1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops that contain branches on loop-invariant conditions 11 // to have multiple loops. For example, it turns the left into the right code: 12 // 13 // for (...) if (lic) 14 // A for (...) 15 // if (lic) A; B; C 16 // B else 17 // C for (...) 18 // A; C 19 // 20 // This can increase the size of the code exponentially (doubling it every time 21 // a loop is unswitched) so we only unswitch if the resultant code will be 22 // smaller than a threshold. 23 // 24 // This pass expects LICM to be run before it to hoist invariant conditions out 25 // of the loop, to make the unswitching opportunity obvious. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #define DEBUG_TYPE "loop-unswitch" 30 #include "llvm/Transforms/Scalar.h" 31 #include "llvm/Constants.h" 32 #include "llvm/DerivedTypes.h" 33 #include "llvm/Function.h" 34 #include "llvm/Instructions.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/InstructionSimplify.h" 37 #include "llvm/Analysis/LoopInfo.h" 38 #include "llvm/Analysis/LoopPass.h" 39 #include "llvm/Analysis/Dominators.h" 40 #include "llvm/Analysis/ScalarEvolution.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/STLExtras.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <map> 52 #include <set> 53 using namespace llvm; 54 55 STATISTIC(NumBranches, "Number of branches unswitched"); 56 STATISTIC(NumSwitches, "Number of switches unswitched"); 57 STATISTIC(NumSelects , "Number of selects unswitched"); 58 STATISTIC(NumTrivial , "Number of unswitches that are trivial"); 59 STATISTIC(NumSimplify, "Number of simplifications of unswitched code"); 60 STATISTIC(TotalInsts, "Total number of instructions analyzed"); 61 62 // The specific value of 100 here was chosen based only on intuition and a 63 // few specific examples. 64 static cl::opt<unsigned> 65 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), 66 cl::init(100), cl::Hidden); 67 68 namespace { 69 70 class LUAnalysisCache { 71 72 typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> > 73 UnswitchedValsMap; 74 75 typedef UnswitchedValsMap::iterator UnswitchedValsIt; 76 77 struct LoopProperties { 78 unsigned CanBeUnswitchedCount; 79 unsigned SizeEstimation; 80 UnswitchedValsMap UnswitchedVals; 81 }; 82 83 // Here we use std::map instead of DenseMap, since we need to keep valid 84 // LoopProperties pointer for current loop for better performance. 85 typedef std::map<const Loop*, LoopProperties> LoopPropsMap; 86 typedef LoopPropsMap::iterator LoopPropsMapIt; 87 88 LoopPropsMap LoopsProperties; 89 UnswitchedValsMap* CurLoopInstructions; 90 LoopProperties* CurrentLoopProperties; 91 92 // Max size of code we can produce on remained iterations. 93 unsigned MaxSize; 94 95 public: 96 97 LUAnalysisCache() : 98 CurLoopInstructions(NULL), CurrentLoopProperties(NULL), 99 MaxSize(Threshold) 100 {} 101 102 // Analyze loop. Check its size, calculate is it possible to unswitch 103 // it. Returns true if we can unswitch this loop. 104 bool countLoop(const Loop* L); 105 106 // Clean all data related to given loop. 107 void forgetLoop(const Loop* L); 108 109 // Mark case value as unswitched. 110 // Since SI instruction can be partly unswitched, in order to avoid 111 // extra unswitching in cloned loops keep track all unswitched values. 112 void setUnswitched(const SwitchInst* SI, const Value* V); 113 114 // Check was this case value unswitched before or not. 115 bool isUnswitched(const SwitchInst* SI, const Value* V); 116 117 // Clone all loop-unswitch related loop properties. 118 // Redistribute unswitching quotas. 119 // Note, that new loop data is stored inside the VMap. 120 void cloneData(const Loop* NewLoop, const Loop* OldLoop, 121 const ValueToValueMapTy& VMap); 122 }; 123 124 class LoopUnswitch : public LoopPass { 125 LoopInfo *LI; // Loop information 126 LPPassManager *LPM; 127 128 // LoopProcessWorklist - Used to check if second loop needs processing 129 // after RewriteLoopBodyWithConditionConstant rewrites first loop. 130 std::vector<Loop*> LoopProcessWorklist; 131 132 LUAnalysisCache BranchesInfo; 133 134 bool OptimizeForSize; 135 bool redoLoop; 136 137 Loop *currentLoop; 138 DominatorTree *DT; 139 BasicBlock *loopHeader; 140 BasicBlock *loopPreheader; 141 142 // LoopBlocks contains all of the basic blocks of the loop, including the 143 // preheader of the loop, the body of the loop, and the exit blocks of the 144 // loop, in that order. 145 std::vector<BasicBlock*> LoopBlocks; 146 // NewBlocks contained cloned copy of basic blocks from LoopBlocks. 147 std::vector<BasicBlock*> NewBlocks; 148 149 public: 150 static char ID; // Pass ID, replacement for typeid 151 explicit LoopUnswitch(bool Os = false) : 152 LoopPass(ID), OptimizeForSize(Os), redoLoop(false), 153 currentLoop(NULL), DT(NULL), loopHeader(NULL), 154 loopPreheader(NULL) { 155 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry()); 156 } 157 158 bool runOnLoop(Loop *L, LPPassManager &LPM); 159 bool processCurrentLoop(); 160 161 /// This transformation requires natural loop information & requires that 162 /// loop preheaders be inserted into the CFG. 163 /// 164 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 165 AU.addRequiredID(LoopSimplifyID); 166 AU.addPreservedID(LoopSimplifyID); 167 AU.addRequired<LoopInfo>(); 168 AU.addPreserved<LoopInfo>(); 169 AU.addRequiredID(LCSSAID); 170 AU.addPreservedID(LCSSAID); 171 AU.addPreserved<DominatorTree>(); 172 AU.addPreserved<ScalarEvolution>(); 173 } 174 175 private: 176 177 virtual void releaseMemory() { 178 BranchesInfo.forgetLoop(currentLoop); 179 } 180 181 /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist, 182 /// remove it. 183 void RemoveLoopFromWorklist(Loop *L) { 184 std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(), 185 LoopProcessWorklist.end(), L); 186 if (I != LoopProcessWorklist.end()) 187 LoopProcessWorklist.erase(I); 188 } 189 190 void initLoopData() { 191 loopHeader = currentLoop->getHeader(); 192 loopPreheader = currentLoop->getLoopPreheader(); 193 } 194 195 /// Split all of the edges from inside the loop to their exit blocks. 196 /// Update the appropriate Phi nodes as we do so. 197 void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks); 198 199 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val); 200 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, 201 BasicBlock *ExitBlock); 202 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L); 203 204 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, 205 Constant *Val, bool isEqual); 206 207 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, 208 BasicBlock *TrueDest, 209 BasicBlock *FalseDest, 210 Instruction *InsertPt); 211 212 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L); 213 void RemoveBlockIfDead(BasicBlock *BB, 214 std::vector<Instruction*> &Worklist, Loop *l); 215 void RemoveLoopFromHierarchy(Loop *L); 216 bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0, 217 BasicBlock **LoopExit = 0); 218 219 }; 220 } 221 222 // Analyze loop. Check its size, calculate is it possible to unswitch 223 // it. Returns true if we can unswitch this loop. 224 bool LUAnalysisCache::countLoop(const Loop* L) { 225 226 std::pair<LoopPropsMapIt, bool> InsertRes = 227 LoopsProperties.insert(std::make_pair(L, LoopProperties())); 228 229 LoopProperties& Props = InsertRes.first->second; 230 231 if (InsertRes.second) { 232 // New loop. 233 234 // Limit the number of instructions to avoid causing significant code 235 // expansion, and the number of basic blocks, to avoid loops with 236 // large numbers of branches which cause loop unswitching to go crazy. 237 // This is a very ad-hoc heuristic. 238 239 // FIXME: This is overly conservative because it does not take into 240 // consideration code simplification opportunities and code that can 241 // be shared by the resultant unswitched loops. 242 CodeMetrics Metrics; 243 for (Loop::block_iterator I = L->block_begin(), 244 E = L->block_end(); 245 I != E; ++I) 246 Metrics.analyzeBasicBlock(*I); 247 248 Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5); 249 Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation); 250 MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount; 251 } 252 253 if (!Props.CanBeUnswitchedCount) { 254 DEBUG(dbgs() << "NOT unswitching loop %" 255 << L->getHeader()->getName() << ", cost too high: " 256 << L->getBlocks().size() << "\n"); 257 258 return false; 259 } 260 261 // Be careful. This links are good only before new loop addition. 262 CurrentLoopProperties = &Props; 263 CurLoopInstructions = &Props.UnswitchedVals; 264 265 return true; 266 } 267 268 // Clean all data related to given loop. 269 void LUAnalysisCache::forgetLoop(const Loop* L) { 270 271 LoopPropsMapIt LIt = LoopsProperties.find(L); 272 273 if (LIt != LoopsProperties.end()) { 274 LoopProperties& Props = LIt->second; 275 MaxSize += Props.CanBeUnswitchedCount * Props.SizeEstimation; 276 LoopsProperties.erase(LIt); 277 } 278 279 CurrentLoopProperties = NULL; 280 CurLoopInstructions = NULL; 281 } 282 283 // Mark case value as unswitched. 284 // Since SI instruction can be partly unswitched, in order to avoid 285 // extra unswitching in cloned loops keep track all unswitched values. 286 void LUAnalysisCache::setUnswitched(const SwitchInst* SI, const Value* V) { 287 (*CurLoopInstructions)[SI].insert(V); 288 } 289 290 // Check was this case value unswitched before or not. 291 bool LUAnalysisCache::isUnswitched(const SwitchInst* SI, const Value* V) { 292 return (*CurLoopInstructions)[SI].count(V); 293 } 294 295 // Clone all loop-unswitch related loop properties. 296 // Redistribute unswitching quotas. 297 // Note, that new loop data is stored inside the VMap. 298 void LUAnalysisCache::cloneData(const Loop* NewLoop, const Loop* OldLoop, 299 const ValueToValueMapTy& VMap) { 300 301 LoopProperties& NewLoopProps = LoopsProperties[NewLoop]; 302 LoopProperties& OldLoopProps = *CurrentLoopProperties; 303 UnswitchedValsMap& Insts = OldLoopProps.UnswitchedVals; 304 305 // Reallocate "can-be-unswitched quota" 306 307 --OldLoopProps.CanBeUnswitchedCount; 308 unsigned Quota = OldLoopProps.CanBeUnswitchedCount; 309 NewLoopProps.CanBeUnswitchedCount = Quota / 2; 310 OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2; 311 312 NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation; 313 314 // Clone unswitched values info: 315 // for new loop switches we clone info about values that was 316 // already unswitched and has redundant successors. 317 for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) { 318 const SwitchInst* OldInst = I->first; 319 Value* NewI = VMap.lookup(OldInst); 320 const SwitchInst* NewInst = cast_or_null<SwitchInst>(NewI); 321 assert(NewInst && "All instructions that are in SrcBB must be in VMap."); 322 323 NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst]; 324 } 325 } 326 327 char LoopUnswitch::ID = 0; 328 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops", 329 false, false) 330 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 331 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 332 INITIALIZE_PASS_DEPENDENCY(LCSSA) 333 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops", 334 false, false) 335 336 Pass *llvm::createLoopUnswitchPass(bool Os) { 337 return new LoopUnswitch(Os); 338 } 339 340 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is 341 /// invariant in the loop, or has an invariant piece, return the invariant. 342 /// Otherwise, return null. 343 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) { 344 345 // We started analyze new instruction, increment scanned instructions counter. 346 ++TotalInsts; 347 348 // We can never unswitch on vector conditions. 349 if (Cond->getType()->isVectorTy()) 350 return 0; 351 352 // Constants should be folded, not unswitched on! 353 if (isa<Constant>(Cond)) return 0; 354 355 // TODO: Handle: br (VARIANT|INVARIANT). 356 357 // Hoist simple values out. 358 if (L->makeLoopInvariant(Cond, Changed)) 359 return Cond; 360 361 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond)) 362 if (BO->getOpcode() == Instruction::And || 363 BO->getOpcode() == Instruction::Or) { 364 // If either the left or right side is invariant, we can unswitch on this, 365 // which will cause the branch to go away in one loop and the condition to 366 // simplify in the other one. 367 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed)) 368 return LHS; 369 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed)) 370 return RHS; 371 } 372 373 return 0; 374 } 375 376 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) { 377 LI = &getAnalysis<LoopInfo>(); 378 LPM = &LPM_Ref; 379 DT = getAnalysisIfAvailable<DominatorTree>(); 380 currentLoop = L; 381 Function *F = currentLoop->getHeader()->getParent(); 382 bool Changed = false; 383 do { 384 assert(currentLoop->isLCSSAForm(*DT)); 385 redoLoop = false; 386 Changed |= processCurrentLoop(); 387 } while(redoLoop); 388 389 if (Changed) { 390 // FIXME: Reconstruct dom info, because it is not preserved properly. 391 if (DT) 392 DT->runOnFunction(*F); 393 } 394 return Changed; 395 } 396 397 /// processCurrentLoop - Do actual work and unswitch loop if possible 398 /// and profitable. 399 bool LoopUnswitch::processCurrentLoop() { 400 bool Changed = false; 401 402 initLoopData(); 403 404 // If LoopSimplify was unable to form a preheader, don't do any unswitching. 405 if (!loopPreheader) 406 return false; 407 408 // Loops with indirectbr cannot be cloned. 409 if (!currentLoop->isSafeToClone()) 410 return false; 411 412 // Without dedicated exits, splitting the exit edge may fail. 413 if (!currentLoop->hasDedicatedExits()) 414 return false; 415 416 LLVMContext &Context = loopHeader->getContext(); 417 418 // Probably we reach the quota of branches for this loop. If so 419 // stop unswitching. 420 if (!BranchesInfo.countLoop(currentLoop)) 421 return false; 422 423 // Loop over all of the basic blocks in the loop. If we find an interior 424 // block that is branching on a loop-invariant condition, we can unswitch this 425 // loop. 426 for (Loop::block_iterator I = currentLoop->block_begin(), 427 E = currentLoop->block_end(); I != E; ++I) { 428 TerminatorInst *TI = (*I)->getTerminator(); 429 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 430 // If this isn't branching on an invariant condition, we can't unswitch 431 // it. 432 if (BI->isConditional()) { 433 // See if this, or some part of it, is loop invariant. If so, we can 434 // unswitch on it if we desire. 435 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), 436 currentLoop, Changed); 437 if (LoopCond && UnswitchIfProfitable(LoopCond, 438 ConstantInt::getTrue(Context))) { 439 ++NumBranches; 440 return true; 441 } 442 } 443 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 444 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 445 currentLoop, Changed); 446 unsigned NumCases = SI->getNumCases(); 447 if (LoopCond && NumCases) { 448 // Find a value to unswitch on: 449 // FIXME: this should chose the most expensive case! 450 // FIXME: scan for a case with a non-critical edge? 451 Constant *UnswitchVal = NULL; 452 453 // Do not process same value again and again. 454 // At this point we have some cases already unswitched and 455 // some not yet unswitched. Let's find the first not yet unswitched one. 456 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 457 i != e; ++i) { 458 Constant* UnswitchValCandidate = i.getCaseValue(); 459 if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) { 460 UnswitchVal = UnswitchValCandidate; 461 break; 462 } 463 } 464 465 if (!UnswitchVal) 466 continue; 467 468 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) { 469 ++NumSwitches; 470 return true; 471 } 472 } 473 } 474 475 // Scan the instructions to check for unswitchable values. 476 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); 477 BBI != E; ++BBI) 478 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) { 479 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 480 currentLoop, Changed); 481 if (LoopCond && UnswitchIfProfitable(LoopCond, 482 ConstantInt::getTrue(Context))) { 483 ++NumSelects; 484 return true; 485 } 486 } 487 } 488 return Changed; 489 } 490 491 /// isTrivialLoopExitBlock - Check to see if all paths from BB exit the 492 /// loop with no side effects (including infinite loops). 493 /// 494 /// If true, we return true and set ExitBB to the block we 495 /// exit through. 496 /// 497 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB, 498 BasicBlock *&ExitBB, 499 std::set<BasicBlock*> &Visited) { 500 if (!Visited.insert(BB).second) { 501 // Already visited. Without more analysis, this could indicate an infinite 502 // loop. 503 return false; 504 } else if (!L->contains(BB)) { 505 // Otherwise, this is a loop exit, this is fine so long as this is the 506 // first exit. 507 if (ExitBB != 0) return false; 508 ExitBB = BB; 509 return true; 510 } 511 512 // Otherwise, this is an unvisited intra-loop node. Check all successors. 513 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) { 514 // Check to see if the successor is a trivial loop exit. 515 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited)) 516 return false; 517 } 518 519 // Okay, everything after this looks good, check to make sure that this block 520 // doesn't include any side effects. 521 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 522 if (I->mayHaveSideEffects()) 523 return false; 524 525 return true; 526 } 527 528 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally 529 /// leads to an exit from the specified loop, and has no side-effects in the 530 /// process. If so, return the block that is exited to, otherwise return null. 531 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) { 532 std::set<BasicBlock*> Visited; 533 Visited.insert(L->getHeader()); // Branches to header make infinite loops. 534 BasicBlock *ExitBB = 0; 535 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited)) 536 return ExitBB; 537 return 0; 538 } 539 540 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is 541 /// trivial: that is, that the condition controls whether or not the loop does 542 /// anything at all. If this is a trivial condition, unswitching produces no 543 /// code duplications (equivalently, it produces a simpler loop and a new empty 544 /// loop, which gets deleted). 545 /// 546 /// If this is a trivial condition, return true, otherwise return false. When 547 /// returning true, this sets Cond and Val to the condition that controls the 548 /// trivial condition: when Cond dynamically equals Val, the loop is known to 549 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when 550 /// Cond == Val. 551 /// 552 bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val, 553 BasicBlock **LoopExit) { 554 BasicBlock *Header = currentLoop->getHeader(); 555 TerminatorInst *HeaderTerm = Header->getTerminator(); 556 LLVMContext &Context = Header->getContext(); 557 558 BasicBlock *LoopExitBB = 0; 559 if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) { 560 // If the header block doesn't end with a conditional branch on Cond, we 561 // can't handle it. 562 if (!BI->isConditional() || BI->getCondition() != Cond) 563 return false; 564 565 // Check to see if a successor of the branch is guaranteed to 566 // exit through a unique exit block without having any 567 // side-effects. If so, determine the value of Cond that causes it to do 568 // this. 569 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 570 BI->getSuccessor(0)))) { 571 if (Val) *Val = ConstantInt::getTrue(Context); 572 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 573 BI->getSuccessor(1)))) { 574 if (Val) *Val = ConstantInt::getFalse(Context); 575 } 576 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) { 577 // If this isn't a switch on Cond, we can't handle it. 578 if (SI->getCondition() != Cond) return false; 579 580 // Check to see if a successor of the switch is guaranteed to go to the 581 // latch block or exit through a one exit block without having any 582 // side-effects. If so, determine the value of Cond that causes it to do 583 // this. 584 // Note that we can't trivially unswitch on the default case or 585 // on already unswitched cases. 586 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 587 i != e; ++i) { 588 BasicBlock* LoopExitCandidate; 589 if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop, 590 i.getCaseSuccessor()))) { 591 // Okay, we found a trivial case, remember the value that is trivial. 592 ConstantInt* CaseVal = i.getCaseValue(); 593 594 // Check that it was not unswitched before, since already unswitched 595 // trivial vals are looks trivial too. 596 if (BranchesInfo.isUnswitched(SI, CaseVal)) 597 continue; 598 LoopExitBB = LoopExitCandidate; 599 if (Val) *Val = CaseVal; 600 break; 601 } 602 } 603 } 604 605 // If we didn't find a single unique LoopExit block, or if the loop exit block 606 // contains phi nodes, this isn't trivial. 607 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) 608 return false; // Can't handle this. 609 610 if (LoopExit) *LoopExit = LoopExitBB; 611 612 // We already know that nothing uses any scalar values defined inside of this 613 // loop. As such, we just have to check to see if this loop will execute any 614 // side-effecting instructions (e.g. stores, calls, volatile loads) in the 615 // part of the loop that the code *would* execute. We already checked the 616 // tail, check the header now. 617 for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I) 618 if (I->mayHaveSideEffects()) 619 return false; 620 return true; 621 } 622 623 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when 624 /// LoopCond == Val to simplify the loop. If we decide that this is profitable, 625 /// unswitch the loop, reprocess the pieces, then return true. 626 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) { 627 628 Function *F = loopHeader->getParent(); 629 630 Constant *CondVal = 0; 631 BasicBlock *ExitBlock = 0; 632 if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) { 633 // If the condition is trivial, always unswitch. There is no code growth 634 // for this case. 635 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock); 636 return true; 637 } 638 639 // Check to see if it would be profitable to unswitch current loop. 640 641 // Do not do non-trivial unswitch while optimizing for size. 642 if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize)) 643 return false; 644 645 UnswitchNontrivialCondition(LoopCond, Val, currentLoop); 646 return true; 647 } 648 649 /// CloneLoop - Recursively clone the specified loop and all of its children, 650 /// mapping the blocks with the specified map. 651 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 652 LoopInfo *LI, LPPassManager *LPM) { 653 Loop *New = new Loop(); 654 LPM->insertLoop(New, PL); 655 656 // Add all of the blocks in L to the new loop. 657 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 658 I != E; ++I) 659 if (LI->getLoopFor(*I) == L) 660 New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase()); 661 662 // Add all of the subloops to the new loop. 663 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 664 CloneLoop(*I, New, VM, LI, LPM); 665 666 return New; 667 } 668 669 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values 670 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the 671 /// code immediately before InsertPt. 672 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, 673 BasicBlock *TrueDest, 674 BasicBlock *FalseDest, 675 Instruction *InsertPt) { 676 // Insert a conditional branch on LIC to the two preheaders. The original 677 // code is the true version and the new code is the false version. 678 Value *BranchVal = LIC; 679 if (!isa<ConstantInt>(Val) || 680 Val->getType() != Type::getInt1Ty(LIC->getContext())) 681 BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val); 682 else if (Val != ConstantInt::getTrue(Val->getContext())) 683 // We want to enter the new loop when the condition is true. 684 std::swap(TrueDest, FalseDest); 685 686 // Insert the new branch. 687 BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt); 688 689 // If either edge is critical, split it. This helps preserve LoopSimplify 690 // form for enclosing loops. 691 SplitCriticalEdge(BI, 0, this); 692 SplitCriticalEdge(BI, 1, this); 693 } 694 695 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable 696 /// condition in it (a cond branch from its header block to its latch block, 697 /// where the path through the loop that doesn't execute its body has no 698 /// side-effects), unswitch it. This doesn't involve any code duplication, just 699 /// moving the conditional branch outside of the loop and updating loop info. 700 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, 701 Constant *Val, 702 BasicBlock *ExitBlock) { 703 DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %" 704 << loopHeader->getName() << " [" << L->getBlocks().size() 705 << " blocks] in Function " << L->getHeader()->getParent()->getName() 706 << " on cond: " << *Val << " == " << *Cond << "\n"); 707 708 // First step, split the preheader, so that we know that there is a safe place 709 // to insert the conditional branch. We will change loopPreheader to have a 710 // conditional branch on Cond. 711 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this); 712 713 // Now that we have a place to insert the conditional branch, create a place 714 // to branch to: this is the exit block out of the loop that we should 715 // short-circuit to. 716 717 // Split this block now, so that the loop maintains its exit block, and so 718 // that the jump from the preheader can execute the contents of the exit block 719 // without actually branching to it (the exit block should be dominated by the 720 // loop header, not the preheader). 721 assert(!L->contains(ExitBlock) && "Exit block is in the loop?"); 722 BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this); 723 724 // Okay, now we have a position to branch from and a position to branch to, 725 // insert the new conditional branch. 726 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, 727 loopPreheader->getTerminator()); 728 LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L); 729 loopPreheader->getTerminator()->eraseFromParent(); 730 731 // We need to reprocess this loop, it could be unswitched again. 732 redoLoop = true; 733 734 // Now that we know that the loop is never entered when this condition is a 735 // particular value, rewrite the loop with this info. We know that this will 736 // at least eliminate the old branch. 737 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false); 738 ++NumTrivial; 739 } 740 741 /// SplitExitEdges - Split all of the edges from inside the loop to their exit 742 /// blocks. Update the appropriate Phi nodes as we do so. 743 void LoopUnswitch::SplitExitEdges(Loop *L, 744 const SmallVector<BasicBlock *, 8> &ExitBlocks){ 745 746 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 747 BasicBlock *ExitBlock = ExitBlocks[i]; 748 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock), 749 pred_end(ExitBlock)); 750 751 // Although SplitBlockPredecessors doesn't preserve loop-simplify in 752 // general, if we call it on all predecessors of all exits then it does. 753 if (!ExitBlock->isLandingPad()) { 754 SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", this); 755 } else { 756 SmallVector<BasicBlock*, 2> NewBBs; 757 SplitLandingPadPredecessors(ExitBlock, Preds, ".us-lcssa", ".us-lcssa", 758 this, NewBBs); 759 } 760 } 761 } 762 763 /// UnswitchNontrivialCondition - We determined that the loop is profitable 764 /// to unswitch when LIC equal Val. Split it into loop versions and test the 765 /// condition outside of either loop. Return the loops created as Out1/Out2. 766 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, 767 Loop *L) { 768 Function *F = loopHeader->getParent(); 769 DEBUG(dbgs() << "loop-unswitch: Unswitching loop %" 770 << loopHeader->getName() << " [" << L->getBlocks().size() 771 << " blocks] in Function " << F->getName() 772 << " when '" << *Val << "' == " << *LIC << "\n"); 773 774 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>()) 775 SE->forgetLoop(L); 776 777 LoopBlocks.clear(); 778 NewBlocks.clear(); 779 780 // First step, split the preheader and exit blocks, and add these blocks to 781 // the LoopBlocks list. 782 BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this); 783 LoopBlocks.push_back(NewPreheader); 784 785 // We want the loop to come after the preheader, but before the exit blocks. 786 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 787 788 SmallVector<BasicBlock*, 8> ExitBlocks; 789 L->getUniqueExitBlocks(ExitBlocks); 790 791 // Split all of the edges from inside the loop to their exit blocks. Update 792 // the appropriate Phi nodes as we do so. 793 SplitExitEdges(L, ExitBlocks); 794 795 // The exit blocks may have been changed due to edge splitting, recompute. 796 ExitBlocks.clear(); 797 L->getUniqueExitBlocks(ExitBlocks); 798 799 // Add exit blocks to the loop blocks. 800 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end()); 801 802 // Next step, clone all of the basic blocks that make up the loop (including 803 // the loop preheader and exit blocks), keeping track of the mapping between 804 // the instructions and blocks. 805 NewBlocks.reserve(LoopBlocks.size()); 806 ValueToValueMapTy VMap; 807 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) { 808 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F); 809 810 NewBlocks.push_back(NewBB); 811 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping. 812 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L); 813 } 814 815 // Splice the newly inserted blocks into the function right before the 816 // original preheader. 817 F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(), 818 NewBlocks[0], F->end()); 819 820 // Now we create the new Loop object for the versioned loop. 821 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM); 822 823 // Recalculate unswitching quota, inherit simplified switches info for NewBB, 824 // Probably clone more loop-unswitch related loop properties. 825 BranchesInfo.cloneData(NewLoop, L, VMap); 826 827 Loop *ParentLoop = L->getParentLoop(); 828 if (ParentLoop) { 829 // Make sure to add the cloned preheader and exit blocks to the parent loop 830 // as well. 831 ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase()); 832 } 833 834 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 835 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]); 836 // The new exit block should be in the same loop as the old one. 837 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i])) 838 ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase()); 839 840 assert(NewExit->getTerminator()->getNumSuccessors() == 1 && 841 "Exit block should have been split to have one successor!"); 842 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 843 844 // If the successor of the exit block had PHI nodes, add an entry for 845 // NewExit. 846 PHINode *PN; 847 for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) { 848 PN = cast<PHINode>(I); 849 Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]); 850 ValueToValueMapTy::iterator It = VMap.find(V); 851 if (It != VMap.end()) V = It->second; 852 PN->addIncoming(V, NewExit); 853 } 854 855 if (LandingPadInst *LPad = NewExit->getLandingPadInst()) { 856 PN = PHINode::Create(LPad->getType(), 0, "", 857 ExitSucc->getFirstInsertionPt()); 858 859 for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc); 860 I != E; ++I) { 861 BasicBlock *BB = *I; 862 LandingPadInst *LPI = BB->getLandingPadInst(); 863 LPI->replaceAllUsesWith(PN); 864 PN->addIncoming(LPI, BB); 865 } 866 } 867 } 868 869 // Rewrite the code to refer to itself. 870 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) 871 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 872 E = NewBlocks[i]->end(); I != E; ++I) 873 RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); 874 875 // Rewrite the original preheader to select between versions of the loop. 876 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator()); 877 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] && 878 "Preheader splitting did not work correctly!"); 879 880 // Emit the new branch that selects between the two versions of this loop. 881 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR); 882 LPM->deleteSimpleAnalysisValue(OldBR, L); 883 OldBR->eraseFromParent(); 884 885 LoopProcessWorklist.push_back(NewLoop); 886 redoLoop = true; 887 888 // Keep a WeakVH holding onto LIC. If the first call to RewriteLoopBody 889 // deletes the instruction (for example by simplifying a PHI that feeds into 890 // the condition that we're unswitching on), we don't rewrite the second 891 // iteration. 892 WeakVH LICHandle(LIC); 893 894 // Now we rewrite the original code to know that the condition is true and the 895 // new code to know that the condition is false. 896 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false); 897 898 // It's possible that simplifying one loop could cause the other to be 899 // changed to another value or a constant. If its a constant, don't simplify 900 // it. 901 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop && 902 LICHandle && !isa<Constant>(LICHandle)) 903 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true); 904 } 905 906 /// RemoveFromWorklist - Remove all instances of I from the worklist vector 907 /// specified. 908 static void RemoveFromWorklist(Instruction *I, 909 std::vector<Instruction*> &Worklist) { 910 std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(), 911 Worklist.end(), I); 912 while (WI != Worklist.end()) { 913 unsigned Offset = WI-Worklist.begin(); 914 Worklist.erase(WI); 915 WI = std::find(Worklist.begin()+Offset, Worklist.end(), I); 916 } 917 } 918 919 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the 920 /// program, replacing all uses with V and update the worklist. 921 static void ReplaceUsesOfWith(Instruction *I, Value *V, 922 std::vector<Instruction*> &Worklist, 923 Loop *L, LPPassManager *LPM) { 924 DEBUG(dbgs() << "Replace with '" << *V << "': " << *I); 925 926 // Add uses to the worklist, which may be dead now. 927 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 928 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) 929 Worklist.push_back(Use); 930 931 // Add users to the worklist which may be simplified now. 932 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 933 UI != E; ++UI) 934 Worklist.push_back(cast<Instruction>(*UI)); 935 LPM->deleteSimpleAnalysisValue(I, L); 936 RemoveFromWorklist(I, Worklist); 937 I->replaceAllUsesWith(V); 938 I->eraseFromParent(); 939 ++NumSimplify; 940 } 941 942 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop 943 /// information, and remove any dead successors it has. 944 /// 945 void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB, 946 std::vector<Instruction*> &Worklist, 947 Loop *L) { 948 if (pred_begin(BB) != pred_end(BB)) { 949 // This block isn't dead, since an edge to BB was just removed, see if there 950 // are any easy simplifications we can do now. 951 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 952 // If it has one pred, fold phi nodes in BB. 953 while (isa<PHINode>(BB->begin())) 954 ReplaceUsesOfWith(BB->begin(), 955 cast<PHINode>(BB->begin())->getIncomingValue(0), 956 Worklist, L, LPM); 957 958 // If this is the header of a loop and the only pred is the latch, we now 959 // have an unreachable loop. 960 if (Loop *L = LI->getLoopFor(BB)) 961 if (loopHeader == BB && L->contains(Pred)) { 962 // Remove the branch from the latch to the header block, this makes 963 // the header dead, which will make the latch dead (because the header 964 // dominates the latch). 965 LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L); 966 Pred->getTerminator()->eraseFromParent(); 967 new UnreachableInst(BB->getContext(), Pred); 968 969 // The loop is now broken, remove it from LI. 970 RemoveLoopFromHierarchy(L); 971 972 // Reprocess the header, which now IS dead. 973 RemoveBlockIfDead(BB, Worklist, L); 974 return; 975 } 976 977 // If pred ends in a uncond branch, add uncond branch to worklist so that 978 // the two blocks will get merged. 979 if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) 980 if (BI->isUnconditional()) 981 Worklist.push_back(BI); 982 } 983 return; 984 } 985 986 DEBUG(dbgs() << "Nuking dead block: " << *BB); 987 988 // Remove the instructions in the basic block from the worklist. 989 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 990 RemoveFromWorklist(I, Worklist); 991 992 // Anything that uses the instructions in this basic block should have their 993 // uses replaced with undefs. 994 // If I is not void type then replaceAllUsesWith undef. 995 // This allows ValueHandlers and custom metadata to adjust itself. 996 if (!I->getType()->isVoidTy()) 997 I->replaceAllUsesWith(UndefValue::get(I->getType())); 998 } 999 1000 // If this is the edge to the header block for a loop, remove the loop and 1001 // promote all subloops. 1002 if (Loop *BBLoop = LI->getLoopFor(BB)) { 1003 if (BBLoop->getLoopLatch() == BB) { 1004 RemoveLoopFromHierarchy(BBLoop); 1005 if (currentLoop == BBLoop) { 1006 currentLoop = 0; 1007 redoLoop = false; 1008 } 1009 } 1010 } 1011 1012 // Remove the block from the loop info, which removes it from any loops it 1013 // was in. 1014 LI->removeBlock(BB); 1015 1016 1017 // Remove phi node entries in successors for this block. 1018 TerminatorInst *TI = BB->getTerminator(); 1019 SmallVector<BasicBlock*, 4> Succs; 1020 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1021 Succs.push_back(TI->getSuccessor(i)); 1022 TI->getSuccessor(i)->removePredecessor(BB); 1023 } 1024 1025 // Unique the successors, remove anything with multiple uses. 1026 array_pod_sort(Succs.begin(), Succs.end()); 1027 Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end()); 1028 1029 // Remove the basic block, including all of the instructions contained in it. 1030 LPM->deleteSimpleAnalysisValue(BB, L); 1031 BB->eraseFromParent(); 1032 // Remove successor blocks here that are not dead, so that we know we only 1033 // have dead blocks in this list. Nondead blocks have a way of becoming dead, 1034 // then getting removed before we revisit them, which is badness. 1035 // 1036 for (unsigned i = 0; i != Succs.size(); ++i) 1037 if (pred_begin(Succs[i]) != pred_end(Succs[i])) { 1038 // One exception is loop headers. If this block was the preheader for a 1039 // loop, then we DO want to visit the loop so the loop gets deleted. 1040 // We know that if the successor is a loop header, that this loop had to 1041 // be the preheader: the case where this was the latch block was handled 1042 // above and headers can only have two predecessors. 1043 if (!LI->isLoopHeader(Succs[i])) { 1044 Succs.erase(Succs.begin()+i); 1045 --i; 1046 } 1047 } 1048 1049 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 1050 RemoveBlockIfDead(Succs[i], Worklist, L); 1051 } 1052 1053 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has 1054 /// become unwrapped, either because the backedge was deleted, or because the 1055 /// edge into the header was removed. If the edge into the header from the 1056 /// latch block was removed, the loop is unwrapped but subloops are still alive, 1057 /// so they just reparent loops. If the loops are actually dead, they will be 1058 /// removed later. 1059 void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) { 1060 LPM->deleteLoopFromQueue(L); 1061 RemoveLoopFromWorklist(L); 1062 } 1063 1064 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has 1065 // the value specified by Val in the specified loop, or we know it does NOT have 1066 // that value. Rewrite any uses of LIC or of properties correlated to it. 1067 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, 1068 Constant *Val, 1069 bool IsEqual) { 1070 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?"); 1071 1072 // FIXME: Support correlated properties, like: 1073 // for (...) 1074 // if (li1 < li2) 1075 // ... 1076 // if (li1 > li2) 1077 // ... 1078 1079 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches, 1080 // selects, switches. 1081 std::vector<Instruction*> Worklist; 1082 LLVMContext &Context = Val->getContext(); 1083 1084 1085 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC 1086 // in the loop with the appropriate one directly. 1087 if (IsEqual || (isa<ConstantInt>(Val) && 1088 Val->getType()->isIntegerTy(1))) { 1089 Value *Replacement; 1090 if (IsEqual) 1091 Replacement = Val; 1092 else 1093 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()), 1094 !cast<ConstantInt>(Val)->getZExtValue()); 1095 1096 for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end(); 1097 UI != E; ++UI) { 1098 Instruction *U = dyn_cast<Instruction>(*UI); 1099 if (!U || !L->contains(U)) 1100 continue; 1101 Worklist.push_back(U); 1102 } 1103 1104 for (std::vector<Instruction*>::iterator UI = Worklist.begin(); 1105 UI != Worklist.end(); ++UI) 1106 (*UI)->replaceUsesOfWith(LIC, Replacement); 1107 1108 SimplifyCode(Worklist, L); 1109 return; 1110 } 1111 1112 // Otherwise, we don't know the precise value of LIC, but we do know that it 1113 // is certainly NOT "Val". As such, simplify any uses in the loop that we 1114 // can. This case occurs when we unswitch switch statements. 1115 for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end(); 1116 UI != E; ++UI) { 1117 Instruction *U = dyn_cast<Instruction>(*UI); 1118 if (!U || !L->contains(U)) 1119 continue; 1120 1121 Worklist.push_back(U); 1122 1123 // TODO: We could do other simplifications, for example, turning 1124 // 'icmp eq LIC, Val' -> false. 1125 1126 // If we know that LIC is not Val, use this info to simplify code. 1127 SwitchInst *SI = dyn_cast<SwitchInst>(U); 1128 if (SI == 0 || !isa<ConstantInt>(Val)) continue; 1129 1130 SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val)); 1131 // Default case is live for multiple values. 1132 if (DeadCase == SI->case_default()) continue; 1133 1134 // Found a dead case value. Don't remove PHI nodes in the 1135 // successor if they become single-entry, those PHI nodes may 1136 // be in the Users list. 1137 1138 BasicBlock *Switch = SI->getParent(); 1139 BasicBlock *SISucc = DeadCase.getCaseSuccessor(); 1140 BasicBlock *Latch = L->getLoopLatch(); 1141 1142 BranchesInfo.setUnswitched(SI, Val); 1143 1144 if (!SI->findCaseDest(SISucc)) continue; // Edge is critical. 1145 // If the DeadCase successor dominates the loop latch, then the 1146 // transformation isn't safe since it will delete the sole predecessor edge 1147 // to the latch. 1148 if (Latch && DT->dominates(SISucc, Latch)) 1149 continue; 1150 1151 // FIXME: This is a hack. We need to keep the successor around 1152 // and hooked up so as to preserve the loop structure, because 1153 // trying to update it is complicated. So instead we preserve the 1154 // loop structure and put the block on a dead code path. 1155 SplitEdge(Switch, SISucc, this); 1156 // Compute the successors instead of relying on the return value 1157 // of SplitEdge, since it may have split the switch successor 1158 // after PHI nodes. 1159 BasicBlock *NewSISucc = DeadCase.getCaseSuccessor(); 1160 BasicBlock *OldSISucc = *succ_begin(NewSISucc); 1161 // Create an "unreachable" destination. 1162 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable", 1163 Switch->getParent(), 1164 OldSISucc); 1165 new UnreachableInst(Context, Abort); 1166 // Force the new case destination to branch to the "unreachable" 1167 // block while maintaining a (dead) CFG edge to the old block. 1168 NewSISucc->getTerminator()->eraseFromParent(); 1169 BranchInst::Create(Abort, OldSISucc, 1170 ConstantInt::getTrue(Context), NewSISucc); 1171 // Release the PHI operands for this edge. 1172 for (BasicBlock::iterator II = NewSISucc->begin(); 1173 PHINode *PN = dyn_cast<PHINode>(II); ++II) 1174 PN->setIncomingValue(PN->getBasicBlockIndex(Switch), 1175 UndefValue::get(PN->getType())); 1176 // Tell the domtree about the new block. We don't fully update the 1177 // domtree here -- instead we force it to do a full recomputation 1178 // after the pass is complete -- but we do need to inform it of 1179 // new blocks. 1180 if (DT) 1181 DT->addNewBlock(Abort, NewSISucc); 1182 } 1183 1184 SimplifyCode(Worklist, L); 1185 } 1186 1187 /// SimplifyCode - Okay, now that we have simplified some instructions in the 1188 /// loop, walk over it and constant prop, dce, and fold control flow where 1189 /// possible. Note that this is effectively a very simple loop-structure-aware 1190 /// optimizer. During processing of this loop, L could very well be deleted, so 1191 /// it must not be used. 1192 /// 1193 /// FIXME: When the loop optimizer is more mature, separate this out to a new 1194 /// pass. 1195 /// 1196 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) { 1197 while (!Worklist.empty()) { 1198 Instruction *I = Worklist.back(); 1199 Worklist.pop_back(); 1200 1201 // Simple DCE. 1202 if (isInstructionTriviallyDead(I)) { 1203 DEBUG(dbgs() << "Remove dead instruction '" << *I); 1204 1205 // Add uses to the worklist, which may be dead now. 1206 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1207 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) 1208 Worklist.push_back(Use); 1209 LPM->deleteSimpleAnalysisValue(I, L); 1210 RemoveFromWorklist(I, Worklist); 1211 I->eraseFromParent(); 1212 ++NumSimplify; 1213 continue; 1214 } 1215 1216 // See if instruction simplification can hack this up. This is common for 1217 // things like "select false, X, Y" after unswitching made the condition be 1218 // 'false'. 1219 if (Value *V = SimplifyInstruction(I, 0, 0, DT)) 1220 if (LI->replacementPreservesLCSSAForm(I, V)) { 1221 ReplaceUsesOfWith(I, V, Worklist, L, LPM); 1222 continue; 1223 } 1224 1225 // Special case hacks that appear commonly in unswitched code. 1226 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1227 if (BI->isUnconditional()) { 1228 // If BI's parent is the only pred of the successor, fold the two blocks 1229 // together. 1230 BasicBlock *Pred = BI->getParent(); 1231 BasicBlock *Succ = BI->getSuccessor(0); 1232 BasicBlock *SinglePred = Succ->getSinglePredecessor(); 1233 if (!SinglePred) continue; // Nothing to do. 1234 assert(SinglePred == Pred && "CFG broken"); 1235 1236 DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- " 1237 << Succ->getName() << "\n"); 1238 1239 // Resolve any single entry PHI nodes in Succ. 1240 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin())) 1241 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM); 1242 1243 // If Succ has any successors with PHI nodes, update them to have 1244 // entries coming from Pred instead of Succ. 1245 Succ->replaceAllUsesWith(Pred); 1246 1247 // Move all of the successor contents from Succ to Pred. 1248 Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(), 1249 Succ->end()); 1250 LPM->deleteSimpleAnalysisValue(BI, L); 1251 BI->eraseFromParent(); 1252 RemoveFromWorklist(BI, Worklist); 1253 1254 // Remove Succ from the loop tree. 1255 LI->removeBlock(Succ); 1256 LPM->deleteSimpleAnalysisValue(Succ, L); 1257 Succ->eraseFromParent(); 1258 ++NumSimplify; 1259 continue; 1260 } 1261 1262 if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){ 1263 // Conditional branch. Turn it into an unconditional branch, then 1264 // remove dead blocks. 1265 continue; // FIXME: Enable. 1266 1267 DEBUG(dbgs() << "Folded branch: " << *BI); 1268 BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue()); 1269 BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue()); 1270 DeadSucc->removePredecessor(BI->getParent(), true); 1271 Worklist.push_back(BranchInst::Create(LiveSucc, BI)); 1272 LPM->deleteSimpleAnalysisValue(BI, L); 1273 BI->eraseFromParent(); 1274 RemoveFromWorklist(BI, Worklist); 1275 ++NumSimplify; 1276 1277 RemoveBlockIfDead(DeadSucc, Worklist, L); 1278 } 1279 continue; 1280 } 1281 } 1282 } 1283