1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements sparse conditional constant propagation and merging: 11 // 12 // Specifically, this: 13 // * Assumes values are constant unless proven otherwise 14 // * Assumes BasicBlocks are dead unless proven otherwise 15 // * Proves values to be constant, and replaces them with constants 16 // * Proves conditional branches to be unconditional 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Scalar/SCCP.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/DenseSet.h" 24 #include "llvm/ADT/PointerIntPair.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/GlobalsModRef.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Analysis/ValueLattice.h" 34 #include "llvm/Analysis/ValueLatticeUtils.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CallSite.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InstVisitor.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Transforms/Utils/PredicateInfo.h" 59 #include <cassert> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "sccp" 66 67 STATISTIC(NumInstRemoved, "Number of instructions removed"); 68 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 69 70 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 71 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 72 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 73 74 namespace { 75 76 /// LatticeVal class - This class represents the different lattice values that 77 /// an LLVM value may occupy. It is a simple class with value semantics. 78 /// 79 class LatticeVal { 80 enum LatticeValueTy { 81 /// unknown - This LLVM Value has no known value yet. 82 unknown, 83 84 /// constant - This LLVM Value has a specific constant value. 85 constant, 86 87 /// forcedconstant - This LLVM Value was thought to be undef until 88 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 89 /// with another (different) constant, it goes to overdefined, instead of 90 /// asserting. 91 forcedconstant, 92 93 /// overdefined - This instruction is not known to be constant, and we know 94 /// it has a value. 95 overdefined 96 }; 97 98 /// Val: This stores the current lattice value along with the Constant* for 99 /// the constant if this is a 'constant' or 'forcedconstant' value. 100 PointerIntPair<Constant *, 2, LatticeValueTy> Val; 101 102 LatticeValueTy getLatticeValue() const { 103 return Val.getInt(); 104 } 105 106 public: 107 LatticeVal() : Val(nullptr, unknown) {} 108 109 bool isUnknown() const { return getLatticeValue() == unknown; } 110 111 bool isConstant() const { 112 return getLatticeValue() == constant || getLatticeValue() == forcedconstant; 113 } 114 115 bool isOverdefined() const { return getLatticeValue() == overdefined; } 116 117 Constant *getConstant() const { 118 assert(isConstant() && "Cannot get the constant of a non-constant!"); 119 return Val.getPointer(); 120 } 121 122 /// markOverdefined - Return true if this is a change in status. 123 bool markOverdefined() { 124 if (isOverdefined()) 125 return false; 126 127 Val.setInt(overdefined); 128 return true; 129 } 130 131 /// markConstant - Return true if this is a change in status. 132 bool markConstant(Constant *V) { 133 if (getLatticeValue() == constant) { // Constant but not forcedconstant. 134 assert(getConstant() == V && "Marking constant with different value"); 135 return false; 136 } 137 138 if (isUnknown()) { 139 Val.setInt(constant); 140 assert(V && "Marking constant with NULL"); 141 Val.setPointer(V); 142 } else { 143 assert(getLatticeValue() == forcedconstant && 144 "Cannot move from overdefined to constant!"); 145 // Stay at forcedconstant if the constant is the same. 146 if (V == getConstant()) return false; 147 148 // Otherwise, we go to overdefined. Assumptions made based on the 149 // forced value are possibly wrong. Assuming this is another constant 150 // could expose a contradiction. 151 Val.setInt(overdefined); 152 } 153 return true; 154 } 155 156 /// getConstantInt - If this is a constant with a ConstantInt value, return it 157 /// otherwise return null. 158 ConstantInt *getConstantInt() const { 159 if (isConstant()) 160 return dyn_cast<ConstantInt>(getConstant()); 161 return nullptr; 162 } 163 164 /// getBlockAddress - If this is a constant with a BlockAddress value, return 165 /// it, otherwise return null. 166 BlockAddress *getBlockAddress() const { 167 if (isConstant()) 168 return dyn_cast<BlockAddress>(getConstant()); 169 return nullptr; 170 } 171 172 void markForcedConstant(Constant *V) { 173 assert(isUnknown() && "Can't force a defined value!"); 174 Val.setInt(forcedconstant); 175 Val.setPointer(V); 176 } 177 178 ValueLatticeElement toValueLattice() const { 179 if (isOverdefined()) 180 return ValueLatticeElement::getOverdefined(); 181 if (isConstant()) 182 return ValueLatticeElement::get(getConstant()); 183 return ValueLatticeElement(); 184 } 185 }; 186 187 //===----------------------------------------------------------------------===// 188 // 189 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional 190 /// Constant Propagation. 191 /// 192 class SCCPSolver : public InstVisitor<SCCPSolver> { 193 const DataLayout &DL; 194 const TargetLibraryInfo *TLI; 195 SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable. 196 DenseMap<Value *, LatticeVal> ValueState; // The state each value is in. 197 // The state each parameter is in. 198 DenseMap<Value *, ValueLatticeElement> ParamState; 199 200 /// StructValueState - This maintains ValueState for values that have 201 /// StructType, for example for formal arguments, calls, insertelement, etc. 202 DenseMap<std::pair<Value *, unsigned>, LatticeVal> StructValueState; 203 204 /// GlobalValue - If we are tracking any values for the contents of a global 205 /// variable, we keep a mapping from the constant accessor to the element of 206 /// the global, to the currently known value. If the value becomes 207 /// overdefined, it's entry is simply removed from this map. 208 DenseMap<GlobalVariable *, LatticeVal> TrackedGlobals; 209 210 /// TrackedRetVals - If we are tracking arguments into and the return 211 /// value out of a function, it will have an entry in this map, indicating 212 /// what the known return value for the function is. 213 DenseMap<Function *, LatticeVal> TrackedRetVals; 214 215 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 216 /// that return multiple values. 217 DenseMap<std::pair<Function *, unsigned>, LatticeVal> TrackedMultipleRetVals; 218 219 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 220 /// represented here for efficient lookup. 221 SmallPtrSet<Function *, 16> MRVFunctionsTracked; 222 223 /// MustTailFunctions - Each function here is a callee of non-removable 224 /// musttail call site. 225 SmallPtrSet<Function *, 16> MustTailCallees; 226 227 /// TrackingIncomingArguments - This is the set of functions for whose 228 /// arguments we make optimistic assumptions about and try to prove as 229 /// constants. 230 SmallPtrSet<Function *, 16> TrackingIncomingArguments; 231 232 /// The reason for two worklists is that overdefined is the lowest state 233 /// on the lattice, and moving things to overdefined as fast as possible 234 /// makes SCCP converge much faster. 235 /// 236 /// By having a separate worklist, we accomplish this because everything 237 /// possibly overdefined will become overdefined at the soonest possible 238 /// point. 239 SmallVector<Value *, 64> OverdefinedInstWorkList; 240 SmallVector<Value *, 64> InstWorkList; 241 242 // The BasicBlock work list 243 SmallVector<BasicBlock *, 64> BBWorkList; 244 245 /// KnownFeasibleEdges - Entries in this set are edges which have already had 246 /// PHI nodes retriggered. 247 using Edge = std::pair<BasicBlock *, BasicBlock *>; 248 DenseSet<Edge> KnownFeasibleEdges; 249 250 DenseMap<Function *, AnalysisResultsForFn> AnalysisResults; 251 DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers; 252 253 public: 254 void addAnalysis(Function &F, AnalysisResultsForFn A) { 255 AnalysisResults.insert({&F, std::move(A)}); 256 } 257 258 const PredicateBase *getPredicateInfoFor(Instruction *I) { 259 auto A = AnalysisResults.find(I->getParent()->getParent()); 260 if (A == AnalysisResults.end()) 261 return nullptr; 262 return A->second.PredInfo->getPredicateInfoFor(I); 263 } 264 265 DomTreeUpdater getDTU(Function &F) { 266 auto A = AnalysisResults.find(&F); 267 assert(A != AnalysisResults.end() && "Need analysis results for function."); 268 return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy}; 269 } 270 271 SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli) 272 : DL(DL), TLI(tli) {} 273 274 /// MarkBlockExecutable - This method can be used by clients to mark all of 275 /// the blocks that are known to be intrinsically live in the processed unit. 276 /// 277 /// This returns true if the block was not considered live before. 278 bool MarkBlockExecutable(BasicBlock *BB) { 279 if (!BBExecutable.insert(BB).second) 280 return false; 281 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); 282 BBWorkList.push_back(BB); // Add the block to the work list! 283 return true; 284 } 285 286 /// TrackValueOfGlobalVariable - Clients can use this method to 287 /// inform the SCCPSolver that it should track loads and stores to the 288 /// specified global variable if it can. This is only legal to call if 289 /// performing Interprocedural SCCP. 290 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 291 // We only track the contents of scalar globals. 292 if (GV->getValueType()->isSingleValueType()) { 293 LatticeVal &IV = TrackedGlobals[GV]; 294 if (!isa<UndefValue>(GV->getInitializer())) 295 IV.markConstant(GV->getInitializer()); 296 } 297 } 298 299 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 300 /// and out of the specified function (which cannot have its address taken), 301 /// this method must be called. 302 void AddTrackedFunction(Function *F) { 303 // Add an entry, F -> undef. 304 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { 305 MRVFunctionsTracked.insert(F); 306 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 307 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 308 LatticeVal())); 309 } else 310 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 311 } 312 313 /// AddMustTailCallee - If the SCCP solver finds that this function is called 314 /// from non-removable musttail call site. 315 void AddMustTailCallee(Function *F) { 316 MustTailCallees.insert(F); 317 } 318 319 /// Returns true if the given function is called from non-removable musttail 320 /// call site. 321 bool isMustTailCallee(Function *F) { 322 return MustTailCallees.count(F); 323 } 324 325 void AddArgumentTrackedFunction(Function *F) { 326 TrackingIncomingArguments.insert(F); 327 } 328 329 /// Returns true if the given function is in the solver's set of 330 /// argument-tracked functions. 331 bool isArgumentTrackedFunction(Function *F) { 332 return TrackingIncomingArguments.count(F); 333 } 334 335 /// Solve - Solve for constants and executable blocks. 336 void Solve(); 337 338 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 339 /// that branches on undef values cannot reach any of their successors. 340 /// However, this is not a safe assumption. After we solve dataflow, this 341 /// method should be use to handle this. If this returns true, the solver 342 /// should be rerun. 343 bool ResolvedUndefsIn(Function &F); 344 345 bool isBlockExecutable(BasicBlock *BB) const { 346 return BBExecutable.count(BB); 347 } 348 349 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 350 // block to the 'To' basic block is currently feasible. 351 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 352 353 std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const { 354 std::vector<LatticeVal> StructValues; 355 auto *STy = dyn_cast<StructType>(V->getType()); 356 assert(STy && "getStructLatticeValueFor() can be called only on structs"); 357 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 358 auto I = StructValueState.find(std::make_pair(V, i)); 359 assert(I != StructValueState.end() && "Value not in valuemap!"); 360 StructValues.push_back(I->second); 361 } 362 return StructValues; 363 } 364 365 const LatticeVal &getLatticeValueFor(Value *V) const { 366 assert(!V->getType()->isStructTy() && 367 "Should use getStructLatticeValueFor"); 368 DenseMap<Value *, LatticeVal>::const_iterator I = ValueState.find(V); 369 assert(I != ValueState.end() && 370 "V not found in ValueState nor Paramstate map!"); 371 return I->second; 372 } 373 374 /// getTrackedRetVals - Get the inferred return value map. 375 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 376 return TrackedRetVals; 377 } 378 379 /// getTrackedGlobals - Get and return the set of inferred initializers for 380 /// global variables. 381 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 382 return TrackedGlobals; 383 } 384 385 /// getMRVFunctionsTracked - Get the set of functions which return multiple 386 /// values tracked by the pass. 387 const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() { 388 return MRVFunctionsTracked; 389 } 390 391 /// getMustTailCallees - Get the set of functions which are called 392 /// from non-removable musttail call sites. 393 const SmallPtrSet<Function *, 16> getMustTailCallees() { 394 return MustTailCallees; 395 } 396 397 /// markOverdefined - Mark the specified value overdefined. This 398 /// works with both scalars and structs. 399 void markOverdefined(Value *V) { 400 if (auto *STy = dyn_cast<StructType>(V->getType())) 401 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 402 markOverdefined(getStructValueState(V, i), V); 403 else 404 markOverdefined(ValueState[V], V); 405 } 406 407 // isStructLatticeConstant - Return true if all the lattice values 408 // corresponding to elements of the structure are not overdefined, 409 // false otherwise. 410 bool isStructLatticeConstant(Function *F, StructType *STy) { 411 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 412 const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 413 assert(It != TrackedMultipleRetVals.end()); 414 LatticeVal LV = It->second; 415 if (LV.isOverdefined()) 416 return false; 417 } 418 return true; 419 } 420 421 private: 422 // pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined 423 void pushToWorkList(LatticeVal &IV, Value *V) { 424 if (IV.isOverdefined()) 425 return OverdefinedInstWorkList.push_back(V); 426 InstWorkList.push_back(V); 427 } 428 429 // markConstant - Make a value be marked as "constant". If the value 430 // is not already a constant, add it to the instruction work list so that 431 // the users of the instruction are updated later. 432 bool markConstant(LatticeVal &IV, Value *V, Constant *C) { 433 if (!IV.markConstant(C)) return false; 434 LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 435 pushToWorkList(IV, V); 436 return true; 437 } 438 439 bool markConstant(Value *V, Constant *C) { 440 assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); 441 return markConstant(ValueState[V], V, C); 442 } 443 444 void markForcedConstant(Value *V, Constant *C) { 445 assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); 446 LatticeVal &IV = ValueState[V]; 447 IV.markForcedConstant(C); 448 LLVM_DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); 449 pushToWorkList(IV, V); 450 } 451 452 // markOverdefined - Make a value be marked as "overdefined". If the 453 // value is not already overdefined, add it to the overdefined instruction 454 // work list so that the users of the instruction are updated later. 455 bool markOverdefined(LatticeVal &IV, Value *V) { 456 if (!IV.markOverdefined()) return false; 457 458 LLVM_DEBUG(dbgs() << "markOverdefined: "; 459 if (auto *F = dyn_cast<Function>(V)) dbgs() 460 << "Function '" << F->getName() << "'\n"; 461 else dbgs() << *V << '\n'); 462 // Only instructions go on the work list 463 pushToWorkList(IV, V); 464 return true; 465 } 466 467 bool mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { 468 if (IV.isOverdefined() || MergeWithV.isUnknown()) 469 return false; // Noop. 470 if (MergeWithV.isOverdefined()) 471 return markOverdefined(IV, V); 472 if (IV.isUnknown()) 473 return markConstant(IV, V, MergeWithV.getConstant()); 474 if (IV.getConstant() != MergeWithV.getConstant()) 475 return markOverdefined(IV, V); 476 return false; 477 } 478 479 bool mergeInValue(Value *V, LatticeVal MergeWithV) { 480 assert(!V->getType()->isStructTy() && 481 "non-structs should use markConstant"); 482 return mergeInValue(ValueState[V], V, MergeWithV); 483 } 484 485 /// getValueState - Return the LatticeVal object that corresponds to the 486 /// value. This function handles the case when the value hasn't been seen yet 487 /// by properly seeding constants etc. 488 LatticeVal &getValueState(Value *V) { 489 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 490 491 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = 492 ValueState.insert(std::make_pair(V, LatticeVal())); 493 LatticeVal &LV = I.first->second; 494 495 if (!I.second) 496 return LV; // Common case, already in the map. 497 498 if (auto *C = dyn_cast<Constant>(V)) { 499 // Undef values remain unknown. 500 if (!isa<UndefValue>(V)) 501 LV.markConstant(C); // Constants are constant 502 } 503 504 // All others are underdefined by default. 505 return LV; 506 } 507 508 ValueLatticeElement &getParamState(Value *V) { 509 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 510 511 std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool> 512 PI = ParamState.insert(std::make_pair(V, ValueLatticeElement())); 513 ValueLatticeElement &LV = PI.first->second; 514 if (PI.second) 515 LV = getValueState(V).toValueLattice(); 516 517 return LV; 518 } 519 520 /// getStructValueState - Return the LatticeVal object that corresponds to the 521 /// value/field pair. This function handles the case when the value hasn't 522 /// been seen yet by properly seeding constants etc. 523 LatticeVal &getStructValueState(Value *V, unsigned i) { 524 assert(V->getType()->isStructTy() && "Should use getValueState"); 525 assert(i < cast<StructType>(V->getType())->getNumElements() && 526 "Invalid element #"); 527 528 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, 529 bool> I = StructValueState.insert( 530 std::make_pair(std::make_pair(V, i), LatticeVal())); 531 LatticeVal &LV = I.first->second; 532 533 if (!I.second) 534 return LV; // Common case, already in the map. 535 536 if (auto *C = dyn_cast<Constant>(V)) { 537 Constant *Elt = C->getAggregateElement(i); 538 539 if (!Elt) 540 LV.markOverdefined(); // Unknown sort of constant. 541 else if (isa<UndefValue>(Elt)) 542 ; // Undef values remain unknown. 543 else 544 LV.markConstant(Elt); // Constants are constant. 545 } 546 547 // All others are underdefined by default. 548 return LV; 549 } 550 551 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 552 /// work list if it is not already executable. 553 bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 554 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 555 return false; // This edge is already known to be executable! 556 557 if (!MarkBlockExecutable(Dest)) { 558 // If the destination is already executable, we just made an *edge* 559 // feasible that wasn't before. Revisit the PHI nodes in the block 560 // because they have potentially new operands. 561 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 562 << " -> " << Dest->getName() << '\n'); 563 564 for (PHINode &PN : Dest->phis()) 565 visitPHINode(PN); 566 } 567 return true; 568 } 569 570 // getFeasibleSuccessors - Return a vector of booleans to indicate which 571 // successors are reachable from a given terminator instruction. 572 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs); 573 574 // OperandChangedState - This method is invoked on all of the users of an 575 // instruction that was just changed state somehow. Based on this 576 // information, we need to update the specified user of this instruction. 577 void OperandChangedState(Instruction *I) { 578 if (BBExecutable.count(I->getParent())) // Inst is executable? 579 visit(*I); 580 } 581 582 // Add U as additional user of V. 583 void addAdditionalUser(Value *V, User *U) { 584 auto Iter = AdditionalUsers.insert({V, {}}); 585 Iter.first->second.insert(U); 586 } 587 588 // Mark I's users as changed, including AdditionalUsers. 589 void markUsersAsChanged(Value *I) { 590 for (User *U : I->users()) 591 if (auto *UI = dyn_cast<Instruction>(U)) 592 OperandChangedState(UI); 593 594 auto Iter = AdditionalUsers.find(I); 595 if (Iter != AdditionalUsers.end()) { 596 for (User *U : Iter->second) 597 if (auto *UI = dyn_cast<Instruction>(U)) 598 OperandChangedState(UI); 599 } 600 } 601 602 private: 603 friend class InstVisitor<SCCPSolver>; 604 605 // visit implementations - Something changed in this instruction. Either an 606 // operand made a transition, or the instruction is newly executable. Change 607 // the value type of I to reflect these changes if appropriate. 608 void visitPHINode(PHINode &I); 609 610 // Terminators 611 612 void visitReturnInst(ReturnInst &I); 613 void visitTerminator(Instruction &TI); 614 615 void visitCastInst(CastInst &I); 616 void visitSelectInst(SelectInst &I); 617 void visitBinaryOperator(Instruction &I); 618 void visitCmpInst(CmpInst &I); 619 void visitExtractValueInst(ExtractValueInst &EVI); 620 void visitInsertValueInst(InsertValueInst &IVI); 621 622 void visitCatchSwitchInst(CatchSwitchInst &CPI) { 623 markOverdefined(&CPI); 624 visitTerminator(CPI); 625 } 626 627 // Instructions that cannot be folded away. 628 629 void visitStoreInst (StoreInst &I); 630 void visitLoadInst (LoadInst &I); 631 void visitGetElementPtrInst(GetElementPtrInst &I); 632 633 void visitCallInst (CallInst &I) { 634 visitCallSite(&I); 635 } 636 637 void visitInvokeInst (InvokeInst &II) { 638 visitCallSite(&II); 639 visitTerminator(II); 640 } 641 642 void visitCallSite (CallSite CS); 643 void visitResumeInst (ResumeInst &I) { /*returns void*/ } 644 void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ } 645 void visitFenceInst (FenceInst &I) { /*returns void*/ } 646 647 void visitInstruction(Instruction &I) { 648 // All the instructions we don't do any special handling for just 649 // go to overdefined. 650 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n'); 651 markOverdefined(&I); 652 } 653 }; 654 655 } // end anonymous namespace 656 657 // getFeasibleSuccessors - Return a vector of booleans to indicate which 658 // successors are reachable from a given terminator instruction. 659 void SCCPSolver::getFeasibleSuccessors(Instruction &TI, 660 SmallVectorImpl<bool> &Succs) { 661 Succs.resize(TI.getNumSuccessors()); 662 if (auto *BI = dyn_cast<BranchInst>(&TI)) { 663 if (BI->isUnconditional()) { 664 Succs[0] = true; 665 return; 666 } 667 668 LatticeVal BCValue = getValueState(BI->getCondition()); 669 ConstantInt *CI = BCValue.getConstantInt(); 670 if (!CI) { 671 // Overdefined condition variables, and branches on unfoldable constant 672 // conditions, mean the branch could go either way. 673 if (!BCValue.isUnknown()) 674 Succs[0] = Succs[1] = true; 675 return; 676 } 677 678 // Constant condition variables mean the branch can only go a single way. 679 Succs[CI->isZero()] = true; 680 return; 681 } 682 683 // Unwinding instructions successors are always executable. 684 if (TI.isExceptionalTerminator()) { 685 Succs.assign(TI.getNumSuccessors(), true); 686 return; 687 } 688 689 if (auto *SI = dyn_cast<SwitchInst>(&TI)) { 690 if (!SI->getNumCases()) { 691 Succs[0] = true; 692 return; 693 } 694 LatticeVal SCValue = getValueState(SI->getCondition()); 695 ConstantInt *CI = SCValue.getConstantInt(); 696 697 if (!CI) { // Overdefined or unknown condition? 698 // All destinations are executable! 699 if (!SCValue.isUnknown()) 700 Succs.assign(TI.getNumSuccessors(), true); 701 return; 702 } 703 704 Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true; 705 return; 706 } 707 708 // In case of indirect branch and its address is a blockaddress, we mark 709 // the target as executable. 710 if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) { 711 // Casts are folded by visitCastInst. 712 LatticeVal IBRValue = getValueState(IBR->getAddress()); 713 BlockAddress *Addr = IBRValue.getBlockAddress(); 714 if (!Addr) { // Overdefined or unknown condition? 715 // All destinations are executable! 716 if (!IBRValue.isUnknown()) 717 Succs.assign(TI.getNumSuccessors(), true); 718 return; 719 } 720 721 BasicBlock* T = Addr->getBasicBlock(); 722 assert(Addr->getFunction() == T->getParent() && 723 "Block address of a different function ?"); 724 for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) { 725 // This is the target. 726 if (IBR->getDestination(i) == T) { 727 Succs[i] = true; 728 return; 729 } 730 } 731 732 // If we didn't find our destination in the IBR successor list, then we 733 // have undefined behavior. Its ok to assume no successor is executable. 734 return; 735 } 736 737 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n'); 738 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 739 } 740 741 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 742 // block to the 'To' basic block is currently feasible. 743 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 744 // Check if we've called markEdgeExecutable on the edge yet. (We could 745 // be more aggressive and try to consider edges which haven't been marked 746 // yet, but there isn't any need.) 747 return KnownFeasibleEdges.count(Edge(From, To)); 748 } 749 750 // visit Implementations - Something changed in this instruction, either an 751 // operand made a transition, or the instruction is newly executable. Change 752 // the value type of I to reflect these changes if appropriate. This method 753 // makes sure to do the following actions: 754 // 755 // 1. If a phi node merges two constants in, and has conflicting value coming 756 // from different branches, or if the PHI node merges in an overdefined 757 // value, then the PHI node becomes overdefined. 758 // 2. If a phi node merges only constants in, and they all agree on value, the 759 // PHI node becomes a constant value equal to that. 760 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 761 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 762 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 763 // 6. If a conditional branch has a value that is constant, make the selected 764 // destination executable 765 // 7. If a conditional branch has a value that is overdefined, make all 766 // successors executable. 767 void SCCPSolver::visitPHINode(PHINode &PN) { 768 // If this PN returns a struct, just mark the result overdefined. 769 // TODO: We could do a lot better than this if code actually uses this. 770 if (PN.getType()->isStructTy()) 771 return (void)markOverdefined(&PN); 772 773 if (getValueState(&PN).isOverdefined()) 774 return; // Quick exit 775 776 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 777 // and slow us down a lot. Just mark them overdefined. 778 if (PN.getNumIncomingValues() > 64) 779 return (void)markOverdefined(&PN); 780 781 // Look at all of the executable operands of the PHI node. If any of them 782 // are overdefined, the PHI becomes overdefined as well. If they are all 783 // constant, and they agree with each other, the PHI becomes the identical 784 // constant. If they are constant and don't agree, the PHI is overdefined. 785 // If there are no executable operands, the PHI remains unknown. 786 Constant *OperandVal = nullptr; 787 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 788 LatticeVal IV = getValueState(PN.getIncomingValue(i)); 789 if (IV.isUnknown()) continue; // Doesn't influence PHI node. 790 791 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 792 continue; 793 794 if (IV.isOverdefined()) // PHI node becomes overdefined! 795 return (void)markOverdefined(&PN); 796 797 if (!OperandVal) { // Grab the first value. 798 OperandVal = IV.getConstant(); 799 continue; 800 } 801 802 // There is already a reachable operand. If we conflict with it, 803 // then the PHI node becomes overdefined. If we agree with it, we 804 // can continue on. 805 806 // Check to see if there are two different constants merging, if so, the PHI 807 // node is overdefined. 808 if (IV.getConstant() != OperandVal) 809 return (void)markOverdefined(&PN); 810 } 811 812 // If we exited the loop, this means that the PHI node only has constant 813 // arguments that agree with each other(and OperandVal is the constant) or 814 // OperandVal is null because there are no defined incoming arguments. If 815 // this is the case, the PHI remains unknown. 816 if (OperandVal) 817 markConstant(&PN, OperandVal); // Acquire operand value 818 } 819 820 void SCCPSolver::visitReturnInst(ReturnInst &I) { 821 if (I.getNumOperands() == 0) return; // ret void 822 823 Function *F = I.getParent()->getParent(); 824 Value *ResultOp = I.getOperand(0); 825 826 // If we are tracking the return value of this function, merge it in. 827 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 828 DenseMap<Function*, LatticeVal>::iterator TFRVI = 829 TrackedRetVals.find(F); 830 if (TFRVI != TrackedRetVals.end()) { 831 mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 832 return; 833 } 834 } 835 836 // Handle functions that return multiple values. 837 if (!TrackedMultipleRetVals.empty()) { 838 if (auto *STy = dyn_cast<StructType>(ResultOp->getType())) 839 if (MRVFunctionsTracked.count(F)) 840 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 841 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 842 getStructValueState(ResultOp, i)); 843 } 844 } 845 846 void SCCPSolver::visitTerminator(Instruction &TI) { 847 SmallVector<bool, 16> SuccFeasible; 848 getFeasibleSuccessors(TI, SuccFeasible); 849 850 BasicBlock *BB = TI.getParent(); 851 852 // Mark all feasible successors executable. 853 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 854 if (SuccFeasible[i]) 855 markEdgeExecutable(BB, TI.getSuccessor(i)); 856 } 857 858 void SCCPSolver::visitCastInst(CastInst &I) { 859 LatticeVal OpSt = getValueState(I.getOperand(0)); 860 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand 861 markOverdefined(&I); 862 else if (OpSt.isConstant()) { 863 // Fold the constant as we build. 864 Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(), 865 I.getType(), DL); 866 if (isa<UndefValue>(C)) 867 return; 868 // Propagate constant value 869 markConstant(&I, C); 870 } 871 } 872 873 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { 874 // If this returns a struct, mark all elements over defined, we don't track 875 // structs in structs. 876 if (EVI.getType()->isStructTy()) 877 return (void)markOverdefined(&EVI); 878 879 // If this is extracting from more than one level of struct, we don't know. 880 if (EVI.getNumIndices() != 1) 881 return (void)markOverdefined(&EVI); 882 883 Value *AggVal = EVI.getAggregateOperand(); 884 if (AggVal->getType()->isStructTy()) { 885 unsigned i = *EVI.idx_begin(); 886 LatticeVal EltVal = getStructValueState(AggVal, i); 887 mergeInValue(getValueState(&EVI), &EVI, EltVal); 888 } else { 889 // Otherwise, must be extracting from an array. 890 return (void)markOverdefined(&EVI); 891 } 892 } 893 894 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { 895 auto *STy = dyn_cast<StructType>(IVI.getType()); 896 if (!STy) 897 return (void)markOverdefined(&IVI); 898 899 // If this has more than one index, we can't handle it, drive all results to 900 // undef. 901 if (IVI.getNumIndices() != 1) 902 return (void)markOverdefined(&IVI); 903 904 Value *Aggr = IVI.getAggregateOperand(); 905 unsigned Idx = *IVI.idx_begin(); 906 907 // Compute the result based on what we're inserting. 908 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 909 // This passes through all values that aren't the inserted element. 910 if (i != Idx) { 911 LatticeVal EltVal = getStructValueState(Aggr, i); 912 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 913 continue; 914 } 915 916 Value *Val = IVI.getInsertedValueOperand(); 917 if (Val->getType()->isStructTy()) 918 // We don't track structs in structs. 919 markOverdefined(getStructValueState(&IVI, i), &IVI); 920 else { 921 LatticeVal InVal = getValueState(Val); 922 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 923 } 924 } 925 } 926 927 void SCCPSolver::visitSelectInst(SelectInst &I) { 928 // If this select returns a struct, just mark the result overdefined. 929 // TODO: We could do a lot better than this if code actually uses this. 930 if (I.getType()->isStructTy()) 931 return (void)markOverdefined(&I); 932 933 LatticeVal CondValue = getValueState(I.getCondition()); 934 if (CondValue.isUnknown()) 935 return; 936 937 if (ConstantInt *CondCB = CondValue.getConstantInt()) { 938 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 939 mergeInValue(&I, getValueState(OpVal)); 940 return; 941 } 942 943 // Otherwise, the condition is overdefined or a constant we can't evaluate. 944 // See if we can produce something better than overdefined based on the T/F 945 // value. 946 LatticeVal TVal = getValueState(I.getTrueValue()); 947 LatticeVal FVal = getValueState(I.getFalseValue()); 948 949 // select ?, C, C -> C. 950 if (TVal.isConstant() && FVal.isConstant() && 951 TVal.getConstant() == FVal.getConstant()) 952 return (void)markConstant(&I, FVal.getConstant()); 953 954 if (TVal.isUnknown()) // select ?, undef, X -> X. 955 return (void)mergeInValue(&I, FVal); 956 if (FVal.isUnknown()) // select ?, X, undef -> X. 957 return (void)mergeInValue(&I, TVal); 958 markOverdefined(&I); 959 } 960 961 // Handle Binary Operators. 962 void SCCPSolver::visitBinaryOperator(Instruction &I) { 963 LatticeVal V1State = getValueState(I.getOperand(0)); 964 LatticeVal V2State = getValueState(I.getOperand(1)); 965 966 LatticeVal &IV = ValueState[&I]; 967 if (IV.isOverdefined()) return; 968 969 if (V1State.isConstant() && V2State.isConstant()) { 970 Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 971 V2State.getConstant()); 972 // X op Y -> undef. 973 if (isa<UndefValue>(C)) 974 return; 975 return (void)markConstant(IV, &I, C); 976 } 977 978 // If something is undef, wait for it to resolve. 979 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 980 return; 981 982 // Otherwise, one of our operands is overdefined. Try to produce something 983 // better than overdefined with some tricks. 984 // If this is 0 / Y, it doesn't matter that the second operand is 985 // overdefined, and we can replace it with zero. 986 if (I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv) 987 if (V1State.isConstant() && V1State.getConstant()->isNullValue()) 988 return (void)markConstant(IV, &I, V1State.getConstant()); 989 990 // If this is: 991 // -> AND/MUL with 0 992 // -> OR with -1 993 // it doesn't matter that the other operand is overdefined. 994 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul || 995 I.getOpcode() == Instruction::Or) { 996 LatticeVal *NonOverdefVal = nullptr; 997 if (!V1State.isOverdefined()) 998 NonOverdefVal = &V1State; 999 else if (!V2State.isOverdefined()) 1000 NonOverdefVal = &V2State; 1001 1002 if (NonOverdefVal) { 1003 if (NonOverdefVal->isUnknown()) 1004 return; 1005 1006 if (I.getOpcode() == Instruction::And || 1007 I.getOpcode() == Instruction::Mul) { 1008 // X and 0 = 0 1009 // X * 0 = 0 1010 if (NonOverdefVal->getConstant()->isNullValue()) 1011 return (void)markConstant(IV, &I, NonOverdefVal->getConstant()); 1012 } else { 1013 // X or -1 = -1 1014 if (ConstantInt *CI = NonOverdefVal->getConstantInt()) 1015 if (CI->isMinusOne()) 1016 return (void)markConstant(IV, &I, NonOverdefVal->getConstant()); 1017 } 1018 } 1019 } 1020 1021 markOverdefined(&I); 1022 } 1023 1024 // Handle ICmpInst instruction. 1025 void SCCPSolver::visitCmpInst(CmpInst &I) { 1026 // Do not cache this lookup, getValueState calls later in the function might 1027 // invalidate the reference. 1028 if (ValueState[&I].isOverdefined()) return; 1029 1030 Value *Op1 = I.getOperand(0); 1031 Value *Op2 = I.getOperand(1); 1032 1033 // For parameters, use ParamState which includes constant range info if 1034 // available. 1035 auto V1Param = ParamState.find(Op1); 1036 ValueLatticeElement V1State = (V1Param != ParamState.end()) 1037 ? V1Param->second 1038 : getValueState(Op1).toValueLattice(); 1039 1040 auto V2Param = ParamState.find(Op2); 1041 ValueLatticeElement V2State = V2Param != ParamState.end() 1042 ? V2Param->second 1043 : getValueState(Op2).toValueLattice(); 1044 1045 Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State); 1046 if (C) { 1047 if (isa<UndefValue>(C)) 1048 return; 1049 LatticeVal CV; 1050 CV.markConstant(C); 1051 mergeInValue(&I, CV); 1052 return; 1053 } 1054 1055 // If operands are still unknown, wait for it to resolve. 1056 if (!V1State.isOverdefined() && !V2State.isOverdefined() && 1057 !ValueState[&I].isConstant()) 1058 return; 1059 1060 markOverdefined(&I); 1061 } 1062 1063 // Handle getelementptr instructions. If all operands are constants then we 1064 // can turn this into a getelementptr ConstantExpr. 1065 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 1066 if (ValueState[&I].isOverdefined()) return; 1067 1068 SmallVector<Constant*, 8> Operands; 1069 Operands.reserve(I.getNumOperands()); 1070 1071 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1072 LatticeVal State = getValueState(I.getOperand(i)); 1073 if (State.isUnknown()) 1074 return; // Operands are not resolved yet. 1075 1076 if (State.isOverdefined()) 1077 return (void)markOverdefined(&I); 1078 1079 assert(State.isConstant() && "Unknown state!"); 1080 Operands.push_back(State.getConstant()); 1081 } 1082 1083 Constant *Ptr = Operands[0]; 1084 auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end()); 1085 Constant *C = 1086 ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices); 1087 if (isa<UndefValue>(C)) 1088 return; 1089 markConstant(&I, C); 1090 } 1091 1092 void SCCPSolver::visitStoreInst(StoreInst &SI) { 1093 // If this store is of a struct, ignore it. 1094 if (SI.getOperand(0)->getType()->isStructTy()) 1095 return; 1096 1097 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1098 return; 1099 1100 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1101 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1102 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1103 1104 // Get the value we are storing into the global, then merge it. 1105 mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); 1106 if (I->second.isOverdefined()) 1107 TrackedGlobals.erase(I); // No need to keep tracking this! 1108 } 1109 1110 // Handle load instructions. If the operand is a constant pointer to a constant 1111 // global, we can replace the load with the loaded constant value! 1112 void SCCPSolver::visitLoadInst(LoadInst &I) { 1113 // If this load is of a struct, just mark the result overdefined. 1114 if (I.getType()->isStructTy()) 1115 return (void)markOverdefined(&I); 1116 1117 LatticeVal PtrVal = getValueState(I.getOperand(0)); 1118 if (PtrVal.isUnknown()) return; // The pointer is not resolved yet! 1119 1120 LatticeVal &IV = ValueState[&I]; 1121 if (IV.isOverdefined()) return; 1122 1123 if (!PtrVal.isConstant() || I.isVolatile()) 1124 return (void)markOverdefined(IV, &I); 1125 1126 Constant *Ptr = PtrVal.getConstant(); 1127 1128 // load null is undefined. 1129 if (isa<ConstantPointerNull>(Ptr)) { 1130 if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace())) 1131 return (void)markOverdefined(IV, &I); 1132 else 1133 return; 1134 } 1135 1136 // Transform load (constant global) into the value loaded. 1137 if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) { 1138 if (!TrackedGlobals.empty()) { 1139 // If we are tracking this global, merge in the known value for it. 1140 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1141 TrackedGlobals.find(GV); 1142 if (It != TrackedGlobals.end()) { 1143 mergeInValue(IV, &I, It->second); 1144 return; 1145 } 1146 } 1147 } 1148 1149 // Transform load from a constant into a constant if possible. 1150 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) { 1151 if (isa<UndefValue>(C)) 1152 return; 1153 return (void)markConstant(IV, &I, C); 1154 } 1155 1156 // Otherwise we cannot say for certain what value this load will produce. 1157 // Bail out. 1158 markOverdefined(IV, &I); 1159 } 1160 1161 void SCCPSolver::visitCallSite(CallSite CS) { 1162 Function *F = CS.getCalledFunction(); 1163 Instruction *I = CS.getInstruction(); 1164 1165 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1166 if (II->getIntrinsicID() == Intrinsic::ssa_copy) { 1167 if (ValueState[I].isOverdefined()) 1168 return; 1169 1170 auto *PI = getPredicateInfoFor(I); 1171 if (!PI) 1172 return; 1173 1174 Value *CopyOf = I->getOperand(0); 1175 auto *PBranch = dyn_cast<PredicateBranch>(PI); 1176 if (!PBranch) { 1177 mergeInValue(ValueState[I], I, getValueState(CopyOf)); 1178 return; 1179 } 1180 1181 Value *Cond = PBranch->Condition; 1182 1183 // Everything below relies on the condition being a comparison. 1184 auto *Cmp = dyn_cast<CmpInst>(Cond); 1185 if (!Cmp) { 1186 mergeInValue(ValueState[I], I, getValueState(CopyOf)); 1187 return; 1188 } 1189 1190 Value *CmpOp0 = Cmp->getOperand(0); 1191 Value *CmpOp1 = Cmp->getOperand(1); 1192 if (CopyOf != CmpOp0 && CopyOf != CmpOp1) { 1193 mergeInValue(ValueState[I], I, getValueState(CopyOf)); 1194 return; 1195 } 1196 1197 if (CmpOp0 != CopyOf) 1198 std::swap(CmpOp0, CmpOp1); 1199 1200 LatticeVal OriginalVal = getValueState(CopyOf); 1201 LatticeVal EqVal = getValueState(CmpOp1); 1202 LatticeVal &IV = ValueState[I]; 1203 if (PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_EQ) { 1204 addAdditionalUser(CmpOp1, I); 1205 if (OriginalVal.isConstant()) 1206 mergeInValue(IV, I, OriginalVal); 1207 else 1208 mergeInValue(IV, I, EqVal); 1209 return; 1210 } 1211 if (!PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_NE) { 1212 addAdditionalUser(CmpOp1, I); 1213 if (OriginalVal.isConstant()) 1214 mergeInValue(IV, I, OriginalVal); 1215 else 1216 mergeInValue(IV, I, EqVal); 1217 return; 1218 } 1219 1220 return (void)mergeInValue(IV, I, getValueState(CopyOf)); 1221 } 1222 } 1223 1224 // The common case is that we aren't tracking the callee, either because we 1225 // are not doing interprocedural analysis or the callee is indirect, or is 1226 // external. Handle these cases first. 1227 if (!F || F->isDeclaration()) { 1228 CallOverdefined: 1229 // Void return and not tracking callee, just bail. 1230 if (I->getType()->isVoidTy()) return; 1231 1232 // Otherwise, if we have a single return value case, and if the function is 1233 // a declaration, maybe we can constant fold it. 1234 if (F && F->isDeclaration() && !I->getType()->isStructTy() && 1235 canConstantFoldCallTo(CS, F)) { 1236 SmallVector<Constant*, 8> Operands; 1237 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1238 AI != E; ++AI) { 1239 if (AI->get()->getType()->isStructTy()) 1240 return markOverdefined(I); // Can't handle struct args. 1241 LatticeVal State = getValueState(*AI); 1242 1243 if (State.isUnknown()) 1244 return; // Operands are not resolved yet. 1245 if (State.isOverdefined()) 1246 return (void)markOverdefined(I); 1247 assert(State.isConstant() && "Unknown state!"); 1248 Operands.push_back(State.getConstant()); 1249 } 1250 1251 if (getValueState(I).isOverdefined()) 1252 return; 1253 1254 // If we can constant fold this, mark the result of the call as a 1255 // constant. 1256 if (Constant *C = ConstantFoldCall(CS, F, Operands, TLI)) { 1257 // call -> undef. 1258 if (isa<UndefValue>(C)) 1259 return; 1260 return (void)markConstant(I, C); 1261 } 1262 } 1263 1264 // Otherwise, we don't know anything about this call, mark it overdefined. 1265 return (void)markOverdefined(I); 1266 } 1267 1268 // If this is a local function that doesn't have its address taken, mark its 1269 // entry block executable and merge in the actual arguments to the call into 1270 // the formal arguments of the function. 1271 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ 1272 MarkBlockExecutable(&F->front()); 1273 1274 // Propagate information from this call site into the callee. 1275 CallSite::arg_iterator CAI = CS.arg_begin(); 1276 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1277 AI != E; ++AI, ++CAI) { 1278 // If this argument is byval, and if the function is not readonly, there 1279 // will be an implicit copy formed of the input aggregate. 1280 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1281 markOverdefined(&*AI); 1282 continue; 1283 } 1284 1285 if (auto *STy = dyn_cast<StructType>(AI->getType())) { 1286 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1287 LatticeVal CallArg = getStructValueState(*CAI, i); 1288 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg); 1289 } 1290 } else { 1291 // Most other parts of the Solver still only use the simpler value 1292 // lattice, so we propagate changes for parameters to both lattices. 1293 LatticeVal ConcreteArgument = getValueState(*CAI); 1294 bool ParamChanged = 1295 getParamState(&*AI).mergeIn(ConcreteArgument.toValueLattice(), DL); 1296 bool ValueChanged = mergeInValue(&*AI, ConcreteArgument); 1297 // Add argument to work list, if the state of a parameter changes but 1298 // ValueState does not change (because it is already overdefined there), 1299 // We have to take changes in ParamState into account, as it is used 1300 // when evaluating Cmp instructions. 1301 if (!ValueChanged && ParamChanged) 1302 pushToWorkList(ValueState[&*AI], &*AI); 1303 } 1304 } 1305 } 1306 1307 // If this is a single/zero retval case, see if we're tracking the function. 1308 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { 1309 if (!MRVFunctionsTracked.count(F)) 1310 goto CallOverdefined; // Not tracking this callee. 1311 1312 // If we are tracking this callee, propagate the result of the function 1313 // into this call site. 1314 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1315 mergeInValue(getStructValueState(I, i), I, 1316 TrackedMultipleRetVals[std::make_pair(F, i)]); 1317 } else { 1318 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1319 if (TFRVI == TrackedRetVals.end()) 1320 goto CallOverdefined; // Not tracking this callee. 1321 1322 // If so, propagate the return value of the callee into this call result. 1323 mergeInValue(I, TFRVI->second); 1324 } 1325 } 1326 1327 void SCCPSolver::Solve() { 1328 // Process the work lists until they are empty! 1329 while (!BBWorkList.empty() || !InstWorkList.empty() || 1330 !OverdefinedInstWorkList.empty()) { 1331 // Process the overdefined instruction's work list first, which drives other 1332 // things to overdefined more quickly. 1333 while (!OverdefinedInstWorkList.empty()) { 1334 Value *I = OverdefinedInstWorkList.pop_back_val(); 1335 1336 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1337 1338 // "I" got into the work list because it either made the transition from 1339 // bottom to constant, or to overdefined. 1340 // 1341 // Anything on this worklist that is overdefined need not be visited 1342 // since all of its users will have already been marked as overdefined 1343 // Update all of the users of this instruction's value. 1344 // 1345 markUsersAsChanged(I); 1346 } 1347 1348 // Process the instruction work list. 1349 while (!InstWorkList.empty()) { 1350 Value *I = InstWorkList.pop_back_val(); 1351 1352 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1353 1354 // "I" got into the work list because it made the transition from undef to 1355 // constant. 1356 // 1357 // Anything on this worklist that is overdefined need not be visited 1358 // since all of its users will have already been marked as overdefined. 1359 // Update all of the users of this instruction's value. 1360 // 1361 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1362 markUsersAsChanged(I); 1363 } 1364 1365 // Process the basic block work list. 1366 while (!BBWorkList.empty()) { 1367 BasicBlock *BB = BBWorkList.back(); 1368 BBWorkList.pop_back(); 1369 1370 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1371 1372 // Notify all instructions in this basic block that they are newly 1373 // executable. 1374 visit(BB); 1375 } 1376 } 1377 } 1378 1379 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1380 /// that branches on undef values cannot reach any of their successors. 1381 /// However, this is not a safe assumption. After we solve dataflow, this 1382 /// method should be use to handle this. If this returns true, the solver 1383 /// should be rerun. 1384 /// 1385 /// This method handles this by finding an unresolved branch and marking it one 1386 /// of the edges from the block as being feasible, even though the condition 1387 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1388 /// CFG and only slightly pessimizes the analysis results (by marking one, 1389 /// potentially infeasible, edge feasible). This cannot usefully modify the 1390 /// constraints on the condition of the branch, as that would impact other users 1391 /// of the value. 1392 /// 1393 /// This scan also checks for values that use undefs, whose results are actually 1394 /// defined. For example, 'zext i8 undef to i32' should produce all zeros 1395 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1396 /// even if X isn't defined. 1397 bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1398 for (BasicBlock &BB : F) { 1399 if (!BBExecutable.count(&BB)) 1400 continue; 1401 1402 for (Instruction &I : BB) { 1403 // Look for instructions which produce undef values. 1404 if (I.getType()->isVoidTy()) continue; 1405 1406 if (auto *STy = dyn_cast<StructType>(I.getType())) { 1407 // Only a few things that can be structs matter for undef. 1408 1409 // Tracked calls must never be marked overdefined in ResolvedUndefsIn. 1410 if (CallSite CS = CallSite(&I)) 1411 if (Function *F = CS.getCalledFunction()) 1412 if (MRVFunctionsTracked.count(F)) 1413 continue; 1414 1415 // extractvalue and insertvalue don't need to be marked; they are 1416 // tracked as precisely as their operands. 1417 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) 1418 continue; 1419 1420 // Send the results of everything else to overdefined. We could be 1421 // more precise than this but it isn't worth bothering. 1422 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1423 LatticeVal &LV = getStructValueState(&I, i); 1424 if (LV.isUnknown()) 1425 markOverdefined(LV, &I); 1426 } 1427 continue; 1428 } 1429 1430 LatticeVal &LV = getValueState(&I); 1431 if (!LV.isUnknown()) continue; 1432 1433 // extractvalue is safe; check here because the argument is a struct. 1434 if (isa<ExtractValueInst>(I)) 1435 continue; 1436 1437 // Compute the operand LatticeVals, for convenience below. 1438 // Anything taking a struct is conservatively assumed to require 1439 // overdefined markings. 1440 if (I.getOperand(0)->getType()->isStructTy()) { 1441 markOverdefined(&I); 1442 return true; 1443 } 1444 LatticeVal Op0LV = getValueState(I.getOperand(0)); 1445 LatticeVal Op1LV; 1446 if (I.getNumOperands() == 2) { 1447 if (I.getOperand(1)->getType()->isStructTy()) { 1448 markOverdefined(&I); 1449 return true; 1450 } 1451 1452 Op1LV = getValueState(I.getOperand(1)); 1453 } 1454 // If this is an instructions whose result is defined even if the input is 1455 // not fully defined, propagate the information. 1456 Type *ITy = I.getType(); 1457 switch (I.getOpcode()) { 1458 case Instruction::Add: 1459 case Instruction::Sub: 1460 case Instruction::Trunc: 1461 case Instruction::FPTrunc: 1462 case Instruction::BitCast: 1463 break; // Any undef -> undef 1464 case Instruction::FSub: 1465 case Instruction::FAdd: 1466 case Instruction::FMul: 1467 case Instruction::FDiv: 1468 case Instruction::FRem: 1469 // Floating-point binary operation: be conservative. 1470 if (Op0LV.isUnknown() && Op1LV.isUnknown()) 1471 markForcedConstant(&I, Constant::getNullValue(ITy)); 1472 else 1473 markOverdefined(&I); 1474 return true; 1475 case Instruction::ZExt: 1476 case Instruction::SExt: 1477 case Instruction::FPToUI: 1478 case Instruction::FPToSI: 1479 case Instruction::FPExt: 1480 case Instruction::PtrToInt: 1481 case Instruction::IntToPtr: 1482 case Instruction::SIToFP: 1483 case Instruction::UIToFP: 1484 // undef -> 0; some outputs are impossible 1485 markForcedConstant(&I, Constant::getNullValue(ITy)); 1486 return true; 1487 case Instruction::Mul: 1488 case Instruction::And: 1489 // Both operands undef -> undef 1490 if (Op0LV.isUnknown() && Op1LV.isUnknown()) 1491 break; 1492 // undef * X -> 0. X could be zero. 1493 // undef & X -> 0. X could be zero. 1494 markForcedConstant(&I, Constant::getNullValue(ITy)); 1495 return true; 1496 case Instruction::Or: 1497 // Both operands undef -> undef 1498 if (Op0LV.isUnknown() && Op1LV.isUnknown()) 1499 break; 1500 // undef | X -> -1. X could be -1. 1501 markForcedConstant(&I, Constant::getAllOnesValue(ITy)); 1502 return true; 1503 case Instruction::Xor: 1504 // undef ^ undef -> 0; strictly speaking, this is not strictly 1505 // necessary, but we try to be nice to people who expect this 1506 // behavior in simple cases 1507 if (Op0LV.isUnknown() && Op1LV.isUnknown()) { 1508 markForcedConstant(&I, Constant::getNullValue(ITy)); 1509 return true; 1510 } 1511 // undef ^ X -> undef 1512 break; 1513 case Instruction::SDiv: 1514 case Instruction::UDiv: 1515 case Instruction::SRem: 1516 case Instruction::URem: 1517 // X / undef -> undef. No change. 1518 // X % undef -> undef. No change. 1519 if (Op1LV.isUnknown()) break; 1520 1521 // X / 0 -> undef. No change. 1522 // X % 0 -> undef. No change. 1523 if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue()) 1524 break; 1525 1526 // undef / X -> 0. X could be maxint. 1527 // undef % X -> 0. X could be 1. 1528 markForcedConstant(&I, Constant::getNullValue(ITy)); 1529 return true; 1530 case Instruction::AShr: 1531 // X >>a undef -> undef. 1532 if (Op1LV.isUnknown()) break; 1533 1534 // Shifting by the bitwidth or more is undefined. 1535 if (Op1LV.isConstant()) { 1536 if (auto *ShiftAmt = Op1LV.getConstantInt()) 1537 if (ShiftAmt->getLimitedValue() >= 1538 ShiftAmt->getType()->getScalarSizeInBits()) 1539 break; 1540 } 1541 1542 // undef >>a X -> 0 1543 markForcedConstant(&I, Constant::getNullValue(ITy)); 1544 return true; 1545 case Instruction::LShr: 1546 case Instruction::Shl: 1547 // X << undef -> undef. 1548 // X >> undef -> undef. 1549 if (Op1LV.isUnknown()) break; 1550 1551 // Shifting by the bitwidth or more is undefined. 1552 if (Op1LV.isConstant()) { 1553 if (auto *ShiftAmt = Op1LV.getConstantInt()) 1554 if (ShiftAmt->getLimitedValue() >= 1555 ShiftAmt->getType()->getScalarSizeInBits()) 1556 break; 1557 } 1558 1559 // undef << X -> 0 1560 // undef >> X -> 0 1561 markForcedConstant(&I, Constant::getNullValue(ITy)); 1562 return true; 1563 case Instruction::Select: 1564 Op1LV = getValueState(I.getOperand(1)); 1565 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1566 if (Op0LV.isUnknown()) { 1567 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1568 Op1LV = getValueState(I.getOperand(2)); 1569 } else if (Op1LV.isUnknown()) { 1570 // c ? undef : undef -> undef. No change. 1571 Op1LV = getValueState(I.getOperand(2)); 1572 if (Op1LV.isUnknown()) 1573 break; 1574 // Otherwise, c ? undef : x -> x. 1575 } else { 1576 // Leave Op1LV as Operand(1)'s LatticeValue. 1577 } 1578 1579 if (Op1LV.isConstant()) 1580 markForcedConstant(&I, Op1LV.getConstant()); 1581 else 1582 markOverdefined(&I); 1583 return true; 1584 case Instruction::Load: 1585 // A load here means one of two things: a load of undef from a global, 1586 // a load from an unknown pointer. Either way, having it return undef 1587 // is okay. 1588 break; 1589 case Instruction::ICmp: 1590 // X == undef -> undef. Other comparisons get more complicated. 1591 Op0LV = getValueState(I.getOperand(0)); 1592 Op1LV = getValueState(I.getOperand(1)); 1593 1594 if ((Op0LV.isUnknown() || Op1LV.isUnknown()) && 1595 cast<ICmpInst>(&I)->isEquality()) 1596 break; 1597 markOverdefined(&I); 1598 return true; 1599 case Instruction::Call: 1600 case Instruction::Invoke: 1601 // There are two reasons a call can have an undef result 1602 // 1. It could be tracked. 1603 // 2. It could be constant-foldable. 1604 // Because of the way we solve return values, tracked calls must 1605 // never be marked overdefined in ResolvedUndefsIn. 1606 if (Function *F = CallSite(&I).getCalledFunction()) 1607 if (TrackedRetVals.count(F)) 1608 break; 1609 1610 // If the call is constant-foldable, we mark it overdefined because 1611 // we do not know what return values are valid. 1612 markOverdefined(&I); 1613 return true; 1614 default: 1615 // If we don't know what should happen here, conservatively mark it 1616 // overdefined. 1617 markOverdefined(&I); 1618 return true; 1619 } 1620 } 1621 1622 // Check to see if we have a branch or switch on an undefined value. If so 1623 // we force the branch to go one way or the other to make the successor 1624 // values live. It doesn't really matter which way we force it. 1625 Instruction *TI = BB.getTerminator(); 1626 if (auto *BI = dyn_cast<BranchInst>(TI)) { 1627 if (!BI->isConditional()) continue; 1628 if (!getValueState(BI->getCondition()).isUnknown()) 1629 continue; 1630 1631 // If the input to SCCP is actually branch on undef, fix the undef to 1632 // false. 1633 if (isa<UndefValue>(BI->getCondition())) { 1634 BI->setCondition(ConstantInt::getFalse(BI->getContext())); 1635 markEdgeExecutable(&BB, TI->getSuccessor(1)); 1636 return true; 1637 } 1638 1639 // Otherwise, it is a branch on a symbolic value which is currently 1640 // considered to be undef. Make sure some edge is executable, so a 1641 // branch on "undef" always flows somewhere. 1642 // FIXME: Distinguish between dead code and an LLVM "undef" value. 1643 BasicBlock *DefaultSuccessor = TI->getSuccessor(1); 1644 if (markEdgeExecutable(&BB, DefaultSuccessor)) 1645 return true; 1646 1647 continue; 1648 } 1649 1650 if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) { 1651 // Indirect branch with no successor ?. Its ok to assume it branches 1652 // to no target. 1653 if (IBR->getNumSuccessors() < 1) 1654 continue; 1655 1656 if (!getValueState(IBR->getAddress()).isUnknown()) 1657 continue; 1658 1659 // If the input to SCCP is actually branch on undef, fix the undef to 1660 // the first successor of the indirect branch. 1661 if (isa<UndefValue>(IBR->getAddress())) { 1662 IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0))); 1663 markEdgeExecutable(&BB, IBR->getSuccessor(0)); 1664 return true; 1665 } 1666 1667 // Otherwise, it is a branch on a symbolic value which is currently 1668 // considered to be undef. Make sure some edge is executable, so a 1669 // branch on "undef" always flows somewhere. 1670 // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere: 1671 // we can assume the branch has undefined behavior instead. 1672 BasicBlock *DefaultSuccessor = IBR->getSuccessor(0); 1673 if (markEdgeExecutable(&BB, DefaultSuccessor)) 1674 return true; 1675 1676 continue; 1677 } 1678 1679 if (auto *SI = dyn_cast<SwitchInst>(TI)) { 1680 if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown()) 1681 continue; 1682 1683 // If the input to SCCP is actually switch on undef, fix the undef to 1684 // the first constant. 1685 if (isa<UndefValue>(SI->getCondition())) { 1686 SI->setCondition(SI->case_begin()->getCaseValue()); 1687 markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor()); 1688 return true; 1689 } 1690 1691 // Otherwise, it is a branch on a symbolic value which is currently 1692 // considered to be undef. Make sure some edge is executable, so a 1693 // branch on "undef" always flows somewhere. 1694 // FIXME: Distinguish between dead code and an LLVM "undef" value. 1695 BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor(); 1696 if (markEdgeExecutable(&BB, DefaultSuccessor)) 1697 return true; 1698 1699 continue; 1700 } 1701 } 1702 1703 return false; 1704 } 1705 1706 static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) { 1707 Constant *Const = nullptr; 1708 if (V->getType()->isStructTy()) { 1709 std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V); 1710 if (llvm::any_of(IVs, 1711 [](const LatticeVal &LV) { return LV.isOverdefined(); })) 1712 return false; 1713 std::vector<Constant *> ConstVals; 1714 auto *ST = dyn_cast<StructType>(V->getType()); 1715 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { 1716 LatticeVal V = IVs[i]; 1717 ConstVals.push_back(V.isConstant() 1718 ? V.getConstant() 1719 : UndefValue::get(ST->getElementType(i))); 1720 } 1721 Const = ConstantStruct::get(ST, ConstVals); 1722 } else { 1723 const LatticeVal &IV = Solver.getLatticeValueFor(V); 1724 if (IV.isOverdefined()) 1725 return false; 1726 1727 Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType()); 1728 } 1729 assert(Const && "Constant is nullptr here!"); 1730 1731 // Replacing `musttail` instructions with constant breaks `musttail` invariant 1732 // unless the call itself can be removed 1733 CallInst *CI = dyn_cast<CallInst>(V); 1734 if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) { 1735 CallSite CS(CI); 1736 Function *F = CS.getCalledFunction(); 1737 1738 // Don't zap returns of the callee 1739 if (F) 1740 Solver.AddMustTailCallee(F); 1741 1742 LLVM_DEBUG(dbgs() << " Can\'t treat the result of musttail call : " << *CI 1743 << " as a constant\n"); 1744 return false; 1745 } 1746 1747 LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n'); 1748 1749 // Replaces all of the uses of a variable with uses of the constant. 1750 V->replaceAllUsesWith(Const); 1751 return true; 1752 } 1753 1754 // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm, 1755 // and return true if the function was modified. 1756 static bool runSCCP(Function &F, const DataLayout &DL, 1757 const TargetLibraryInfo *TLI) { 1758 LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); 1759 SCCPSolver Solver(DL, TLI); 1760 1761 // Mark the first block of the function as being executable. 1762 Solver.MarkBlockExecutable(&F.front()); 1763 1764 // Mark all arguments to the function as being overdefined. 1765 for (Argument &AI : F.args()) 1766 Solver.markOverdefined(&AI); 1767 1768 // Solve for constants. 1769 bool ResolvedUndefs = true; 1770 while (ResolvedUndefs) { 1771 Solver.Solve(); 1772 LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n"); 1773 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1774 } 1775 1776 bool MadeChanges = false; 1777 1778 // If we decided that there are basic blocks that are dead in this function, 1779 // delete their contents now. Note that we cannot actually delete the blocks, 1780 // as we cannot modify the CFG of the function. 1781 1782 for (BasicBlock &BB : F) { 1783 if (!Solver.isBlockExecutable(&BB)) { 1784 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB); 1785 1786 ++NumDeadBlocks; 1787 NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB); 1788 1789 MadeChanges = true; 1790 continue; 1791 } 1792 1793 // Iterate over all of the instructions in a function, replacing them with 1794 // constants if we have found them to be of constant values. 1795 for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) { 1796 Instruction *Inst = &*BI++; 1797 if (Inst->getType()->isVoidTy() || Inst->isTerminator()) 1798 continue; 1799 1800 if (tryToReplaceWithConstant(Solver, Inst)) { 1801 if (isInstructionTriviallyDead(Inst)) 1802 Inst->eraseFromParent(); 1803 // Hey, we just changed something! 1804 MadeChanges = true; 1805 ++NumInstRemoved; 1806 } 1807 } 1808 } 1809 1810 return MadeChanges; 1811 } 1812 1813 PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) { 1814 const DataLayout &DL = F.getParent()->getDataLayout(); 1815 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1816 if (!runSCCP(F, DL, &TLI)) 1817 return PreservedAnalyses::all(); 1818 1819 auto PA = PreservedAnalyses(); 1820 PA.preserve<GlobalsAA>(); 1821 PA.preserveSet<CFGAnalyses>(); 1822 return PA; 1823 } 1824 1825 namespace { 1826 1827 //===--------------------------------------------------------------------===// 1828 // 1829 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1830 /// Sparse Conditional Constant Propagator. 1831 /// 1832 class SCCPLegacyPass : public FunctionPass { 1833 public: 1834 // Pass identification, replacement for typeid 1835 static char ID; 1836 1837 SCCPLegacyPass() : FunctionPass(ID) { 1838 initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry()); 1839 } 1840 1841 void getAnalysisUsage(AnalysisUsage &AU) const override { 1842 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1843 AU.addPreserved<GlobalsAAWrapperPass>(); 1844 AU.setPreservesCFG(); 1845 } 1846 1847 // runOnFunction - Run the Sparse Conditional Constant Propagation 1848 // algorithm, and return true if the function was modified. 1849 bool runOnFunction(Function &F) override { 1850 if (skipFunction(F)) 1851 return false; 1852 const DataLayout &DL = F.getParent()->getDataLayout(); 1853 const TargetLibraryInfo *TLI = 1854 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1855 return runSCCP(F, DL, TLI); 1856 } 1857 }; 1858 1859 } // end anonymous namespace 1860 1861 char SCCPLegacyPass::ID = 0; 1862 1863 INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp", 1864 "Sparse Conditional Constant Propagation", false, false) 1865 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1866 INITIALIZE_PASS_END(SCCPLegacyPass, "sccp", 1867 "Sparse Conditional Constant Propagation", false, false) 1868 1869 // createSCCPPass - This is the public interface to this file. 1870 FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); } 1871 1872 static void findReturnsToZap(Function &F, 1873 SmallVector<ReturnInst *, 8> &ReturnsToZap, 1874 SCCPSolver &Solver) { 1875 // We can only do this if we know that nothing else can call the function. 1876 if (!Solver.isArgumentTrackedFunction(&F)) 1877 return; 1878 1879 // There is a non-removable musttail call site of this function. Zapping 1880 // returns is not allowed. 1881 if (Solver.isMustTailCallee(&F)) { 1882 LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName() 1883 << " due to present musttail call of it\n"); 1884 return; 1885 } 1886 1887 for (BasicBlock &BB : F) { 1888 if (CallInst *CI = BB.getTerminatingMustTailCall()) { 1889 LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present " 1890 << "musttail call : " << *CI << "\n"); 1891 (void)CI; 1892 return; 1893 } 1894 1895 if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1896 if (!isa<UndefValue>(RI->getOperand(0))) 1897 ReturnsToZap.push_back(RI); 1898 } 1899 } 1900 1901 // Update the condition for terminators that are branching on indeterminate 1902 // values, forcing them to use a specific edge. 1903 static void forceIndeterminateEdge(Instruction* I, SCCPSolver &Solver) { 1904 BasicBlock *Dest = nullptr; 1905 Constant *C = nullptr; 1906 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1907 if (!isa<ConstantInt>(SI->getCondition())) { 1908 // Indeterminate switch; use first case value. 1909 Dest = SI->case_begin()->getCaseSuccessor(); 1910 C = SI->case_begin()->getCaseValue(); 1911 } 1912 } else if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1913 if (!isa<ConstantInt>(BI->getCondition())) { 1914 // Indeterminate branch; use false. 1915 Dest = BI->getSuccessor(1); 1916 C = ConstantInt::getFalse(BI->getContext()); 1917 } 1918 } else if (IndirectBrInst *IBR = dyn_cast<IndirectBrInst>(I)) { 1919 if (!isa<BlockAddress>(IBR->getAddress()->stripPointerCasts())) { 1920 // Indeterminate indirectbr; use successor 0. 1921 Dest = IBR->getSuccessor(0); 1922 C = BlockAddress::get(IBR->getSuccessor(0)); 1923 } 1924 } else { 1925 llvm_unreachable("Unexpected terminator instruction"); 1926 } 1927 if (C) { 1928 assert(Solver.isEdgeFeasible(I->getParent(), Dest) && 1929 "Didn't find feasible edge?"); 1930 (void)Dest; 1931 1932 I->setOperand(0, C); 1933 } 1934 } 1935 1936 bool llvm::runIPSCCP( 1937 Module &M, const DataLayout &DL, const TargetLibraryInfo *TLI, 1938 function_ref<AnalysisResultsForFn(Function &)> getAnalysis) { 1939 SCCPSolver Solver(DL, TLI); 1940 1941 // Loop over all functions, marking arguments to those with their addresses 1942 // taken or that are external as overdefined. 1943 for (Function &F : M) { 1944 if (F.isDeclaration()) 1945 continue; 1946 1947 Solver.addAnalysis(F, getAnalysis(F)); 1948 1949 // Determine if we can track the function's return values. If so, add the 1950 // function to the solver's set of return-tracked functions. 1951 if (canTrackReturnsInterprocedurally(&F)) 1952 Solver.AddTrackedFunction(&F); 1953 1954 // Determine if we can track the function's arguments. If so, add the 1955 // function to the solver's set of argument-tracked functions. 1956 if (canTrackArgumentsInterprocedurally(&F)) { 1957 Solver.AddArgumentTrackedFunction(&F); 1958 continue; 1959 } 1960 1961 // Assume the function is called. 1962 Solver.MarkBlockExecutable(&F.front()); 1963 1964 // Assume nothing about the incoming arguments. 1965 for (Argument &AI : F.args()) 1966 Solver.markOverdefined(&AI); 1967 } 1968 1969 // Determine if we can track any of the module's global variables. If so, add 1970 // the global variables we can track to the solver's set of tracked global 1971 // variables. 1972 for (GlobalVariable &G : M.globals()) { 1973 G.removeDeadConstantUsers(); 1974 if (canTrackGlobalVariableInterprocedurally(&G)) 1975 Solver.TrackValueOfGlobalVariable(&G); 1976 } 1977 1978 // Solve for constants. 1979 bool ResolvedUndefs = true; 1980 Solver.Solve(); 1981 while (ResolvedUndefs) { 1982 LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n"); 1983 ResolvedUndefs = false; 1984 for (Function &F : M) 1985 if (Solver.ResolvedUndefsIn(F)) { 1986 // We run Solve() after we resolved an undef in a function, because 1987 // we might deduce a fact that eliminates an undef in another function. 1988 Solver.Solve(); 1989 ResolvedUndefs = true; 1990 } 1991 } 1992 1993 bool MadeChanges = false; 1994 1995 // Iterate over all of the instructions in the module, replacing them with 1996 // constants if we have found them to be of constant values. 1997 1998 for (Function &F : M) { 1999 if (F.isDeclaration()) 2000 continue; 2001 2002 SmallVector<BasicBlock *, 512> BlocksToErase; 2003 2004 if (Solver.isBlockExecutable(&F.front())) 2005 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; 2006 ++AI) { 2007 if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) { 2008 ++IPNumArgsElimed; 2009 continue; 2010 } 2011 } 2012 2013 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 2014 if (!Solver.isBlockExecutable(&*BB)) { 2015 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 2016 ++NumDeadBlocks; 2017 2018 MadeChanges = true; 2019 2020 if (&*BB != &F.front()) 2021 BlocksToErase.push_back(&*BB); 2022 continue; 2023 } 2024 2025 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 2026 Instruction *Inst = &*BI++; 2027 if (Inst->getType()->isVoidTy()) 2028 continue; 2029 if (tryToReplaceWithConstant(Solver, Inst)) { 2030 if (Inst->isSafeToRemove()) 2031 Inst->eraseFromParent(); 2032 // Hey, we just changed something! 2033 MadeChanges = true; 2034 ++IPNumInstRemoved; 2035 } 2036 } 2037 } 2038 2039 DomTreeUpdater DTU = Solver.getDTU(F); 2040 // Change dead blocks to unreachable. We do it after replacing constants 2041 // in all executable blocks, because changeToUnreachable may remove PHI 2042 // nodes in executable blocks we found values for. The function's entry 2043 // block is not part of BlocksToErase, so we have to handle it separately. 2044 for (BasicBlock *BB : BlocksToErase) { 2045 NumInstRemoved += 2046 changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false, 2047 /*PreserveLCSSA=*/false, &DTU); 2048 } 2049 if (!Solver.isBlockExecutable(&F.front())) 2050 NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(), 2051 /*UseLLVMTrap=*/false, 2052 /*PreserveLCSSA=*/false, &DTU); 2053 2054 // Now that all instructions in the function are constant folded, 2055 // use ConstantFoldTerminator to get rid of in-edges, record DT updates and 2056 // delete dead BBs. 2057 for (BasicBlock *DeadBB : BlocksToErase) { 2058 // If there are any PHI nodes in this successor, drop entries for BB now. 2059 for (Value::user_iterator UI = DeadBB->user_begin(), 2060 UE = DeadBB->user_end(); 2061 UI != UE;) { 2062 // Grab the user and then increment the iterator early, as the user 2063 // will be deleted. Step past all adjacent uses from the same user. 2064 auto *I = dyn_cast<Instruction>(*UI); 2065 do { ++UI; } while (UI != UE && *UI == I); 2066 2067 // Ignore blockaddress users; BasicBlock's dtor will handle them. 2068 if (!I) continue; 2069 2070 // If we have forced an edge for an indeterminate value, then force the 2071 // terminator to fold to that edge. 2072 forceIndeterminateEdge(I, Solver); 2073 bool Folded = ConstantFoldTerminator(I->getParent(), 2074 /*DeleteDeadConditions=*/false, 2075 /*TLI=*/nullptr, &DTU); 2076 assert(Folded && 2077 "Expect TermInst on constantint or blockaddress to be folded"); 2078 (void) Folded; 2079 } 2080 // Mark dead BB for deletion. 2081 DTU.deleteBB(DeadBB); 2082 } 2083 2084 for (BasicBlock &BB : F) { 2085 for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) { 2086 Instruction *Inst = &*BI++; 2087 if (Solver.getPredicateInfoFor(Inst)) { 2088 if (auto *II = dyn_cast<IntrinsicInst>(Inst)) { 2089 if (II->getIntrinsicID() == Intrinsic::ssa_copy) { 2090 Value *Op = II->getOperand(0); 2091 Inst->replaceAllUsesWith(Op); 2092 Inst->eraseFromParent(); 2093 } 2094 } 2095 } 2096 } 2097 } 2098 } 2099 2100 // If we inferred constant or undef return values for a function, we replaced 2101 // all call uses with the inferred value. This means we don't need to bother 2102 // actually returning anything from the function. Replace all return 2103 // instructions with return undef. 2104 // 2105 // Do this in two stages: first identify the functions we should process, then 2106 // actually zap their returns. This is important because we can only do this 2107 // if the address of the function isn't taken. In cases where a return is the 2108 // last use of a function, the order of processing functions would affect 2109 // whether other functions are optimizable. 2110 SmallVector<ReturnInst*, 8> ReturnsToZap; 2111 2112 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 2113 for (const auto &I : RV) { 2114 Function *F = I.first; 2115 if (I.second.isOverdefined() || F->getReturnType()->isVoidTy()) 2116 continue; 2117 findReturnsToZap(*F, ReturnsToZap, Solver); 2118 } 2119 2120 for (const auto &F : Solver.getMRVFunctionsTracked()) { 2121 assert(F->getReturnType()->isStructTy() && 2122 "The return type should be a struct"); 2123 StructType *STy = cast<StructType>(F->getReturnType()); 2124 if (Solver.isStructLatticeConstant(F, STy)) 2125 findReturnsToZap(*F, ReturnsToZap, Solver); 2126 } 2127 2128 // Zap all returns which we've identified as zap to change. 2129 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { 2130 Function *F = ReturnsToZap[i]->getParent()->getParent(); 2131 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); 2132 } 2133 2134 // If we inferred constant or undef values for globals variables, we can 2135 // delete the global and any stores that remain to it. 2136 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 2137 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 2138 E = TG.end(); I != E; ++I) { 2139 GlobalVariable *GV = I->first; 2140 assert(!I->second.isOverdefined() && 2141 "Overdefined values should have been taken out of the map!"); 2142 LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName() 2143 << "' is constant!\n"); 2144 while (!GV->use_empty()) { 2145 StoreInst *SI = cast<StoreInst>(GV->user_back()); 2146 SI->eraseFromParent(); 2147 } 2148 M.getGlobalList().erase(GV); 2149 ++IPNumGlobalConst; 2150 } 2151 2152 return MadeChanges; 2153 } 2154