1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to have multiple loops.  For example, it turns the left into the right code:
12 //
13 //  for (...)                  if (lic)
14 //    A                          for (...)
15 //    if (lic)                     A; B; C
16 //      B                      else
17 //    C                          for (...)
18 //                                 A; C
19 //
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
23 //
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Scalar.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/AssumptionCache.h"
35 #include "llvm/Analysis/CodeMetrics.h"
36 #include "llvm/Analysis/InstructionSimplify.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/TargetTransformInfo.h"
41 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
42 #include "llvm/Analysis/BlockFrequencyInfo.h"
43 #include "llvm/Analysis/BranchProbabilityInfo.h"
44 #include "llvm/Support/BranchProbability.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Cloning.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include "llvm/Transforms/Utils/LoopUtils.h"
59 #include <algorithm>
60 #include <map>
61 #include <set>
62 using namespace llvm;
63 
64 #define DEBUG_TYPE "loop-unswitch"
65 
66 STATISTIC(NumBranches, "Number of branches unswitched");
67 STATISTIC(NumSwitches, "Number of switches unswitched");
68 STATISTIC(NumGuards,   "Number of guards unswitched");
69 STATISTIC(NumSelects , "Number of selects unswitched");
70 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
71 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
72 STATISTIC(TotalInsts,  "Total number of instructions analyzed");
73 
74 // The specific value of 100 here was chosen based only on intuition and a
75 // few specific examples.
76 static cl::opt<unsigned>
77 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
78           cl::init(100), cl::Hidden);
79 
80 static cl::opt<bool>
81 LoopUnswitchWithBlockFrequency("loop-unswitch-with-block-frequency",
82     cl::init(false), cl::Hidden,
83     cl::desc("Enable the use of the block frequency analysis to access PGO "
84              "heuristics to minimize code growth in cold regions."));
85 
86 static cl::opt<unsigned>
87 ColdnessThreshold("loop-unswitch-coldness-threshold", cl::init(1), cl::Hidden,
88     cl::desc("Coldness threshold in percentage. The loop header frequency "
89              "(relative to the entry frequency) is compared with this "
90              "threshold to determine if non-trivial unswitching should be "
91              "enabled."));
92 
93 namespace {
94 
95   class LUAnalysisCache {
96 
97     typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
98       UnswitchedValsMap;
99 
100     typedef UnswitchedValsMap::iterator UnswitchedValsIt;
101 
102     struct LoopProperties {
103       unsigned CanBeUnswitchedCount;
104       unsigned WasUnswitchedCount;
105       unsigned SizeEstimation;
106       UnswitchedValsMap UnswitchedVals;
107     };
108 
109     // Here we use std::map instead of DenseMap, since we need to keep valid
110     // LoopProperties pointer for current loop for better performance.
111     typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
112     typedef LoopPropsMap::iterator LoopPropsMapIt;
113 
114     LoopPropsMap LoopsProperties;
115     UnswitchedValsMap *CurLoopInstructions;
116     LoopProperties *CurrentLoopProperties;
117 
118     // A loop unswitching with an estimated cost above this threshold
119     // is not performed. MaxSize is turned into unswitching quota for
120     // the current loop, and reduced correspondingly, though note that
121     // the quota is returned by releaseMemory() when the loop has been
122     // processed, so that MaxSize will return to its previous
123     // value. So in most cases MaxSize will equal the Threshold flag
124     // when a new loop is processed. An exception to that is that
125     // MaxSize will have a smaller value while processing nested loops
126     // that were introduced due to loop unswitching of an outer loop.
127     //
128     // FIXME: The way that MaxSize works is subtle and depends on the
129     // pass manager processing loops and calling releaseMemory() in a
130     // specific order. It would be good to find a more straightforward
131     // way of doing what MaxSize does.
132     unsigned MaxSize;
133 
134   public:
135     LUAnalysisCache()
136         : CurLoopInstructions(nullptr), CurrentLoopProperties(nullptr),
137           MaxSize(Threshold) {}
138 
139     // Analyze loop. Check its size, calculate is it possible to unswitch
140     // it. Returns true if we can unswitch this loop.
141     bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
142                    AssumptionCache *AC);
143 
144     // Clean all data related to given loop.
145     void forgetLoop(const Loop *L);
146 
147     // Mark case value as unswitched.
148     // Since SI instruction can be partly unswitched, in order to avoid
149     // extra unswitching in cloned loops keep track all unswitched values.
150     void setUnswitched(const SwitchInst *SI, const Value *V);
151 
152     // Check was this case value unswitched before or not.
153     bool isUnswitched(const SwitchInst *SI, const Value *V);
154 
155     // Returns true if another unswitching could be done within the cost
156     // threshold.
157     bool CostAllowsUnswitching();
158 
159     // Clone all loop-unswitch related loop properties.
160     // Redistribute unswitching quotas.
161     // Note, that new loop data is stored inside the VMap.
162     void cloneData(const Loop *NewLoop, const Loop *OldLoop,
163                    const ValueToValueMapTy &VMap);
164   };
165 
166   class LoopUnswitch : public LoopPass {
167     LoopInfo *LI;  // Loop information
168     LPPassManager *LPM;
169     AssumptionCache *AC;
170 
171     // Used to check if second loop needs processing after
172     // RewriteLoopBodyWithConditionConstant rewrites first loop.
173     std::vector<Loop*> LoopProcessWorklist;
174 
175     LUAnalysisCache BranchesInfo;
176 
177     bool EnabledPGO;
178 
179     // BFI and ColdEntryFreq are only used when PGO and
180     // LoopUnswitchWithBlockFrequency are enabled.
181     BlockFrequencyInfo BFI;
182     BlockFrequency ColdEntryFreq;
183 
184     bool OptimizeForSize;
185     bool redoLoop;
186 
187     Loop *currentLoop;
188     DominatorTree *DT;
189     BasicBlock *loopHeader;
190     BasicBlock *loopPreheader;
191 
192     bool SanitizeMemory;
193     LoopSafetyInfo SafetyInfo;
194 
195     // LoopBlocks contains all of the basic blocks of the loop, including the
196     // preheader of the loop, the body of the loop, and the exit blocks of the
197     // loop, in that order.
198     std::vector<BasicBlock*> LoopBlocks;
199     // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
200     std::vector<BasicBlock*> NewBlocks;
201 
202   public:
203     static char ID; // Pass ID, replacement for typeid
204     explicit LoopUnswitch(bool Os = false) :
205       LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
206       currentLoop(nullptr), DT(nullptr), loopHeader(nullptr),
207       loopPreheader(nullptr) {
208         initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
209       }
210 
211     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
212     bool processCurrentLoop();
213     bool isUnreachableDueToPreviousUnswitching(BasicBlock *);
214     /// This transformation requires natural loop information & requires that
215     /// loop preheaders be inserted into the CFG.
216     ///
217     void getAnalysisUsage(AnalysisUsage &AU) const override {
218       AU.addRequired<AssumptionCacheTracker>();
219       AU.addRequired<TargetTransformInfoWrapperPass>();
220       getLoopAnalysisUsage(AU);
221     }
222 
223   private:
224 
225     void releaseMemory() override {
226       BranchesInfo.forgetLoop(currentLoop);
227     }
228 
229     void initLoopData() {
230       loopHeader = currentLoop->getHeader();
231       loopPreheader = currentLoop->getLoopPreheader();
232     }
233 
234     /// Split all of the edges from inside the loop to their exit blocks.
235     /// Update the appropriate Phi nodes as we do so.
236     void SplitExitEdges(Loop *L,
237                         const SmallVectorImpl<BasicBlock *> &ExitBlocks);
238 
239     bool TryTrivialLoopUnswitch(bool &Changed);
240 
241     bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
242                               TerminatorInst *TI = nullptr);
243     void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
244                                   BasicBlock *ExitBlock, TerminatorInst *TI);
245     void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
246                                      TerminatorInst *TI);
247 
248     void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
249                                               Constant *Val, bool isEqual);
250 
251     void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
252                                         BasicBlock *TrueDest,
253                                         BasicBlock *FalseDest,
254                                         Instruction *InsertPt,
255                                         TerminatorInst *TI);
256 
257     void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
258   };
259 }
260 
261 // Analyze loop. Check its size, calculate is it possible to unswitch
262 // it. Returns true if we can unswitch this loop.
263 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
264                                 AssumptionCache *AC) {
265 
266   LoopPropsMapIt PropsIt;
267   bool Inserted;
268   std::tie(PropsIt, Inserted) =
269       LoopsProperties.insert(std::make_pair(L, LoopProperties()));
270 
271   LoopProperties &Props = PropsIt->second;
272 
273   if (Inserted) {
274     // New loop.
275 
276     // Limit the number of instructions to avoid causing significant code
277     // expansion, and the number of basic blocks, to avoid loops with
278     // large numbers of branches which cause loop unswitching to go crazy.
279     // This is a very ad-hoc heuristic.
280 
281     SmallPtrSet<const Value *, 32> EphValues;
282     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
283 
284     // FIXME: This is overly conservative because it does not take into
285     // consideration code simplification opportunities and code that can
286     // be shared by the resultant unswitched loops.
287     CodeMetrics Metrics;
288     for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
289          ++I)
290       Metrics.analyzeBasicBlock(*I, TTI, EphValues);
291 
292     Props.SizeEstimation = Metrics.NumInsts;
293     Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
294     Props.WasUnswitchedCount = 0;
295     MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
296 
297     if (Metrics.notDuplicatable) {
298       DEBUG(dbgs() << "NOT unswitching loop %"
299                    << L->getHeader()->getName() << ", contents cannot be "
300                    << "duplicated!\n");
301       return false;
302     }
303   }
304 
305   // Be careful. This links are good only before new loop addition.
306   CurrentLoopProperties = &Props;
307   CurLoopInstructions = &Props.UnswitchedVals;
308 
309   return true;
310 }
311 
312 // Clean all data related to given loop.
313 void LUAnalysisCache::forgetLoop(const Loop *L) {
314 
315   LoopPropsMapIt LIt = LoopsProperties.find(L);
316 
317   if (LIt != LoopsProperties.end()) {
318     LoopProperties &Props = LIt->second;
319     MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
320                Props.SizeEstimation;
321     LoopsProperties.erase(LIt);
322   }
323 
324   CurrentLoopProperties = nullptr;
325   CurLoopInstructions = nullptr;
326 }
327 
328 // Mark case value as unswitched.
329 // Since SI instruction can be partly unswitched, in order to avoid
330 // extra unswitching in cloned loops keep track all unswitched values.
331 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
332   (*CurLoopInstructions)[SI].insert(V);
333 }
334 
335 // Check was this case value unswitched before or not.
336 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
337   return (*CurLoopInstructions)[SI].count(V);
338 }
339 
340 bool LUAnalysisCache::CostAllowsUnswitching() {
341   return CurrentLoopProperties->CanBeUnswitchedCount > 0;
342 }
343 
344 // Clone all loop-unswitch related loop properties.
345 // Redistribute unswitching quotas.
346 // Note, that new loop data is stored inside the VMap.
347 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
348                                 const ValueToValueMapTy &VMap) {
349 
350   LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
351   LoopProperties &OldLoopProps = *CurrentLoopProperties;
352   UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
353 
354   // Reallocate "can-be-unswitched quota"
355 
356   --OldLoopProps.CanBeUnswitchedCount;
357   ++OldLoopProps.WasUnswitchedCount;
358   NewLoopProps.WasUnswitchedCount = 0;
359   unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
360   NewLoopProps.CanBeUnswitchedCount = Quota / 2;
361   OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
362 
363   NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
364 
365   // Clone unswitched values info:
366   // for new loop switches we clone info about values that was
367   // already unswitched and has redundant successors.
368   for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
369     const SwitchInst *OldInst = I->first;
370     Value *NewI = VMap.lookup(OldInst);
371     const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
372     assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
373 
374     NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
375   }
376 }
377 
378 char LoopUnswitch::ID = 0;
379 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
380                       false, false)
381 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
382 INITIALIZE_PASS_DEPENDENCY(LoopPass)
383 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
384 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
385                       false, false)
386 
387 Pass *llvm::createLoopUnswitchPass(bool Os) {
388   return new LoopUnswitch(Os);
389 }
390 
391 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
392 /// an invariant piece, return the invariant. Otherwise, return null.
393 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
394                                    DenseMap<Value *, Value *> &Cache) {
395   auto CacheIt = Cache.find(Cond);
396   if (CacheIt != Cache.end())
397     return CacheIt->second;
398 
399   // We started analyze new instruction, increment scanned instructions counter.
400   ++TotalInsts;
401 
402   // We can never unswitch on vector conditions.
403   if (Cond->getType()->isVectorTy())
404     return nullptr;
405 
406   // Constants should be folded, not unswitched on!
407   if (isa<Constant>(Cond)) return nullptr;
408 
409   // TODO: Handle: br (VARIANT|INVARIANT).
410 
411   // Hoist simple values out.
412   if (L->makeLoopInvariant(Cond, Changed)) {
413     Cache[Cond] = Cond;
414     return Cond;
415   }
416 
417   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
418     if (BO->getOpcode() == Instruction::And ||
419         BO->getOpcode() == Instruction::Or) {
420       // If either the left or right side is invariant, we can unswitch on this,
421       // which will cause the branch to go away in one loop and the condition to
422       // simplify in the other one.
423       if (Value *LHS =
424               FindLIVLoopCondition(BO->getOperand(0), L, Changed, Cache)) {
425         Cache[Cond] = LHS;
426         return LHS;
427       }
428       if (Value *RHS =
429               FindLIVLoopCondition(BO->getOperand(1), L, Changed, Cache)) {
430         Cache[Cond] = RHS;
431         return RHS;
432       }
433     }
434 
435   Cache[Cond] = nullptr;
436   return nullptr;
437 }
438 
439 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
440   DenseMap<Value *, Value *> Cache;
441   return FindLIVLoopCondition(Cond, L, Changed, Cache);
442 }
443 
444 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
445   if (skipLoop(L))
446     return false;
447 
448   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
449       *L->getHeader()->getParent());
450   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
451   LPM = &LPM_Ref;
452   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
453   currentLoop = L;
454   Function *F = currentLoop->getHeader()->getParent();
455 
456   SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
457   if (SanitizeMemory)
458     computeLoopSafetyInfo(&SafetyInfo, L);
459 
460   EnabledPGO = F->getEntryCount().hasValue();
461 
462   if (LoopUnswitchWithBlockFrequency && EnabledPGO) {
463     BranchProbabilityInfo BPI(*F, *LI);
464     BFI.calculate(*L->getHeader()->getParent(), BPI, *LI);
465 
466     // Use BranchProbability to compute a minimum frequency based on
467     // function entry baseline frequency. Loops with headers below this
468     // frequency are considered as cold.
469     const BranchProbability ColdProb(ColdnessThreshold, 100);
470     ColdEntryFreq = BlockFrequency(BFI.getEntryFreq()) * ColdProb;
471   }
472 
473   bool Changed = false;
474   do {
475     assert(currentLoop->isLCSSAForm(*DT));
476     redoLoop = false;
477     Changed |= processCurrentLoop();
478   } while(redoLoop);
479 
480   // FIXME: Reconstruct dom info, because it is not preserved properly.
481   if (Changed)
482     DT->recalculate(*F);
483   return Changed;
484 }
485 
486 // Return true if the BasicBlock BB is unreachable from the loop header.
487 // Return false, otherwise.
488 bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
489   auto *Node = DT->getNode(BB)->getIDom();
490   BasicBlock *DomBB = Node->getBlock();
491   while (currentLoop->contains(DomBB)) {
492     BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());
493 
494     Node = DT->getNode(DomBB)->getIDom();
495     DomBB = Node->getBlock();
496 
497     if (!BInst || !BInst->isConditional())
498       continue;
499 
500     Value *Cond = BInst->getCondition();
501     if (!isa<ConstantInt>(Cond))
502       continue;
503 
504     BasicBlock *UnreachableSucc =
505         Cond == ConstantInt::getTrue(Cond->getContext())
506             ? BInst->getSuccessor(1)
507             : BInst->getSuccessor(0);
508 
509     if (DT->dominates(UnreachableSucc, BB))
510       return true;
511   }
512   return false;
513 }
514 
515 /// Do actual work and unswitch loop if possible and profitable.
516 bool LoopUnswitch::processCurrentLoop() {
517   bool Changed = false;
518 
519   initLoopData();
520 
521   // If LoopSimplify was unable to form a preheader, don't do any unswitching.
522   if (!loopPreheader)
523     return false;
524 
525   // Loops with indirectbr cannot be cloned.
526   if (!currentLoop->isSafeToClone())
527     return false;
528 
529   // Without dedicated exits, splitting the exit edge may fail.
530   if (!currentLoop->hasDedicatedExits())
531     return false;
532 
533   LLVMContext &Context = loopHeader->getContext();
534 
535   // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
536   if (!BranchesInfo.countLoop(
537           currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
538                            *currentLoop->getHeader()->getParent()),
539           AC))
540     return false;
541 
542   // Try trivial unswitch first before loop over other basic blocks in the loop.
543   if (TryTrivialLoopUnswitch(Changed)) {
544     return true;
545   }
546 
547   // Run through the instructions in the loop, keeping track of three things:
548   //
549   //  - That we do not unswitch loops containing convergent operations, as we
550   //    might be making them control dependent on the unswitch value when they
551   //    were not before.
552   //    FIXME: This could be refined to only bail if the convergent operation is
553   //    not already control-dependent on the unswitch value.
554   //
555   //  - That basic blocks in the loop contain invokes whose predecessor edges we
556   //    cannot split.
557   //
558   //  - The set of guard intrinsics encountered (these are non terminator
559   //    instructions that are also profitable to be unswitched).
560 
561   SmallVector<IntrinsicInst *, 4> Guards;
562 
563   for (const auto BB : currentLoop->blocks()) {
564     for (auto &I : *BB) {
565       auto CS = CallSite(&I);
566       if (!CS) continue;
567       if (CS.hasFnAttr(Attribute::Convergent))
568         return false;
569       if (auto *II = dyn_cast<InvokeInst>(&I))
570         if (!II->getUnwindDest()->canSplitPredecessors())
571           return false;
572       if (auto *II = dyn_cast<IntrinsicInst>(&I))
573         if (II->getIntrinsicID() == Intrinsic::experimental_guard)
574           Guards.push_back(II);
575     }
576   }
577 
578   // Do not do non-trivial unswitch while optimizing for size.
579   // FIXME: Use Function::optForSize().
580   if (OptimizeForSize ||
581       loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
582     return false;
583 
584   if (LoopUnswitchWithBlockFrequency && EnabledPGO) {
585     // Compute the weighted frequency of the hottest block in the
586     // loop (loopHeader in this case since inner loops should be
587     // processed before outer loop). If it is less than ColdFrequency,
588     // we should not unswitch.
589     BlockFrequency LoopEntryFreq = BFI.getBlockFreq(loopHeader);
590     if (LoopEntryFreq < ColdEntryFreq)
591       return false;
592   }
593 
594   for (IntrinsicInst *Guard : Guards) {
595     Value *LoopCond =
596         FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed);
597     if (LoopCond &&
598         UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
599       // NB! Unswitching (if successful) could have erased some of the
600       // instructions in Guards leaving dangling pointers there.  This is fine
601       // because we're returning now, and won't look at Guards again.
602       ++NumGuards;
603       return true;
604     }
605   }
606 
607   // Loop over all of the basic blocks in the loop.  If we find an interior
608   // block that is branching on a loop-invariant condition, we can unswitch this
609   // loop.
610   for (Loop::block_iterator I = currentLoop->block_begin(),
611          E = currentLoop->block_end(); I != E; ++I) {
612     TerminatorInst *TI = (*I)->getTerminator();
613 
614     // Unswitching on a potentially uninitialized predicate is not
615     // MSan-friendly. Limit this to the cases when the original predicate is
616     // guaranteed to execute, to avoid creating a use-of-uninitialized-value
617     // in the code that did not have one.
618     // This is a workaround for the discrepancy between LLVM IR and MSan
619     // semantics. See PR28054 for more details.
620     if (SanitizeMemory &&
621         !isGuaranteedToExecute(*TI, DT, currentLoop, &SafetyInfo))
622       continue;
623 
624     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
625       // Some branches may be rendered unreachable because of previous
626       // unswitching.
627       // Unswitch only those branches that are reachable.
628       if (isUnreachableDueToPreviousUnswitching(*I))
629         continue;
630 
631       // If this isn't branching on an invariant condition, we can't unswitch
632       // it.
633       if (BI->isConditional()) {
634         // See if this, or some part of it, is loop invariant.  If so, we can
635         // unswitch on it if we desire.
636         Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
637                                                currentLoop, Changed);
638         if (LoopCond &&
639             UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
640           ++NumBranches;
641           return true;
642         }
643       }
644     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
645       Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
646                                              currentLoop, Changed);
647       unsigned NumCases = SI->getNumCases();
648       if (LoopCond && NumCases) {
649         // Find a value to unswitch on:
650         // FIXME: this should chose the most expensive case!
651         // FIXME: scan for a case with a non-critical edge?
652         Constant *UnswitchVal = nullptr;
653 
654         // Do not process same value again and again.
655         // At this point we have some cases already unswitched and
656         // some not yet unswitched. Let's find the first not yet unswitched one.
657         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
658              i != e; ++i) {
659           Constant *UnswitchValCandidate = i.getCaseValue();
660           if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
661             UnswitchVal = UnswitchValCandidate;
662             break;
663           }
664         }
665 
666         if (!UnswitchVal)
667           continue;
668 
669         if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
670           ++NumSwitches;
671           return true;
672         }
673       }
674     }
675 
676     // Scan the instructions to check for unswitchable values.
677     for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
678          BBI != E; ++BBI)
679       if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
680         Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
681                                                currentLoop, Changed);
682         if (LoopCond && UnswitchIfProfitable(LoopCond,
683                                              ConstantInt::getTrue(Context))) {
684           ++NumSelects;
685           return true;
686         }
687       }
688   }
689   return Changed;
690 }
691 
692 /// Check to see if all paths from BB exit the loop with no side effects
693 /// (including infinite loops).
694 ///
695 /// If true, we return true and set ExitBB to the block we
696 /// exit through.
697 ///
698 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
699                                          BasicBlock *&ExitBB,
700                                          std::set<BasicBlock*> &Visited) {
701   if (!Visited.insert(BB).second) {
702     // Already visited. Without more analysis, this could indicate an infinite
703     // loop.
704     return false;
705   }
706   if (!L->contains(BB)) {
707     // Otherwise, this is a loop exit, this is fine so long as this is the
708     // first exit.
709     if (ExitBB) return false;
710     ExitBB = BB;
711     return true;
712   }
713 
714   // Otherwise, this is an unvisited intra-loop node.  Check all successors.
715   for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
716     // Check to see if the successor is a trivial loop exit.
717     if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
718       return false;
719   }
720 
721   // Okay, everything after this looks good, check to make sure that this block
722   // doesn't include any side effects.
723   for (Instruction &I : *BB)
724     if (I.mayHaveSideEffects())
725       return false;
726 
727   return true;
728 }
729 
730 /// Return true if the specified block unconditionally leads to an exit from
731 /// the specified loop, and has no side-effects in the process. If so, return
732 /// the block that is exited to, otherwise return null.
733 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
734   std::set<BasicBlock*> Visited;
735   Visited.insert(L->getHeader());  // Branches to header make infinite loops.
736   BasicBlock *ExitBB = nullptr;
737   if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
738     return ExitBB;
739   return nullptr;
740 }
741 
742 /// We have found that we can unswitch currentLoop when LoopCond == Val to
743 /// simplify the loop.  If we decide that this is profitable,
744 /// unswitch the loop, reprocess the pieces, then return true.
745 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
746                                         TerminatorInst *TI) {
747   // Check to see if it would be profitable to unswitch current loop.
748   if (!BranchesInfo.CostAllowsUnswitching()) {
749     DEBUG(dbgs() << "NOT unswitching loop %"
750                  << currentLoop->getHeader()->getName()
751                  << " at non-trivial condition '" << *Val
752                  << "' == " << *LoopCond << "\n"
753                  << ". Cost too high.\n");
754     return false;
755   }
756 
757   UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
758   return true;
759 }
760 
761 /// Recursively clone the specified loop and all of its children,
762 /// mapping the blocks with the specified map.
763 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
764                        LoopInfo *LI, LPPassManager *LPM) {
765   Loop &New = LPM->addLoop(PL);
766 
767   // Add all of the blocks in L to the new loop.
768   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
769        I != E; ++I)
770     if (LI->getLoopFor(*I) == L)
771       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
772 
773   // Add all of the subloops to the new loop.
774   for (Loop *I : *L)
775     CloneLoop(I, &New, VM, LI, LPM);
776 
777   return &New;
778 }
779 
780 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
781 /// otherwise branch to FalseDest. Insert the code immediately before InsertPt.
782 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
783                                                   BasicBlock *TrueDest,
784                                                   BasicBlock *FalseDest,
785                                                   Instruction *InsertPt,
786                                                   TerminatorInst *TI) {
787   // Insert a conditional branch on LIC to the two preheaders.  The original
788   // code is the true version and the new code is the false version.
789   Value *BranchVal = LIC;
790   bool Swapped = false;
791   if (!isa<ConstantInt>(Val) ||
792       Val->getType() != Type::getInt1Ty(LIC->getContext()))
793     BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
794   else if (Val != ConstantInt::getTrue(Val->getContext())) {
795     // We want to enter the new loop when the condition is true.
796     std::swap(TrueDest, FalseDest);
797     Swapped = true;
798   }
799 
800   // Insert the new branch.
801   BranchInst *BI =
802       IRBuilder<>(InsertPt).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
803   if (Swapped)
804     BI->swapProfMetadata();
805 
806   // If either edge is critical, split it. This helps preserve LoopSimplify
807   // form for enclosing loops.
808   auto Options = CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA();
809   SplitCriticalEdge(BI, 0, Options);
810   SplitCriticalEdge(BI, 1, Options);
811 }
812 
813 /// Given a loop that has a trivial unswitchable condition in it (a cond branch
814 /// from its header block to its latch block, where the path through the loop
815 /// that doesn't execute its body has no side-effects), unswitch it. This
816 /// doesn't involve any code duplication, just moving the conditional branch
817 /// outside of the loop and updating loop info.
818 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
819                                             BasicBlock *ExitBlock,
820                                             TerminatorInst *TI) {
821   DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
822                << loopHeader->getName() << " [" << L->getBlocks().size()
823                << " blocks] in Function "
824                << L->getHeader()->getParent()->getName() << " on cond: " << *Val
825                << " == " << *Cond << "\n");
826 
827   // First step, split the preheader, so that we know that there is a safe place
828   // to insert the conditional branch.  We will change loopPreheader to have a
829   // conditional branch on Cond.
830   BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI);
831 
832   // Now that we have a place to insert the conditional branch, create a place
833   // to branch to: this is the exit block out of the loop that we should
834   // short-circuit to.
835 
836   // Split this block now, so that the loop maintains its exit block, and so
837   // that the jump from the preheader can execute the contents of the exit block
838   // without actually branching to it (the exit block should be dominated by the
839   // loop header, not the preheader).
840   assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
841   BasicBlock *NewExit = SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI);
842 
843   // Okay, now we have a position to branch from and a position to branch to,
844   // insert the new conditional branch.
845   EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
846                                  loopPreheader->getTerminator(), TI);
847   LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
848   loopPreheader->getTerminator()->eraseFromParent();
849 
850   // We need to reprocess this loop, it could be unswitched again.
851   redoLoop = true;
852 
853   // Now that we know that the loop is never entered when this condition is a
854   // particular value, rewrite the loop with this info.  We know that this will
855   // at least eliminate the old branch.
856   RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
857   ++NumTrivial;
858 }
859 
860 /// Check if the first non-constant condition starting from the loop header is
861 /// a trivial unswitch condition: that is, a condition controls whether or not
862 /// the loop does anything at all. If it is a trivial condition, unswitching
863 /// produces no code duplications (equivalently, it produces a simpler loop and
864 /// a new empty loop, which gets deleted). Therefore always unswitch trivial
865 /// condition.
866 bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
867   BasicBlock *CurrentBB = currentLoop->getHeader();
868   TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
869   LLVMContext &Context = CurrentBB->getContext();
870 
871   // If loop header has only one reachable successor (currently via an
872   // unconditional branch or constant foldable conditional branch, but
873   // should also consider adding constant foldable switch instruction in
874   // future), we should keep looking for trivial condition candidates in
875   // the successor as well. An alternative is to constant fold conditions
876   // and merge successors into loop header (then we only need to check header's
877   // terminator). The reason for not doing this in LoopUnswitch pass is that
878   // it could potentially break LoopPassManager's invariants. Folding dead
879   // branches could either eliminate the current loop or make other loops
880   // unreachable. LCSSA form might also not be preserved after deleting
881   // branches. The following code keeps traversing loop header's successors
882   // until it finds the trivial condition candidate (condition that is not a
883   // constant). Since unswitching generates branches with constant conditions,
884   // this scenario could be very common in practice.
885   SmallSet<BasicBlock*, 8> Visited;
886 
887   while (true) {
888     // If we exit loop or reach a previous visited block, then
889     // we can not reach any trivial condition candidates (unfoldable
890     // branch instructions or switch instructions) and no unswitch
891     // can happen. Exit and return false.
892     if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
893       return false;
894 
895     // Check if this loop will execute any side-effecting instructions (e.g.
896     // stores, calls, volatile loads) in the part of the loop that the code
897     // *would* execute. Check the header first.
898     for (Instruction &I : *CurrentBB)
899       if (I.mayHaveSideEffects())
900         return false;
901 
902     // FIXME: add check for constant foldable switch instructions.
903     if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
904       if (BI->isUnconditional()) {
905         CurrentBB = BI->getSuccessor(0);
906       } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
907         CurrentBB = BI->getSuccessor(0);
908       } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
909         CurrentBB = BI->getSuccessor(1);
910       } else {
911         // Found a trivial condition candidate: non-foldable conditional branch.
912         break;
913       }
914     } else {
915       break;
916     }
917 
918     CurrentTerm = CurrentBB->getTerminator();
919   }
920 
921   // CondVal is the condition that controls the trivial condition.
922   // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
923   Constant *CondVal = nullptr;
924   BasicBlock *LoopExitBB = nullptr;
925 
926   if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
927     // If this isn't branching on an invariant condition, we can't unswitch it.
928     if (!BI->isConditional())
929       return false;
930 
931     Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
932                                            currentLoop, Changed);
933 
934     // Unswitch only if the trivial condition itself is an LIV (not
935     // partial LIV which could occur in and/or)
936     if (!LoopCond || LoopCond != BI->getCondition())
937       return false;
938 
939     // Check to see if a successor of the branch is guaranteed to
940     // exit through a unique exit block without having any
941     // side-effects.  If so, determine the value of Cond that causes
942     // it to do this.
943     if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
944                                              BI->getSuccessor(0)))) {
945       CondVal = ConstantInt::getTrue(Context);
946     } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
947                                                     BI->getSuccessor(1)))) {
948       CondVal = ConstantInt::getFalse(Context);
949     }
950 
951     // If we didn't find a single unique LoopExit block, or if the loop exit
952     // block contains phi nodes, this isn't trivial.
953     if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
954       return false;   // Can't handle this.
955 
956     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
957                              CurrentTerm);
958     ++NumBranches;
959     return true;
960   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
961     // If this isn't switching on an invariant condition, we can't unswitch it.
962     Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
963                                            currentLoop, Changed);
964 
965     // Unswitch only if the trivial condition itself is an LIV (not
966     // partial LIV which could occur in and/or)
967     if (!LoopCond || LoopCond != SI->getCondition())
968       return false;
969 
970     // Check to see if a successor of the switch is guaranteed to go to the
971     // latch block or exit through a one exit block without having any
972     // side-effects.  If so, determine the value of Cond that causes it to do
973     // this.
974     // Note that we can't trivially unswitch on the default case or
975     // on already unswitched cases.
976     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
977          i != e; ++i) {
978       BasicBlock *LoopExitCandidate;
979       if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
980                                                i.getCaseSuccessor()))) {
981         // Okay, we found a trivial case, remember the value that is trivial.
982         ConstantInt *CaseVal = i.getCaseValue();
983 
984         // Check that it was not unswitched before, since already unswitched
985         // trivial vals are looks trivial too.
986         if (BranchesInfo.isUnswitched(SI, CaseVal))
987           continue;
988         LoopExitBB = LoopExitCandidate;
989         CondVal = CaseVal;
990         break;
991       }
992     }
993 
994     // If we didn't find a single unique LoopExit block, or if the loop exit
995     // block contains phi nodes, this isn't trivial.
996     if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
997       return false;   // Can't handle this.
998 
999     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
1000                              nullptr);
1001     ++NumSwitches;
1002     return true;
1003   }
1004   return false;
1005 }
1006 
1007 /// Split all of the edges from inside the loop to their exit blocks.
1008 /// Update the appropriate Phi nodes as we do so.
1009 void LoopUnswitch::SplitExitEdges(Loop *L,
1010                                const SmallVectorImpl<BasicBlock *> &ExitBlocks){
1011 
1012   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1013     BasicBlock *ExitBlock = ExitBlocks[i];
1014     SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
1015                                        pred_end(ExitBlock));
1016 
1017     // Although SplitBlockPredecessors doesn't preserve loop-simplify in
1018     // general, if we call it on all predecessors of all exits then it does.
1019     SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI,
1020                            /*PreserveLCSSA*/ true);
1021   }
1022 }
1023 
1024 /// We determined that the loop is profitable to unswitch when LIC equal Val.
1025 /// Split it into loop versions and test the condition outside of either loop.
1026 /// Return the loops created as Out1/Out2.
1027 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
1028                                                Loop *L, TerminatorInst *TI) {
1029   Function *F = loopHeader->getParent();
1030   DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
1031         << loopHeader->getName() << " [" << L->getBlocks().size()
1032         << " blocks] in Function " << F->getName()
1033         << " when '" << *Val << "' == " << *LIC << "\n");
1034 
1035   if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
1036     SEWP->getSE().forgetLoop(L);
1037 
1038   LoopBlocks.clear();
1039   NewBlocks.clear();
1040 
1041   // First step, split the preheader and exit blocks, and add these blocks to
1042   // the LoopBlocks list.
1043   BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, DT, LI);
1044   LoopBlocks.push_back(NewPreheader);
1045 
1046   // We want the loop to come after the preheader, but before the exit blocks.
1047   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
1048 
1049   SmallVector<BasicBlock*, 8> ExitBlocks;
1050   L->getUniqueExitBlocks(ExitBlocks);
1051 
1052   // Split all of the edges from inside the loop to their exit blocks.  Update
1053   // the appropriate Phi nodes as we do so.
1054   SplitExitEdges(L, ExitBlocks);
1055 
1056   // The exit blocks may have been changed due to edge splitting, recompute.
1057   ExitBlocks.clear();
1058   L->getUniqueExitBlocks(ExitBlocks);
1059 
1060   // Add exit blocks to the loop blocks.
1061   LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
1062 
1063   // Next step, clone all of the basic blocks that make up the loop (including
1064   // the loop preheader and exit blocks), keeping track of the mapping between
1065   // the instructions and blocks.
1066   NewBlocks.reserve(LoopBlocks.size());
1067   ValueToValueMapTy VMap;
1068   for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
1069     BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
1070 
1071     NewBlocks.push_back(NewBB);
1072     VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
1073     LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
1074   }
1075 
1076   // Splice the newly inserted blocks into the function right before the
1077   // original preheader.
1078   F->getBasicBlockList().splice(NewPreheader->getIterator(),
1079                                 F->getBasicBlockList(),
1080                                 NewBlocks[0]->getIterator(), F->end());
1081 
1082   // Now we create the new Loop object for the versioned loop.
1083   Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
1084 
1085   // Recalculate unswitching quota, inherit simplified switches info for NewBB,
1086   // Probably clone more loop-unswitch related loop properties.
1087   BranchesInfo.cloneData(NewLoop, L, VMap);
1088 
1089   Loop *ParentLoop = L->getParentLoop();
1090   if (ParentLoop) {
1091     // Make sure to add the cloned preheader and exit blocks to the parent loop
1092     // as well.
1093     ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
1094   }
1095 
1096   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1097     BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
1098     // The new exit block should be in the same loop as the old one.
1099     if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
1100       ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
1101 
1102     assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
1103            "Exit block should have been split to have one successor!");
1104     BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
1105 
1106     // If the successor of the exit block had PHI nodes, add an entry for
1107     // NewExit.
1108     for (BasicBlock::iterator I = ExitSucc->begin();
1109          PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1110       Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
1111       ValueToValueMapTy::iterator It = VMap.find(V);
1112       if (It != VMap.end()) V = It->second;
1113       PN->addIncoming(V, NewExit);
1114     }
1115 
1116     if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
1117       PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
1118                                     &*ExitSucc->getFirstInsertionPt());
1119 
1120       for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
1121            I != E; ++I) {
1122         BasicBlock *BB = *I;
1123         LandingPadInst *LPI = BB->getLandingPadInst();
1124         LPI->replaceAllUsesWith(PN);
1125         PN->addIncoming(LPI, BB);
1126       }
1127     }
1128   }
1129 
1130   // Rewrite the code to refer to itself.
1131   for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
1132     for (Instruction &I : *NewBlocks[i]) {
1133       RemapInstruction(&I, VMap,
1134                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1135       if (auto *II = dyn_cast<IntrinsicInst>(&I))
1136         if (II->getIntrinsicID() == Intrinsic::assume)
1137           AC->registerAssumption(II);
1138     }
1139   }
1140 
1141   // Rewrite the original preheader to select between versions of the loop.
1142   BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
1143   assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
1144          "Preheader splitting did not work correctly!");
1145 
1146   // Emit the new branch that selects between the two versions of this loop.
1147   EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
1148                                  TI);
1149   LPM->deleteSimpleAnalysisValue(OldBR, L);
1150   OldBR->eraseFromParent();
1151 
1152   LoopProcessWorklist.push_back(NewLoop);
1153   redoLoop = true;
1154 
1155   // Keep a WeakVH holding onto LIC.  If the first call to RewriteLoopBody
1156   // deletes the instruction (for example by simplifying a PHI that feeds into
1157   // the condition that we're unswitching on), we don't rewrite the second
1158   // iteration.
1159   WeakVH LICHandle(LIC);
1160 
1161   // Now we rewrite the original code to know that the condition is true and the
1162   // new code to know that the condition is false.
1163   RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
1164 
1165   // It's possible that simplifying one loop could cause the other to be
1166   // changed to another value or a constant.  If its a constant, don't simplify
1167   // it.
1168   if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
1169       LICHandle && !isa<Constant>(LICHandle))
1170     RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
1171 }
1172 
1173 /// Remove all instances of I from the worklist vector specified.
1174 static void RemoveFromWorklist(Instruction *I,
1175                                std::vector<Instruction*> &Worklist) {
1176 
1177   Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
1178                  Worklist.end());
1179 }
1180 
1181 /// When we find that I really equals V, remove I from the
1182 /// program, replacing all uses with V and update the worklist.
1183 static void ReplaceUsesOfWith(Instruction *I, Value *V,
1184                               std::vector<Instruction*> &Worklist,
1185                               Loop *L, LPPassManager *LPM) {
1186   DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
1187 
1188   // Add uses to the worklist, which may be dead now.
1189   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1190     if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1191       Worklist.push_back(Use);
1192 
1193   // Add users to the worklist which may be simplified now.
1194   for (User *U : I->users())
1195     Worklist.push_back(cast<Instruction>(U));
1196   LPM->deleteSimpleAnalysisValue(I, L);
1197   RemoveFromWorklist(I, Worklist);
1198   I->replaceAllUsesWith(V);
1199   I->eraseFromParent();
1200   ++NumSimplify;
1201 }
1202 
1203 /// We know either that the value LIC has the value specified by Val in the
1204 /// specified loop, or we know it does NOT have that value.
1205 /// Rewrite any uses of LIC or of properties correlated to it.
1206 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1207                                                         Constant *Val,
1208                                                         bool IsEqual) {
1209   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1210 
1211   // FIXME: Support correlated properties, like:
1212   //  for (...)
1213   //    if (li1 < li2)
1214   //      ...
1215   //    if (li1 > li2)
1216   //      ...
1217 
1218   // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
1219   // selects, switches.
1220   std::vector<Instruction*> Worklist;
1221   LLVMContext &Context = Val->getContext();
1222 
1223   // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1224   // in the loop with the appropriate one directly.
1225   if (IsEqual || (isa<ConstantInt>(Val) &&
1226       Val->getType()->isIntegerTy(1))) {
1227     Value *Replacement;
1228     if (IsEqual)
1229       Replacement = Val;
1230     else
1231       Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
1232                                      !cast<ConstantInt>(Val)->getZExtValue());
1233 
1234     for (User *U : LIC->users()) {
1235       Instruction *UI = dyn_cast<Instruction>(U);
1236       if (!UI || !L->contains(UI))
1237         continue;
1238       Worklist.push_back(UI);
1239     }
1240 
1241     for (Instruction *UI : Worklist)
1242       UI->replaceUsesOfWith(LIC, Replacement);
1243 
1244     SimplifyCode(Worklist, L);
1245     return;
1246   }
1247 
1248   // Otherwise, we don't know the precise value of LIC, but we do know that it
1249   // is certainly NOT "Val".  As such, simplify any uses in the loop that we
1250   // can.  This case occurs when we unswitch switch statements.
1251   for (User *U : LIC->users()) {
1252     Instruction *UI = dyn_cast<Instruction>(U);
1253     if (!UI || !L->contains(UI))
1254       continue;
1255 
1256     Worklist.push_back(UI);
1257 
1258     // TODO: We could do other simplifications, for example, turning
1259     // 'icmp eq LIC, Val' -> false.
1260 
1261     // If we know that LIC is not Val, use this info to simplify code.
1262     SwitchInst *SI = dyn_cast<SwitchInst>(UI);
1263     if (!SI || !isa<ConstantInt>(Val)) continue;
1264 
1265     SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
1266     // Default case is live for multiple values.
1267     if (DeadCase == SI->case_default()) continue;
1268 
1269     // Found a dead case value.  Don't remove PHI nodes in the
1270     // successor if they become single-entry, those PHI nodes may
1271     // be in the Users list.
1272 
1273     BasicBlock *Switch = SI->getParent();
1274     BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1275     BasicBlock *Latch = L->getLoopLatch();
1276 
1277     BranchesInfo.setUnswitched(SI, Val);
1278 
1279     if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
1280     // If the DeadCase successor dominates the loop latch, then the
1281     // transformation isn't safe since it will delete the sole predecessor edge
1282     // to the latch.
1283     if (Latch && DT->dominates(SISucc, Latch))
1284       continue;
1285 
1286     // FIXME: This is a hack.  We need to keep the successor around
1287     // and hooked up so as to preserve the loop structure, because
1288     // trying to update it is complicated.  So instead we preserve the
1289     // loop structure and put the block on a dead code path.
1290     SplitEdge(Switch, SISucc, DT, LI);
1291     // Compute the successors instead of relying on the return value
1292     // of SplitEdge, since it may have split the switch successor
1293     // after PHI nodes.
1294     BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1295     BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1296     // Create an "unreachable" destination.
1297     BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1298                                            Switch->getParent(),
1299                                            OldSISucc);
1300     new UnreachableInst(Context, Abort);
1301     // Force the new case destination to branch to the "unreachable"
1302     // block while maintaining a (dead) CFG edge to the old block.
1303     NewSISucc->getTerminator()->eraseFromParent();
1304     BranchInst::Create(Abort, OldSISucc,
1305                        ConstantInt::getTrue(Context), NewSISucc);
1306     // Release the PHI operands for this edge.
1307     for (BasicBlock::iterator II = NewSISucc->begin();
1308          PHINode *PN = dyn_cast<PHINode>(II); ++II)
1309       PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
1310                            UndefValue::get(PN->getType()));
1311     // Tell the domtree about the new block. We don't fully update the
1312     // domtree here -- instead we force it to do a full recomputation
1313     // after the pass is complete -- but we do need to inform it of
1314     // new blocks.
1315     DT->addNewBlock(Abort, NewSISucc);
1316   }
1317 
1318   SimplifyCode(Worklist, L);
1319 }
1320 
1321 /// Now that we have simplified some instructions in the loop, walk over it and
1322 /// constant prop, dce, and fold control flow where possible. Note that this is
1323 /// effectively a very simple loop-structure-aware optimizer. During processing
1324 /// of this loop, L could very well be deleted, so it must not be used.
1325 ///
1326 /// FIXME: When the loop optimizer is more mature, separate this out to a new
1327 /// pass.
1328 ///
1329 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1330   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1331   while (!Worklist.empty()) {
1332     Instruction *I = Worklist.back();
1333     Worklist.pop_back();
1334 
1335     // Simple DCE.
1336     if (isInstructionTriviallyDead(I)) {
1337       DEBUG(dbgs() << "Remove dead instruction '" << *I);
1338 
1339       // Add uses to the worklist, which may be dead now.
1340       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1341         if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1342           Worklist.push_back(Use);
1343       LPM->deleteSimpleAnalysisValue(I, L);
1344       RemoveFromWorklist(I, Worklist);
1345       I->eraseFromParent();
1346       ++NumSimplify;
1347       continue;
1348     }
1349 
1350     // See if instruction simplification can hack this up.  This is common for
1351     // things like "select false, X, Y" after unswitching made the condition be
1352     // 'false'.  TODO: update the domtree properly so we can pass it here.
1353     if (Value *V = SimplifyInstruction(I, DL))
1354       if (LI->replacementPreservesLCSSAForm(I, V)) {
1355         ReplaceUsesOfWith(I, V, Worklist, L, LPM);
1356         continue;
1357       }
1358 
1359     // Special case hacks that appear commonly in unswitched code.
1360     if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1361       if (BI->isUnconditional()) {
1362         // If BI's parent is the only pred of the successor, fold the two blocks
1363         // together.
1364         BasicBlock *Pred = BI->getParent();
1365         BasicBlock *Succ = BI->getSuccessor(0);
1366         BasicBlock *SinglePred = Succ->getSinglePredecessor();
1367         if (!SinglePred) continue;  // Nothing to do.
1368         assert(SinglePred == Pred && "CFG broken");
1369 
1370         DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1371               << Succ->getName() << "\n");
1372 
1373         // Resolve any single entry PHI nodes in Succ.
1374         while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1375           ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1376 
1377         // If Succ has any successors with PHI nodes, update them to have
1378         // entries coming from Pred instead of Succ.
1379         Succ->replaceAllUsesWith(Pred);
1380 
1381         // Move all of the successor contents from Succ to Pred.
1382         Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
1383                                    Succ->begin(), Succ->end());
1384         LPM->deleteSimpleAnalysisValue(BI, L);
1385         RemoveFromWorklist(BI, Worklist);
1386         BI->eraseFromParent();
1387 
1388         // Remove Succ from the loop tree.
1389         LI->removeBlock(Succ);
1390         LPM->deleteSimpleAnalysisValue(Succ, L);
1391         Succ->eraseFromParent();
1392         ++NumSimplify;
1393         continue;
1394       }
1395 
1396       continue;
1397     }
1398   }
1399 }
1400