1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar/Reassociate.h" 24 #include "llvm/ADT/APFloat.h" 25 #include "llvm/ADT/APInt.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/GlobalsModRef.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/IRBuilder.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Operator.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/PatternMatch.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/IR/ValueHandle.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <utility> 63 64 using namespace llvm; 65 using namespace reassociate; 66 using namespace PatternMatch; 67 68 #define DEBUG_TYPE "reassociate" 69 70 STATISTIC(NumChanged, "Number of insts reassociated"); 71 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 72 STATISTIC(NumFactor , "Number of multiplies factored"); 73 74 #ifndef NDEBUG 75 /// Print out the expression identified in the Ops list. 76 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 77 Module *M = I->getModule(); 78 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 79 << *Ops[0].Op->getType() << '\t'; 80 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 81 dbgs() << "[ "; 82 Ops[i].Op->printAsOperand(dbgs(), false, M); 83 dbgs() << ", #" << Ops[i].Rank << "] "; 84 } 85 } 86 #endif 87 88 /// Utility class representing a non-constant Xor-operand. We classify 89 /// non-constant Xor-Operands into two categories: 90 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 91 /// C2) 92 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 93 /// constant. 94 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 95 /// operand as "E | 0" 96 class llvm::reassociate::XorOpnd { 97 public: 98 XorOpnd(Value *V); 99 100 bool isInvalid() const { return SymbolicPart == nullptr; } 101 bool isOrExpr() const { return isOr; } 102 Value *getValue() const { return OrigVal; } 103 Value *getSymbolicPart() const { return SymbolicPart; } 104 unsigned getSymbolicRank() const { return SymbolicRank; } 105 const APInt &getConstPart() const { return ConstPart; } 106 107 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 108 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 109 110 private: 111 Value *OrigVal; 112 Value *SymbolicPart; 113 APInt ConstPart; 114 unsigned SymbolicRank; 115 bool isOr; 116 }; 117 118 XorOpnd::XorOpnd(Value *V) { 119 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 120 OrigVal = V; 121 Instruction *I = dyn_cast<Instruction>(V); 122 SymbolicRank = 0; 123 124 if (I && (I->getOpcode() == Instruction::Or || 125 I->getOpcode() == Instruction::And)) { 126 Value *V0 = I->getOperand(0); 127 Value *V1 = I->getOperand(1); 128 const APInt *C; 129 if (match(V0, m_APInt(C))) 130 std::swap(V0, V1); 131 132 if (match(V1, m_APInt(C))) { 133 ConstPart = *C; 134 SymbolicPart = V0; 135 isOr = (I->getOpcode() == Instruction::Or); 136 return; 137 } 138 } 139 140 // view the operand as "V | 0" 141 SymbolicPart = V; 142 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits()); 143 isOr = true; 144 } 145 146 /// Return true if V is an instruction of the specified opcode and if it 147 /// only has one use. 148 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 149 auto *I = dyn_cast<Instruction>(V); 150 if (I && I->hasOneUse() && I->getOpcode() == Opcode) 151 if (!isa<FPMathOperator>(I) || I->isFast()) 152 return cast<BinaryOperator>(I); 153 return nullptr; 154 } 155 156 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 157 unsigned Opcode2) { 158 auto *I = dyn_cast<Instruction>(V); 159 if (I && I->hasOneUse() && 160 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2)) 161 if (!isa<FPMathOperator>(I) || I->isFast()) 162 return cast<BinaryOperator>(I); 163 return nullptr; 164 } 165 166 void ReassociatePass::BuildRankMap(Function &F, 167 ReversePostOrderTraversal<Function*> &RPOT) { 168 unsigned Rank = 2; 169 170 // Assign distinct ranks to function arguments. 171 for (auto &Arg : F.args()) { 172 ValueRankMap[&Arg] = ++Rank; 173 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank 174 << "\n"); 175 } 176 177 // Traverse basic blocks in ReversePostOrder 178 for (BasicBlock *BB : RPOT) { 179 unsigned BBRank = RankMap[BB] = ++Rank << 16; 180 181 // Walk the basic block, adding precomputed ranks for any instructions that 182 // we cannot move. This ensures that the ranks for these instructions are 183 // all different in the block. 184 for (Instruction &I : *BB) 185 if (mayBeMemoryDependent(I)) 186 ValueRankMap[&I] = ++BBRank; 187 } 188 } 189 190 unsigned ReassociatePass::getRank(Value *V) { 191 Instruction *I = dyn_cast<Instruction>(V); 192 if (!I) { 193 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 194 return 0; // Otherwise it's a global or constant, rank 0. 195 } 196 197 if (unsigned Rank = ValueRankMap[I]) 198 return Rank; // Rank already known? 199 200 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 201 // we can reassociate expressions for code motion! Since we do not recurse 202 // for PHI nodes, we cannot have infinite recursion here, because there 203 // cannot be loops in the value graph that do not go through PHI nodes. 204 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 205 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i) 206 Rank = std::max(Rank, getRank(I->getOperand(i))); 207 208 // If this is a 'not' or 'neg' instruction, do not count it for rank. This 209 // assures us that X and ~X will have the same rank. 210 if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) && 211 !match(I, m_FNeg(m_Value()))) 212 ++Rank; 213 214 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank 215 << "\n"); 216 217 return ValueRankMap[I] = Rank; 218 } 219 220 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 221 void ReassociatePass::canonicalizeOperands(Instruction *I) { 222 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 223 assert(I->isCommutative() && "Expected commutative operator."); 224 225 Value *LHS = I->getOperand(0); 226 Value *RHS = I->getOperand(1); 227 if (LHS == RHS || isa<Constant>(RHS)) 228 return; 229 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS)) 230 cast<BinaryOperator>(I)->swapOperands(); 231 } 232 233 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 234 Instruction *InsertBefore, Value *FlagsOp) { 235 if (S1->getType()->isIntOrIntVectorTy()) 236 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 237 else { 238 BinaryOperator *Res = 239 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 240 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 241 return Res; 242 } 243 } 244 245 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 246 Instruction *InsertBefore, Value *FlagsOp) { 247 if (S1->getType()->isIntOrIntVectorTy()) 248 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 249 else { 250 BinaryOperator *Res = 251 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 252 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 253 return Res; 254 } 255 } 256 257 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 258 Instruction *InsertBefore, Value *FlagsOp) { 259 if (S1->getType()->isIntOrIntVectorTy()) 260 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 261 else { 262 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 263 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 264 return Res; 265 } 266 } 267 268 /// Replace 0-X with X*-1. 269 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 270 Type *Ty = Neg->getType(); 271 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 272 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 273 274 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 275 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 276 Res->takeName(Neg); 277 Neg->replaceAllUsesWith(Res); 278 Res->setDebugLoc(Neg->getDebugLoc()); 279 return Res; 280 } 281 282 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 283 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 284 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 285 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 286 /// even x in Bitwidth-bit arithmetic. 287 static unsigned CarmichaelShift(unsigned Bitwidth) { 288 if (Bitwidth < 3) 289 return Bitwidth - 1; 290 return Bitwidth - 2; 291 } 292 293 /// Add the extra weight 'RHS' to the existing weight 'LHS', 294 /// reducing the combined weight using any special properties of the operation. 295 /// The existing weight LHS represents the computation X op X op ... op X where 296 /// X occurs LHS times. The combined weight represents X op X op ... op X with 297 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 298 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 299 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 300 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 301 // If we were working with infinite precision arithmetic then the combined 302 // weight would be LHS + RHS. But we are using finite precision arithmetic, 303 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 304 // for nilpotent operations and addition, but not for idempotent operations 305 // and multiplication), so it is important to correctly reduce the combined 306 // weight back into range if wrapping would be wrong. 307 308 // If RHS is zero then the weight didn't change. 309 if (RHS.isMinValue()) 310 return; 311 // If LHS is zero then the combined weight is RHS. 312 if (LHS.isMinValue()) { 313 LHS = RHS; 314 return; 315 } 316 // From this point on we know that neither LHS nor RHS is zero. 317 318 if (Instruction::isIdempotent(Opcode)) { 319 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 320 // weight of 1. Keeping weights at zero or one also means that wrapping is 321 // not a problem. 322 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 323 return; // Return a weight of 1. 324 } 325 if (Instruction::isNilpotent(Opcode)) { 326 // Nilpotent means X op X === 0, so reduce weights modulo 2. 327 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 328 LHS = 0; // 1 + 1 === 0 modulo 2. 329 return; 330 } 331 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 332 // TODO: Reduce the weight by exploiting nsw/nuw? 333 LHS += RHS; 334 return; 335 } 336 337 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 338 "Unknown associative operation!"); 339 unsigned Bitwidth = LHS.getBitWidth(); 340 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 341 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 342 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 343 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 344 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 345 // which by a happy accident means that they can always be represented using 346 // Bitwidth bits. 347 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 348 // the Carmichael number). 349 if (Bitwidth > 3) { 350 /// CM - The value of Carmichael's lambda function. 351 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 352 // Any weight W >= Threshold can be replaced with W - CM. 353 APInt Threshold = CM + Bitwidth; 354 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 355 // For Bitwidth 4 or more the following sum does not overflow. 356 LHS += RHS; 357 while (LHS.uge(Threshold)) 358 LHS -= CM; 359 } else { 360 // To avoid problems with overflow do everything the same as above but using 361 // a larger type. 362 unsigned CM = 1U << CarmichaelShift(Bitwidth); 363 unsigned Threshold = CM + Bitwidth; 364 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 365 "Weights not reduced!"); 366 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 367 while (Total >= Threshold) 368 Total -= CM; 369 LHS = Total; 370 } 371 } 372 373 using RepeatedValue = std::pair<Value*, APInt>; 374 375 /// Given an associative binary expression, return the leaf 376 /// nodes in Ops along with their weights (how many times the leaf occurs). The 377 /// original expression is the same as 378 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 379 /// op 380 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 381 /// op 382 /// ... 383 /// op 384 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 385 /// 386 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 387 /// 388 /// This routine may modify the function, in which case it returns 'true'. The 389 /// changes it makes may well be destructive, changing the value computed by 'I' 390 /// to something completely different. Thus if the routine returns 'true' then 391 /// you MUST either replace I with a new expression computed from the Ops array, 392 /// or use RewriteExprTree to put the values back in. 393 /// 394 /// A leaf node is either not a binary operation of the same kind as the root 395 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 396 /// opcode), or is the same kind of binary operator but has a use which either 397 /// does not belong to the expression, or does belong to the expression but is 398 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 399 /// of the expression, while for non-leaf nodes (except for the root 'I') every 400 /// use is a non-leaf node of the expression. 401 /// 402 /// For example: 403 /// expression graph node names 404 /// 405 /// + | I 406 /// / \ | 407 /// + + | A, B 408 /// / \ / \ | 409 /// * + * | C, D, E 410 /// / \ / \ / \ | 411 /// + * | F, G 412 /// 413 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 414 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 415 /// 416 /// The expression is maximal: if some instruction is a binary operator of the 417 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 418 /// then the instruction also belongs to the expression, is not a leaf node of 419 /// it, and its operands also belong to the expression (but may be leaf nodes). 420 /// 421 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 422 /// order to ensure that every non-root node in the expression has *exactly one* 423 /// use by a non-leaf node of the expression. This destruction means that the 424 /// caller MUST either replace 'I' with a new expression or use something like 425 /// RewriteExprTree to put the values back in if the routine indicates that it 426 /// made a change by returning 'true'. 427 /// 428 /// In the above example either the right operand of A or the left operand of B 429 /// will be replaced by undef. If it is B's operand then this gives: 430 /// 431 /// + | I 432 /// / \ | 433 /// + + | A, B - operand of B replaced with undef 434 /// / \ \ | 435 /// * + * | C, D, E 436 /// / \ / \ / \ | 437 /// + * | F, G 438 /// 439 /// Note that such undef operands can only be reached by passing through 'I'. 440 /// For example, if you visit operands recursively starting from a leaf node 441 /// then you will never see such an undef operand unless you get back to 'I', 442 /// which requires passing through a phi node. 443 /// 444 /// Note that this routine may also mutate binary operators of the wrong type 445 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 446 /// of the expression) if it can turn them into binary operators of the right 447 /// type and thus make the expression bigger. 448 static bool LinearizeExprTree(BinaryOperator *I, 449 SmallVectorImpl<RepeatedValue> &Ops) { 450 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 451 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 452 unsigned Opcode = I->getOpcode(); 453 assert(I->isAssociative() && I->isCommutative() && 454 "Expected an associative and commutative operation!"); 455 456 // Visit all operands of the expression, keeping track of their weight (the 457 // number of paths from the expression root to the operand, or if you like 458 // the number of times that operand occurs in the linearized expression). 459 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 460 // while A has weight two. 461 462 // Worklist of non-leaf nodes (their operands are in the expression too) along 463 // with their weights, representing a certain number of paths to the operator. 464 // If an operator occurs in the worklist multiple times then we found multiple 465 // ways to get to it. 466 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 467 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 468 bool Changed = false; 469 470 // Leaves of the expression are values that either aren't the right kind of 471 // operation (eg: a constant, or a multiply in an add tree), or are, but have 472 // some uses that are not inside the expression. For example, in I = X + X, 473 // X = A + B, the value X has two uses (by I) that are in the expression. If 474 // X has any other uses, for example in a return instruction, then we consider 475 // X to be a leaf, and won't analyze it further. When we first visit a value, 476 // if it has more than one use then at first we conservatively consider it to 477 // be a leaf. Later, as the expression is explored, we may discover some more 478 // uses of the value from inside the expression. If all uses turn out to be 479 // from within the expression (and the value is a binary operator of the right 480 // kind) then the value is no longer considered to be a leaf, and its operands 481 // are explored. 482 483 // Leaves - Keeps track of the set of putative leaves as well as the number of 484 // paths to each leaf seen so far. 485 using LeafMap = DenseMap<Value *, APInt>; 486 LeafMap Leaves; // Leaf -> Total weight so far. 487 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order. 488 489 #ifndef NDEBUG 490 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme. 491 #endif 492 while (!Worklist.empty()) { 493 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 494 I = P.first; // We examine the operands of this binary operator. 495 496 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 497 Value *Op = I->getOperand(OpIdx); 498 APInt Weight = P.second; // Number of paths to this operand. 499 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 500 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 501 502 // If this is a binary operation of the right kind with only one use then 503 // add its operands to the expression. 504 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 505 assert(Visited.insert(Op).second && "Not first visit!"); 506 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 507 Worklist.push_back(std::make_pair(BO, Weight)); 508 continue; 509 } 510 511 // Appears to be a leaf. Is the operand already in the set of leaves? 512 LeafMap::iterator It = Leaves.find(Op); 513 if (It == Leaves.end()) { 514 // Not in the leaf map. Must be the first time we saw this operand. 515 assert(Visited.insert(Op).second && "Not first visit!"); 516 if (!Op->hasOneUse()) { 517 // This value has uses not accounted for by the expression, so it is 518 // not safe to modify. Mark it as being a leaf. 519 LLVM_DEBUG(dbgs() 520 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 521 LeafOrder.push_back(Op); 522 Leaves[Op] = Weight; 523 continue; 524 } 525 // No uses outside the expression, try morphing it. 526 } else { 527 // Already in the leaf map. 528 assert(It != Leaves.end() && Visited.count(Op) && 529 "In leaf map but not visited!"); 530 531 // Update the number of paths to the leaf. 532 IncorporateWeight(It->second, Weight, Opcode); 533 534 #if 0 // TODO: Re-enable once PR13021 is fixed. 535 // The leaf already has one use from inside the expression. As we want 536 // exactly one such use, drop this new use of the leaf. 537 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 538 I->setOperand(OpIdx, UndefValue::get(I->getType())); 539 Changed = true; 540 541 // If the leaf is a binary operation of the right kind and we now see 542 // that its multiple original uses were in fact all by nodes belonging 543 // to the expression, then no longer consider it to be a leaf and add 544 // its operands to the expression. 545 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 546 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 547 Worklist.push_back(std::make_pair(BO, It->second)); 548 Leaves.erase(It); 549 continue; 550 } 551 #endif 552 553 // If we still have uses that are not accounted for by the expression 554 // then it is not safe to modify the value. 555 if (!Op->hasOneUse()) 556 continue; 557 558 // No uses outside the expression, try morphing it. 559 Weight = It->second; 560 Leaves.erase(It); // Since the value may be morphed below. 561 } 562 563 // At this point we have a value which, first of all, is not a binary 564 // expression of the right kind, and secondly, is only used inside the 565 // expression. This means that it can safely be modified. See if we 566 // can usefully morph it into an expression of the right kind. 567 assert((!isa<Instruction>(Op) || 568 cast<Instruction>(Op)->getOpcode() != Opcode 569 || (isa<FPMathOperator>(Op) && 570 !cast<Instruction>(Op)->isFast())) && 571 "Should have been handled above!"); 572 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 573 574 // If this is a multiply expression, turn any internal negations into 575 // multiplies by -1 so they can be reassociated. 576 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 577 if ((Opcode == Instruction::Mul && match(BO, m_Neg(m_Value()))) || 578 (Opcode == Instruction::FMul && match(BO, m_FNeg(m_Value())))) { 579 LLVM_DEBUG(dbgs() 580 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 581 BO = LowerNegateToMultiply(BO); 582 LLVM_DEBUG(dbgs() << *BO << '\n'); 583 Worklist.push_back(std::make_pair(BO, Weight)); 584 Changed = true; 585 continue; 586 } 587 588 // Failed to morph into an expression of the right type. This really is 589 // a leaf. 590 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 591 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 592 LeafOrder.push_back(Op); 593 Leaves[Op] = Weight; 594 } 595 } 596 597 // The leaves, repeated according to their weights, represent the linearized 598 // form of the expression. 599 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 600 Value *V = LeafOrder[i]; 601 LeafMap::iterator It = Leaves.find(V); 602 if (It == Leaves.end()) 603 // Node initially thought to be a leaf wasn't. 604 continue; 605 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 606 APInt Weight = It->second; 607 if (Weight.isMinValue()) 608 // Leaf already output or weight reduction eliminated it. 609 continue; 610 // Ensure the leaf is only output once. 611 It->second = 0; 612 Ops.push_back(std::make_pair(V, Weight)); 613 } 614 615 // For nilpotent operations or addition there may be no operands, for example 616 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 617 // in both cases the weight reduces to 0 causing the value to be skipped. 618 if (Ops.empty()) { 619 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 620 assert(Identity && "Associative operation without identity!"); 621 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 622 } 623 624 return Changed; 625 } 626 627 /// Now that the operands for this expression tree are 628 /// linearized and optimized, emit them in-order. 629 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 630 SmallVectorImpl<ValueEntry> &Ops) { 631 assert(Ops.size() > 1 && "Single values should be used directly!"); 632 633 // Since our optimizations should never increase the number of operations, the 634 // new expression can usually be written reusing the existing binary operators 635 // from the original expression tree, without creating any new instructions, 636 // though the rewritten expression may have a completely different topology. 637 // We take care to not change anything if the new expression will be the same 638 // as the original. If more than trivial changes (like commuting operands) 639 // were made then we are obliged to clear out any optional subclass data like 640 // nsw flags. 641 642 /// NodesToRewrite - Nodes from the original expression available for writing 643 /// the new expression into. 644 SmallVector<BinaryOperator*, 8> NodesToRewrite; 645 unsigned Opcode = I->getOpcode(); 646 BinaryOperator *Op = I; 647 648 /// NotRewritable - The operands being written will be the leaves of the new 649 /// expression and must not be used as inner nodes (via NodesToRewrite) by 650 /// mistake. Inner nodes are always reassociable, and usually leaves are not 651 /// (if they were they would have been incorporated into the expression and so 652 /// would not be leaves), so most of the time there is no danger of this. But 653 /// in rare cases a leaf may become reassociable if an optimization kills uses 654 /// of it, or it may momentarily become reassociable during rewriting (below) 655 /// due it being removed as an operand of one of its uses. Ensure that misuse 656 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 657 /// leaves and refusing to reuse any of them as inner nodes. 658 SmallPtrSet<Value*, 8> NotRewritable; 659 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 660 NotRewritable.insert(Ops[i].Op); 661 662 // ExpressionChanged - Non-null if the rewritten expression differs from the 663 // original in some non-trivial way, requiring the clearing of optional flags. 664 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 665 BinaryOperator *ExpressionChanged = nullptr; 666 for (unsigned i = 0; ; ++i) { 667 // The last operation (which comes earliest in the IR) is special as both 668 // operands will come from Ops, rather than just one with the other being 669 // a subexpression. 670 if (i+2 == Ops.size()) { 671 Value *NewLHS = Ops[i].Op; 672 Value *NewRHS = Ops[i+1].Op; 673 Value *OldLHS = Op->getOperand(0); 674 Value *OldRHS = Op->getOperand(1); 675 676 if (NewLHS == OldLHS && NewRHS == OldRHS) 677 // Nothing changed, leave it alone. 678 break; 679 680 if (NewLHS == OldRHS && NewRHS == OldLHS) { 681 // The order of the operands was reversed. Swap them. 682 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 683 Op->swapOperands(); 684 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 685 MadeChange = true; 686 ++NumChanged; 687 break; 688 } 689 690 // The new operation differs non-trivially from the original. Overwrite 691 // the old operands with the new ones. 692 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 693 if (NewLHS != OldLHS) { 694 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 695 if (BO && !NotRewritable.count(BO)) 696 NodesToRewrite.push_back(BO); 697 Op->setOperand(0, NewLHS); 698 } 699 if (NewRHS != OldRHS) { 700 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 701 if (BO && !NotRewritable.count(BO)) 702 NodesToRewrite.push_back(BO); 703 Op->setOperand(1, NewRHS); 704 } 705 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 706 707 ExpressionChanged = Op; 708 MadeChange = true; 709 ++NumChanged; 710 711 break; 712 } 713 714 // Not the last operation. The left-hand side will be a sub-expression 715 // while the right-hand side will be the current element of Ops. 716 Value *NewRHS = Ops[i].Op; 717 if (NewRHS != Op->getOperand(1)) { 718 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 719 if (NewRHS == Op->getOperand(0)) { 720 // The new right-hand side was already present as the left operand. If 721 // we are lucky then swapping the operands will sort out both of them. 722 Op->swapOperands(); 723 } else { 724 // Overwrite with the new right-hand side. 725 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 726 if (BO && !NotRewritable.count(BO)) 727 NodesToRewrite.push_back(BO); 728 Op->setOperand(1, NewRHS); 729 ExpressionChanged = Op; 730 } 731 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 732 MadeChange = true; 733 ++NumChanged; 734 } 735 736 // Now deal with the left-hand side. If this is already an operation node 737 // from the original expression then just rewrite the rest of the expression 738 // into it. 739 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 740 if (BO && !NotRewritable.count(BO)) { 741 Op = BO; 742 continue; 743 } 744 745 // Otherwise, grab a spare node from the original expression and use that as 746 // the left-hand side. If there are no nodes left then the optimizers made 747 // an expression with more nodes than the original! This usually means that 748 // they did something stupid but it might mean that the problem was just too 749 // hard (finding the mimimal number of multiplications needed to realize a 750 // multiplication expression is NP-complete). Whatever the reason, smart or 751 // stupid, create a new node if there are none left. 752 BinaryOperator *NewOp; 753 if (NodesToRewrite.empty()) { 754 Constant *Undef = UndefValue::get(I->getType()); 755 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 756 Undef, Undef, "", I); 757 if (NewOp->getType()->isFPOrFPVectorTy()) 758 NewOp->setFastMathFlags(I->getFastMathFlags()); 759 } else { 760 NewOp = NodesToRewrite.pop_back_val(); 761 } 762 763 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 764 Op->setOperand(0, NewOp); 765 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 766 ExpressionChanged = Op; 767 MadeChange = true; 768 ++NumChanged; 769 Op = NewOp; 770 } 771 772 // If the expression changed non-trivially then clear out all subclass data 773 // starting from the operator specified in ExpressionChanged, and compactify 774 // the operators to just before the expression root to guarantee that the 775 // expression tree is dominated by all of Ops. 776 if (ExpressionChanged) 777 do { 778 // Preserve FastMathFlags. 779 if (isa<FPMathOperator>(I)) { 780 FastMathFlags Flags = I->getFastMathFlags(); 781 ExpressionChanged->clearSubclassOptionalData(); 782 ExpressionChanged->setFastMathFlags(Flags); 783 } else 784 ExpressionChanged->clearSubclassOptionalData(); 785 786 if (ExpressionChanged == I) 787 break; 788 789 // Discard any debug info related to the expressions that has changed (we 790 // can leave debug infor related to the root, since the result of the 791 // expression tree should be the same even after reassociation). 792 replaceDbgUsesWithUndef(ExpressionChanged); 793 794 ExpressionChanged->moveBefore(I); 795 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 796 } while (true); 797 798 // Throw away any left over nodes from the original expression. 799 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 800 RedoInsts.insert(NodesToRewrite[i]); 801 } 802 803 /// Insert instructions before the instruction pointed to by BI, 804 /// that computes the negative version of the value specified. The negative 805 /// version of the value is returned, and BI is left pointing at the instruction 806 /// that should be processed next by the reassociation pass. 807 /// Also add intermediate instructions to the redo list that are modified while 808 /// pushing the negates through adds. These will be revisited to see if 809 /// additional opportunities have been exposed. 810 static Value *NegateValue(Value *V, Instruction *BI, 811 ReassociatePass::OrderedSet &ToRedo) { 812 if (auto *C = dyn_cast<Constant>(V)) 813 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) : 814 ConstantExpr::getNeg(C); 815 816 // We are trying to expose opportunity for reassociation. One of the things 817 // that we want to do to achieve this is to push a negation as deep into an 818 // expression chain as possible, to expose the add instructions. In practice, 819 // this means that we turn this: 820 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 821 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 822 // the constants. We assume that instcombine will clean up the mess later if 823 // we introduce tons of unnecessary negation instructions. 824 // 825 if (BinaryOperator *I = 826 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 827 // Push the negates through the add. 828 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 829 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 830 if (I->getOpcode() == Instruction::Add) { 831 I->setHasNoUnsignedWrap(false); 832 I->setHasNoSignedWrap(false); 833 } 834 835 // We must move the add instruction here, because the neg instructions do 836 // not dominate the old add instruction in general. By moving it, we are 837 // assured that the neg instructions we just inserted dominate the 838 // instruction we are about to insert after them. 839 // 840 I->moveBefore(BI); 841 I->setName(I->getName()+".neg"); 842 843 // Add the intermediate negates to the redo list as processing them later 844 // could expose more reassociating opportunities. 845 ToRedo.insert(I); 846 return I; 847 } 848 849 // Okay, we need to materialize a negated version of V with an instruction. 850 // Scan the use lists of V to see if we have one already. 851 for (User *U : V->users()) { 852 if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value()))) 853 continue; 854 855 // We found one! Now we have to make sure that the definition dominates 856 // this use. We do this by moving it to the entry block (if it is a 857 // non-instruction value) or right after the definition. These negates will 858 // be zapped by reassociate later, so we don't need much finesse here. 859 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 860 861 // Verify that the negate is in this function, V might be a constant expr. 862 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 863 continue; 864 865 BasicBlock::iterator InsertPt; 866 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 867 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 868 InsertPt = II->getNormalDest()->begin(); 869 } else { 870 InsertPt = ++InstInput->getIterator(); 871 } 872 while (isa<PHINode>(InsertPt)) ++InsertPt; 873 } else { 874 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 875 } 876 TheNeg->moveBefore(&*InsertPt); 877 if (TheNeg->getOpcode() == Instruction::Sub) { 878 TheNeg->setHasNoUnsignedWrap(false); 879 TheNeg->setHasNoSignedWrap(false); 880 } else { 881 TheNeg->andIRFlags(BI); 882 } 883 ToRedo.insert(TheNeg); 884 return TheNeg; 885 } 886 887 // Insert a 'neg' instruction that subtracts the value from zero to get the 888 // negation. 889 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 890 ToRedo.insert(NewNeg); 891 return NewNeg; 892 } 893 894 /// Return true if we should break up this subtract of X-Y into (X + -Y). 895 static bool ShouldBreakUpSubtract(Instruction *Sub) { 896 // If this is a negation, we can't split it up! 897 if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value()))) 898 return false; 899 900 // Don't breakup X - undef. 901 if (isa<UndefValue>(Sub->getOperand(1))) 902 return false; 903 904 // Don't bother to break this up unless either the LHS is an associable add or 905 // subtract or if this is only used by one. 906 Value *V0 = Sub->getOperand(0); 907 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 908 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 909 return true; 910 Value *V1 = Sub->getOperand(1); 911 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 912 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 913 return true; 914 Value *VB = Sub->user_back(); 915 if (Sub->hasOneUse() && 916 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 917 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 918 return true; 919 920 return false; 921 } 922 923 /// If we have (X-Y), and if either X is an add, or if this is only used by an 924 /// add, transform this into (X+(0-Y)) to promote better reassociation. 925 static BinaryOperator *BreakUpSubtract(Instruction *Sub, 926 ReassociatePass::OrderedSet &ToRedo) { 927 // Convert a subtract into an add and a neg instruction. This allows sub 928 // instructions to be commuted with other add instructions. 929 // 930 // Calculate the negative value of Operand 1 of the sub instruction, 931 // and set it as the RHS of the add instruction we just made. 932 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 933 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 934 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 935 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 936 New->takeName(Sub); 937 938 // Everyone now refers to the add instruction. 939 Sub->replaceAllUsesWith(New); 940 New->setDebugLoc(Sub->getDebugLoc()); 941 942 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n'); 943 return New; 944 } 945 946 /// If this is a shift of a reassociable multiply or is used by one, change 947 /// this into a multiply by a constant to assist with further reassociation. 948 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 949 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 950 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 951 952 BinaryOperator *Mul = 953 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 954 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 955 Mul->takeName(Shl); 956 957 // Everyone now refers to the mul instruction. 958 Shl->replaceAllUsesWith(Mul); 959 Mul->setDebugLoc(Shl->getDebugLoc()); 960 961 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 962 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 963 // handling. 964 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 965 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 966 if (NSW && NUW) 967 Mul->setHasNoSignedWrap(true); 968 Mul->setHasNoUnsignedWrap(NUW); 969 return Mul; 970 } 971 972 /// Scan backwards and forwards among values with the same rank as element i 973 /// to see if X exists. If X does not exist, return i. This is useful when 974 /// scanning for 'x' when we see '-x' because they both get the same rank. 975 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, 976 unsigned i, Value *X) { 977 unsigned XRank = Ops[i].Rank; 978 unsigned e = Ops.size(); 979 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 980 if (Ops[j].Op == X) 981 return j; 982 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 983 if (Instruction *I2 = dyn_cast<Instruction>(X)) 984 if (I1->isIdenticalTo(I2)) 985 return j; 986 } 987 // Scan backwards. 988 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 989 if (Ops[j].Op == X) 990 return j; 991 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 992 if (Instruction *I2 = dyn_cast<Instruction>(X)) 993 if (I1->isIdenticalTo(I2)) 994 return j; 995 } 996 return i; 997 } 998 999 /// Emit a tree of add instructions, summing Ops together 1000 /// and returning the result. Insert the tree before I. 1001 static Value *EmitAddTreeOfValues(Instruction *I, 1002 SmallVectorImpl<WeakTrackingVH> &Ops) { 1003 if (Ops.size() == 1) return Ops.back(); 1004 1005 Value *V1 = Ops.back(); 1006 Ops.pop_back(); 1007 Value *V2 = EmitAddTreeOfValues(I, Ops); 1008 return CreateAdd(V2, V1, "reass.add", I, I); 1009 } 1010 1011 /// If V is an expression tree that is a multiplication sequence, 1012 /// and if this sequence contains a multiply by Factor, 1013 /// remove Factor from the tree and return the new tree. 1014 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 1015 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1016 if (!BO) 1017 return nullptr; 1018 1019 SmallVector<RepeatedValue, 8> Tree; 1020 MadeChange |= LinearizeExprTree(BO, Tree); 1021 SmallVector<ValueEntry, 8> Factors; 1022 Factors.reserve(Tree.size()); 1023 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1024 RepeatedValue E = Tree[i]; 1025 Factors.append(E.second.getZExtValue(), 1026 ValueEntry(getRank(E.first), E.first)); 1027 } 1028 1029 bool FoundFactor = false; 1030 bool NeedsNegate = false; 1031 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1032 if (Factors[i].Op == Factor) { 1033 FoundFactor = true; 1034 Factors.erase(Factors.begin()+i); 1035 break; 1036 } 1037 1038 // If this is a negative version of this factor, remove it. 1039 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1040 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1041 if (FC1->getValue() == -FC2->getValue()) { 1042 FoundFactor = NeedsNegate = true; 1043 Factors.erase(Factors.begin()+i); 1044 break; 1045 } 1046 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1047 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1048 const APFloat &F1 = FC1->getValueAPF(); 1049 APFloat F2(FC2->getValueAPF()); 1050 F2.changeSign(); 1051 if (F1.compare(F2) == APFloat::cmpEqual) { 1052 FoundFactor = NeedsNegate = true; 1053 Factors.erase(Factors.begin() + i); 1054 break; 1055 } 1056 } 1057 } 1058 } 1059 1060 if (!FoundFactor) { 1061 // Make sure to restore the operands to the expression tree. 1062 RewriteExprTree(BO, Factors); 1063 return nullptr; 1064 } 1065 1066 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1067 1068 // If this was just a single multiply, remove the multiply and return the only 1069 // remaining operand. 1070 if (Factors.size() == 1) { 1071 RedoInsts.insert(BO); 1072 V = Factors[0].Op; 1073 } else { 1074 RewriteExprTree(BO, Factors); 1075 V = BO; 1076 } 1077 1078 if (NeedsNegate) 1079 V = CreateNeg(V, "neg", &*InsertPt, BO); 1080 1081 return V; 1082 } 1083 1084 /// If V is a single-use multiply, recursively add its operands as factors, 1085 /// otherwise add V to the list of factors. 1086 /// 1087 /// Ops is the top-level list of add operands we're trying to factor. 1088 static void FindSingleUseMultiplyFactors(Value *V, 1089 SmallVectorImpl<Value*> &Factors) { 1090 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1091 if (!BO) { 1092 Factors.push_back(V); 1093 return; 1094 } 1095 1096 // Otherwise, add the LHS and RHS to the list of factors. 1097 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 1098 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 1099 } 1100 1101 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1102 /// This optimizes based on identities. If it can be reduced to a single Value, 1103 /// it is returned, otherwise the Ops list is mutated as necessary. 1104 static Value *OptimizeAndOrXor(unsigned Opcode, 1105 SmallVectorImpl<ValueEntry> &Ops) { 1106 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1107 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1108 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1109 // First, check for X and ~X in the operand list. 1110 assert(i < Ops.size()); 1111 Value *X; 1112 if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^. 1113 unsigned FoundX = FindInOperandList(Ops, i, X); 1114 if (FoundX != i) { 1115 if (Opcode == Instruction::And) // ...&X&~X = 0 1116 return Constant::getNullValue(X->getType()); 1117 1118 if (Opcode == Instruction::Or) // ...|X|~X = -1 1119 return Constant::getAllOnesValue(X->getType()); 1120 } 1121 } 1122 1123 // Next, check for duplicate pairs of values, which we assume are next to 1124 // each other, due to our sorting criteria. 1125 assert(i < Ops.size()); 1126 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1127 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1128 // Drop duplicate values for And and Or. 1129 Ops.erase(Ops.begin()+i); 1130 --i; --e; 1131 ++NumAnnihil; 1132 continue; 1133 } 1134 1135 // Drop pairs of values for Xor. 1136 assert(Opcode == Instruction::Xor); 1137 if (e == 2) 1138 return Constant::getNullValue(Ops[0].Op->getType()); 1139 1140 // Y ^ X^X -> Y 1141 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1142 i -= 1; e -= 2; 1143 ++NumAnnihil; 1144 } 1145 } 1146 return nullptr; 1147 } 1148 1149 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1150 /// instruction with the given two operands, and return the resulting 1151 /// instruction. There are two special cases: 1) if the constant operand is 0, 1152 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1153 /// be returned. 1154 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1155 const APInt &ConstOpnd) { 1156 if (ConstOpnd.isNullValue()) 1157 return nullptr; 1158 1159 if (ConstOpnd.isAllOnesValue()) 1160 return Opnd; 1161 1162 Instruction *I = BinaryOperator::CreateAnd( 1163 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra", 1164 InsertBefore); 1165 I->setDebugLoc(InsertBefore->getDebugLoc()); 1166 return I; 1167 } 1168 1169 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1170 // into "R ^ C", where C would be 0, and R is a symbolic value. 1171 // 1172 // If it was successful, true is returned, and the "R" and "C" is returned 1173 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1174 // and both "Res" and "ConstOpnd" remain unchanged. 1175 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1176 APInt &ConstOpnd, Value *&Res) { 1177 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1178 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1179 // = (x & ~c1) ^ (c1 ^ c2) 1180 // It is useful only when c1 == c2. 1181 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue()) 1182 return false; 1183 1184 if (!Opnd1->getValue()->hasOneUse()) 1185 return false; 1186 1187 const APInt &C1 = Opnd1->getConstPart(); 1188 if (C1 != ConstOpnd) 1189 return false; 1190 1191 Value *X = Opnd1->getSymbolicPart(); 1192 Res = createAndInstr(I, X, ~C1); 1193 // ConstOpnd was C2, now C1 ^ C2. 1194 ConstOpnd ^= C1; 1195 1196 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1197 RedoInsts.insert(T); 1198 return true; 1199 } 1200 1201 // Helper function of OptimizeXor(). It tries to simplify 1202 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1203 // symbolic value. 1204 // 1205 // If it was successful, true is returned, and the "R" and "C" is returned 1206 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1207 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1208 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1209 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1210 XorOpnd *Opnd2, APInt &ConstOpnd, 1211 Value *&Res) { 1212 Value *X = Opnd1->getSymbolicPart(); 1213 if (X != Opnd2->getSymbolicPart()) 1214 return false; 1215 1216 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1217 int DeadInstNum = 1; 1218 if (Opnd1->getValue()->hasOneUse()) 1219 DeadInstNum++; 1220 if (Opnd2->getValue()->hasOneUse()) 1221 DeadInstNum++; 1222 1223 // Xor-Rule 2: 1224 // (x | c1) ^ (x & c2) 1225 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1226 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1227 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1228 // 1229 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1230 if (Opnd2->isOrExpr()) 1231 std::swap(Opnd1, Opnd2); 1232 1233 const APInt &C1 = Opnd1->getConstPart(); 1234 const APInt &C2 = Opnd2->getConstPart(); 1235 APInt C3((~C1) ^ C2); 1236 1237 // Do not increase code size! 1238 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1239 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1240 if (NewInstNum > DeadInstNum) 1241 return false; 1242 } 1243 1244 Res = createAndInstr(I, X, C3); 1245 ConstOpnd ^= C1; 1246 } else if (Opnd1->isOrExpr()) { 1247 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1248 // 1249 const APInt &C1 = Opnd1->getConstPart(); 1250 const APInt &C2 = Opnd2->getConstPart(); 1251 APInt C3 = C1 ^ C2; 1252 1253 // Do not increase code size 1254 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1255 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1256 if (NewInstNum > DeadInstNum) 1257 return false; 1258 } 1259 1260 Res = createAndInstr(I, X, C3); 1261 ConstOpnd ^= C3; 1262 } else { 1263 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1264 // 1265 const APInt &C1 = Opnd1->getConstPart(); 1266 const APInt &C2 = Opnd2->getConstPart(); 1267 APInt C3 = C1 ^ C2; 1268 Res = createAndInstr(I, X, C3); 1269 } 1270 1271 // Put the original operands in the Redo list; hope they will be deleted 1272 // as dead code. 1273 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1274 RedoInsts.insert(T); 1275 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1276 RedoInsts.insert(T); 1277 1278 return true; 1279 } 1280 1281 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1282 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1283 /// necessary. 1284 Value *ReassociatePass::OptimizeXor(Instruction *I, 1285 SmallVectorImpl<ValueEntry> &Ops) { 1286 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1287 return V; 1288 1289 if (Ops.size() == 1) 1290 return nullptr; 1291 1292 SmallVector<XorOpnd, 8> Opnds; 1293 SmallVector<XorOpnd*, 8> OpndPtrs; 1294 Type *Ty = Ops[0].Op->getType(); 1295 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); 1296 1297 // Step 1: Convert ValueEntry to XorOpnd 1298 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1299 Value *V = Ops[i].Op; 1300 const APInt *C; 1301 // TODO: Support non-splat vectors. 1302 if (match(V, m_APInt(C))) { 1303 ConstOpnd ^= *C; 1304 } else { 1305 XorOpnd O(V); 1306 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1307 Opnds.push_back(O); 1308 } 1309 } 1310 1311 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1312 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1313 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1314 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1315 // when new elements are added to the vector. 1316 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1317 OpndPtrs.push_back(&Opnds[i]); 1318 1319 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1320 // the same symbolic value cluster together. For instance, the input operand 1321 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1322 // ("x | 123", "x & 789", "y & 456"). 1323 // 1324 // The purpose is twofold: 1325 // 1) Cluster together the operands sharing the same symbolic-value. 1326 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1327 // could potentially shorten crital path, and expose more loop-invariants. 1328 // Note that values' rank are basically defined in RPO order (FIXME). 1329 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1330 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1331 // "z" in the order of X-Y-Z is better than any other orders. 1332 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), 1333 [](XorOpnd *LHS, XorOpnd *RHS) { 1334 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1335 }); 1336 1337 // Step 3: Combine adjacent operands 1338 XorOpnd *PrevOpnd = nullptr; 1339 bool Changed = false; 1340 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1341 XorOpnd *CurrOpnd = OpndPtrs[i]; 1342 // The combined value 1343 Value *CV; 1344 1345 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1346 if (!ConstOpnd.isNullValue() && 1347 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1348 Changed = true; 1349 if (CV) 1350 *CurrOpnd = XorOpnd(CV); 1351 else { 1352 CurrOpnd->Invalidate(); 1353 continue; 1354 } 1355 } 1356 1357 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1358 PrevOpnd = CurrOpnd; 1359 continue; 1360 } 1361 1362 // step 3.2: When previous and current operands share the same symbolic 1363 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1364 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1365 // Remove previous operand 1366 PrevOpnd->Invalidate(); 1367 if (CV) { 1368 *CurrOpnd = XorOpnd(CV); 1369 PrevOpnd = CurrOpnd; 1370 } else { 1371 CurrOpnd->Invalidate(); 1372 PrevOpnd = nullptr; 1373 } 1374 Changed = true; 1375 } 1376 } 1377 1378 // Step 4: Reassemble the Ops 1379 if (Changed) { 1380 Ops.clear(); 1381 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1382 XorOpnd &O = Opnds[i]; 1383 if (O.isInvalid()) 1384 continue; 1385 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1386 Ops.push_back(VE); 1387 } 1388 if (!ConstOpnd.isNullValue()) { 1389 Value *C = ConstantInt::get(Ty, ConstOpnd); 1390 ValueEntry VE(getRank(C), C); 1391 Ops.push_back(VE); 1392 } 1393 unsigned Sz = Ops.size(); 1394 if (Sz == 1) 1395 return Ops.back().Op; 1396 if (Sz == 0) { 1397 assert(ConstOpnd.isNullValue()); 1398 return ConstantInt::get(Ty, ConstOpnd); 1399 } 1400 } 1401 1402 return nullptr; 1403 } 1404 1405 /// Optimize a series of operands to an 'add' instruction. This 1406 /// optimizes based on identities. If it can be reduced to a single Value, it 1407 /// is returned, otherwise the Ops list is mutated as necessary. 1408 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1409 SmallVectorImpl<ValueEntry> &Ops) { 1410 // Scan the operand lists looking for X and -X pairs. If we find any, we 1411 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1412 // scan for any 1413 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1414 1415 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1416 Value *TheOp = Ops[i].Op; 1417 // Check to see if we've seen this operand before. If so, we factor all 1418 // instances of the operand together. Due to our sorting criteria, we know 1419 // that these need to be next to each other in the vector. 1420 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1421 // Rescan the list, remove all instances of this operand from the expr. 1422 unsigned NumFound = 0; 1423 do { 1424 Ops.erase(Ops.begin()+i); 1425 ++NumFound; 1426 } while (i != Ops.size() && Ops[i].Op == TheOp); 1427 1428 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp 1429 << '\n'); 1430 ++NumFactor; 1431 1432 // Insert a new multiply. 1433 Type *Ty = TheOp->getType(); 1434 Constant *C = Ty->isIntOrIntVectorTy() ? 1435 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1436 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1437 1438 // Now that we have inserted a multiply, optimize it. This allows us to 1439 // handle cases that require multiple factoring steps, such as this: 1440 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1441 RedoInsts.insert(Mul); 1442 1443 // If every add operand was a duplicate, return the multiply. 1444 if (Ops.empty()) 1445 return Mul; 1446 1447 // Otherwise, we had some input that didn't have the dupe, such as 1448 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1449 // things being added by this operation. 1450 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1451 1452 --i; 1453 e = Ops.size(); 1454 continue; 1455 } 1456 1457 // Check for X and -X or X and ~X in the operand list. 1458 Value *X; 1459 if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) && 1460 !match(TheOp, m_FNeg(m_Value(X)))) 1461 continue; 1462 1463 unsigned FoundX = FindInOperandList(Ops, i, X); 1464 if (FoundX == i) 1465 continue; 1466 1467 // Remove X and -X from the operand list. 1468 if (Ops.size() == 2 && 1469 (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value())))) 1470 return Constant::getNullValue(X->getType()); 1471 1472 // Remove X and ~X from the operand list. 1473 if (Ops.size() == 2 && match(TheOp, m_Not(m_Value()))) 1474 return Constant::getAllOnesValue(X->getType()); 1475 1476 Ops.erase(Ops.begin()+i); 1477 if (i < FoundX) 1478 --FoundX; 1479 else 1480 --i; // Need to back up an extra one. 1481 Ops.erase(Ops.begin()+FoundX); 1482 ++NumAnnihil; 1483 --i; // Revisit element. 1484 e -= 2; // Removed two elements. 1485 1486 // if X and ~X we append -1 to the operand list. 1487 if (match(TheOp, m_Not(m_Value()))) { 1488 Value *V = Constant::getAllOnesValue(X->getType()); 1489 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1490 e += 1; 1491 } 1492 } 1493 1494 // Scan the operand list, checking to see if there are any common factors 1495 // between operands. Consider something like A*A+A*B*C+D. We would like to 1496 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1497 // To efficiently find this, we count the number of times a factor occurs 1498 // for any ADD operands that are MULs. 1499 DenseMap<Value*, unsigned> FactorOccurrences; 1500 1501 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1502 // where they are actually the same multiply. 1503 unsigned MaxOcc = 0; 1504 Value *MaxOccVal = nullptr; 1505 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1506 BinaryOperator *BOp = 1507 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1508 if (!BOp) 1509 continue; 1510 1511 // Compute all of the factors of this added value. 1512 SmallVector<Value*, 8> Factors; 1513 FindSingleUseMultiplyFactors(BOp, Factors); 1514 assert(Factors.size() > 1 && "Bad linearize!"); 1515 1516 // Add one to FactorOccurrences for each unique factor in this op. 1517 SmallPtrSet<Value*, 8> Duplicates; 1518 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1519 Value *Factor = Factors[i]; 1520 if (!Duplicates.insert(Factor).second) 1521 continue; 1522 1523 unsigned Occ = ++FactorOccurrences[Factor]; 1524 if (Occ > MaxOcc) { 1525 MaxOcc = Occ; 1526 MaxOccVal = Factor; 1527 } 1528 1529 // If Factor is a negative constant, add the negated value as a factor 1530 // because we can percolate the negate out. Watch for minint, which 1531 // cannot be positivified. 1532 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1533 if (CI->isNegative() && !CI->isMinValue(true)) { 1534 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1535 if (!Duplicates.insert(Factor).second) 1536 continue; 1537 unsigned Occ = ++FactorOccurrences[Factor]; 1538 if (Occ > MaxOcc) { 1539 MaxOcc = Occ; 1540 MaxOccVal = Factor; 1541 } 1542 } 1543 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1544 if (CF->isNegative()) { 1545 APFloat F(CF->getValueAPF()); 1546 F.changeSign(); 1547 Factor = ConstantFP::get(CF->getContext(), F); 1548 if (!Duplicates.insert(Factor).second) 1549 continue; 1550 unsigned Occ = ++FactorOccurrences[Factor]; 1551 if (Occ > MaxOcc) { 1552 MaxOcc = Occ; 1553 MaxOccVal = Factor; 1554 } 1555 } 1556 } 1557 } 1558 } 1559 1560 // If any factor occurred more than one time, we can pull it out. 1561 if (MaxOcc > 1) { 1562 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal 1563 << '\n'); 1564 ++NumFactor; 1565 1566 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1567 // this, we could otherwise run into situations where removing a factor 1568 // from an expression will drop a use of maxocc, and this can cause 1569 // RemoveFactorFromExpression on successive values to behave differently. 1570 Instruction *DummyInst = 1571 I->getType()->isIntOrIntVectorTy() 1572 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1573 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1574 1575 SmallVector<WeakTrackingVH, 4> NewMulOps; 1576 for (unsigned i = 0; i != Ops.size(); ++i) { 1577 // Only try to remove factors from expressions we're allowed to. 1578 BinaryOperator *BOp = 1579 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1580 if (!BOp) 1581 continue; 1582 1583 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1584 // The factorized operand may occur several times. Convert them all in 1585 // one fell swoop. 1586 for (unsigned j = Ops.size(); j != i;) { 1587 --j; 1588 if (Ops[j].Op == Ops[i].Op) { 1589 NewMulOps.push_back(V); 1590 Ops.erase(Ops.begin()+j); 1591 } 1592 } 1593 --i; 1594 } 1595 } 1596 1597 // No need for extra uses anymore. 1598 DummyInst->deleteValue(); 1599 1600 unsigned NumAddedValues = NewMulOps.size(); 1601 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1602 1603 // Now that we have inserted the add tree, optimize it. This allows us to 1604 // handle cases that require multiple factoring steps, such as this: 1605 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1606 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1607 (void)NumAddedValues; 1608 if (Instruction *VI = dyn_cast<Instruction>(V)) 1609 RedoInsts.insert(VI); 1610 1611 // Create the multiply. 1612 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I); 1613 1614 // Rerun associate on the multiply in case the inner expression turned into 1615 // a multiply. We want to make sure that we keep things in canonical form. 1616 RedoInsts.insert(V2); 1617 1618 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1619 // entire result expression is just the multiply "A*(B+C)". 1620 if (Ops.empty()) 1621 return V2; 1622 1623 // Otherwise, we had some input that didn't have the factor, such as 1624 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1625 // things being added by this operation. 1626 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1627 } 1628 1629 return nullptr; 1630 } 1631 1632 /// Build up a vector of value/power pairs factoring a product. 1633 /// 1634 /// Given a series of multiplication operands, build a vector of factors and 1635 /// the powers each is raised to when forming the final product. Sort them in 1636 /// the order of descending power. 1637 /// 1638 /// (x*x) -> [(x, 2)] 1639 /// ((x*x)*x) -> [(x, 3)] 1640 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1641 /// 1642 /// \returns Whether any factors have a power greater than one. 1643 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1644 SmallVectorImpl<Factor> &Factors) { 1645 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1646 // Compute the sum of powers of simplifiable factors. 1647 unsigned FactorPowerSum = 0; 1648 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1649 Value *Op = Ops[Idx-1].Op; 1650 1651 // Count the number of occurrences of this value. 1652 unsigned Count = 1; 1653 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1654 ++Count; 1655 // Track for simplification all factors which occur 2 or more times. 1656 if (Count > 1) 1657 FactorPowerSum += Count; 1658 } 1659 1660 // We can only simplify factors if the sum of the powers of our simplifiable 1661 // factors is 4 or higher. When that is the case, we will *always* have 1662 // a simplification. This is an important invariant to prevent cyclicly 1663 // trying to simplify already minimal formations. 1664 if (FactorPowerSum < 4) 1665 return false; 1666 1667 // Now gather the simplifiable factors, removing them from Ops. 1668 FactorPowerSum = 0; 1669 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1670 Value *Op = Ops[Idx-1].Op; 1671 1672 // Count the number of occurrences of this value. 1673 unsigned Count = 1; 1674 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1675 ++Count; 1676 if (Count == 1) 1677 continue; 1678 // Move an even number of occurrences to Factors. 1679 Count &= ~1U; 1680 Idx -= Count; 1681 FactorPowerSum += Count; 1682 Factors.push_back(Factor(Op, Count)); 1683 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1684 } 1685 1686 // None of the adjustments above should have reduced the sum of factor powers 1687 // below our mininum of '4'. 1688 assert(FactorPowerSum >= 4); 1689 1690 std::stable_sort(Factors.begin(), Factors.end(), 1691 [](const Factor &LHS, const Factor &RHS) { 1692 return LHS.Power > RHS.Power; 1693 }); 1694 return true; 1695 } 1696 1697 /// Build a tree of multiplies, computing the product of Ops. 1698 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1699 SmallVectorImpl<Value*> &Ops) { 1700 if (Ops.size() == 1) 1701 return Ops.back(); 1702 1703 Value *LHS = Ops.pop_back_val(); 1704 do { 1705 if (LHS->getType()->isIntOrIntVectorTy()) 1706 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1707 else 1708 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1709 } while (!Ops.empty()); 1710 1711 return LHS; 1712 } 1713 1714 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1715 /// 1716 /// Given a vector of values raised to various powers, where no two values are 1717 /// equal and the powers are sorted in decreasing order, compute the minimal 1718 /// DAG of multiplies to compute the final product, and return that product 1719 /// value. 1720 Value * 1721 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1722 SmallVectorImpl<Factor> &Factors) { 1723 assert(Factors[0].Power); 1724 SmallVector<Value *, 4> OuterProduct; 1725 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1726 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1727 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1728 LastIdx = Idx; 1729 continue; 1730 } 1731 1732 // We want to multiply across all the factors with the same power so that 1733 // we can raise them to that power as a single entity. Build a mini tree 1734 // for that. 1735 SmallVector<Value *, 4> InnerProduct; 1736 InnerProduct.push_back(Factors[LastIdx].Base); 1737 do { 1738 InnerProduct.push_back(Factors[Idx].Base); 1739 ++Idx; 1740 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1741 1742 // Reset the base value of the first factor to the new expression tree. 1743 // We'll remove all the factors with the same power in a second pass. 1744 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1745 if (Instruction *MI = dyn_cast<Instruction>(M)) 1746 RedoInsts.insert(MI); 1747 1748 LastIdx = Idx; 1749 } 1750 // Unique factors with equal powers -- we've folded them into the first one's 1751 // base. 1752 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1753 [](const Factor &LHS, const Factor &RHS) { 1754 return LHS.Power == RHS.Power; 1755 }), 1756 Factors.end()); 1757 1758 // Iteratively collect the base of each factor with an add power into the 1759 // outer product, and halve each power in preparation for squaring the 1760 // expression. 1761 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1762 if (Factors[Idx].Power & 1) 1763 OuterProduct.push_back(Factors[Idx].Base); 1764 Factors[Idx].Power >>= 1; 1765 } 1766 if (Factors[0].Power) { 1767 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1768 OuterProduct.push_back(SquareRoot); 1769 OuterProduct.push_back(SquareRoot); 1770 } 1771 if (OuterProduct.size() == 1) 1772 return OuterProduct.front(); 1773 1774 Value *V = buildMultiplyTree(Builder, OuterProduct); 1775 return V; 1776 } 1777 1778 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1779 SmallVectorImpl<ValueEntry> &Ops) { 1780 // We can only optimize the multiplies when there is a chain of more than 1781 // three, such that a balanced tree might require fewer total multiplies. 1782 if (Ops.size() < 4) 1783 return nullptr; 1784 1785 // Try to turn linear trees of multiplies without other uses of the 1786 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1787 // re-use. 1788 SmallVector<Factor, 4> Factors; 1789 if (!collectMultiplyFactors(Ops, Factors)) 1790 return nullptr; // All distinct factors, so nothing left for us to do. 1791 1792 IRBuilder<> Builder(I); 1793 // The reassociate transformation for FP operations is performed only 1794 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 1795 // to the newly generated operations. 1796 if (auto FPI = dyn_cast<FPMathOperator>(I)) 1797 Builder.setFastMathFlags(FPI->getFastMathFlags()); 1798 1799 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1800 if (Ops.empty()) 1801 return V; 1802 1803 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1804 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1805 return nullptr; 1806 } 1807 1808 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1809 SmallVectorImpl<ValueEntry> &Ops) { 1810 // Now that we have the linearized expression tree, try to optimize it. 1811 // Start by folding any constants that we found. 1812 Constant *Cst = nullptr; 1813 unsigned Opcode = I->getOpcode(); 1814 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1815 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1816 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1817 } 1818 // If there was nothing but constants then we are done. 1819 if (Ops.empty()) 1820 return Cst; 1821 1822 // Put the combined constant back at the end of the operand list, except if 1823 // there is no point. For example, an add of 0 gets dropped here, while a 1824 // multiplication by zero turns the whole expression into zero. 1825 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1826 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1827 return Cst; 1828 Ops.push_back(ValueEntry(0, Cst)); 1829 } 1830 1831 if (Ops.size() == 1) return Ops[0].Op; 1832 1833 // Handle destructive annihilation due to identities between elements in the 1834 // argument list here. 1835 unsigned NumOps = Ops.size(); 1836 switch (Opcode) { 1837 default: break; 1838 case Instruction::And: 1839 case Instruction::Or: 1840 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1841 return Result; 1842 break; 1843 1844 case Instruction::Xor: 1845 if (Value *Result = OptimizeXor(I, Ops)) 1846 return Result; 1847 break; 1848 1849 case Instruction::Add: 1850 case Instruction::FAdd: 1851 if (Value *Result = OptimizeAdd(I, Ops)) 1852 return Result; 1853 break; 1854 1855 case Instruction::Mul: 1856 case Instruction::FMul: 1857 if (Value *Result = OptimizeMul(I, Ops)) 1858 return Result; 1859 break; 1860 } 1861 1862 if (Ops.size() != NumOps) 1863 return OptimizeExpression(I, Ops); 1864 return nullptr; 1865 } 1866 1867 // Remove dead instructions and if any operands are trivially dead add them to 1868 // Insts so they will be removed as well. 1869 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I, 1870 OrderedSet &Insts) { 1871 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1872 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end()); 1873 ValueRankMap.erase(I); 1874 Insts.remove(I); 1875 RedoInsts.remove(I); 1876 I->eraseFromParent(); 1877 for (auto Op : Ops) 1878 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1879 if (OpInst->use_empty()) 1880 Insts.insert(OpInst); 1881 } 1882 1883 /// Zap the given instruction, adding interesting operands to the work list. 1884 void ReassociatePass::EraseInst(Instruction *I) { 1885 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1886 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 1887 1888 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1889 // Erase the dead instruction. 1890 ValueRankMap.erase(I); 1891 RedoInsts.remove(I); 1892 I->eraseFromParent(); 1893 // Optimize its operands. 1894 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1895 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1896 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1897 // If this is a node in an expression tree, climb to the expression root 1898 // and add that since that's where optimization actually happens. 1899 unsigned Opcode = Op->getOpcode(); 1900 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1901 Visited.insert(Op).second) 1902 Op = Op->user_back(); 1903 1904 // The instruction we're going to push may be coming from a 1905 // dead block, and Reassociate skips the processing of unreachable 1906 // blocks because it's a waste of time and also because it can 1907 // lead to infinite loop due to LLVM's non-standard definition 1908 // of dominance. 1909 if (ValueRankMap.find(Op) != ValueRankMap.end()) 1910 RedoInsts.insert(Op); 1911 } 1912 1913 MadeChange = true; 1914 } 1915 1916 // Canonicalize expressions of the following form: 1917 // x + (-Constant * y) -> x - (Constant * y) 1918 // x - (-Constant * y) -> x + (Constant * y) 1919 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) { 1920 if (!I->hasOneUse() || I->getType()->isVectorTy()) 1921 return nullptr; 1922 1923 // Must be a fmul or fdiv instruction. 1924 unsigned Opcode = I->getOpcode(); 1925 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv) 1926 return nullptr; 1927 1928 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); 1929 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); 1930 1931 // Both operands are constant, let it get constant folded away. 1932 if (C0 && C1) 1933 return nullptr; 1934 1935 ConstantFP *CF = C0 ? C0 : C1; 1936 1937 // Must have one constant operand. 1938 if (!CF) 1939 return nullptr; 1940 1941 // Must be a negative ConstantFP. 1942 if (!CF->isNegative()) 1943 return nullptr; 1944 1945 // User must be a binary operator with one or more uses. 1946 Instruction *User = I->user_back(); 1947 if (!isa<BinaryOperator>(User) || User->use_empty()) 1948 return nullptr; 1949 1950 unsigned UserOpcode = User->getOpcode(); 1951 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub) 1952 return nullptr; 1953 1954 // Subtraction is not commutative. Explicitly, the following transform is 1955 // not valid: (-Constant * y) - x -> x + (Constant * y) 1956 if (!User->isCommutative() && User->getOperand(1) != I) 1957 return nullptr; 1958 1959 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the 1960 // resulting subtract will be broken up later. This can get us into an 1961 // infinite loop during reassociation. 1962 if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User)) 1963 return nullptr; 1964 1965 // Change the sign of the constant. 1966 APFloat Val = CF->getValueAPF(); 1967 Val.changeSign(); 1968 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val)); 1969 1970 // Canonicalize I to RHS to simplify the next bit of logic. E.g., 1971 // ((-Const*y) + x) -> (x + (-Const*y)). 1972 if (User->getOperand(0) == I && User->isCommutative()) 1973 cast<BinaryOperator>(User)->swapOperands(); 1974 1975 Value *Op0 = User->getOperand(0); 1976 Value *Op1 = User->getOperand(1); 1977 BinaryOperator *NI; 1978 switch (UserOpcode) { 1979 default: 1980 llvm_unreachable("Unexpected Opcode!"); 1981 case Instruction::FAdd: 1982 NI = BinaryOperator::CreateFSub(Op0, Op1); 1983 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1984 break; 1985 case Instruction::FSub: 1986 NI = BinaryOperator::CreateFAdd(Op0, Op1); 1987 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags()); 1988 break; 1989 } 1990 1991 NI->insertBefore(User); 1992 NI->setName(User->getName()); 1993 User->replaceAllUsesWith(NI); 1994 NI->setDebugLoc(I->getDebugLoc()); 1995 RedoInsts.insert(I); 1996 MadeChange = true; 1997 return NI; 1998 } 1999 2000 /// Inspect and optimize the given instruction. Note that erasing 2001 /// instructions is not allowed. 2002 void ReassociatePass::OptimizeInst(Instruction *I) { 2003 // Only consider operations that we understand. 2004 if (!isa<BinaryOperator>(I)) 2005 return; 2006 2007 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 2008 // If an operand of this shift is a reassociable multiply, or if the shift 2009 // is used by a reassociable multiply or add, turn into a multiply. 2010 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 2011 (I->hasOneUse() && 2012 (isReassociableOp(I->user_back(), Instruction::Mul) || 2013 isReassociableOp(I->user_back(), Instruction::Add)))) { 2014 Instruction *NI = ConvertShiftToMul(I); 2015 RedoInsts.insert(I); 2016 MadeChange = true; 2017 I = NI; 2018 } 2019 2020 // Canonicalize negative constants out of expressions. 2021 if (Instruction *Res = canonicalizeNegConstExpr(I)) 2022 I = Res; 2023 2024 // Commute binary operators, to canonicalize the order of their operands. 2025 // This can potentially expose more CSE opportunities, and makes writing other 2026 // transformations simpler. 2027 if (I->isCommutative()) 2028 canonicalizeOperands(I); 2029 2030 // Don't optimize floating-point instructions unless they are 'fast'. 2031 if (I->getType()->isFPOrFPVectorTy() && !I->isFast()) 2032 return; 2033 2034 // Do not reassociate boolean (i1) expressions. We want to preserve the 2035 // original order of evaluation for short-circuited comparisons that 2036 // SimplifyCFG has folded to AND/OR expressions. If the expression 2037 // is not further optimized, it is likely to be transformed back to a 2038 // short-circuited form for code gen, and the source order may have been 2039 // optimized for the most likely conditions. 2040 if (I->getType()->isIntegerTy(1)) 2041 return; 2042 2043 // If this is a subtract instruction which is not already in negate form, 2044 // see if we can convert it to X+-Y. 2045 if (I->getOpcode() == Instruction::Sub) { 2046 if (ShouldBreakUpSubtract(I)) { 2047 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2048 RedoInsts.insert(I); 2049 MadeChange = true; 2050 I = NI; 2051 } else if (match(I, m_Neg(m_Value()))) { 2052 // Otherwise, this is a negation. See if the operand is a multiply tree 2053 // and if this is not an inner node of a multiply tree. 2054 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2055 (!I->hasOneUse() || 2056 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2057 Instruction *NI = LowerNegateToMultiply(I); 2058 // If the negate was simplified, revisit the users to see if we can 2059 // reassociate further. 2060 for (User *U : NI->users()) { 2061 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2062 RedoInsts.insert(Tmp); 2063 } 2064 RedoInsts.insert(I); 2065 MadeChange = true; 2066 I = NI; 2067 } 2068 } 2069 } else if (I->getOpcode() == Instruction::FSub) { 2070 if (ShouldBreakUpSubtract(I)) { 2071 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2072 RedoInsts.insert(I); 2073 MadeChange = true; 2074 I = NI; 2075 } else if (match(I, m_FNeg(m_Value()))) { 2076 // Otherwise, this is a negation. See if the operand is a multiply tree 2077 // and if this is not an inner node of a multiply tree. 2078 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 2079 (!I->hasOneUse() || 2080 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2081 // If the negate was simplified, revisit the users to see if we can 2082 // reassociate further. 2083 Instruction *NI = LowerNegateToMultiply(I); 2084 for (User *U : NI->users()) { 2085 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2086 RedoInsts.insert(Tmp); 2087 } 2088 RedoInsts.insert(I); 2089 MadeChange = true; 2090 I = NI; 2091 } 2092 } 2093 } 2094 2095 // If this instruction is an associative binary operator, process it. 2096 if (!I->isAssociative()) return; 2097 BinaryOperator *BO = cast<BinaryOperator>(I); 2098 2099 // If this is an interior node of a reassociable tree, ignore it until we 2100 // get to the root of the tree, to avoid N^2 analysis. 2101 unsigned Opcode = BO->getOpcode(); 2102 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2103 // During the initial run we will get to the root of the tree. 2104 // But if we get here while we are redoing instructions, there is no 2105 // guarantee that the root will be visited. So Redo later 2106 if (BO->user_back() != BO && 2107 BO->getParent() == BO->user_back()->getParent()) 2108 RedoInsts.insert(BO->user_back()); 2109 return; 2110 } 2111 2112 // If this is an add tree that is used by a sub instruction, ignore it 2113 // until we process the subtract. 2114 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2115 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2116 return; 2117 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2118 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2119 return; 2120 2121 ReassociateExpression(BO); 2122 } 2123 2124 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2125 // First, walk the expression tree, linearizing the tree, collecting the 2126 // operand information. 2127 SmallVector<RepeatedValue, 8> Tree; 2128 MadeChange |= LinearizeExprTree(I, Tree); 2129 SmallVector<ValueEntry, 8> Ops; 2130 Ops.reserve(Tree.size()); 2131 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2132 RepeatedValue E = Tree[i]; 2133 Ops.append(E.second.getZExtValue(), 2134 ValueEntry(getRank(E.first), E.first)); 2135 } 2136 2137 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2138 2139 // Now that we have linearized the tree to a list and have gathered all of 2140 // the operands and their ranks, sort the operands by their rank. Use a 2141 // stable_sort so that values with equal ranks will have their relative 2142 // positions maintained (and so the compiler is deterministic). Note that 2143 // this sorts so that the highest ranking values end up at the beginning of 2144 // the vector. 2145 std::stable_sort(Ops.begin(), Ops.end()); 2146 2147 // Now that we have the expression tree in a convenient 2148 // sorted form, optimize it globally if possible. 2149 if (Value *V = OptimizeExpression(I, Ops)) { 2150 if (V == I) 2151 // Self-referential expression in unreachable code. 2152 return; 2153 // This expression tree simplified to something that isn't a tree, 2154 // eliminate it. 2155 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2156 I->replaceAllUsesWith(V); 2157 if (Instruction *VI = dyn_cast<Instruction>(V)) 2158 if (I->getDebugLoc()) 2159 VI->setDebugLoc(I->getDebugLoc()); 2160 RedoInsts.insert(I); 2161 ++NumAnnihil; 2162 return; 2163 } 2164 2165 // We want to sink immediates as deeply as possible except in the case where 2166 // this is a multiply tree used only by an add, and the immediate is a -1. 2167 // In this case we reassociate to put the negation on the outside so that we 2168 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2169 if (I->hasOneUse()) { 2170 if (I->getOpcode() == Instruction::Mul && 2171 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2172 isa<ConstantInt>(Ops.back().Op) && 2173 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) { 2174 ValueEntry Tmp = Ops.pop_back_val(); 2175 Ops.insert(Ops.begin(), Tmp); 2176 } else if (I->getOpcode() == Instruction::FMul && 2177 cast<Instruction>(I->user_back())->getOpcode() == 2178 Instruction::FAdd && 2179 isa<ConstantFP>(Ops.back().Op) && 2180 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2181 ValueEntry Tmp = Ops.pop_back_val(); 2182 Ops.insert(Ops.begin(), Tmp); 2183 } 2184 } 2185 2186 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2187 2188 if (Ops.size() == 1) { 2189 if (Ops[0].Op == I) 2190 // Self-referential expression in unreachable code. 2191 return; 2192 2193 // This expression tree simplified to something that isn't a tree, 2194 // eliminate it. 2195 I->replaceAllUsesWith(Ops[0].Op); 2196 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2197 OI->setDebugLoc(I->getDebugLoc()); 2198 RedoInsts.insert(I); 2199 return; 2200 } 2201 2202 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) { 2203 // Find the pair with the highest count in the pairmap and move it to the 2204 // back of the list so that it can later be CSE'd. 2205 // example: 2206 // a*b*c*d*e 2207 // if c*e is the most "popular" pair, we can express this as 2208 // (((c*e)*d)*b)*a 2209 unsigned Max = 1; 2210 unsigned BestRank = 0; 2211 std::pair<unsigned, unsigned> BestPair; 2212 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin; 2213 for (unsigned i = 0; i < Ops.size() - 1; ++i) 2214 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2215 unsigned Score = 0; 2216 Value *Op0 = Ops[i].Op; 2217 Value *Op1 = Ops[j].Op; 2218 if (std::less<Value *>()(Op1, Op0)) 2219 std::swap(Op0, Op1); 2220 auto it = PairMap[Idx].find({Op0, Op1}); 2221 if (it != PairMap[Idx].end()) 2222 Score += it->second; 2223 2224 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank); 2225 if (Score > Max || (Score == Max && MaxRank < BestRank)) { 2226 BestPair = {i, j}; 2227 Max = Score; 2228 BestRank = MaxRank; 2229 } 2230 } 2231 if (Max > 1) { 2232 auto Op0 = Ops[BestPair.first]; 2233 auto Op1 = Ops[BestPair.second]; 2234 Ops.erase(&Ops[BestPair.second]); 2235 Ops.erase(&Ops[BestPair.first]); 2236 Ops.push_back(Op0); 2237 Ops.push_back(Op1); 2238 } 2239 } 2240 // Now that we ordered and optimized the expressions, splat them back into 2241 // the expression tree, removing any unneeded nodes. 2242 RewriteExprTree(I, Ops); 2243 } 2244 2245 void 2246 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) { 2247 // Make a "pairmap" of how often each operand pair occurs. 2248 for (BasicBlock *BI : RPOT) { 2249 for (Instruction &I : *BI) { 2250 if (!I.isAssociative()) 2251 continue; 2252 2253 // Ignore nodes that aren't at the root of trees. 2254 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode()) 2255 continue; 2256 2257 // Collect all operands in a single reassociable expression. 2258 // Since Reassociate has already been run once, we can assume things 2259 // are already canonical according to Reassociation's regime. 2260 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) }; 2261 SmallVector<Value *, 8> Ops; 2262 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) { 2263 Value *Op = Worklist.pop_back_val(); 2264 Instruction *OpI = dyn_cast<Instruction>(Op); 2265 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) { 2266 Ops.push_back(Op); 2267 continue; 2268 } 2269 // Be paranoid about self-referencing expressions in unreachable code. 2270 if (OpI->getOperand(0) != OpI) 2271 Worklist.push_back(OpI->getOperand(0)); 2272 if (OpI->getOperand(1) != OpI) 2273 Worklist.push_back(OpI->getOperand(1)); 2274 } 2275 // Skip extremely long expressions. 2276 if (Ops.size() > GlobalReassociateLimit) 2277 continue; 2278 2279 // Add all pairwise combinations of operands to the pair map. 2280 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin; 2281 SmallSet<std::pair<Value *, Value*>, 32> Visited; 2282 for (unsigned i = 0; i < Ops.size() - 1; ++i) { 2283 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2284 // Canonicalize operand orderings. 2285 Value *Op0 = Ops[i]; 2286 Value *Op1 = Ops[j]; 2287 if (std::less<Value *>()(Op1, Op0)) 2288 std::swap(Op0, Op1); 2289 if (!Visited.insert({Op0, Op1}).second) 2290 continue; 2291 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, 1}); 2292 if (!res.second) 2293 ++res.first->second; 2294 } 2295 } 2296 } 2297 } 2298 } 2299 2300 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2301 // Get the functions basic blocks in Reverse Post Order. This order is used by 2302 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 2303 // blocks (it has been seen that the analysis in this pass could hang when 2304 // analysing dead basic blocks). 2305 ReversePostOrderTraversal<Function *> RPOT(&F); 2306 2307 // Calculate the rank map for F. 2308 BuildRankMap(F, RPOT); 2309 2310 // Build the pair map before running reassociate. 2311 // Technically this would be more accurate if we did it after one round 2312 // of reassociation, but in practice it doesn't seem to help much on 2313 // real-world code, so don't waste the compile time running reassociate 2314 // twice. 2315 // If a user wants, they could expicitly run reassociate twice in their 2316 // pass pipeline for further potential gains. 2317 // It might also be possible to update the pair map during runtime, but the 2318 // overhead of that may be large if there's many reassociable chains. 2319 BuildPairMap(RPOT); 2320 2321 MadeChange = false; 2322 2323 // Traverse the same blocks that were analysed by BuildRankMap. 2324 for (BasicBlock *BI : RPOT) { 2325 assert(RankMap.count(&*BI) && "BB should be ranked."); 2326 // Optimize every instruction in the basic block. 2327 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 2328 if (isInstructionTriviallyDead(&*II)) { 2329 EraseInst(&*II++); 2330 } else { 2331 OptimizeInst(&*II); 2332 assert(II->getParent() == &*BI && "Moved to a different block!"); 2333 ++II; 2334 } 2335 2336 // Make a copy of all the instructions to be redone so we can remove dead 2337 // instructions. 2338 OrderedSet ToRedo(RedoInsts); 2339 // Iterate over all instructions to be reevaluated and remove trivially dead 2340 // instructions. If any operand of the trivially dead instruction becomes 2341 // dead mark it for deletion as well. Continue this process until all 2342 // trivially dead instructions have been removed. 2343 while (!ToRedo.empty()) { 2344 Instruction *I = ToRedo.pop_back_val(); 2345 if (isInstructionTriviallyDead(I)) { 2346 RecursivelyEraseDeadInsts(I, ToRedo); 2347 MadeChange = true; 2348 } 2349 } 2350 2351 // Now that we have removed dead instructions, we can reoptimize the 2352 // remaining instructions. 2353 while (!RedoInsts.empty()) { 2354 Instruction *I = RedoInsts.front(); 2355 RedoInsts.erase(RedoInsts.begin()); 2356 if (isInstructionTriviallyDead(I)) 2357 EraseInst(I); 2358 else 2359 OptimizeInst(I); 2360 } 2361 } 2362 2363 // We are done with the rank map and pair map. 2364 RankMap.clear(); 2365 ValueRankMap.clear(); 2366 for (auto &Entry : PairMap) 2367 Entry.clear(); 2368 2369 if (MadeChange) { 2370 PreservedAnalyses PA; 2371 PA.preserveSet<CFGAnalyses>(); 2372 PA.preserve<GlobalsAA>(); 2373 return PA; 2374 } 2375 2376 return PreservedAnalyses::all(); 2377 } 2378 2379 namespace { 2380 2381 class ReassociateLegacyPass : public FunctionPass { 2382 ReassociatePass Impl; 2383 2384 public: 2385 static char ID; // Pass identification, replacement for typeid 2386 2387 ReassociateLegacyPass() : FunctionPass(ID) { 2388 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2389 } 2390 2391 bool runOnFunction(Function &F) override { 2392 if (skipFunction(F)) 2393 return false; 2394 2395 FunctionAnalysisManager DummyFAM; 2396 auto PA = Impl.run(F, DummyFAM); 2397 return !PA.areAllPreserved(); 2398 } 2399 2400 void getAnalysisUsage(AnalysisUsage &AU) const override { 2401 AU.setPreservesCFG(); 2402 AU.addPreserved<GlobalsAAWrapperPass>(); 2403 } 2404 }; 2405 2406 } // end anonymous namespace 2407 2408 char ReassociateLegacyPass::ID = 0; 2409 2410 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2411 "Reassociate expressions", false, false) 2412 2413 // Public interface to the Reassociate pass 2414 FunctionPass *llvm::createReassociatePass() { 2415 return new ReassociateLegacyPass(); 2416 } 2417