(), R.size())) 98 return Res; 99 100 // Compare strings lexicographically only when it is necessary: only when 101 // strings are equal in size. 102 return L.compare(R); 103 } 104 105 int FunctionComparator::cmpAttrs(const AttributeList L, 106 const AttributeList R) const { 107 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets())) 108 return Res; 109 110 for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) { 111 AttributeSet LAS = L.getAttributes(i); 112 AttributeSet RAS = R.getAttributes(i); 113 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end(); 114 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end(); 115 for (; LI != LE && RI != RE; ++LI, ++RI) { 116 Attribute LA = *LI; 117 Attribute RA = *RI; 118 if (LA < RA) 119 return -1; 120 if (RA < LA) 121 return 1; 122 } 123 if (LI != LE) 124 return 1; 125 if (RI != RE) 126 return -1; 127 } 128 return 0; 129 } 130 131 int FunctionComparator::cmpRangeMetadata(const MDNode *L, 132 const MDNode *R) const { 133 if (L == R) 134 return 0; 135 if (!L) 136 return -1; 137 if (!R) 138 return 1; 139 // Range metadata is a sequence of numbers. Make sure they are the same 140 // sequence. 141 // TODO: Note that as this is metadata, it is possible to drop and/or merge 142 // this data when considering functions to merge. Thus this comparison would 143 // return 0 (i.e. equivalent), but merging would become more complicated 144 // because the ranges would need to be unioned. It is not likely that 145 // functions differ ONLY in this metadata if they are actually the same 146 // function semantically. 147 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 148 return Res; 149 for (size_t I = 0; I < L->getNumOperands(); ++I) { 150 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); 151 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); 152 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) 153 return Res; 154 } 155 return 0; 156 } 157 158 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L, 159 const Instruction *R) const { 160 ImmutableCallSite LCS(L); 161 ImmutableCallSite RCS(R); 162 163 assert(LCS && RCS && "Must be calls or invokes!"); 164 assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!"); 165 166 if (int Res = 167 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) 168 return Res; 169 170 for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) { 171 auto OBL = LCS.getOperandBundleAt(i); 172 auto OBR = RCS.getOperandBundleAt(i); 173 174 if (int Res = OBL.getTagName().compare(OBR.getTagName())) 175 return Res; 176 177 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) 178 return Res; 179 } 180 181 return 0; 182 } 183 184 /// Constants comparison: 185 /// 1. Check whether type of L constant could be losslessly bitcasted to R 186 /// type. 187 /// 2. Compare constant contents. 188 /// For more details see declaration comments. 189 int FunctionComparator::cmpConstants(const Constant *L, 190 const Constant *R) const { 191 Type *TyL = L->getType(); 192 Type *TyR = R->getType(); 193 194 // Check whether types are bitcastable. This part is just re-factored 195 // Type::canLosslesslyBitCastTo method, but instead of returning true/false, 196 // we also pack into result which type is "less" for us. 197 int TypesRes = cmpTypes(TyL, TyR); 198 if (TypesRes != 0) { 199 // Types are different, but check whether we can bitcast them. 200 if (!TyL->isFirstClassType()) { 201 if (TyR->isFirstClassType()) 202 return -1; 203 // Neither TyL nor TyR are values of first class type. Return the result 204 // of comparing the types 205 return TypesRes; 206 } 207 if (!TyR->isFirstClassType()) { 208 if (TyL->isFirstClassType()) 209 return 1; 210 return TypesRes; 211 } 212 213 // Vector -> Vector conversions are always lossless if the two vector types 214 // have the same size, otherwise not. 215 unsigned TyLWidth = 0; 216 unsigned TyRWidth = 0; 217 218 if (auto *VecTyL = dyn_cast<VectorType>(TyL)) 219 TyLWidth = VecTyL->getBitWidth(); 220 if (auto *VecTyR = dyn_cast<VectorType>(TyR)) 221 TyRWidth = VecTyR->getBitWidth(); 222 223 if (TyLWidth != TyRWidth) 224 return cmpNumbers(TyLWidth, TyRWidth); 225 226 // Zero bit-width means neither TyL nor TyR are vectors. 227 if (!TyLWidth) { 228 PointerType *PTyL = dyn_cast<PointerType>(TyL); 229 PointerType *PTyR = dyn_cast<PointerType>(TyR); 230 if (PTyL && PTyR) { 231 unsigned AddrSpaceL = PTyL->getAddressSpace(); 232 unsigned AddrSpaceR = PTyR->getAddressSpace(); 233 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) 234 return Res; 235 } 236 if (PTyL) 237 return 1; 238 if (PTyR) 239 return -1; 240 241 // TyL and TyR aren't vectors, nor pointers. We don't know how to 242 // bitcast them. 243 return TypesRes; 244 } 245 } 246 247 // OK, types are bitcastable, now check constant contents. 248 249 if (L->isNullValue() && R->isNullValue()) 250 return TypesRes; 251 if (L->isNullValue() && !R->isNullValue()) 252 return 1; 253 if (!L->isNullValue() && R->isNullValue()) 254 return -1; 255 256 auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L)); 257 auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R)); 258 if (GlobalValueL && GlobalValueR) { 259 return cmpGlobalValues(GlobalValueL, GlobalValueR); 260 } 261 262 if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) 263 return Res; 264 265 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { 266 const auto *SeqR = cast<ConstantDataSequential>(R); 267 // This handles ConstantDataArray and ConstantDataVector. Note that we 268 // compare the two raw data arrays, which might differ depending on the host 269 // endianness. This isn't a problem though, because the endiness of a module 270 // will affect the order of the constants, but this order is the same 271 // for a given input module and host platform. 272 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); 273 } 274 275 switch (L->getValueID()) { 276 case Value::UndefValueVal: 277 case Value::ConstantTokenNoneVal: 278 return TypesRes; 279 case Value::ConstantIntVal: { 280 const APInt &LInt = cast<ConstantInt>(L)->getValue(); 281 const APInt &RInt = cast<ConstantInt>(R)->getValue(); 282 return cmpAPInts(LInt, RInt); 283 } 284 case Value::ConstantFPVal: { 285 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); 286 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); 287 return cmpAPFloats(LAPF, RAPF); 288 } 289 case Value::ConstantArrayVal: { 290 const ConstantArray *LA = cast<ConstantArray>(L); 291 const ConstantArray *RA = cast<ConstantArray>(R); 292 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); 293 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); 294 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 295 return Res; 296 for (uint64_t i = 0; i < NumElementsL; ++i) { 297 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), 298 cast<Constant>(RA->getOperand(i)))) 299 return Res; 300 } 301 return 0; 302 } 303 case Value::ConstantStructVal: { 304 const ConstantStruct *LS = cast<ConstantStruct>(L); 305 const ConstantStruct *RS = cast<ConstantStruct>(R); 306 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); 307 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); 308 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 309 return Res; 310 for (unsigned i = 0; i != NumElementsL; ++i) { 311 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), 312 cast<Constant>(RS->getOperand(i)))) 313 return Res; 314 } 315 return 0; 316 } 317 case Value::ConstantVectorVal: { 318 const ConstantVector *LV = cast<ConstantVector>(L); 319 const ConstantVector *RV = cast<ConstantVector>(R); 320 unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements(); 321 unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements(); 322 if (int Res = cmpNumbers(NumElementsL, NumElementsR)) 323 return Res; 324 for (uint64_t i = 0; i < NumElementsL; ++i) { 325 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), 326 cast<Constant>(RV->getOperand(i)))) 327 return Res; 328 } 329 return 0; 330 } 331 case Value::ConstantExprVal: { 332 const ConstantExpr *LE = cast<ConstantExpr>(L); 333 const ConstantExpr *RE = cast<ConstantExpr>(R); 334 unsigned NumOperandsL = LE->getNumOperands(); 335 unsigned NumOperandsR = RE->getNumOperands(); 336 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) 337 return Res; 338 for (unsigned i = 0; i < NumOperandsL; ++i) { 339 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), 340 cast<Constant>(RE->getOperand(i)))) 341 return Res; 342 } 343 return 0; 344 } 345 case Value::BlockAddressVal: { 346 const BlockAddress *LBA = cast<BlockAddress>(L); 347 const BlockAddress *RBA = cast<BlockAddress>(R); 348 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) 349 return Res; 350 if (LBA->getFunction() == RBA->getFunction()) { 351 // They are BBs in the same function. Order by which comes first in the 352 // BB order of the function. This order is deterministic. 353 Function* F = LBA->getFunction(); 354 BasicBlock *LBB = LBA->getBasicBlock(); 355 BasicBlock *RBB = RBA->getBasicBlock(); 356 if (LBB == RBB) 357 return 0; 358 for(BasicBlock &BB : F->getBasicBlockList()) { 359 if (&BB == LBB) { 360 assert(&BB != RBB); 361 return -1; 362 } 363 if (&BB == RBB) 364 return 1; 365 } 366 llvm_unreachable("Basic Block Address does not point to a basic block in " 367 "its function."); 368 return -1; 369 } else { 370 // cmpValues said the functions are the same. So because they aren't 371 // literally the same pointer, they must respectively be the left and 372 // right functions. 373 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); 374 // cmpValues will tell us if these are equivalent BasicBlocks, in the 375 // context of their respective functions. 376 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); 377 } 378 } 379 default: // Unknown constant, abort. 380 DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); 381 llvm_unreachable("Constant ValueID not recognized."); 382 return -1; 383 } 384 } 385 386 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { 387 uint64_t LNumber = GlobalNumbers->getNumber(L); 388 uint64_t RNumber = GlobalNumbers->getNumber(R); 389 return cmpNumbers(LNumber, RNumber); 390 } 391 392 /// cmpType - compares two types, 393 /// defines total ordering among the types set. 394 /// See method declaration comments for more details. 395 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { 396 PointerType *PTyL = dyn_cast<PointerType>(TyL); 397 PointerType *PTyR = dyn_cast<PointerType>(TyR); 398 399 const DataLayout &DL = FnL->getParent()->getDataLayout(); 400 if (PTyL && PTyL->getAddressSpace() == 0) 401 TyL = DL.getIntPtrType(TyL); 402 if (PTyR && PTyR->getAddressSpace() == 0) 403 TyR = DL.getIntPtrType(TyR); 404 405 if (TyL == TyR) 406 return 0; 407 408 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) 409 return Res; 410 411 switch (TyL->getTypeID()) { 412 default: 413 llvm_unreachable("Unknown type!"); 414 // Fall through in Release mode. 415 LLVM_FALLTHROUGH; 416 case Type::IntegerTyID: 417 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), 418 cast<IntegerType>(TyR)->getBitWidth()); 419 // TyL == TyR would have returned true earlier, because types are uniqued. 420 case Type::VoidTyID: 421 case Type::FloatTyID: 422 case Type::DoubleTyID: 423 case Type::X86_FP80TyID: 424 case Type::FP128TyID: 425 case Type::PPC_FP128TyID: 426 case Type::LabelTyID: 427 case Type::MetadataTyID: 428 case Type::TokenTyID: 429 return 0; 430 431 case Type::PointerTyID: 432 assert(PTyL && PTyR && "Both types must be pointers here."); 433 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); 434 435 case Type::StructTyID: { 436 StructType *STyL = cast<StructType>(TyL); 437 StructType *STyR = cast<StructType>(TyR); 438 if (STyL->getNumElements() != STyR->getNumElements()) 439 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 440 441 if (STyL->isPacked() != STyR->isPacked()) 442 return cmpNumbers(STyL->isPacked(), STyR->isPacked()); 443 444 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { 445 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) 446 return Res; 447 } 448 return 0; 449 } 450 451 case Type::FunctionTyID: { 452 FunctionType *FTyL = cast<FunctionType>(TyL); 453 FunctionType *FTyR = cast<FunctionType>(TyR); 454 if (FTyL->getNumParams() != FTyR->getNumParams()) 455 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); 456 457 if (FTyL->isVarArg() != FTyR->isVarArg()) 458 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); 459 460 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) 461 return Res; 462 463 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { 464 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) 465 return Res; 466 } 467 return 0; 468 } 469 470 case Type::ArrayTyID: 471 case Type::VectorTyID: { 472 auto *STyL = cast<SequentialType>(TyL); 473 auto *STyR = cast<SequentialType>(TyR); 474 if (STyL->getNumElements() != STyR->getNumElements()) 475 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); 476 return cmpTypes(STyL->getElementType(), STyR->getElementType()); 477 } 478 } 479 } 480 481 // Determine whether the two operations are the same except that pointer-to-A 482 // and pointer-to-B are equivalent. This should be kept in sync with 483 // Instruction::isSameOperationAs. 484 // Read method declaration comments for more details. 485 int FunctionComparator::cmpOperations(const Instruction *L, 486 const Instruction *R, 487 bool &needToCmpOperands) const { 488 needToCmpOperands = true; 489 if (int Res = cmpValues(L, R)) 490 return Res; 491 492 // Differences from Instruction::isSameOperationAs: 493 // * replace type comparison with calls to cmpTypes. 494 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. 495 // * because of the above, we don't test for the tail bit on calls later on. 496 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) 497 return Res; 498 499 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) { 500 needToCmpOperands = false; 501 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R); 502 if (int Res = 503 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) 504 return Res; 505 return cmpGEPs(GEPL, GEPR); 506 } 507 508 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) 509 return Res; 510 511 if (int Res = cmpTypes(L->getType(), R->getType())) 512 return Res; 513 514 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), 515 R->getRawSubclassOptionalData())) 516 return Res; 517 518 // We have two instructions of identical opcode and #operands. Check to see 519 // if all operands are the same type 520 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { 521 if (int Res = 522 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) 523 return Res; 524 } 525 526 // Check special state that is a part of some instructions. 527 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { 528 if (int Res = cmpTypes(AI->getAllocatedType(), 529 cast<AllocaInst>(R)->getAllocatedType())) 530 return Res; 531 return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()); 532 } 533 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { 534 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) 535 return Res; 536 if (int Res = 537 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) 538 return Res; 539 if (int Res = 540 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) 541 return Res; 542 if (int Res = cmpNumbers(LI->getSyncScopeID(), 543 cast<LoadInst>(R)->getSyncScopeID())) 544 return Res; 545 return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range), 546 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); 547 } 548 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { 549 if (int Res = 550 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) 551 return Res; 552 if (int Res = 553 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) 554 return Res; 555 if (int Res = 556 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) 557 return Res; 558 return cmpNumbers(SI->getSyncScopeID(), 559 cast<StoreInst>(R)->getSyncScopeID()); 560 } 561 if (const CmpInst *CI = dyn_cast<CmpInst>(L)) 562 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); 563 if (const CallInst *CI = dyn_cast<CallInst>(L)) { 564 if (int Res = cmpNumbers(CI->getCallingConv(), 565 cast<CallInst>(R)->getCallingConv())) 566 return Res; 567 if (int Res = 568 cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes())) 569 return Res; 570 if (int Res = cmpOperandBundlesSchema(CI, R)) 571 return Res; 572 return cmpRangeMetadata( 573 CI->getMetadata(LLVMContext::MD_range), 574 cast<CallInst>(R)->getMetadata(LLVMContext::MD_range)); 575 } 576 if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) { 577 if (int Res = cmpNumbers(II->getCallingConv(), 578 cast<InvokeInst>(R)->getCallingConv())) 579 return Res; 580 if (int Res = 581 cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes())) 582 return Res; 583 if (int Res = cmpOperandBundlesSchema(II, R)) 584 return Res; 585 return cmpRangeMetadata( 586 II->getMetadata(LLVMContext::MD_range), 587 cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range)); 588 } 589 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { 590 ArrayRef<unsigned> LIndices = IVI->getIndices(); 591 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); 592 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 593 return Res; 594 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 595 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 596 return Res; 597 } 598 return 0; 599 } 600 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { 601 ArrayRef<unsigned> LIndices = EVI->getIndices(); 602 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); 603 if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) 604 return Res; 605 for (size_t i = 0, e = LIndices.size(); i != e; ++i) { 606 if (int Res = cmpNumbers(LIndices[i], RIndices[i])) 607 return Res; 608 } 609 } 610 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { 611 if (int Res = 612 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) 613 return Res; 614 return cmpNumbers(FI->getSyncScopeID(), 615 cast<FenceInst>(R)->getSyncScopeID()); 616 } 617 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { 618 if (int Res = cmpNumbers(CXI->isVolatile(), 619 cast<AtomicCmpXchgInst>(R)->isVolatile())) 620 return Res; 621 if (int Res = cmpNumbers(CXI->isWeak(), 622 cast<AtomicCmpXchgInst>(R)->isWeak())) 623 return Res; 624 if (int Res = 625 cmpOrderings(CXI->getSuccessOrdering(), 626 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) 627 return Res; 628 if (int Res = 629 cmpOrderings(CXI->getFailureOrdering(), 630 cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) 631 return Res; 632 return cmpNumbers(CXI->getSyncScopeID(), 633 cast<AtomicCmpXchgInst>(R)->getSyncScopeID()); 634 } 635 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { 636 if (int Res = cmpNumbers(RMWI->getOperation(), 637 cast<AtomicRMWInst>(R)->getOperation())) 638 return Res; 639 if (int Res = cmpNumbers(RMWI->isVolatile(), 640 cast<AtomicRMWInst>(R)->isVolatile())) 641 return Res; 642 if (int Res = cmpOrderings(RMWI->getOrdering(), 643 cast<AtomicRMWInst>(R)->getOrdering())) 644 return Res; 645 return cmpNumbers(RMWI->getSyncScopeID(), 646 cast<AtomicRMWInst>(R)->getSyncScopeID()); 647 } 648 if (const PHINode *PNL = dyn_cast<PHINode>(L)) { 649 const PHINode *PNR = cast<PHINode>(R); 650 // Ensure that in addition to the incoming values being identical 651 // (checked by the caller of this function), the incoming blocks 652 // are also identical. 653 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { 654 if (int Res = 655 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) 656 return Res; 657 } 658 } 659 return 0; 660 } 661 662 // Determine whether two GEP operations perform the same underlying arithmetic. 663 // Read method declaration comments for more details. 664 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, 665 const GEPOperator *GEPR) const { 666 unsigned int ASL = GEPL->getPointerAddressSpace(); 667 unsigned int ASR = GEPR->getPointerAddressSpace(); 668 669 if (int Res = cmpNumbers(ASL, ASR)) 670 return Res; 671 672 // When we have target data, we can reduce the GEP down to the value in bytes 673 // added to the address. 674 const DataLayout &DL = FnL->getParent()->getDataLayout(); 675 unsigned BitWidth = DL.getPointerSizeInBits(ASL); 676 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); 677 if (GEPL->accumulateConstantOffset(DL, OffsetL) && 678 GEPR->accumulateConstantOffset(DL, OffsetR)) 679 return cmpAPInts(OffsetL, OffsetR); 680 if (int Res = cmpTypes(GEPL->getSourceElementType(), 681 GEPR->getSourceElementType())) 682 return Res; 683 684 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) 685 return Res; 686 687 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { 688 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) 689 return Res; 690 } 691 692 return 0; 693 } 694 695 int FunctionComparator::cmpInlineAsm(const InlineAsm *L, 696 const InlineAsm *R) const { 697 // InlineAsm's are uniqued. If they are the same pointer, obviously they are 698 // the same, otherwise compare the fields. 699 if (L == R) 700 return 0; 701 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) 702 return Res; 703 if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) 704 return Res; 705 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) 706 return Res; 707 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) 708 return Res; 709 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) 710 return Res; 711 if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) 712 return Res; 713 assert(L->getFunctionType() != R->getFunctionType()); 714 return 0; 715 } 716 717 /// Compare two values used by the two functions under pair-wise comparison. If 718 /// this is the first time the values are seen, they're added to the mapping so 719 /// that we will detect mismatches on next use. 720 /// See comments in declaration for more details. 721 int FunctionComparator::cmpValues(const Value *L, const Value *R) const { 722 // Catch self-reference case. 723 if (L == FnL) { 724 if (R == FnR) 725 return 0; 726 return -1; 727 } 728 if (R == FnR) { 729 if (L == FnL) 730 return 0; 731 return 1; 732 } 733 734 const Constant *ConstL = dyn_cast<Constant>(L); 735 const Constant *ConstR = dyn_cast<Constant>(R); 736 if (ConstL && ConstR) { 737 if (L == R) 738 return 0; 739 return cmpConstants(ConstL, ConstR); 740 } 741 742 if (ConstL) 743 return 1; 744 if (ConstR) 745 return -1; 746 747 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); 748 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); 749 750 if (InlineAsmL && InlineAsmR) 751 return cmpInlineAsm(InlineAsmL, InlineAsmR); 752 if (InlineAsmL) 753 return 1; 754 if (InlineAsmR) 755 return -1; 756 757 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), 758 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); 759 760 return cmpNumbers(LeftSN.first->second, RightSN.first->second); 761 } 762 763 // Test whether two basic blocks have equivalent behaviour. 764 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, 765 const BasicBlock *BBR) const { 766 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); 767 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); 768 769 do { 770 bool needToCmpOperands = true; 771 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) 772 return Res; 773 if (needToCmpOperands) { 774 assert(InstL->getNumOperands() == InstR->getNumOperands()); 775 776 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { 777 Value *OpL = InstL->getOperand(i); 778 Value *OpR = InstR->getOperand(i); 779 if (int Res = cmpValues(OpL, OpR)) 780 return Res; 781 // cmpValues should ensure this is true. 782 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); 783 } 784 } 785 786 ++InstL; 787 ++InstR; 788 } while (InstL != InstLE && InstR != InstRE); 789 790 if (InstL != InstLE && InstR == InstRE) 791 return 1; 792 if (InstL == InstLE && InstR != InstRE) 793 return -1; 794 return 0; 795 } 796 797 int FunctionComparator::compareSignature() const { 798 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) 799 return Res; 800 801 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) 802 return Res; 803 804 if (FnL->hasGC()) { 805 if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) 806 return Res; 807 } 808 809 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) 810 return Res; 811 812 if (FnL->hasSection()) { 813 if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) 814 return Res; 815 } 816 817 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) 818 return Res; 819 820 // TODO: if it's internal and only used in direct calls, we could handle this 821 // case too. 822 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) 823 return Res; 824 825 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) 826 return Res; 827 828 assert(FnL->arg_size() == FnR->arg_size() && 829 "Identically typed functions have different numbers of args!"); 830 831 // Visit the arguments so that they get enumerated in the order they're 832 // passed in. 833 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), 834 ArgRI = FnR->arg_begin(), 835 ArgLE = FnL->arg_end(); 836 ArgLI != ArgLE; ++ArgLI, ++ArgRI) { 837 if (cmpValues(&*ArgLI, &*ArgRI) != 0) 838 llvm_unreachable("Arguments repeat!"); 839 } 840 return 0; 841 } 842 843 // Test whether the two functions have equivalent behaviour. 844 int FunctionComparator::compare() { 845 beginCompare(); 846 847 if (int Res = compareSignature()) 848 return Res; 849 850 // We do a CFG-ordered walk since the actual ordering of the blocks in the 851 // linked list is immaterial. Our walk starts at the entry block for both 852 // functions, then takes each block from each terminator in order. As an 853 // artifact, this also means that unreachable blocks are ignored. 854 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; 855 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. 856 857 FnLBBs.push_back(&FnL->getEntryBlock()); 858 FnRBBs.push_back(&FnR->getEntryBlock()); 859 860 VisitedBBs.insert(FnLBBs[0]); 861 while (!FnLBBs.empty()) { 862 const BasicBlock *BBL = FnLBBs.pop_back_val(); 863 const BasicBlock *BBR = FnRBBs.pop_back_val(); 864 865 if (int Res = cmpValues(BBL, BBR)) 866 return Res; 867 868 if (int Res = cmpBasicBlocks(BBL, BBR)) 869 return Res; 870 871 const TerminatorInst *TermL = BBL->getTerminator(); 872 const TerminatorInst *TermR = BBR->getTerminator(); 873 874 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); 875 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { 876 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) 877 continue; 878 879 FnLBBs.push_back(TermL->getSuccessor(i)); 880 FnRBBs.push_back(TermR->getSuccessor(i)); 881 } 882 } 883 return 0; 884 } 885 886 namespace { 887 888 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a 889 // hash of a sequence of 64bit ints, but the entire input does not need to be 890 // available at once. This interface is necessary for functionHash because it 891 // needs to accumulate the hash as the structure of the function is traversed 892 // without saving these values to an intermediate buffer. This form of hashing 893 // is not often needed, as usually the object to hash is just read from a 894 // buffer. 895 class HashAccumulator64 { 896 uint64_t Hash; 897 898 public: 899 // Initialize to random constant, so the state isn't zero. 900 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } 901 902 void add(uint64_t V) { 903 Hash = hashing::detail::hash_16_bytes(Hash, V); 904 } 905 906 // No finishing is required, because the entire hash value is used. 907 uint64_t getHash() { return Hash; } 908 }; 909 910 } // end anonymous namespace 911 912 // A function hash is calculated by considering only the number of arguments and 913 // whether a function is varargs, the order of basic blocks (given by the 914 // successors of each basic block in depth first order), and the order of 915 // opcodes of each instruction within each of these basic blocks. This mirrors 916 // the strategy compare() uses to compare functions by walking the BBs in depth 917 // first order and comparing each instruction in sequence. Because this hash 918 // does not look at the operands, it is insensitive to things such as the 919 // target of calls and the constants used in the function, which makes it useful 920 // when possibly merging functions which are the same modulo constants and call 921 // targets. 922 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { 923 HashAccumulator64 H; 924 H.add(F.isVarArg()); 925 H.add(F.arg_size()); 926 927 SmallVector<const BasicBlock *, 8> BBs; 928 SmallSet<const BasicBlock *, 16> VisitedBBs; 929 930 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), 931 // accumulating the hash of the function "structure." (BB and opcode sequence) 932 BBs.push_back(&F.getEntryBlock()); 933 VisitedBBs.insert(BBs[0]); 934 while (!BBs.empty()) { 935 const BasicBlock *BB = BBs.pop_back_val(); 936 // This random value acts as a block header, as otherwise the partition of 937 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes 938 H.add(45798); 939 for (auto &Inst : *BB) { 940 H.add(Inst.getOpcode()); 941 } 942 const TerminatorInst *Term = BB->getTerminator(); 943 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { 944 if (!VisitedBBs.insert(Term->getSuccessor(i)).second) 945 continue; 946 BBs.push_back(Term->getSuccessor(i)); 947 } 948 } 949 return H.getHash(); 950 } 951