1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops that contain branches on loop-invariant conditions 11 // to have multiple loops. For example, it turns the left into the right code: 12 // 13 // for (...) if (lic) 14 // A for (...) 15 // if (lic) A; B; C 16 // B else 17 // C for (...) 18 // A; C 19 // 20 // This can increase the size of the code exponentially (doubling it every time 21 // a loop is unswitched) so we only unswitch if the resultant code will be 22 // smaller than a threshold. 23 // 24 // This pass expects LICM to be run before it to hoist invariant conditions out 25 // of the loop, to make the unswitching opportunity obvious. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #define DEBUG_TYPE "loop-unswitch" 30 #include "llvm/Transforms/Scalar.h" 31 #include "llvm/Constants.h" 32 #include "llvm/DerivedTypes.h" 33 #include "llvm/Function.h" 34 #include "llvm/Instructions.h" 35 #include "llvm/Analysis/InlineCost.h" 36 #include "llvm/Analysis/InstructionSimplify.h" 37 #include "llvm/Analysis/LoopInfo.h" 38 #include "llvm/Analysis/LoopPass.h" 39 #include "llvm/Analysis/Dominators.h" 40 #include "llvm/Analysis/ScalarEvolution.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/STLExtras.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <set> 52 using namespace llvm; 53 54 STATISTIC(NumBranches, "Number of branches unswitched"); 55 STATISTIC(NumSwitches, "Number of switches unswitched"); 56 STATISTIC(NumSelects , "Number of selects unswitched"); 57 STATISTIC(NumTrivial , "Number of unswitches that are trivial"); 58 STATISTIC(NumSimplify, "Number of simplifications of unswitched code"); 59 60 // The specific value of 50 here was chosen based only on intuition and a 61 // few specific examples. 62 static cl::opt<unsigned> 63 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), 64 cl::init(50), cl::Hidden); 65 66 namespace { 67 class LoopUnswitch : public LoopPass { 68 LoopInfo *LI; // Loop information 69 LPPassManager *LPM; 70 71 // LoopProcessWorklist - Used to check if second loop needs processing 72 // after RewriteLoopBodyWithConditionConstant rewrites first loop. 73 std::vector<Loop*> LoopProcessWorklist; 74 SmallPtrSet<Value *,8> UnswitchedVals; 75 76 bool OptimizeForSize; 77 bool redoLoop; 78 79 Loop *currentLoop; 80 DominatorTree *DT; 81 BasicBlock *loopHeader; 82 BasicBlock *loopPreheader; 83 84 // LoopBlocks contains all of the basic blocks of the loop, including the 85 // preheader of the loop, the body of the loop, and the exit blocks of the 86 // loop, in that order. 87 std::vector<BasicBlock*> LoopBlocks; 88 // NewBlocks contained cloned copy of basic blocks from LoopBlocks. 89 std::vector<BasicBlock*> NewBlocks; 90 91 public: 92 static char ID; // Pass ID, replacement for typeid 93 explicit LoopUnswitch(bool Os = false) : 94 LoopPass(ID), OptimizeForSize(Os), redoLoop(false), 95 currentLoop(NULL), DT(NULL), loopHeader(NULL), 96 loopPreheader(NULL) { 97 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry()); 98 } 99 100 bool runOnLoop(Loop *L, LPPassManager &LPM); 101 bool processCurrentLoop(); 102 103 /// This transformation requires natural loop information & requires that 104 /// loop preheaders be inserted into the CFG. 105 /// 106 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 107 AU.addRequiredID(LoopSimplifyID); 108 AU.addPreservedID(LoopSimplifyID); 109 AU.addRequired<LoopInfo>(); 110 AU.addPreserved<LoopInfo>(); 111 AU.addRequiredID(LCSSAID); 112 AU.addPreservedID(LCSSAID); 113 AU.addPreserved<DominatorTree>(); 114 AU.addPreserved<ScalarEvolution>(); 115 } 116 117 private: 118 119 virtual void releaseMemory() { 120 UnswitchedVals.clear(); 121 } 122 123 /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist, 124 /// remove it. 125 void RemoveLoopFromWorklist(Loop *L) { 126 std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(), 127 LoopProcessWorklist.end(), L); 128 if (I != LoopProcessWorklist.end()) 129 LoopProcessWorklist.erase(I); 130 } 131 132 void initLoopData() { 133 loopHeader = currentLoop->getHeader(); 134 loopPreheader = currentLoop->getLoopPreheader(); 135 } 136 137 /// Split all of the edges from inside the loop to their exit blocks. 138 /// Update the appropriate Phi nodes as we do so. 139 void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks); 140 141 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val); 142 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, 143 BasicBlock *ExitBlock); 144 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L); 145 146 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, 147 Constant *Val, bool isEqual); 148 149 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, 150 BasicBlock *TrueDest, 151 BasicBlock *FalseDest, 152 Instruction *InsertPt); 153 154 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L); 155 void RemoveBlockIfDead(BasicBlock *BB, 156 std::vector<Instruction*> &Worklist, Loop *l); 157 void RemoveLoopFromHierarchy(Loop *L); 158 bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0, 159 BasicBlock **LoopExit = 0); 160 161 }; 162 } 163 char LoopUnswitch::ID = 0; 164 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops", 165 false, false) 166 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 167 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 168 INITIALIZE_PASS_DEPENDENCY(LCSSA) 169 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops", 170 false, false) 171 172 Pass *llvm::createLoopUnswitchPass(bool Os) { 173 return new LoopUnswitch(Os); 174 } 175 176 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is 177 /// invariant in the loop, or has an invariant piece, return the invariant. 178 /// Otherwise, return null. 179 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) { 180 // We can never unswitch on vector conditions. 181 if (Cond->getType()->isVectorTy()) 182 return 0; 183 184 // Constants should be folded, not unswitched on! 185 if (isa<Constant>(Cond)) return 0; 186 187 // TODO: Handle: br (VARIANT|INVARIANT). 188 189 // Hoist simple values out. 190 if (L->makeLoopInvariant(Cond, Changed)) 191 return Cond; 192 193 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond)) 194 if (BO->getOpcode() == Instruction::And || 195 BO->getOpcode() == Instruction::Or) { 196 // If either the left or right side is invariant, we can unswitch on this, 197 // which will cause the branch to go away in one loop and the condition to 198 // simplify in the other one. 199 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed)) 200 return LHS; 201 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed)) 202 return RHS; 203 } 204 205 return 0; 206 } 207 208 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) { 209 LI = &getAnalysis<LoopInfo>(); 210 LPM = &LPM_Ref; 211 DT = getAnalysisIfAvailable<DominatorTree>(); 212 currentLoop = L; 213 Function *F = currentLoop->getHeader()->getParent(); 214 bool Changed = false; 215 do { 216 assert(currentLoop->isLCSSAForm(*DT)); 217 redoLoop = false; 218 Changed |= processCurrentLoop(); 219 } while(redoLoop); 220 221 if (Changed) { 222 // FIXME: Reconstruct dom info, because it is not preserved properly. 223 if (DT) 224 DT->runOnFunction(*F); 225 } 226 return Changed; 227 } 228 229 /// processCurrentLoop - Do actual work and unswitch loop if possible 230 /// and profitable. 231 bool LoopUnswitch::processCurrentLoop() { 232 bool Changed = false; 233 LLVMContext &Context = currentLoop->getHeader()->getContext(); 234 235 // Loop over all of the basic blocks in the loop. If we find an interior 236 // block that is branching on a loop-invariant condition, we can unswitch this 237 // loop. 238 for (Loop::block_iterator I = currentLoop->block_begin(), 239 E = currentLoop->block_end(); I != E; ++I) { 240 TerminatorInst *TI = (*I)->getTerminator(); 241 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 242 // If this isn't branching on an invariant condition, we can't unswitch 243 // it. 244 if (BI->isConditional()) { 245 // See if this, or some part of it, is loop invariant. If so, we can 246 // unswitch on it if we desire. 247 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), 248 currentLoop, Changed); 249 if (LoopCond && UnswitchIfProfitable(LoopCond, 250 ConstantInt::getTrue(Context))) { 251 ++NumBranches; 252 return true; 253 } 254 } 255 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 256 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 257 currentLoop, Changed); 258 if (LoopCond && SI->getNumCases() > 1) { 259 // Find a value to unswitch on: 260 // FIXME: this should chose the most expensive case! 261 Constant *UnswitchVal = SI->getCaseValue(1); 262 // Do not process same value again and again. 263 if (!UnswitchedVals.insert(UnswitchVal)) 264 continue; 265 266 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) { 267 ++NumSwitches; 268 return true; 269 } 270 } 271 } 272 273 // Scan the instructions to check for unswitchable values. 274 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); 275 BBI != E; ++BBI) 276 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) { 277 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 278 currentLoop, Changed); 279 if (LoopCond && UnswitchIfProfitable(LoopCond, 280 ConstantInt::getTrue(Context))) { 281 ++NumSelects; 282 return true; 283 } 284 } 285 } 286 return Changed; 287 } 288 289 /// isTrivialLoopExitBlock - Check to see if all paths from BB exit the 290 /// loop with no side effects (including infinite loops). 291 /// 292 /// If true, we return true and set ExitBB to the block we 293 /// exit through. 294 /// 295 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB, 296 BasicBlock *&ExitBB, 297 std::set<BasicBlock*> &Visited) { 298 if (!Visited.insert(BB).second) { 299 // Already visited. Without more analysis, this could indicate an infinte loop. 300 return false; 301 } else if (!L->contains(BB)) { 302 // Otherwise, this is a loop exit, this is fine so long as this is the 303 // first exit. 304 if (ExitBB != 0) return false; 305 ExitBB = BB; 306 return true; 307 } 308 309 // Otherwise, this is an unvisited intra-loop node. Check all successors. 310 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) { 311 // Check to see if the successor is a trivial loop exit. 312 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited)) 313 return false; 314 } 315 316 // Okay, everything after this looks good, check to make sure that this block 317 // doesn't include any side effects. 318 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 319 if (I->mayHaveSideEffects()) 320 return false; 321 322 return true; 323 } 324 325 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally 326 /// leads to an exit from the specified loop, and has no side-effects in the 327 /// process. If so, return the block that is exited to, otherwise return null. 328 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) { 329 std::set<BasicBlock*> Visited; 330 Visited.insert(L->getHeader()); // Branches to header make infinite loops. 331 BasicBlock *ExitBB = 0; 332 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited)) 333 return ExitBB; 334 return 0; 335 } 336 337 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is 338 /// trivial: that is, that the condition controls whether or not the loop does 339 /// anything at all. If this is a trivial condition, unswitching produces no 340 /// code duplications (equivalently, it produces a simpler loop and a new empty 341 /// loop, which gets deleted). 342 /// 343 /// If this is a trivial condition, return true, otherwise return false. When 344 /// returning true, this sets Cond and Val to the condition that controls the 345 /// trivial condition: when Cond dynamically equals Val, the loop is known to 346 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when 347 /// Cond == Val. 348 /// 349 bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val, 350 BasicBlock **LoopExit) { 351 BasicBlock *Header = currentLoop->getHeader(); 352 TerminatorInst *HeaderTerm = Header->getTerminator(); 353 LLVMContext &Context = Header->getContext(); 354 355 BasicBlock *LoopExitBB = 0; 356 if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) { 357 // If the header block doesn't end with a conditional branch on Cond, we 358 // can't handle it. 359 if (!BI->isConditional() || BI->getCondition() != Cond) 360 return false; 361 362 // Check to see if a successor of the branch is guaranteed to 363 // exit through a unique exit block without having any 364 // side-effects. If so, determine the value of Cond that causes it to do 365 // this. 366 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 367 BI->getSuccessor(0)))) { 368 if (Val) *Val = ConstantInt::getTrue(Context); 369 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 370 BI->getSuccessor(1)))) { 371 if (Val) *Val = ConstantInt::getFalse(Context); 372 } 373 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) { 374 // If this isn't a switch on Cond, we can't handle it. 375 if (SI->getCondition() != Cond) return false; 376 377 // Check to see if a successor of the switch is guaranteed to go to the 378 // latch block or exit through a one exit block without having any 379 // side-effects. If so, determine the value of Cond that causes it to do 380 // this. Note that we can't trivially unswitch on the default case. 381 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) 382 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 383 SI->getSuccessor(i)))) { 384 // Okay, we found a trivial case, remember the value that is trivial. 385 if (Val) *Val = SI->getCaseValue(i); 386 break; 387 } 388 } 389 390 // If we didn't find a single unique LoopExit block, or if the loop exit block 391 // contains phi nodes, this isn't trivial. 392 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) 393 return false; // Can't handle this. 394 395 if (LoopExit) *LoopExit = LoopExitBB; 396 397 // We already know that nothing uses any scalar values defined inside of this 398 // loop. As such, we just have to check to see if this loop will execute any 399 // side-effecting instructions (e.g. stores, calls, volatile loads) in the 400 // part of the loop that the code *would* execute. We already checked the 401 // tail, check the header now. 402 for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I) 403 if (I->mayHaveSideEffects()) 404 return false; 405 return true; 406 } 407 408 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when 409 /// LoopCond == Val to simplify the loop. If we decide that this is profitable, 410 /// unswitch the loop, reprocess the pieces, then return true. 411 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) { 412 413 initLoopData(); 414 415 // If LoopSimplify was unable to form a preheader, don't do any unswitching. 416 if (!loopPreheader) 417 return false; 418 419 Function *F = loopHeader->getParent(); 420 421 Constant *CondVal = 0; 422 BasicBlock *ExitBlock = 0; 423 if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) { 424 // If the condition is trivial, always unswitch. There is no code growth 425 // for this case. 426 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock); 427 return true; 428 } 429 430 // Check to see if it would be profitable to unswitch current loop. 431 432 // Do not do non-trivial unswitch while optimizing for size. 433 if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize)) 434 return false; 435 436 // FIXME: This is overly conservative because it does not take into 437 // consideration code simplification opportunities and code that can 438 // be shared by the resultant unswitched loops. 439 CodeMetrics Metrics; 440 for (Loop::block_iterator I = currentLoop->block_begin(), 441 E = currentLoop->block_end(); 442 I != E; ++I) 443 Metrics.analyzeBasicBlock(*I); 444 445 // Limit the number of instructions to avoid causing significant code 446 // expansion, and the number of basic blocks, to avoid loops with 447 // large numbers of branches which cause loop unswitching to go crazy. 448 // This is a very ad-hoc heuristic. 449 if (Metrics.NumInsts > Threshold || 450 Metrics.NumBlocks * 5 > Threshold || 451 Metrics.containsIndirectBr || Metrics.isRecursive) { 452 DEBUG(dbgs() << "NOT unswitching loop %" 453 << currentLoop->getHeader()->getName() << ", cost too high: " 454 << currentLoop->getBlocks().size() << "\n"); 455 return false; 456 } 457 458 UnswitchNontrivialCondition(LoopCond, Val, currentLoop); 459 return true; 460 } 461 462 /// CloneLoop - Recursively clone the specified loop and all of its children, 463 /// mapping the blocks with the specified map. 464 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 465 LoopInfo *LI, LPPassManager *LPM) { 466 Loop *New = new Loop(); 467 LPM->insertLoop(New, PL); 468 469 // Add all of the blocks in L to the new loop. 470 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 471 I != E; ++I) 472 if (LI->getLoopFor(*I) == L) 473 New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase()); 474 475 // Add all of the subloops to the new loop. 476 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 477 CloneLoop(*I, New, VM, LI, LPM); 478 479 return New; 480 } 481 482 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values 483 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the 484 /// code immediately before InsertPt. 485 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, 486 BasicBlock *TrueDest, 487 BasicBlock *FalseDest, 488 Instruction *InsertPt) { 489 // Insert a conditional branch on LIC to the two preheaders. The original 490 // code is the true version and the new code is the false version. 491 Value *BranchVal = LIC; 492 if (!isa<ConstantInt>(Val) || 493 Val->getType() != Type::getInt1Ty(LIC->getContext())) 494 BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val, "tmp"); 495 else if (Val != ConstantInt::getTrue(Val->getContext())) 496 // We want to enter the new loop when the condition is true. 497 std::swap(TrueDest, FalseDest); 498 499 // Insert the new branch. 500 BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt); 501 502 // If either edge is critical, split it. This helps preserve LoopSimplify 503 // form for enclosing loops. 504 SplitCriticalEdge(BI, 0, this); 505 SplitCriticalEdge(BI, 1, this); 506 } 507 508 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable 509 /// condition in it (a cond branch from its header block to its latch block, 510 /// where the path through the loop that doesn't execute its body has no 511 /// side-effects), unswitch it. This doesn't involve any code duplication, just 512 /// moving the conditional branch outside of the loop and updating loop info. 513 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, 514 Constant *Val, 515 BasicBlock *ExitBlock) { 516 DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %" 517 << loopHeader->getName() << " [" << L->getBlocks().size() 518 << " blocks] in Function " << L->getHeader()->getParent()->getName() 519 << " on cond: " << *Val << " == " << *Cond << "\n"); 520 521 // First step, split the preheader, so that we know that there is a safe place 522 // to insert the conditional branch. We will change loopPreheader to have a 523 // conditional branch on Cond. 524 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this); 525 526 // Now that we have a place to insert the conditional branch, create a place 527 // to branch to: this is the exit block out of the loop that we should 528 // short-circuit to. 529 530 // Split this block now, so that the loop maintains its exit block, and so 531 // that the jump from the preheader can execute the contents of the exit block 532 // without actually branching to it (the exit block should be dominated by the 533 // loop header, not the preheader). 534 assert(!L->contains(ExitBlock) && "Exit block is in the loop?"); 535 BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this); 536 537 // Okay, now we have a position to branch from and a position to branch to, 538 // insert the new conditional branch. 539 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, 540 loopPreheader->getTerminator()); 541 LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L); 542 loopPreheader->getTerminator()->eraseFromParent(); 543 544 // We need to reprocess this loop, it could be unswitched again. 545 redoLoop = true; 546 547 // Now that we know that the loop is never entered when this condition is a 548 // particular value, rewrite the loop with this info. We know that this will 549 // at least eliminate the old branch. 550 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false); 551 ++NumTrivial; 552 } 553 554 /// SplitExitEdges - Split all of the edges from inside the loop to their exit 555 /// blocks. Update the appropriate Phi nodes as we do so. 556 void LoopUnswitch::SplitExitEdges(Loop *L, 557 const SmallVector<BasicBlock *, 8> &ExitBlocks){ 558 559 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 560 BasicBlock *ExitBlock = ExitBlocks[i]; 561 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock), 562 pred_end(ExitBlock)); 563 SplitBlockPredecessors(ExitBlock, Preds.data(), Preds.size(), 564 ".us-lcssa", this); 565 } 566 } 567 568 /// UnswitchNontrivialCondition - We determined that the loop is profitable 569 /// to unswitch when LIC equal Val. Split it into loop versions and test the 570 /// condition outside of either loop. Return the loops created as Out1/Out2. 571 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, 572 Loop *L) { 573 Function *F = loopHeader->getParent(); 574 DEBUG(dbgs() << "loop-unswitch: Unswitching loop %" 575 << loopHeader->getName() << " [" << L->getBlocks().size() 576 << " blocks] in Function " << F->getName() 577 << " when '" << *Val << "' == " << *LIC << "\n"); 578 579 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>()) 580 SE->forgetLoop(L); 581 582 LoopBlocks.clear(); 583 NewBlocks.clear(); 584 585 // First step, split the preheader and exit blocks, and add these blocks to 586 // the LoopBlocks list. 587 BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this); 588 LoopBlocks.push_back(NewPreheader); 589 590 // We want the loop to come after the preheader, but before the exit blocks. 591 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 592 593 SmallVector<BasicBlock*, 8> ExitBlocks; 594 L->getUniqueExitBlocks(ExitBlocks); 595 596 // Split all of the edges from inside the loop to their exit blocks. Update 597 // the appropriate Phi nodes as we do so. 598 SplitExitEdges(L, ExitBlocks); 599 600 // The exit blocks may have been changed due to edge splitting, recompute. 601 ExitBlocks.clear(); 602 L->getUniqueExitBlocks(ExitBlocks); 603 604 // Add exit blocks to the loop blocks. 605 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end()); 606 607 // Next step, clone all of the basic blocks that make up the loop (including 608 // the loop preheader and exit blocks), keeping track of the mapping between 609 // the instructions and blocks. 610 NewBlocks.reserve(LoopBlocks.size()); 611 ValueToValueMapTy VMap; 612 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) { 613 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F); 614 NewBlocks.push_back(NewBB); 615 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping. 616 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L); 617 } 618 619 // Splice the newly inserted blocks into the function right before the 620 // original preheader. 621 F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(), 622 NewBlocks[0], F->end()); 623 624 // Now we create the new Loop object for the versioned loop. 625 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM); 626 Loop *ParentLoop = L->getParentLoop(); 627 if (ParentLoop) { 628 // Make sure to add the cloned preheader and exit blocks to the parent loop 629 // as well. 630 ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase()); 631 } 632 633 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 634 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]); 635 // The new exit block should be in the same loop as the old one. 636 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i])) 637 ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase()); 638 639 assert(NewExit->getTerminator()->getNumSuccessors() == 1 && 640 "Exit block should have been split to have one successor!"); 641 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 642 643 // If the successor of the exit block had PHI nodes, add an entry for 644 // NewExit. 645 PHINode *PN; 646 for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) { 647 PN = cast<PHINode>(I); 648 Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]); 649 ValueToValueMapTy::iterator It = VMap.find(V); 650 if (It != VMap.end()) V = It->second; 651 PN->addIncoming(V, NewExit); 652 } 653 } 654 655 // Rewrite the code to refer to itself. 656 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) 657 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 658 E = NewBlocks[i]->end(); I != E; ++I) 659 RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); 660 661 // Rewrite the original preheader to select between versions of the loop. 662 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator()); 663 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] && 664 "Preheader splitting did not work correctly!"); 665 666 // Emit the new branch that selects between the two versions of this loop. 667 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR); 668 LPM->deleteSimpleAnalysisValue(OldBR, L); 669 OldBR->eraseFromParent(); 670 671 LoopProcessWorklist.push_back(NewLoop); 672 redoLoop = true; 673 674 // Keep a WeakVH holding onto LIC. If the first call to RewriteLoopBody 675 // deletes the instruction (for example by simplifying a PHI that feeds into 676 // the condition that we're unswitching on), we don't rewrite the second 677 // iteration. 678 WeakVH LICHandle(LIC); 679 680 // Now we rewrite the original code to know that the condition is true and the 681 // new code to know that the condition is false. 682 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false); 683 684 // It's possible that simplifying one loop could cause the other to be 685 // changed to another value or a constant. If its a constant, don't simplify 686 // it. 687 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop && 688 LICHandle && !isa<Constant>(LICHandle)) 689 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true); 690 } 691 692 /// RemoveFromWorklist - Remove all instances of I from the worklist vector 693 /// specified. 694 static void RemoveFromWorklist(Instruction *I, 695 std::vector<Instruction*> &Worklist) { 696 std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(), 697 Worklist.end(), I); 698 while (WI != Worklist.end()) { 699 unsigned Offset = WI-Worklist.begin(); 700 Worklist.erase(WI); 701 WI = std::find(Worklist.begin()+Offset, Worklist.end(), I); 702 } 703 } 704 705 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the 706 /// program, replacing all uses with V and update the worklist. 707 static void ReplaceUsesOfWith(Instruction *I, Value *V, 708 std::vector<Instruction*> &Worklist, 709 Loop *L, LPPassManager *LPM) { 710 DEBUG(dbgs() << "Replace with '" << *V << "': " << *I); 711 712 // Add uses to the worklist, which may be dead now. 713 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 714 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) 715 Worklist.push_back(Use); 716 717 // Add users to the worklist which may be simplified now. 718 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 719 UI != E; ++UI) 720 Worklist.push_back(cast<Instruction>(*UI)); 721 LPM->deleteSimpleAnalysisValue(I, L); 722 RemoveFromWorklist(I, Worklist); 723 I->replaceAllUsesWith(V); 724 I->eraseFromParent(); 725 ++NumSimplify; 726 } 727 728 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop 729 /// information, and remove any dead successors it has. 730 /// 731 void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB, 732 std::vector<Instruction*> &Worklist, 733 Loop *L) { 734 if (pred_begin(BB) != pred_end(BB)) { 735 // This block isn't dead, since an edge to BB was just removed, see if there 736 // are any easy simplifications we can do now. 737 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 738 // If it has one pred, fold phi nodes in BB. 739 while (isa<PHINode>(BB->begin())) 740 ReplaceUsesOfWith(BB->begin(), 741 cast<PHINode>(BB->begin())->getIncomingValue(0), 742 Worklist, L, LPM); 743 744 // If this is the header of a loop and the only pred is the latch, we now 745 // have an unreachable loop. 746 if (Loop *L = LI->getLoopFor(BB)) 747 if (loopHeader == BB && L->contains(Pred)) { 748 // Remove the branch from the latch to the header block, this makes 749 // the header dead, which will make the latch dead (because the header 750 // dominates the latch). 751 LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L); 752 Pred->getTerminator()->eraseFromParent(); 753 new UnreachableInst(BB->getContext(), Pred); 754 755 // The loop is now broken, remove it from LI. 756 RemoveLoopFromHierarchy(L); 757 758 // Reprocess the header, which now IS dead. 759 RemoveBlockIfDead(BB, Worklist, L); 760 return; 761 } 762 763 // If pred ends in a uncond branch, add uncond branch to worklist so that 764 // the two blocks will get merged. 765 if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) 766 if (BI->isUnconditional()) 767 Worklist.push_back(BI); 768 } 769 return; 770 } 771 772 DEBUG(dbgs() << "Nuking dead block: " << *BB); 773 774 // Remove the instructions in the basic block from the worklist. 775 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 776 RemoveFromWorklist(I, Worklist); 777 778 // Anything that uses the instructions in this basic block should have their 779 // uses replaced with undefs. 780 // If I is not void type then replaceAllUsesWith undef. 781 // This allows ValueHandlers and custom metadata to adjust itself. 782 if (!I->getType()->isVoidTy()) 783 I->replaceAllUsesWith(UndefValue::get(I->getType())); 784 } 785 786 // If this is the edge to the header block for a loop, remove the loop and 787 // promote all subloops. 788 if (Loop *BBLoop = LI->getLoopFor(BB)) { 789 if (BBLoop->getLoopLatch() == BB) 790 RemoveLoopFromHierarchy(BBLoop); 791 } 792 793 // Remove the block from the loop info, which removes it from any loops it 794 // was in. 795 LI->removeBlock(BB); 796 797 798 // Remove phi node entries in successors for this block. 799 TerminatorInst *TI = BB->getTerminator(); 800 SmallVector<BasicBlock*, 4> Succs; 801 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 802 Succs.push_back(TI->getSuccessor(i)); 803 TI->getSuccessor(i)->removePredecessor(BB); 804 } 805 806 // Unique the successors, remove anything with multiple uses. 807 array_pod_sort(Succs.begin(), Succs.end()); 808 Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end()); 809 810 // Remove the basic block, including all of the instructions contained in it. 811 LPM->deleteSimpleAnalysisValue(BB, L); 812 BB->eraseFromParent(); 813 // Remove successor blocks here that are not dead, so that we know we only 814 // have dead blocks in this list. Nondead blocks have a way of becoming dead, 815 // then getting removed before we revisit them, which is badness. 816 // 817 for (unsigned i = 0; i != Succs.size(); ++i) 818 if (pred_begin(Succs[i]) != pred_end(Succs[i])) { 819 // One exception is loop headers. If this block was the preheader for a 820 // loop, then we DO want to visit the loop so the loop gets deleted. 821 // We know that if the successor is a loop header, that this loop had to 822 // be the preheader: the case where this was the latch block was handled 823 // above and headers can only have two predecessors. 824 if (!LI->isLoopHeader(Succs[i])) { 825 Succs.erase(Succs.begin()+i); 826 --i; 827 } 828 } 829 830 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 831 RemoveBlockIfDead(Succs[i], Worklist, L); 832 } 833 834 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has 835 /// become unwrapped, either because the backedge was deleted, or because the 836 /// edge into the header was removed. If the edge into the header from the 837 /// latch block was removed, the loop is unwrapped but subloops are still alive, 838 /// so they just reparent loops. If the loops are actually dead, they will be 839 /// removed later. 840 void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) { 841 LPM->deleteLoopFromQueue(L); 842 RemoveLoopFromWorklist(L); 843 } 844 845 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has 846 // the value specified by Val in the specified loop, or we know it does NOT have 847 // that value. Rewrite any uses of LIC or of properties correlated to it. 848 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, 849 Constant *Val, 850 bool IsEqual) { 851 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?"); 852 853 // FIXME: Support correlated properties, like: 854 // for (...) 855 // if (li1 < li2) 856 // ... 857 // if (li1 > li2) 858 // ... 859 860 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches, 861 // selects, switches. 862 std::vector<User*> Users(LIC->use_begin(), LIC->use_end()); 863 std::vector<Instruction*> Worklist; 864 LLVMContext &Context = Val->getContext(); 865 866 867 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC 868 // in the loop with the appropriate one directly. 869 if (IsEqual || (isa<ConstantInt>(Val) && 870 Val->getType()->isIntegerTy(1))) { 871 Value *Replacement; 872 if (IsEqual) 873 Replacement = Val; 874 else 875 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()), 876 !cast<ConstantInt>(Val)->getZExtValue()); 877 878 for (unsigned i = 0, e = Users.size(); i != e; ++i) 879 if (Instruction *U = cast<Instruction>(Users[i])) { 880 if (!L->contains(U)) 881 continue; 882 U->replaceUsesOfWith(LIC, Replacement); 883 Worklist.push_back(U); 884 } 885 SimplifyCode(Worklist, L); 886 return; 887 } 888 889 // Otherwise, we don't know the precise value of LIC, but we do know that it 890 // is certainly NOT "Val". As such, simplify any uses in the loop that we 891 // can. This case occurs when we unswitch switch statements. 892 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 893 Instruction *U = cast<Instruction>(Users[i]); 894 if (!L->contains(U)) 895 continue; 896 897 Worklist.push_back(U); 898 899 // TODO: We could do other simplifications, for example, turning 900 // 'icmp eq LIC, Val' -> false. 901 902 // If we know that LIC is not Val, use this info to simplify code. 903 SwitchInst *SI = dyn_cast<SwitchInst>(U); 904 if (SI == 0 || !isa<ConstantInt>(Val)) continue; 905 906 unsigned DeadCase = SI->findCaseValue(cast<ConstantInt>(Val)); 907 if (DeadCase == 0) continue; // Default case is live for multiple values. 908 909 // Found a dead case value. Don't remove PHI nodes in the 910 // successor if they become single-entry, those PHI nodes may 911 // be in the Users list. 912 913 // FIXME: This is a hack. We need to keep the successor around 914 // and hooked up so as to preserve the loop structure, because 915 // trying to update it is complicated. So instead we preserve the 916 // loop structure and put the block on a dead code path. 917 BasicBlock *Switch = SI->getParent(); 918 SplitEdge(Switch, SI->getSuccessor(DeadCase), this); 919 // Compute the successors instead of relying on the return value 920 // of SplitEdge, since it may have split the switch successor 921 // after PHI nodes. 922 BasicBlock *NewSISucc = SI->getSuccessor(DeadCase); 923 BasicBlock *OldSISucc = *succ_begin(NewSISucc); 924 // Create an "unreachable" destination. 925 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable", 926 Switch->getParent(), 927 OldSISucc); 928 new UnreachableInst(Context, Abort); 929 // Force the new case destination to branch to the "unreachable" 930 // block while maintaining a (dead) CFG edge to the old block. 931 NewSISucc->getTerminator()->eraseFromParent(); 932 BranchInst::Create(Abort, OldSISucc, 933 ConstantInt::getTrue(Context), NewSISucc); 934 // Release the PHI operands for this edge. 935 for (BasicBlock::iterator II = NewSISucc->begin(); 936 PHINode *PN = dyn_cast<PHINode>(II); ++II) 937 PN->setIncomingValue(PN->getBasicBlockIndex(Switch), 938 UndefValue::get(PN->getType())); 939 // Tell the domtree about the new block. We don't fully update the 940 // domtree here -- instead we force it to do a full recomputation 941 // after the pass is complete -- but we do need to inform it of 942 // new blocks. 943 if (DT) 944 DT->addNewBlock(Abort, NewSISucc); 945 } 946 947 SimplifyCode(Worklist, L); 948 } 949 950 /// SimplifyCode - Okay, now that we have simplified some instructions in the 951 /// loop, walk over it and constant prop, dce, and fold control flow where 952 /// possible. Note that this is effectively a very simple loop-structure-aware 953 /// optimizer. During processing of this loop, L could very well be deleted, so 954 /// it must not be used. 955 /// 956 /// FIXME: When the loop optimizer is more mature, separate this out to a new 957 /// pass. 958 /// 959 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) { 960 while (!Worklist.empty()) { 961 Instruction *I = Worklist.back(); 962 Worklist.pop_back(); 963 964 // Simple DCE. 965 if (isInstructionTriviallyDead(I)) { 966 DEBUG(dbgs() << "Remove dead instruction '" << *I); 967 968 // Add uses to the worklist, which may be dead now. 969 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 970 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) 971 Worklist.push_back(Use); 972 LPM->deleteSimpleAnalysisValue(I, L); 973 RemoveFromWorklist(I, Worklist); 974 I->eraseFromParent(); 975 ++NumSimplify; 976 continue; 977 } 978 979 // See if instruction simplification can hack this up. This is common for 980 // things like "select false, X, Y" after unswitching made the condition be 981 // 'false'. 982 if (Value *V = SimplifyInstruction(I, 0, DT)) 983 if (LI->replacementPreservesLCSSAForm(I, V)) { 984 ReplaceUsesOfWith(I, V, Worklist, L, LPM); 985 continue; 986 } 987 988 // Special case hacks that appear commonly in unswitched code. 989 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 990 if (BI->isUnconditional()) { 991 // If BI's parent is the only pred of the successor, fold the two blocks 992 // together. 993 BasicBlock *Pred = BI->getParent(); 994 BasicBlock *Succ = BI->getSuccessor(0); 995 BasicBlock *SinglePred = Succ->getSinglePredecessor(); 996 if (!SinglePred) continue; // Nothing to do. 997 assert(SinglePred == Pred && "CFG broken"); 998 999 DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- " 1000 << Succ->getName() << "\n"); 1001 1002 // Resolve any single entry PHI nodes in Succ. 1003 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin())) 1004 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM); 1005 1006 // Move all of the successor contents from Succ to Pred. 1007 Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(), 1008 Succ->end()); 1009 LPM->deleteSimpleAnalysisValue(BI, L); 1010 BI->eraseFromParent(); 1011 RemoveFromWorklist(BI, Worklist); 1012 1013 // If Succ has any successors with PHI nodes, update them to have 1014 // entries coming from Pred instead of Succ. 1015 Succ->replaceAllUsesWith(Pred); 1016 1017 // Remove Succ from the loop tree. 1018 LI->removeBlock(Succ); 1019 LPM->deleteSimpleAnalysisValue(Succ, L); 1020 Succ->eraseFromParent(); 1021 ++NumSimplify; 1022 continue; 1023 } 1024 1025 if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){ 1026 // Conditional branch. Turn it into an unconditional branch, then 1027 // remove dead blocks. 1028 continue; // FIXME: Enable. 1029 1030 DEBUG(dbgs() << "Folded branch: " << *BI); 1031 BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue()); 1032 BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue()); 1033 DeadSucc->removePredecessor(BI->getParent(), true); 1034 Worklist.push_back(BranchInst::Create(LiveSucc, BI)); 1035 LPM->deleteSimpleAnalysisValue(BI, L); 1036 BI->eraseFromParent(); 1037 RemoveFromWorklist(BI, Worklist); 1038 ++NumSimplify; 1039 1040 RemoveBlockIfDead(DeadSucc, Worklist, L); 1041 } 1042 continue; 1043 } 1044 } 1045 } 1046