1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interface to tear out a code region, such as an 11 // individual loop or a parallel section, into a new function, replacing it with 12 // a call to the new function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/CodeExtractor.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/RegionInfo.h" 25 #include "llvm/Analysis/RegionIterator.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Verifier.h" 36 #include "llvm/Pass.h" 37 #include "llvm/Support/BlockFrequency.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include <algorithm> 44 #include <set> 45 using namespace llvm; 46 47 #define DEBUG_TYPE "code-extractor" 48 49 // Provide a command-line option to aggregate function arguments into a struct 50 // for functions produced by the code extractor. This is useful when converting 51 // extracted functions to pthread-based code, as only one argument (void*) can 52 // be passed in to pthread_create(). 53 static cl::opt<bool> 54 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 55 cl::desc("Aggregate arguments to code-extracted functions")); 56 57 /// \brief Test whether a block is valid for extraction. 58 bool CodeExtractor::isBlockValidForExtraction(const BasicBlock &BB) { 59 // Landing pads must be in the function where they were inserted for cleanup. 60 if (BB.isEHPad()) 61 return false; 62 63 // Don't hoist code containing allocas, invokes, or vastarts. 64 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { 65 if (isa<AllocaInst>(I) || isa<InvokeInst>(I)) 66 return false; 67 if (const CallInst *CI = dyn_cast<CallInst>(I)) 68 if (const Function *F = CI->getCalledFunction()) 69 if (F->getIntrinsicID() == Intrinsic::vastart) 70 return false; 71 } 72 73 return true; 74 } 75 76 /// \brief Build a set of blocks to extract if the input blocks are viable. 77 static SetVector<BasicBlock *> 78 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT) { 79 assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); 80 SetVector<BasicBlock *> Result; 81 82 // Loop over the blocks, adding them to our set-vector, and aborting with an 83 // empty set if we encounter invalid blocks. 84 for (BasicBlock *BB : BBs) { 85 86 // If this block is dead, don't process it. 87 if (DT && !DT->isReachableFromEntry(BB)) 88 continue; 89 90 if (!Result.insert(BB)) 91 llvm_unreachable("Repeated basic blocks in extraction input"); 92 if (!CodeExtractor::isBlockValidForExtraction(*BB)) { 93 Result.clear(); 94 return Result; 95 } 96 } 97 98 #ifndef NDEBUG 99 for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()), 100 E = Result.end(); 101 I != E; ++I) 102 for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I); 103 PI != PE; ++PI) 104 assert(Result.count(*PI) && 105 "No blocks in this region may have entries from outside the region" 106 " except for the first block!"); 107 #endif 108 109 return Result; 110 } 111 112 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, 113 bool AggregateArgs, BlockFrequencyInfo *BFI, 114 BranchProbabilityInfo *BPI) 115 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 116 BPI(BPI), Blocks(buildExtractionBlockSet(BBs, DT)), NumExitBlocks(~0U) {} 117 118 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, 119 BlockFrequencyInfo *BFI, 120 BranchProbabilityInfo *BPI) 121 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), 122 BPI(BPI), Blocks(buildExtractionBlockSet(L.getBlocks(), &DT)), 123 NumExitBlocks(~0U) {} 124 125 /// definedInRegion - Return true if the specified value is defined in the 126 /// extracted region. 127 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { 128 if (Instruction *I = dyn_cast<Instruction>(V)) 129 if (Blocks.count(I->getParent())) 130 return true; 131 return false; 132 } 133 134 /// definedInCaller - Return true if the specified value is defined in the 135 /// function being code extracted, but not in the region being extracted. 136 /// These values must be passed in as live-ins to the function. 137 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { 138 if (isa<Argument>(V)) return true; 139 if (Instruction *I = dyn_cast<Instruction>(V)) 140 if (!Blocks.count(I->getParent())) 141 return true; 142 return false; 143 } 144 145 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { 146 BasicBlock *CommonExitBlock = nullptr; 147 auto hasNonCommonExitSucc = [&](BasicBlock *Block) { 148 for (auto *Succ : successors(Block)) { 149 // Internal edges, ok. 150 if (Blocks.count(Succ)) 151 continue; 152 if (!CommonExitBlock) { 153 CommonExitBlock = Succ; 154 continue; 155 } 156 if (CommonExitBlock == Succ) 157 continue; 158 159 return true; 160 } 161 return false; 162 }; 163 164 if (any_of(Blocks, hasNonCommonExitSucc)) 165 return nullptr; 166 167 return CommonExitBlock; 168 } 169 170 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( 171 Instruction *Addr) const { 172 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); 173 Function *Func = (*Blocks.begin())->getParent(); 174 for (BasicBlock &BB : *Func) { 175 if (Blocks.count(&BB)) 176 continue; 177 for (Instruction &II : BB) { 178 179 if (isa<DbgInfoIntrinsic>(II)) 180 continue; 181 182 unsigned Opcode = II.getOpcode(); 183 Value *MemAddr = nullptr; 184 switch (Opcode) { 185 case Instruction::Store: 186 case Instruction::Load: { 187 if (Opcode == Instruction::Store) { 188 StoreInst *SI = cast<StoreInst>(&II); 189 MemAddr = SI->getPointerOperand(); 190 } else { 191 LoadInst *LI = cast<LoadInst>(&II); 192 MemAddr = LI->getPointerOperand(); 193 } 194 // Global variable can not be aliased with locals. 195 if (dyn_cast<Constant>(MemAddr)) 196 break; 197 Value *Base = MemAddr->stripInBoundsConstantOffsets(); 198 if (!dyn_cast<AllocaInst>(Base) || Base == AI) 199 return false; 200 break; 201 } 202 default: { 203 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); 204 if (IntrInst) { 205 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start || 206 IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) 207 break; 208 return false; 209 } 210 // Treat all the other cases conservatively if it has side effects. 211 if (II.mayHaveSideEffects()) 212 return false; 213 } 214 } 215 } 216 } 217 218 return true; 219 } 220 221 BasicBlock * 222 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { 223 BasicBlock *SinglePredFromOutlineRegion = nullptr; 224 assert(!Blocks.count(CommonExitBlock) && 225 "Expect a block outside the region!"); 226 for (auto *Pred : predecessors(CommonExitBlock)) { 227 if (!Blocks.count(Pred)) 228 continue; 229 if (!SinglePredFromOutlineRegion) { 230 SinglePredFromOutlineRegion = Pred; 231 } else if (SinglePredFromOutlineRegion != Pred) { 232 SinglePredFromOutlineRegion = nullptr; 233 break; 234 } 235 } 236 237 if (SinglePredFromOutlineRegion) 238 return SinglePredFromOutlineRegion; 239 240 #ifndef NDEBUG 241 auto getFirstPHI = [](BasicBlock *BB) { 242 BasicBlock::iterator I = BB->begin(); 243 PHINode *FirstPhi = nullptr; 244 while (I != BB->end()) { 245 PHINode *Phi = dyn_cast<PHINode>(I); 246 if (!Phi) 247 break; 248 if (!FirstPhi) { 249 FirstPhi = Phi; 250 break; 251 } 252 } 253 return FirstPhi; 254 }; 255 // If there are any phi nodes, the single pred either exists or has already 256 // be created before code extraction. 257 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); 258 #endif 259 260 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( 261 CommonExitBlock->getFirstNonPHI()->getIterator()); 262 263 for (auto *Pred : predecessors(CommonExitBlock)) { 264 if (Blocks.count(Pred)) 265 continue; 266 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); 267 } 268 // Now add the old exit block to the outline region. 269 Blocks.insert(CommonExitBlock); 270 return CommonExitBlock; 271 } 272 273 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands, 274 BasicBlock *&ExitBlock) const { 275 Function *Func = (*Blocks.begin())->getParent(); 276 ExitBlock = getCommonExitBlock(Blocks); 277 278 for (BasicBlock &BB : *Func) { 279 if (Blocks.count(&BB)) 280 continue; 281 for (Instruction &II : BB) { 282 auto *AI = dyn_cast<AllocaInst>(&II); 283 if (!AI) 284 continue; 285 286 // Find the pair of life time markers for address 'Addr' that are either 287 // defined inside the outline region or can legally be shrinkwrapped into 288 // the outline region. If there are not other untracked uses of the 289 // address, return the pair of markers if found; otherwise return a pair 290 // of nullptr. 291 auto GetLifeTimeMarkers = 292 [&](Instruction *Addr, bool &SinkLifeStart, 293 bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> { 294 Instruction *LifeStart = nullptr, *LifeEnd = nullptr; 295 296 for (User *U : Addr->users()) { 297 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); 298 if (IntrInst) { 299 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { 300 // Do not handle the case where AI has multiple start markers. 301 if (LifeStart) 302 return std::make_pair<Instruction *>(nullptr, nullptr); 303 LifeStart = IntrInst; 304 } 305 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { 306 if (LifeEnd) 307 return std::make_pair<Instruction *>(nullptr, nullptr); 308 LifeEnd = IntrInst; 309 } 310 continue; 311 } 312 // Find untracked uses of the address, bail. 313 if (!definedInRegion(Blocks, U)) 314 return std::make_pair<Instruction *>(nullptr, nullptr); 315 } 316 317 if (!LifeStart || !LifeEnd) 318 return std::make_pair<Instruction *>(nullptr, nullptr); 319 320 SinkLifeStart = !definedInRegion(Blocks, LifeStart); 321 HoistLifeEnd = !definedInRegion(Blocks, LifeEnd); 322 // Do legality Check. 323 if ((SinkLifeStart || HoistLifeEnd) && 324 !isLegalToShrinkwrapLifetimeMarkers(Addr)) 325 return std::make_pair<Instruction *>(nullptr, nullptr); 326 327 // Check to see if we have a place to do hoisting, if not, bail. 328 if (HoistLifeEnd && !ExitBlock) 329 return std::make_pair<Instruction *>(nullptr, nullptr); 330 331 return std::make_pair(LifeStart, LifeEnd); 332 }; 333 334 bool SinkLifeStart = false, HoistLifeEnd = false; 335 auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd); 336 337 if (Markers.first) { 338 if (SinkLifeStart) 339 SinkCands.insert(Markers.first); 340 SinkCands.insert(AI); 341 if (HoistLifeEnd) 342 HoistCands.insert(Markers.second); 343 continue; 344 } 345 346 // Follow the bitcast. 347 Instruction *MarkerAddr = nullptr; 348 for (User *U : AI->users()) { 349 350 if (U->stripInBoundsConstantOffsets() == AI) { 351 SinkLifeStart = false; 352 HoistLifeEnd = false; 353 Instruction *Bitcast = cast<Instruction>(U); 354 Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd); 355 if (Markers.first) { 356 MarkerAddr = Bitcast; 357 continue; 358 } 359 } 360 361 // Found unknown use of AI. 362 if (!definedInRegion(Blocks, U)) { 363 MarkerAddr = nullptr; 364 break; 365 } 366 } 367 368 if (MarkerAddr) { 369 if (SinkLifeStart) 370 SinkCands.insert(Markers.first); 371 if (!definedInRegion(Blocks, MarkerAddr)) 372 SinkCands.insert(MarkerAddr); 373 SinkCands.insert(AI); 374 if (HoistLifeEnd) 375 HoistCands.insert(Markers.second); 376 } 377 } 378 } 379 } 380 381 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, 382 const ValueSet &SinkCands) const { 383 384 for (BasicBlock *BB : Blocks) { 385 // If a used value is defined outside the region, it's an input. If an 386 // instruction is used outside the region, it's an output. 387 for (Instruction &II : *BB) { 388 for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE; 389 ++OI) { 390 Value *V = *OI; 391 if (!SinkCands.count(V) && definedInCaller(Blocks, V)) 392 Inputs.insert(V); 393 } 394 395 for (User *U : II.users()) 396 if (!definedInRegion(Blocks, U)) { 397 Outputs.insert(&II); 398 break; 399 } 400 } 401 } 402 } 403 404 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 405 /// region, we need to split the entry block of the region so that the PHI node 406 /// is easier to deal with. 407 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 408 unsigned NumPredsFromRegion = 0; 409 unsigned NumPredsOutsideRegion = 0; 410 411 if (Header != &Header->getParent()->getEntryBlock()) { 412 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 413 if (!PN) return; // No PHI nodes. 414 415 // If the header node contains any PHI nodes, check to see if there is more 416 // than one entry from outside the region. If so, we need to sever the 417 // header block into two. 418 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 419 if (Blocks.count(PN->getIncomingBlock(i))) 420 ++NumPredsFromRegion; 421 else 422 ++NumPredsOutsideRegion; 423 424 // If there is one (or fewer) predecessor from outside the region, we don't 425 // need to do anything special. 426 if (NumPredsOutsideRegion <= 1) return; 427 } 428 429 // Otherwise, we need to split the header block into two pieces: one 430 // containing PHI nodes merging values from outside of the region, and a 431 // second that contains all of the code for the block and merges back any 432 // incoming values from inside of the region. 433 BasicBlock *NewBB = llvm::SplitBlock(Header, Header->getFirstNonPHI(), DT); 434 435 // We only want to code extract the second block now, and it becomes the new 436 // header of the region. 437 BasicBlock *OldPred = Header; 438 Blocks.remove(OldPred); 439 Blocks.insert(NewBB); 440 Header = NewBB; 441 442 // Okay, now we need to adjust the PHI nodes and any branches from within the 443 // region to go to the new header block instead of the old header block. 444 if (NumPredsFromRegion) { 445 PHINode *PN = cast<PHINode>(OldPred->begin()); 446 // Loop over all of the predecessors of OldPred that are in the region, 447 // changing them to branch to NewBB instead. 448 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 449 if (Blocks.count(PN->getIncomingBlock(i))) { 450 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 451 TI->replaceUsesOfWith(OldPred, NewBB); 452 } 453 454 // Okay, everything within the region is now branching to the right block, we 455 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 456 BasicBlock::iterator AfterPHIs; 457 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 458 PHINode *PN = cast<PHINode>(AfterPHIs); 459 // Create a new PHI node in the new region, which has an incoming value 460 // from OldPred of PN. 461 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, 462 PN->getName() + ".ce", &NewBB->front()); 463 PN->replaceAllUsesWith(NewPN); 464 NewPN->addIncoming(PN, OldPred); 465 466 // Loop over all of the incoming value in PN, moving them to NewPN if they 467 // are from the extracted region. 468 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 469 if (Blocks.count(PN->getIncomingBlock(i))) { 470 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 471 PN->removeIncomingValue(i); 472 --i; 473 } 474 } 475 } 476 } 477 } 478 479 void CodeExtractor::splitReturnBlocks() { 480 for (BasicBlock *Block : Blocks) 481 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { 482 BasicBlock *New = 483 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); 484 if (DT) { 485 // Old dominates New. New node dominates all other nodes dominated 486 // by Old. 487 DomTreeNode *OldNode = DT->getNode(Block); 488 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), 489 OldNode->end()); 490 491 DomTreeNode *NewNode = DT->addNewBlock(New, Block); 492 493 for (DomTreeNode *I : Children) 494 DT->changeImmediateDominator(I, NewNode); 495 } 496 } 497 } 498 499 /// constructFunction - make a function based on inputs and outputs, as follows: 500 /// f(in0, ..., inN, out0, ..., outN) 501 /// 502 Function *CodeExtractor::constructFunction(const ValueSet &inputs, 503 const ValueSet &outputs, 504 BasicBlock *header, 505 BasicBlock *newRootNode, 506 BasicBlock *newHeader, 507 Function *oldFunction, 508 Module *M) { 509 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); 510 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); 511 512 // This function returns unsigned, outputs will go back by reference. 513 switch (NumExitBlocks) { 514 case 0: 515 case 1: RetTy = Type::getVoidTy(header->getContext()); break; 516 case 2: RetTy = Type::getInt1Ty(header->getContext()); break; 517 default: RetTy = Type::getInt16Ty(header->getContext()); break; 518 } 519 520 std::vector<Type*> paramTy; 521 522 // Add the types of the input values to the function's argument list 523 for (Value *value : inputs) { 524 DEBUG(dbgs() << "value used in func: " << *value << "\n"); 525 paramTy.push_back(value->getType()); 526 } 527 528 // Add the types of the output values to the function's argument list. 529 for (Value *output : outputs) { 530 DEBUG(dbgs() << "instr used in func: " << *output << "\n"); 531 if (AggregateArgs) 532 paramTy.push_back(output->getType()); 533 else 534 paramTy.push_back(PointerType::getUnqual(output->getType())); 535 } 536 537 DEBUG({ 538 dbgs() << "Function type: " << *RetTy << " f("; 539 for (Type *i : paramTy) 540 dbgs() << *i << ", "; 541 dbgs() << ")\n"; 542 }); 543 544 StructType *StructTy; 545 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 546 StructTy = StructType::get(M->getContext(), paramTy); 547 paramTy.clear(); 548 paramTy.push_back(PointerType::getUnqual(StructTy)); 549 } 550 FunctionType *funcType = 551 FunctionType::get(RetTy, paramTy, false); 552 553 // Create the new function 554 Function *newFunction = Function::Create(funcType, 555 GlobalValue::InternalLinkage, 556 oldFunction->getName() + "_" + 557 header->getName(), M); 558 // If the old function is no-throw, so is the new one. 559 if (oldFunction->doesNotThrow()) 560 newFunction->setDoesNotThrow(); 561 562 // Inherit the uwtable attribute if we need to. 563 if (oldFunction->hasUWTable()) 564 newFunction->setHasUWTable(); 565 566 // Inherit all of the target dependent attributes. 567 // (e.g. If the extracted region contains a call to an x86.sse 568 // instruction we need to make sure that the extracted region has the 569 // "target-features" attribute allowing it to be lowered. 570 // FIXME: This should be changed to check to see if a specific 571 // attribute can not be inherited. 572 AttrBuilder AB(oldFunction->getAttributes().getFnAttributes()); 573 for (const auto &Attr : AB.td_attrs()) 574 newFunction->addFnAttr(Attr.first, Attr.second); 575 576 newFunction->getBasicBlockList().push_back(newRootNode); 577 578 // Create an iterator to name all of the arguments we inserted. 579 Function::arg_iterator AI = newFunction->arg_begin(); 580 581 // Rewrite all users of the inputs in the extracted region to use the 582 // arguments (or appropriate addressing into struct) instead. 583 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 584 Value *RewriteVal; 585 if (AggregateArgs) { 586 Value *Idx[2]; 587 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); 588 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); 589 TerminatorInst *TI = newFunction->begin()->getTerminator(); 590 GetElementPtrInst *GEP = GetElementPtrInst::Create( 591 StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); 592 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); 593 } else 594 RewriteVal = &*AI++; 595 596 std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end()); 597 for (User *use : Users) 598 if (Instruction *inst = dyn_cast<Instruction>(use)) 599 if (Blocks.count(inst->getParent())) 600 inst->replaceUsesOfWith(inputs[i], RewriteVal); 601 } 602 603 // Set names for input and output arguments. 604 if (!AggregateArgs) { 605 AI = newFunction->arg_begin(); 606 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 607 AI->setName(inputs[i]->getName()); 608 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 609 AI->setName(outputs[i]->getName()+".out"); 610 } 611 612 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 613 // within the new function. This must be done before we lose track of which 614 // blocks were originally in the code region. 615 std::vector<User*> Users(header->user_begin(), header->user_end()); 616 for (unsigned i = 0, e = Users.size(); i != e; ++i) 617 // The BasicBlock which contains the branch is not in the region 618 // modify the branch target to a new block 619 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 620 if (!Blocks.count(TI->getParent()) && 621 TI->getParent()->getParent() == oldFunction) 622 TI->replaceUsesOfWith(header, newHeader); 623 624 return newFunction; 625 } 626 627 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI 628 /// that uses the value within the basic block, and return the predecessor 629 /// block associated with that use, or return 0 if none is found. 630 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) { 631 for (Use &U : Used->uses()) { 632 PHINode *P = dyn_cast<PHINode>(U.getUser()); 633 if (P && P->getParent() == BB) 634 return P->getIncomingBlock(U); 635 } 636 637 return nullptr; 638 } 639 640 /// emitCallAndSwitchStatement - This method sets up the caller side by adding 641 /// the call instruction, splitting any PHI nodes in the header block as 642 /// necessary. 643 void CodeExtractor:: 644 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 645 ValueSet &inputs, ValueSet &outputs) { 646 // Emit a call to the new function, passing in: *pointer to struct (if 647 // aggregating parameters), or plan inputs and allocated memory for outputs 648 std::vector<Value*> params, StructValues, ReloadOutputs, Reloads; 649 650 Module *M = newFunction->getParent(); 651 LLVMContext &Context = M->getContext(); 652 const DataLayout &DL = M->getDataLayout(); 653 654 // Add inputs as params, or to be filled into the struct 655 for (Value *input : inputs) 656 if (AggregateArgs) 657 StructValues.push_back(input); 658 else 659 params.push_back(input); 660 661 // Create allocas for the outputs 662 for (Value *output : outputs) { 663 if (AggregateArgs) { 664 StructValues.push_back(output); 665 } else { 666 AllocaInst *alloca = 667 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), 668 nullptr, output->getName() + ".loc", 669 &codeReplacer->getParent()->front().front()); 670 ReloadOutputs.push_back(alloca); 671 params.push_back(alloca); 672 } 673 } 674 675 StructType *StructArgTy = nullptr; 676 AllocaInst *Struct = nullptr; 677 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 678 std::vector<Type*> ArgTypes; 679 for (ValueSet::iterator v = StructValues.begin(), 680 ve = StructValues.end(); v != ve; ++v) 681 ArgTypes.push_back((*v)->getType()); 682 683 // Allocate a struct at the beginning of this function 684 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); 685 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr, 686 "structArg", 687 &codeReplacer->getParent()->front().front()); 688 params.push_back(Struct); 689 690 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 691 Value *Idx[2]; 692 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 693 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); 694 GetElementPtrInst *GEP = GetElementPtrInst::Create( 695 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); 696 codeReplacer->getInstList().push_back(GEP); 697 StoreInst *SI = new StoreInst(StructValues[i], GEP); 698 codeReplacer->getInstList().push_back(SI); 699 } 700 } 701 702 // Emit the call to the function 703 CallInst *call = CallInst::Create(newFunction, params, 704 NumExitBlocks > 1 ? "targetBlock" : ""); 705 codeReplacer->getInstList().push_back(call); 706 707 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 708 unsigned FirstOut = inputs.size(); 709 if (!AggregateArgs) 710 std::advance(OutputArgBegin, inputs.size()); 711 712 // Reload the outputs passed in by reference 713 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 714 Value *Output = nullptr; 715 if (AggregateArgs) { 716 Value *Idx[2]; 717 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 718 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); 719 GetElementPtrInst *GEP = GetElementPtrInst::Create( 720 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); 721 codeReplacer->getInstList().push_back(GEP); 722 Output = GEP; 723 } else { 724 Output = ReloadOutputs[i]; 725 } 726 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 727 Reloads.push_back(load); 728 codeReplacer->getInstList().push_back(load); 729 std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end()); 730 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 731 Instruction *inst = cast<Instruction>(Users[u]); 732 if (!Blocks.count(inst->getParent())) 733 inst->replaceUsesOfWith(outputs[i], load); 734 } 735 } 736 737 // Now we can emit a switch statement using the call as a value. 738 SwitchInst *TheSwitch = 739 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), 740 codeReplacer, 0, codeReplacer); 741 742 // Since there may be multiple exits from the original region, make the new 743 // function return an unsigned, switch on that number. This loop iterates 744 // over all of the blocks in the extracted region, updating any terminator 745 // instructions in the to-be-extracted region that branch to blocks that are 746 // not in the region to be extracted. 747 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 748 749 unsigned switchVal = 0; 750 for (BasicBlock *Block : Blocks) { 751 TerminatorInst *TI = Block->getTerminator(); 752 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 753 if (!Blocks.count(TI->getSuccessor(i))) { 754 BasicBlock *OldTarget = TI->getSuccessor(i); 755 // add a new basic block which returns the appropriate value 756 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 757 if (!NewTarget) { 758 // If we don't already have an exit stub for this non-extracted 759 // destination, create one now! 760 NewTarget = BasicBlock::Create(Context, 761 OldTarget->getName() + ".exitStub", 762 newFunction); 763 unsigned SuccNum = switchVal++; 764 765 Value *brVal = nullptr; 766 switch (NumExitBlocks) { 767 case 0: 768 case 1: break; // No value needed. 769 case 2: // Conditional branch, return a bool 770 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); 771 break; 772 default: 773 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); 774 break; 775 } 776 777 ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget); 778 779 // Update the switch instruction. 780 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), 781 SuccNum), 782 OldTarget); 783 784 // Restore values just before we exit 785 Function::arg_iterator OAI = OutputArgBegin; 786 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 787 // For an invoke, the normal destination is the only one that is 788 // dominated by the result of the invocation 789 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 790 791 bool DominatesDef = true; 792 793 BasicBlock *NormalDest = nullptr; 794 if (auto *Invoke = dyn_cast<InvokeInst>(outputs[out])) 795 NormalDest = Invoke->getNormalDest(); 796 797 if (NormalDest) { 798 DefBlock = NormalDest; 799 800 // Make sure we are looking at the original successor block, not 801 // at a newly inserted exit block, which won't be in the dominator 802 // info. 803 for (const auto &I : ExitBlockMap) 804 if (DefBlock == I.second) { 805 DefBlock = I.first; 806 break; 807 } 808 809 // In the extract block case, if the block we are extracting ends 810 // with an invoke instruction, make sure that we don't emit a 811 // store of the invoke value for the unwind block. 812 if (!DT && DefBlock != OldTarget) 813 DominatesDef = false; 814 } 815 816 if (DT) { 817 DominatesDef = DT->dominates(DefBlock, OldTarget); 818 819 // If the output value is used by a phi in the target block, 820 // then we need to test for dominance of the phi's predecessor 821 // instead. Unfortunately, this a little complicated since we 822 // have already rewritten uses of the value to uses of the reload. 823 BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out], 824 OldTarget); 825 if (pred && DT && DT->dominates(DefBlock, pred)) 826 DominatesDef = true; 827 } 828 829 if (DominatesDef) { 830 if (AggregateArgs) { 831 Value *Idx[2]; 832 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); 833 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), 834 FirstOut+out); 835 GetElementPtrInst *GEP = GetElementPtrInst::Create( 836 StructArgTy, &*OAI, Idx, "gep_" + outputs[out]->getName(), 837 NTRet); 838 new StoreInst(outputs[out], GEP, NTRet); 839 } else { 840 new StoreInst(outputs[out], &*OAI, NTRet); 841 } 842 } 843 // Advance output iterator even if we don't emit a store 844 if (!AggregateArgs) ++OAI; 845 } 846 } 847 848 // rewrite the original branch instruction with this new target 849 TI->setSuccessor(i, NewTarget); 850 } 851 } 852 853 // Now that we've done the deed, simplify the switch instruction. 854 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 855 switch (NumExitBlocks) { 856 case 0: 857 // There are no successors (the block containing the switch itself), which 858 // means that previously this was the last part of the function, and hence 859 // this should be rewritten as a `ret' 860 861 // Check if the function should return a value 862 if (OldFnRetTy->isVoidTy()) { 863 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void 864 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 865 // return what we have 866 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); 867 } else { 868 // Otherwise we must have code extracted an unwind or something, just 869 // return whatever we want. 870 ReturnInst::Create(Context, 871 Constant::getNullValue(OldFnRetTy), TheSwitch); 872 } 873 874 TheSwitch->eraseFromParent(); 875 break; 876 case 1: 877 // Only a single destination, change the switch into an unconditional 878 // branch. 879 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); 880 TheSwitch->eraseFromParent(); 881 break; 882 case 2: 883 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 884 call, TheSwitch); 885 TheSwitch->eraseFromParent(); 886 break; 887 default: 888 // Otherwise, make the default destination of the switch instruction be one 889 // of the other successors. 890 TheSwitch->setCondition(call); 891 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); 892 // Remove redundant case 893 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); 894 break; 895 } 896 } 897 898 void CodeExtractor::moveCodeToFunction(Function *newFunction) { 899 Function *oldFunc = (*Blocks.begin())->getParent(); 900 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 901 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 902 903 for (BasicBlock *Block : Blocks) { 904 // Delete the basic block from the old function, and the list of blocks 905 oldBlocks.remove(Block); 906 907 // Insert this basic block into the new function 908 newBlocks.push_back(Block); 909 } 910 } 911 912 void CodeExtractor::calculateNewCallTerminatorWeights( 913 BasicBlock *CodeReplacer, 914 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, 915 BranchProbabilityInfo *BPI) { 916 typedef BlockFrequencyInfoImplBase::Distribution Distribution; 917 typedef BlockFrequencyInfoImplBase::BlockNode BlockNode; 918 919 // Update the branch weights for the exit block. 920 TerminatorInst *TI = CodeReplacer->getTerminator(); 921 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); 922 923 // Block Frequency distribution with dummy node. 924 Distribution BranchDist; 925 926 // Add each of the frequencies of the successors. 927 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { 928 BlockNode ExitNode(i); 929 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); 930 if (ExitFreq != 0) 931 BranchDist.addExit(ExitNode, ExitFreq); 932 else 933 BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); 934 } 935 936 // Check for no total weight. 937 if (BranchDist.Total == 0) 938 return; 939 940 // Normalize the distribution so that they can fit in unsigned. 941 BranchDist.normalize(); 942 943 // Create normalized branch weights and set the metadata. 944 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { 945 const auto &Weight = BranchDist.Weights[I]; 946 947 // Get the weight and update the current BFI. 948 BranchWeights[Weight.TargetNode.Index] = Weight.Amount; 949 BranchProbability BP(Weight.Amount, BranchDist.Total); 950 BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); 951 } 952 TI->setMetadata( 953 LLVMContext::MD_prof, 954 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); 955 } 956 957 Function *CodeExtractor::extractCodeRegion() { 958 if (!isEligible()) 959 return nullptr; 960 961 ValueSet inputs, outputs, SinkingCands, HoistingCands; 962 BasicBlock *CommonExit = nullptr; 963 964 // Assumption: this is a single-entry code region, and the header is the first 965 // block in the region. 966 BasicBlock *header = *Blocks.begin(); 967 968 // Calculate the entry frequency of the new function before we change the root 969 // block. 970 BlockFrequency EntryFreq; 971 if (BFI) { 972 assert(BPI && "Both BPI and BFI are required to preserve profile info"); 973 for (BasicBlock *Pred : predecessors(header)) { 974 if (Blocks.count(Pred)) 975 continue; 976 EntryFreq += 977 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); 978 } 979 } 980 981 // If we have to split PHI nodes or the entry block, do so now. 982 severSplitPHINodes(header); 983 984 // If we have any return instructions in the region, split those blocks so 985 // that the return is not in the region. 986 splitReturnBlocks(); 987 988 Function *oldFunction = header->getParent(); 989 990 // This takes place of the original loop 991 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 992 "codeRepl", oldFunction, 993 header); 994 995 // The new function needs a root node because other nodes can branch to the 996 // head of the region, but the entry node of a function cannot have preds. 997 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 998 "newFuncRoot"); 999 newFuncRoot->getInstList().push_back(BranchInst::Create(header)); 1000 1001 findAllocas(SinkingCands, HoistingCands, CommonExit); 1002 assert(HoistingCands.empty() || CommonExit); 1003 1004 // Find inputs to, outputs from the code region. 1005 findInputsOutputs(inputs, outputs, SinkingCands); 1006 1007 // Now sink all instructions which only have non-phi uses inside the region 1008 for (auto *II : SinkingCands) 1009 cast<Instruction>(II)->moveBefore(*newFuncRoot, 1010 newFuncRoot->getFirstInsertionPt()); 1011 1012 if (!HoistingCands.empty()) { 1013 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); 1014 Instruction *TI = HoistToBlock->getTerminator(); 1015 for (auto *II : HoistingCands) 1016 cast<Instruction>(II)->moveBefore(TI); 1017 } 1018 1019 // Calculate the exit blocks for the extracted region and the total exit 1020 // weights for each of those blocks. 1021 DenseMap<BasicBlock *, BlockFrequency> ExitWeights; 1022 SmallPtrSet<BasicBlock *, 1> ExitBlocks; 1023 for (BasicBlock *Block : Blocks) { 1024 for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; 1025 ++SI) { 1026 if (!Blocks.count(*SI)) { 1027 // Update the branch weight for this successor. 1028 if (BFI) { 1029 BlockFrequency &BF = ExitWeights[*SI]; 1030 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); 1031 } 1032 ExitBlocks.insert(*SI); 1033 } 1034 } 1035 } 1036 NumExitBlocks = ExitBlocks.size(); 1037 1038 // Construct new function based on inputs/outputs & add allocas for all defs. 1039 Function *newFunction = constructFunction(inputs, outputs, header, 1040 newFuncRoot, 1041 codeReplacer, oldFunction, 1042 oldFunction->getParent()); 1043 1044 // Update the entry count of the function. 1045 if (BFI) { 1046 Optional<uint64_t> EntryCount = 1047 BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); 1048 if (EntryCount.hasValue()) 1049 newFunction->setEntryCount(EntryCount.getValue()); 1050 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); 1051 } 1052 1053 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 1054 1055 moveCodeToFunction(newFunction); 1056 1057 // Update the branch weights for the exit block. 1058 if (BFI && NumExitBlocks > 1) 1059 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); 1060 1061 // Loop over all of the PHI nodes in the header block, and change any 1062 // references to the old incoming edge to be the new incoming edge. 1063 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 1064 PHINode *PN = cast<PHINode>(I); 1065 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1066 if (!Blocks.count(PN->getIncomingBlock(i))) 1067 PN->setIncomingBlock(i, newFuncRoot); 1068 } 1069 1070 // Look at all successors of the codeReplacer block. If any of these blocks 1071 // had PHI nodes in them, we need to update the "from" block to be the code 1072 // replacer, not the original block in the extracted region. 1073 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 1074 succ_end(codeReplacer)); 1075 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 1076 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 1077 PHINode *PN = cast<PHINode>(I); 1078 std::set<BasicBlock*> ProcessedPreds; 1079 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1080 if (Blocks.count(PN->getIncomingBlock(i))) { 1081 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 1082 PN->setIncomingBlock(i, codeReplacer); 1083 else { 1084 // There were multiple entries in the PHI for this block, now there 1085 // is only one, so remove the duplicated entries. 1086 PN->removeIncomingValue(i, false); 1087 --i; --e; 1088 } 1089 } 1090 } 1091 1092 //cerr << "NEW FUNCTION: " << *newFunction; 1093 // verifyFunction(*newFunction); 1094 1095 // cerr << "OLD FUNCTION: " << *oldFunction; 1096 // verifyFunction(*oldFunction); 1097 1098 DEBUG(if (verifyFunction(*newFunction)) 1099 report_fatal_error("verifyFunction failed!")); 1100 return newFunction; 1101 } 1102