1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/CodeExtractor.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/BlockFrequencyInfo.h"
21 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
22 #include "llvm/Analysis/BranchProbabilityInfo.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/RegionInfo.h"
25 #include "llvm/Analysis/RegionIterator.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/BlockFrequency.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include <algorithm>
43 #include <set>
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "code-extractor"
47 
48 // Provide a command-line option to aggregate function arguments into a struct
49 // for functions produced by the code extractor. This is useful when converting
50 // extracted functions to pthread-based code, as only one argument (void*) can
51 // be passed in to pthread_create().
52 static cl::opt<bool>
53 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
54                  cl::desc("Aggregate arguments to code-extracted functions"));
55 
56 /// \brief Test whether a block is valid for extraction.
57 bool CodeExtractor::isBlockValidForExtraction(const BasicBlock &BB) {
58   // Landing pads must be in the function where they were inserted for cleanup.
59   if (BB.isEHPad())
60     return false;
61 
62   // Don't hoist code containing allocas, invokes, or vastarts.
63   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
64     if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
65       return false;
66     if (const CallInst *CI = dyn_cast<CallInst>(I))
67       if (const Function *F = CI->getCalledFunction())
68         if (F->getIntrinsicID() == Intrinsic::vastart)
69           return false;
70   }
71 
72   return true;
73 }
74 
75 /// \brief Build a set of blocks to extract if the input blocks are viable.
76 template <typename IteratorT>
77 static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin,
78                                                        IteratorT BBEnd) {
79   SetVector<BasicBlock *> Result;
80 
81   assert(BBBegin != BBEnd);
82 
83   // Loop over the blocks, adding them to our set-vector, and aborting with an
84   // empty set if we encounter invalid blocks.
85   do {
86     if (!Result.insert(*BBBegin))
87       llvm_unreachable("Repeated basic blocks in extraction input");
88 
89     if (!CodeExtractor::isBlockValidForExtraction(**BBBegin)) {
90       Result.clear();
91       return Result;
92     }
93   } while (++BBBegin != BBEnd);
94 
95 #ifndef NDEBUG
96   for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()),
97                                          E = Result.end();
98        I != E; ++I)
99     for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
100          PI != PE; ++PI)
101       assert(Result.count(*PI) &&
102              "No blocks in this region may have entries from outside the region"
103              " except for the first block!");
104 #endif
105 
106   return Result;
107 }
108 
109 /// \brief Helper to call buildExtractionBlockSet with an ArrayRef.
110 static SetVector<BasicBlock *>
111 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) {
112   return buildExtractionBlockSet(BBs.begin(), BBs.end());
113 }
114 
115 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
116                              bool AggregateArgs, BlockFrequencyInfo *BFI,
117                              BranchProbabilityInfo *BPI)
118     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
119       BPI(BPI), Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {}
120 
121 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
122                              BlockFrequencyInfo *BFI,
123                              BranchProbabilityInfo *BPI)
124     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
125       BPI(BPI), Blocks(buildExtractionBlockSet(L.getBlocks())),
126       NumExitBlocks(~0U) {}
127 
128 /// definedInRegion - Return true if the specified value is defined in the
129 /// extracted region.
130 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
131   if (Instruction *I = dyn_cast<Instruction>(V))
132     if (Blocks.count(I->getParent()))
133       return true;
134   return false;
135 }
136 
137 /// definedInCaller - Return true if the specified value is defined in the
138 /// function being code extracted, but not in the region being extracted.
139 /// These values must be passed in as live-ins to the function.
140 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
141   if (isa<Argument>(V)) return true;
142   if (Instruction *I = dyn_cast<Instruction>(V))
143     if (!Blocks.count(I->getParent()))
144       return true;
145   return false;
146 }
147 
148 void CodeExtractor::findInputsOutputs(ValueSet &Inputs,
149                                       ValueSet &Outputs) const {
150   for (BasicBlock *BB : Blocks) {
151     // If a used value is defined outside the region, it's an input.  If an
152     // instruction is used outside the region, it's an output.
153     for (Instruction &II : *BB) {
154       for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
155            ++OI)
156         if (definedInCaller(Blocks, *OI))
157           Inputs.insert(*OI);
158 
159       for (User *U : II.users())
160         if (!definedInRegion(Blocks, U)) {
161           Outputs.insert(&II);
162           break;
163         }
164     }
165   }
166 }
167 
168 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
169 /// region, we need to split the entry block of the region so that the PHI node
170 /// is easier to deal with.
171 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
172   unsigned NumPredsFromRegion = 0;
173   unsigned NumPredsOutsideRegion = 0;
174 
175   if (Header != &Header->getParent()->getEntryBlock()) {
176     PHINode *PN = dyn_cast<PHINode>(Header->begin());
177     if (!PN) return;  // No PHI nodes.
178 
179     // If the header node contains any PHI nodes, check to see if there is more
180     // than one entry from outside the region.  If so, we need to sever the
181     // header block into two.
182     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
183       if (Blocks.count(PN->getIncomingBlock(i)))
184         ++NumPredsFromRegion;
185       else
186         ++NumPredsOutsideRegion;
187 
188     // If there is one (or fewer) predecessor from outside the region, we don't
189     // need to do anything special.
190     if (NumPredsOutsideRegion <= 1) return;
191   }
192 
193   // Otherwise, we need to split the header block into two pieces: one
194   // containing PHI nodes merging values from outside of the region, and a
195   // second that contains all of the code for the block and merges back any
196   // incoming values from inside of the region.
197   BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI()->getIterator();
198   BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
199                                               Header->getName()+".ce");
200 
201   // We only want to code extract the second block now, and it becomes the new
202   // header of the region.
203   BasicBlock *OldPred = Header;
204   Blocks.remove(OldPred);
205   Blocks.insert(NewBB);
206   Header = NewBB;
207 
208   // Okay, update dominator sets. The blocks that dominate the new one are the
209   // blocks that dominate TIBB plus the new block itself.
210   if (DT)
211     DT->splitBlock(NewBB);
212 
213   // Okay, now we need to adjust the PHI nodes and any branches from within the
214   // region to go to the new header block instead of the old header block.
215   if (NumPredsFromRegion) {
216     PHINode *PN = cast<PHINode>(OldPred->begin());
217     // Loop over all of the predecessors of OldPred that are in the region,
218     // changing them to branch to NewBB instead.
219     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
220       if (Blocks.count(PN->getIncomingBlock(i))) {
221         TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
222         TI->replaceUsesOfWith(OldPred, NewBB);
223       }
224 
225     // Okay, everything within the region is now branching to the right block, we
226     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
227     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
228       PHINode *PN = cast<PHINode>(AfterPHIs);
229       // Create a new PHI node in the new region, which has an incoming value
230       // from OldPred of PN.
231       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
232                                        PN->getName() + ".ce", &NewBB->front());
233       NewPN->addIncoming(PN, OldPred);
234 
235       // Loop over all of the incoming value in PN, moving them to NewPN if they
236       // are from the extracted region.
237       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
238         if (Blocks.count(PN->getIncomingBlock(i))) {
239           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
240           PN->removeIncomingValue(i);
241           --i;
242         }
243       }
244     }
245   }
246 }
247 
248 void CodeExtractor::splitReturnBlocks() {
249   for (BasicBlock *Block : Blocks)
250     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
251       BasicBlock *New =
252           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
253       if (DT) {
254         // Old dominates New. New node dominates all other nodes dominated
255         // by Old.
256         DomTreeNode *OldNode = DT->getNode(Block);
257         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
258                                                OldNode->end());
259 
260         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
261 
262         for (DomTreeNode *I : Children)
263           DT->changeImmediateDominator(I, NewNode);
264       }
265     }
266 }
267 
268 /// constructFunction - make a function based on inputs and outputs, as follows:
269 /// f(in0, ..., inN, out0, ..., outN)
270 ///
271 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
272                                            const ValueSet &outputs,
273                                            BasicBlock *header,
274                                            BasicBlock *newRootNode,
275                                            BasicBlock *newHeader,
276                                            Function *oldFunction,
277                                            Module *M) {
278   DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
279   DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
280 
281   // This function returns unsigned, outputs will go back by reference.
282   switch (NumExitBlocks) {
283   case 0:
284   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
285   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
286   default: RetTy = Type::getInt16Ty(header->getContext()); break;
287   }
288 
289   std::vector<Type*> paramTy;
290 
291   // Add the types of the input values to the function's argument list
292   for (Value *value : inputs) {
293     DEBUG(dbgs() << "value used in func: " << *value << "\n");
294     paramTy.push_back(value->getType());
295   }
296 
297   // Add the types of the output values to the function's argument list.
298   for (Value *output : outputs) {
299     DEBUG(dbgs() << "instr used in func: " << *output << "\n");
300     if (AggregateArgs)
301       paramTy.push_back(output->getType());
302     else
303       paramTy.push_back(PointerType::getUnqual(output->getType()));
304   }
305 
306   DEBUG({
307     dbgs() << "Function type: " << *RetTy << " f(";
308     for (Type *i : paramTy)
309       dbgs() << *i << ", ";
310     dbgs() << ")\n";
311   });
312 
313   StructType *StructTy;
314   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
315     StructTy = StructType::get(M->getContext(), paramTy);
316     paramTy.clear();
317     paramTy.push_back(PointerType::getUnqual(StructTy));
318   }
319   FunctionType *funcType =
320                   FunctionType::get(RetTy, paramTy, false);
321 
322   // Create the new function
323   Function *newFunction = Function::Create(funcType,
324                                            GlobalValue::InternalLinkage,
325                                            oldFunction->getName() + "_" +
326                                            header->getName(), M);
327   // If the old function is no-throw, so is the new one.
328   if (oldFunction->doesNotThrow())
329     newFunction->setDoesNotThrow();
330 
331   // Inherit the uwtable attribute if we need to.
332   if (oldFunction->hasUWTable())
333     newFunction->setHasUWTable();
334 
335   // Inherit all of the target dependent attributes.
336   //  (e.g. If the extracted region contains a call to an x86.sse
337   //  instruction we need to make sure that the extracted region has the
338   //  "target-features" attribute allowing it to be lowered.
339   // FIXME: This should be changed to check to see if a specific
340   //           attribute can not be inherited.
341   AttrBuilder AB(oldFunction->getAttributes().getFnAttributes());
342   for (const auto &Attr : AB.td_attrs())
343     newFunction->addFnAttr(Attr.first, Attr.second);
344 
345   newFunction->getBasicBlockList().push_back(newRootNode);
346 
347   // Create an iterator to name all of the arguments we inserted.
348   Function::arg_iterator AI = newFunction->arg_begin();
349 
350   // Rewrite all users of the inputs in the extracted region to use the
351   // arguments (or appropriate addressing into struct) instead.
352   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
353     Value *RewriteVal;
354     if (AggregateArgs) {
355       Value *Idx[2];
356       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
357       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
358       TerminatorInst *TI = newFunction->begin()->getTerminator();
359       GetElementPtrInst *GEP = GetElementPtrInst::Create(
360           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
361       RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
362     } else
363       RewriteVal = &*AI++;
364 
365     std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end());
366     for (User *use : Users)
367       if (Instruction *inst = dyn_cast<Instruction>(use))
368         if (Blocks.count(inst->getParent()))
369           inst->replaceUsesOfWith(inputs[i], RewriteVal);
370   }
371 
372   // Set names for input and output arguments.
373   if (!AggregateArgs) {
374     AI = newFunction->arg_begin();
375     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
376       AI->setName(inputs[i]->getName());
377     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
378       AI->setName(outputs[i]->getName()+".out");
379   }
380 
381   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
382   // within the new function. This must be done before we lose track of which
383   // blocks were originally in the code region.
384   std::vector<User*> Users(header->user_begin(), header->user_end());
385   for (unsigned i = 0, e = Users.size(); i != e; ++i)
386     // The BasicBlock which contains the branch is not in the region
387     // modify the branch target to a new block
388     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
389       if (!Blocks.count(TI->getParent()) &&
390           TI->getParent()->getParent() == oldFunction)
391         TI->replaceUsesOfWith(header, newHeader);
392 
393   return newFunction;
394 }
395 
396 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
397 /// that uses the value within the basic block, and return the predecessor
398 /// block associated with that use, or return 0 if none is found.
399 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
400   for (Use &U : Used->uses()) {
401      PHINode *P = dyn_cast<PHINode>(U.getUser());
402      if (P && P->getParent() == BB)
403        return P->getIncomingBlock(U);
404   }
405 
406   return nullptr;
407 }
408 
409 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
410 /// the call instruction, splitting any PHI nodes in the header block as
411 /// necessary.
412 void CodeExtractor::
413 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
414                            ValueSet &inputs, ValueSet &outputs) {
415   // Emit a call to the new function, passing in: *pointer to struct (if
416   // aggregating parameters), or plan inputs and allocated memory for outputs
417   std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
418 
419   Module *M = newFunction->getParent();
420   LLVMContext &Context = M->getContext();
421   const DataLayout &DL = M->getDataLayout();
422 
423   // Add inputs as params, or to be filled into the struct
424   for (Value *input : inputs)
425     if (AggregateArgs)
426       StructValues.push_back(input);
427     else
428       params.push_back(input);
429 
430   // Create allocas for the outputs
431   for (Value *output : outputs) {
432     if (AggregateArgs) {
433       StructValues.push_back(output);
434     } else {
435       AllocaInst *alloca =
436         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
437                        nullptr, output->getName() + ".loc",
438                        &codeReplacer->getParent()->front().front());
439       ReloadOutputs.push_back(alloca);
440       params.push_back(alloca);
441     }
442   }
443 
444   StructType *StructArgTy = nullptr;
445   AllocaInst *Struct = nullptr;
446   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
447     std::vector<Type*> ArgTypes;
448     for (ValueSet::iterator v = StructValues.begin(),
449            ve = StructValues.end(); v != ve; ++v)
450       ArgTypes.push_back((*v)->getType());
451 
452     // Allocate a struct at the beginning of this function
453     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
454     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
455                             "structArg",
456                             &codeReplacer->getParent()->front().front());
457     params.push_back(Struct);
458 
459     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
460       Value *Idx[2];
461       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
462       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
463       GetElementPtrInst *GEP = GetElementPtrInst::Create(
464           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
465       codeReplacer->getInstList().push_back(GEP);
466       StoreInst *SI = new StoreInst(StructValues[i], GEP);
467       codeReplacer->getInstList().push_back(SI);
468     }
469   }
470 
471   // Emit the call to the function
472   CallInst *call = CallInst::Create(newFunction, params,
473                                     NumExitBlocks > 1 ? "targetBlock" : "");
474   codeReplacer->getInstList().push_back(call);
475 
476   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
477   unsigned FirstOut = inputs.size();
478   if (!AggregateArgs)
479     std::advance(OutputArgBegin, inputs.size());
480 
481   // Reload the outputs passed in by reference
482   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
483     Value *Output = nullptr;
484     if (AggregateArgs) {
485       Value *Idx[2];
486       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
487       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
488       GetElementPtrInst *GEP = GetElementPtrInst::Create(
489           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
490       codeReplacer->getInstList().push_back(GEP);
491       Output = GEP;
492     } else {
493       Output = ReloadOutputs[i];
494     }
495     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
496     Reloads.push_back(load);
497     codeReplacer->getInstList().push_back(load);
498     std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end());
499     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
500       Instruction *inst = cast<Instruction>(Users[u]);
501       if (!Blocks.count(inst->getParent()))
502         inst->replaceUsesOfWith(outputs[i], load);
503     }
504   }
505 
506   // Now we can emit a switch statement using the call as a value.
507   SwitchInst *TheSwitch =
508       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
509                          codeReplacer, 0, codeReplacer);
510 
511   // Since there may be multiple exits from the original region, make the new
512   // function return an unsigned, switch on that number.  This loop iterates
513   // over all of the blocks in the extracted region, updating any terminator
514   // instructions in the to-be-extracted region that branch to blocks that are
515   // not in the region to be extracted.
516   std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
517 
518   unsigned switchVal = 0;
519   for (BasicBlock *Block : Blocks) {
520     TerminatorInst *TI = Block->getTerminator();
521     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
522       if (!Blocks.count(TI->getSuccessor(i))) {
523         BasicBlock *OldTarget = TI->getSuccessor(i);
524         // add a new basic block which returns the appropriate value
525         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
526         if (!NewTarget) {
527           // If we don't already have an exit stub for this non-extracted
528           // destination, create one now!
529           NewTarget = BasicBlock::Create(Context,
530                                          OldTarget->getName() + ".exitStub",
531                                          newFunction);
532           unsigned SuccNum = switchVal++;
533 
534           Value *brVal = nullptr;
535           switch (NumExitBlocks) {
536           case 0:
537           case 1: break;  // No value needed.
538           case 2:         // Conditional branch, return a bool
539             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
540             break;
541           default:
542             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
543             break;
544           }
545 
546           ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
547 
548           // Update the switch instruction.
549           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
550                                               SuccNum),
551                              OldTarget);
552 
553           // Restore values just before we exit
554           Function::arg_iterator OAI = OutputArgBegin;
555           for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
556             // For an invoke, the normal destination is the only one that is
557             // dominated by the result of the invocation
558             BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
559 
560             bool DominatesDef = true;
561 
562             BasicBlock *NormalDest = nullptr;
563             if (auto *Invoke = dyn_cast<InvokeInst>(outputs[out]))
564               NormalDest = Invoke->getNormalDest();
565 
566             if (NormalDest) {
567               DefBlock = NormalDest;
568 
569               // Make sure we are looking at the original successor block, not
570               // at a newly inserted exit block, which won't be in the dominator
571               // info.
572               for (const auto &I : ExitBlockMap)
573                 if (DefBlock == I.second) {
574                   DefBlock = I.first;
575                   break;
576                 }
577 
578               // In the extract block case, if the block we are extracting ends
579               // with an invoke instruction, make sure that we don't emit a
580               // store of the invoke value for the unwind block.
581               if (!DT && DefBlock != OldTarget)
582                 DominatesDef = false;
583             }
584 
585             if (DT) {
586               DominatesDef = DT->dominates(DefBlock, OldTarget);
587 
588               // If the output value is used by a phi in the target block,
589               // then we need to test for dominance of the phi's predecessor
590               // instead.  Unfortunately, this a little complicated since we
591               // have already rewritten uses of the value to uses of the reload.
592               BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
593                                                           OldTarget);
594               if (pred && DT && DT->dominates(DefBlock, pred))
595                 DominatesDef = true;
596             }
597 
598             if (DominatesDef) {
599               if (AggregateArgs) {
600                 Value *Idx[2];
601                 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
602                 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
603                                           FirstOut+out);
604                 GetElementPtrInst *GEP = GetElementPtrInst::Create(
605                     StructArgTy, &*OAI, Idx, "gep_" + outputs[out]->getName(),
606                     NTRet);
607                 new StoreInst(outputs[out], GEP, NTRet);
608               } else {
609                 new StoreInst(outputs[out], &*OAI, NTRet);
610               }
611             }
612             // Advance output iterator even if we don't emit a store
613             if (!AggregateArgs) ++OAI;
614           }
615         }
616 
617         // rewrite the original branch instruction with this new target
618         TI->setSuccessor(i, NewTarget);
619       }
620   }
621 
622   // Now that we've done the deed, simplify the switch instruction.
623   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
624   switch (NumExitBlocks) {
625   case 0:
626     // There are no successors (the block containing the switch itself), which
627     // means that previously this was the last part of the function, and hence
628     // this should be rewritten as a `ret'
629 
630     // Check if the function should return a value
631     if (OldFnRetTy->isVoidTy()) {
632       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
633     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
634       // return what we have
635       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
636     } else {
637       // Otherwise we must have code extracted an unwind or something, just
638       // return whatever we want.
639       ReturnInst::Create(Context,
640                          Constant::getNullValue(OldFnRetTy), TheSwitch);
641     }
642 
643     TheSwitch->eraseFromParent();
644     break;
645   case 1:
646     // Only a single destination, change the switch into an unconditional
647     // branch.
648     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
649     TheSwitch->eraseFromParent();
650     break;
651   case 2:
652     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
653                        call, TheSwitch);
654     TheSwitch->eraseFromParent();
655     break;
656   default:
657     // Otherwise, make the default destination of the switch instruction be one
658     // of the other successors.
659     TheSwitch->setCondition(call);
660     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
661     // Remove redundant case
662     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
663     break;
664   }
665 }
666 
667 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
668   Function *oldFunc = (*Blocks.begin())->getParent();
669   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
670   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
671 
672   for (BasicBlock *Block : Blocks) {
673     // Delete the basic block from the old function, and the list of blocks
674     oldBlocks.remove(Block);
675 
676     // Insert this basic block into the new function
677     newBlocks.push_back(Block);
678   }
679 }
680 
681 void CodeExtractor::calculateNewCallTerminatorWeights(
682     BasicBlock *CodeReplacer,
683     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
684     BranchProbabilityInfo *BPI) {
685   typedef BlockFrequencyInfoImplBase::Distribution Distribution;
686   typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
687 
688   // Update the branch weights for the exit block.
689   TerminatorInst *TI = CodeReplacer->getTerminator();
690   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
691 
692   // Block Frequency distribution with dummy node.
693   Distribution BranchDist;
694 
695   // Add each of the frequencies of the successors.
696   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
697     BlockNode ExitNode(i);
698     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
699     if (ExitFreq != 0)
700       BranchDist.addExit(ExitNode, ExitFreq);
701     else
702       BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
703   }
704 
705   // Check for no total weight.
706   if (BranchDist.Total == 0)
707     return;
708 
709   // Normalize the distribution so that they can fit in unsigned.
710   BranchDist.normalize();
711 
712   // Create normalized branch weights and set the metadata.
713   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
714     const auto &Weight = BranchDist.Weights[I];
715 
716     // Get the weight and update the current BFI.
717     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
718     BranchProbability BP(Weight.Amount, BranchDist.Total);
719     BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
720   }
721   TI->setMetadata(
722       LLVMContext::MD_prof,
723       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
724 }
725 
726 Function *CodeExtractor::extractCodeRegion() {
727   if (!isEligible())
728     return nullptr;
729 
730   ValueSet inputs, outputs;
731 
732   // Assumption: this is a single-entry code region, and the header is the first
733   // block in the region.
734   BasicBlock *header = *Blocks.begin();
735 
736   // Calculate the entry frequency of the new function before we change the root
737   //   block.
738   BlockFrequency EntryFreq;
739   if (BFI) {
740     assert(BPI && "Both BPI and BFI are required to preserve profile info");
741     for (BasicBlock *Pred : predecessors(header)) {
742       if (Blocks.count(Pred))
743         continue;
744       EntryFreq +=
745           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
746     }
747   }
748 
749   // If we have to split PHI nodes or the entry block, do so now.
750   severSplitPHINodes(header);
751 
752   // If we have any return instructions in the region, split those blocks so
753   // that the return is not in the region.
754   splitReturnBlocks();
755 
756   Function *oldFunction = header->getParent();
757 
758   // This takes place of the original loop
759   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
760                                                 "codeRepl", oldFunction,
761                                                 header);
762 
763   // The new function needs a root node because other nodes can branch to the
764   // head of the region, but the entry node of a function cannot have preds.
765   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
766                                                "newFuncRoot");
767   newFuncRoot->getInstList().push_back(BranchInst::Create(header));
768 
769   // Find inputs to, outputs from the code region.
770   findInputsOutputs(inputs, outputs);
771 
772   // Calculate the exit blocks for the extracted region and the total exit
773   //  weights for each of those blocks.
774   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
775   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
776   for (BasicBlock *Block : Blocks) {
777     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
778          ++SI) {
779       if (!Blocks.count(*SI)) {
780         // Update the branch weight for this successor.
781         if (BFI) {
782           BlockFrequency &BF = ExitWeights[*SI];
783           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
784         }
785         ExitBlocks.insert(*SI);
786       }
787     }
788   }
789   NumExitBlocks = ExitBlocks.size();
790 
791   // Construct new function based on inputs/outputs & add allocas for all defs.
792   Function *newFunction = constructFunction(inputs, outputs, header,
793                                             newFuncRoot,
794                                             codeReplacer, oldFunction,
795                                             oldFunction->getParent());
796 
797   // Update the entry count of the function.
798   if (BFI) {
799     Optional<uint64_t> EntryCount =
800         BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
801     if (EntryCount.hasValue())
802       newFunction->setEntryCount(EntryCount.getValue());
803     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
804   }
805 
806   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
807 
808   moveCodeToFunction(newFunction);
809 
810   // Update the branch weights for the exit block.
811   if (BFI && NumExitBlocks > 1)
812     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
813 
814   // Loop over all of the PHI nodes in the header block, and change any
815   // references to the old incoming edge to be the new incoming edge.
816   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
817     PHINode *PN = cast<PHINode>(I);
818     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
819       if (!Blocks.count(PN->getIncomingBlock(i)))
820         PN->setIncomingBlock(i, newFuncRoot);
821   }
822 
823   // Look at all successors of the codeReplacer block.  If any of these blocks
824   // had PHI nodes in them, we need to update the "from" block to be the code
825   // replacer, not the original block in the extracted region.
826   std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
827                                  succ_end(codeReplacer));
828   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
829     for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
830       PHINode *PN = cast<PHINode>(I);
831       std::set<BasicBlock*> ProcessedPreds;
832       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
833         if (Blocks.count(PN->getIncomingBlock(i))) {
834           if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
835             PN->setIncomingBlock(i, codeReplacer);
836           else {
837             // There were multiple entries in the PHI for this block, now there
838             // is only one, so remove the duplicated entries.
839             PN->removeIncomingValue(i, false);
840             --i; --e;
841           }
842         }
843     }
844 
845   //cerr << "NEW FUNCTION: " << *newFunction;
846   //  verifyFunction(*newFunction);
847 
848   //  cerr << "OLD FUNCTION: " << *oldFunction;
849   //  verifyFunction(*oldFunction);
850 
851   DEBUG(if (verifyFunction(*newFunction))
852         report_fatal_error("verifyFunction failed!"));
853   return newFunction;
854 }
855