1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops that contain branches on loop-invariant conditions 11 // to have multiple loops. For example, it turns the left into the right code: 12 // 13 // for (...) if (lic) 14 // A for (...) 15 // if (lic) A; B; C 16 // B else 17 // C for (...) 18 // A; C 19 // 20 // This can increase the size of the code exponentially (doubling it every time 21 // a loop is unswitched) so we only unswitch if the resultant code will be 22 // smaller than a threshold. 23 // 24 // This pass expects LICM to be run before it to hoist invariant conditions out 25 // of the loop, to make the unswitching opportunity obvious. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Scalar.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/AssumptionCache.h" 34 #include "llvm/Analysis/CodeMetrics.h" 35 #include "llvm/Analysis/InstructionSimplify.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/LoopPass.h" 38 #include "llvm/Analysis/ScalarEvolution.h" 39 #include "llvm/Analysis/TargetTransformInfo.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Transforms/Utils/Cloning.h" 50 #include "llvm/Transforms/Utils/Local.h" 51 #include <algorithm> 52 #include <map> 53 #include <set> 54 using namespace llvm; 55 56 #define DEBUG_TYPE "loop-unswitch" 57 58 STATISTIC(NumBranches, "Number of branches unswitched"); 59 STATISTIC(NumSwitches, "Number of switches unswitched"); 60 STATISTIC(NumSelects , "Number of selects unswitched"); 61 STATISTIC(NumTrivial , "Number of unswitches that are trivial"); 62 STATISTIC(NumSimplify, "Number of simplifications of unswitched code"); 63 STATISTIC(TotalInsts, "Total number of instructions analyzed"); 64 65 // The specific value of 100 here was chosen based only on intuition and a 66 // few specific examples. 67 static cl::opt<unsigned> 68 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), 69 cl::init(100), cl::Hidden); 70 71 namespace { 72 73 class LUAnalysisCache { 74 75 typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> > 76 UnswitchedValsMap; 77 78 typedef UnswitchedValsMap::iterator UnswitchedValsIt; 79 80 struct LoopProperties { 81 unsigned CanBeUnswitchedCount; 82 unsigned SizeEstimation; 83 UnswitchedValsMap UnswitchedVals; 84 }; 85 86 // Here we use std::map instead of DenseMap, since we need to keep valid 87 // LoopProperties pointer for current loop for better performance. 88 typedef std::map<const Loop*, LoopProperties> LoopPropsMap; 89 typedef LoopPropsMap::iterator LoopPropsMapIt; 90 91 LoopPropsMap LoopsProperties; 92 UnswitchedValsMap *CurLoopInstructions; 93 LoopProperties *CurrentLoopProperties; 94 95 // Max size of code we can produce on remained iterations. 96 unsigned MaxSize; 97 98 public: 99 100 LUAnalysisCache() : 101 CurLoopInstructions(nullptr), CurrentLoopProperties(nullptr), 102 MaxSize(Threshold) 103 {} 104 105 // Analyze loop. Check its size, calculate is it possible to unswitch 106 // it. Returns true if we can unswitch this loop. 107 bool countLoop(const Loop *L, const TargetTransformInfo &TTI, 108 AssumptionCache *AC); 109 110 // Clean all data related to given loop. 111 void forgetLoop(const Loop *L); 112 113 // Mark case value as unswitched. 114 // Since SI instruction can be partly unswitched, in order to avoid 115 // extra unswitching in cloned loops keep track all unswitched values. 116 void setUnswitched(const SwitchInst *SI, const Value *V); 117 118 // Check was this case value unswitched before or not. 119 bool isUnswitched(const SwitchInst *SI, const Value *V); 120 121 // Clone all loop-unswitch related loop properties. 122 // Redistribute unswitching quotas. 123 // Note, that new loop data is stored inside the VMap. 124 void cloneData(const Loop *NewLoop, const Loop *OldLoop, 125 const ValueToValueMapTy &VMap); 126 }; 127 128 class LoopUnswitch : public LoopPass { 129 LoopInfo *LI; // Loop information 130 LPPassManager *LPM; 131 AssumptionCache *AC; 132 133 // LoopProcessWorklist - Used to check if second loop needs processing 134 // after RewriteLoopBodyWithConditionConstant rewrites first loop. 135 std::vector<Loop*> LoopProcessWorklist; 136 137 LUAnalysisCache BranchesInfo; 138 139 bool OptimizeForSize; 140 bool redoLoop; 141 142 Loop *currentLoop; 143 DominatorTree *DT; 144 BasicBlock *loopHeader; 145 BasicBlock *loopPreheader; 146 147 // LoopBlocks contains all of the basic blocks of the loop, including the 148 // preheader of the loop, the body of the loop, and the exit blocks of the 149 // loop, in that order. 150 std::vector<BasicBlock*> LoopBlocks; 151 // NewBlocks contained cloned copy of basic blocks from LoopBlocks. 152 std::vector<BasicBlock*> NewBlocks; 153 154 public: 155 static char ID; // Pass ID, replacement for typeid 156 explicit LoopUnswitch(bool Os = false) : 157 LoopPass(ID), OptimizeForSize(Os), redoLoop(false), 158 currentLoop(nullptr), DT(nullptr), loopHeader(nullptr), 159 loopPreheader(nullptr) { 160 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry()); 161 } 162 163 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 164 bool processCurrentLoop(); 165 166 /// This transformation requires natural loop information & requires that 167 /// loop preheaders be inserted into the CFG. 168 /// 169 void getAnalysisUsage(AnalysisUsage &AU) const override { 170 AU.addRequired<AssumptionCacheTracker>(); 171 AU.addRequiredID(LoopSimplifyID); 172 AU.addPreservedID(LoopSimplifyID); 173 AU.addRequired<LoopInfo>(); 174 AU.addPreserved<LoopInfo>(); 175 AU.addRequiredID(LCSSAID); 176 AU.addPreservedID(LCSSAID); 177 AU.addPreserved<DominatorTreeWrapperPass>(); 178 AU.addPreserved<ScalarEvolution>(); 179 AU.addRequired<TargetTransformInfo>(); 180 } 181 182 private: 183 184 void releaseMemory() override { 185 BranchesInfo.forgetLoop(currentLoop); 186 } 187 188 void initLoopData() { 189 loopHeader = currentLoop->getHeader(); 190 loopPreheader = currentLoop->getLoopPreheader(); 191 } 192 193 /// Split all of the edges from inside the loop to their exit blocks. 194 /// Update the appropriate Phi nodes as we do so. 195 void SplitExitEdges(Loop *L, const SmallVectorImpl<BasicBlock *> &ExitBlocks); 196 197 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val); 198 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, 199 BasicBlock *ExitBlock); 200 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L); 201 202 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, 203 Constant *Val, bool isEqual); 204 205 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, 206 BasicBlock *TrueDest, 207 BasicBlock *FalseDest, 208 Instruction *InsertPt); 209 210 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L); 211 bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = nullptr, 212 BasicBlock **LoopExit = nullptr); 213 214 }; 215 } 216 217 // Analyze loop. Check its size, calculate is it possible to unswitch 218 // it. Returns true if we can unswitch this loop. 219 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI, 220 AssumptionCache *AC) { 221 222 LoopPropsMapIt PropsIt; 223 bool Inserted; 224 std::tie(PropsIt, Inserted) = 225 LoopsProperties.insert(std::make_pair(L, LoopProperties())); 226 227 LoopProperties &Props = PropsIt->second; 228 229 if (Inserted) { 230 // New loop. 231 232 // Limit the number of instructions to avoid causing significant code 233 // expansion, and the number of basic blocks, to avoid loops with 234 // large numbers of branches which cause loop unswitching to go crazy. 235 // This is a very ad-hoc heuristic. 236 237 SmallPtrSet<const Value *, 32> EphValues; 238 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 239 240 // FIXME: This is overly conservative because it does not take into 241 // consideration code simplification opportunities and code that can 242 // be shared by the resultant unswitched loops. 243 CodeMetrics Metrics; 244 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 245 I != E; ++I) 246 Metrics.analyzeBasicBlock(*I, TTI, EphValues); 247 248 Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5); 249 Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation); 250 MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount; 251 252 if (Metrics.notDuplicatable) { 253 DEBUG(dbgs() << "NOT unswitching loop %" 254 << L->getHeader()->getName() << ", contents cannot be " 255 << "duplicated!\n"); 256 return false; 257 } 258 } 259 260 if (!Props.CanBeUnswitchedCount) { 261 DEBUG(dbgs() << "NOT unswitching loop %" 262 << L->getHeader()->getName() << ", cost too high: " 263 << L->getBlocks().size() << "\n"); 264 return false; 265 } 266 267 // Be careful. This links are good only before new loop addition. 268 CurrentLoopProperties = &Props; 269 CurLoopInstructions = &Props.UnswitchedVals; 270 271 return true; 272 } 273 274 // Clean all data related to given loop. 275 void LUAnalysisCache::forgetLoop(const Loop *L) { 276 277 LoopPropsMapIt LIt = LoopsProperties.find(L); 278 279 if (LIt != LoopsProperties.end()) { 280 LoopProperties &Props = LIt->second; 281 MaxSize += Props.CanBeUnswitchedCount * Props.SizeEstimation; 282 LoopsProperties.erase(LIt); 283 } 284 285 CurrentLoopProperties = nullptr; 286 CurLoopInstructions = nullptr; 287 } 288 289 // Mark case value as unswitched. 290 // Since SI instruction can be partly unswitched, in order to avoid 291 // extra unswitching in cloned loops keep track all unswitched values. 292 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) { 293 (*CurLoopInstructions)[SI].insert(V); 294 } 295 296 // Check was this case value unswitched before or not. 297 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) { 298 return (*CurLoopInstructions)[SI].count(V); 299 } 300 301 // Clone all loop-unswitch related loop properties. 302 // Redistribute unswitching quotas. 303 // Note, that new loop data is stored inside the VMap. 304 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop, 305 const ValueToValueMapTy &VMap) { 306 307 LoopProperties &NewLoopProps = LoopsProperties[NewLoop]; 308 LoopProperties &OldLoopProps = *CurrentLoopProperties; 309 UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals; 310 311 // Reallocate "can-be-unswitched quota" 312 313 --OldLoopProps.CanBeUnswitchedCount; 314 unsigned Quota = OldLoopProps.CanBeUnswitchedCount; 315 NewLoopProps.CanBeUnswitchedCount = Quota / 2; 316 OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2; 317 318 NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation; 319 320 // Clone unswitched values info: 321 // for new loop switches we clone info about values that was 322 // already unswitched and has redundant successors. 323 for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) { 324 const SwitchInst *OldInst = I->first; 325 Value *NewI = VMap.lookup(OldInst); 326 const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI); 327 assert(NewInst && "All instructions that are in SrcBB must be in VMap."); 328 329 NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst]; 330 } 331 } 332 333 char LoopUnswitch::ID = 0; 334 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops", 335 false, false) 336 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 337 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 338 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 339 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 340 INITIALIZE_PASS_DEPENDENCY(LCSSA) 341 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops", 342 false, false) 343 344 Pass *llvm::createLoopUnswitchPass(bool Os) { 345 return new LoopUnswitch(Os); 346 } 347 348 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is 349 /// invariant in the loop, or has an invariant piece, return the invariant. 350 /// Otherwise, return null. 351 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) { 352 353 // We started analyze new instruction, increment scanned instructions counter. 354 ++TotalInsts; 355 356 // We can never unswitch on vector conditions. 357 if (Cond->getType()->isVectorTy()) 358 return nullptr; 359 360 // Constants should be folded, not unswitched on! 361 if (isa<Constant>(Cond)) return nullptr; 362 363 // TODO: Handle: br (VARIANT|INVARIANT). 364 365 // Hoist simple values out. 366 if (L->makeLoopInvariant(Cond, Changed)) 367 return Cond; 368 369 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond)) 370 if (BO->getOpcode() == Instruction::And || 371 BO->getOpcode() == Instruction::Or) { 372 // If either the left or right side is invariant, we can unswitch on this, 373 // which will cause the branch to go away in one loop and the condition to 374 // simplify in the other one. 375 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed)) 376 return LHS; 377 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed)) 378 return RHS; 379 } 380 381 return nullptr; 382 } 383 384 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) { 385 if (skipOptnoneFunction(L)) 386 return false; 387 388 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 389 *L->getHeader()->getParent()); 390 LI = &getAnalysis<LoopInfo>(); 391 LPM = &LPM_Ref; 392 DominatorTreeWrapperPass *DTWP = 393 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 394 DT = DTWP ? &DTWP->getDomTree() : nullptr; 395 currentLoop = L; 396 Function *F = currentLoop->getHeader()->getParent(); 397 bool Changed = false; 398 do { 399 assert(currentLoop->isLCSSAForm(*DT)); 400 redoLoop = false; 401 Changed |= processCurrentLoop(); 402 } while(redoLoop); 403 404 if (Changed) { 405 // FIXME: Reconstruct dom info, because it is not preserved properly. 406 if (DT) 407 DT->recalculate(*F); 408 } 409 return Changed; 410 } 411 412 /// processCurrentLoop - Do actual work and unswitch loop if possible 413 /// and profitable. 414 bool LoopUnswitch::processCurrentLoop() { 415 bool Changed = false; 416 417 initLoopData(); 418 419 // If LoopSimplify was unable to form a preheader, don't do any unswitching. 420 if (!loopPreheader) 421 return false; 422 423 // Loops with indirectbr cannot be cloned. 424 if (!currentLoop->isSafeToClone()) 425 return false; 426 427 // Without dedicated exits, splitting the exit edge may fail. 428 if (!currentLoop->hasDedicatedExits()) 429 return false; 430 431 LLVMContext &Context = loopHeader->getContext(); 432 433 // Probably we reach the quota of branches for this loop. If so 434 // stop unswitching. 435 if (!BranchesInfo.countLoop(currentLoop, getAnalysis<TargetTransformInfo>(), 436 AC)) 437 return false; 438 439 // Loop over all of the basic blocks in the loop. If we find an interior 440 // block that is branching on a loop-invariant condition, we can unswitch this 441 // loop. 442 for (Loop::block_iterator I = currentLoop->block_begin(), 443 E = currentLoop->block_end(); I != E; ++I) { 444 TerminatorInst *TI = (*I)->getTerminator(); 445 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 446 // If this isn't branching on an invariant condition, we can't unswitch 447 // it. 448 if (BI->isConditional()) { 449 // See if this, or some part of it, is loop invariant. If so, we can 450 // unswitch on it if we desire. 451 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), 452 currentLoop, Changed); 453 if (LoopCond && UnswitchIfProfitable(LoopCond, 454 ConstantInt::getTrue(Context))) { 455 ++NumBranches; 456 return true; 457 } 458 } 459 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 460 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 461 currentLoop, Changed); 462 unsigned NumCases = SI->getNumCases(); 463 if (LoopCond && NumCases) { 464 // Find a value to unswitch on: 465 // FIXME: this should chose the most expensive case! 466 // FIXME: scan for a case with a non-critical edge? 467 Constant *UnswitchVal = nullptr; 468 469 // Do not process same value again and again. 470 // At this point we have some cases already unswitched and 471 // some not yet unswitched. Let's find the first not yet unswitched one. 472 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 473 i != e; ++i) { 474 Constant *UnswitchValCandidate = i.getCaseValue(); 475 if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) { 476 UnswitchVal = UnswitchValCandidate; 477 break; 478 } 479 } 480 481 if (!UnswitchVal) 482 continue; 483 484 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) { 485 ++NumSwitches; 486 return true; 487 } 488 } 489 } 490 491 // Scan the instructions to check for unswitchable values. 492 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); 493 BBI != E; ++BBI) 494 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) { 495 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 496 currentLoop, Changed); 497 if (LoopCond && UnswitchIfProfitable(LoopCond, 498 ConstantInt::getTrue(Context))) { 499 ++NumSelects; 500 return true; 501 } 502 } 503 } 504 return Changed; 505 } 506 507 /// isTrivialLoopExitBlock - Check to see if all paths from BB exit the 508 /// loop with no side effects (including infinite loops). 509 /// 510 /// If true, we return true and set ExitBB to the block we 511 /// exit through. 512 /// 513 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB, 514 BasicBlock *&ExitBB, 515 std::set<BasicBlock*> &Visited) { 516 if (!Visited.insert(BB).second) { 517 // Already visited. Without more analysis, this could indicate an infinite 518 // loop. 519 return false; 520 } 521 if (!L->contains(BB)) { 522 // Otherwise, this is a loop exit, this is fine so long as this is the 523 // first exit. 524 if (ExitBB) return false; 525 ExitBB = BB; 526 return true; 527 } 528 529 // Otherwise, this is an unvisited intra-loop node. Check all successors. 530 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) { 531 // Check to see if the successor is a trivial loop exit. 532 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited)) 533 return false; 534 } 535 536 // Okay, everything after this looks good, check to make sure that this block 537 // doesn't include any side effects. 538 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 539 if (I->mayHaveSideEffects()) 540 return false; 541 542 return true; 543 } 544 545 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally 546 /// leads to an exit from the specified loop, and has no side-effects in the 547 /// process. If so, return the block that is exited to, otherwise return null. 548 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) { 549 std::set<BasicBlock*> Visited; 550 Visited.insert(L->getHeader()); // Branches to header make infinite loops. 551 BasicBlock *ExitBB = nullptr; 552 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited)) 553 return ExitBB; 554 return nullptr; 555 } 556 557 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is 558 /// trivial: that is, that the condition controls whether or not the loop does 559 /// anything at all. If this is a trivial condition, unswitching produces no 560 /// code duplications (equivalently, it produces a simpler loop and a new empty 561 /// loop, which gets deleted). 562 /// 563 /// If this is a trivial condition, return true, otherwise return false. When 564 /// returning true, this sets Cond and Val to the condition that controls the 565 /// trivial condition: when Cond dynamically equals Val, the loop is known to 566 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when 567 /// Cond == Val. 568 /// 569 bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val, 570 BasicBlock **LoopExit) { 571 BasicBlock *Header = currentLoop->getHeader(); 572 TerminatorInst *HeaderTerm = Header->getTerminator(); 573 LLVMContext &Context = Header->getContext(); 574 575 BasicBlock *LoopExitBB = nullptr; 576 if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) { 577 // If the header block doesn't end with a conditional branch on Cond, we 578 // can't handle it. 579 if (!BI->isConditional() || BI->getCondition() != Cond) 580 return false; 581 582 // Check to see if a successor of the branch is guaranteed to 583 // exit through a unique exit block without having any 584 // side-effects. If so, determine the value of Cond that causes it to do 585 // this. 586 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 587 BI->getSuccessor(0)))) { 588 if (Val) *Val = ConstantInt::getTrue(Context); 589 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 590 BI->getSuccessor(1)))) { 591 if (Val) *Val = ConstantInt::getFalse(Context); 592 } 593 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) { 594 // If this isn't a switch on Cond, we can't handle it. 595 if (SI->getCondition() != Cond) return false; 596 597 // Check to see if a successor of the switch is guaranteed to go to the 598 // latch block or exit through a one exit block without having any 599 // side-effects. If so, determine the value of Cond that causes it to do 600 // this. 601 // Note that we can't trivially unswitch on the default case or 602 // on already unswitched cases. 603 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 604 i != e; ++i) { 605 BasicBlock *LoopExitCandidate; 606 if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop, 607 i.getCaseSuccessor()))) { 608 // Okay, we found a trivial case, remember the value that is trivial. 609 ConstantInt *CaseVal = i.getCaseValue(); 610 611 // Check that it was not unswitched before, since already unswitched 612 // trivial vals are looks trivial too. 613 if (BranchesInfo.isUnswitched(SI, CaseVal)) 614 continue; 615 LoopExitBB = LoopExitCandidate; 616 if (Val) *Val = CaseVal; 617 break; 618 } 619 } 620 } 621 622 // If we didn't find a single unique LoopExit block, or if the loop exit block 623 // contains phi nodes, this isn't trivial. 624 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) 625 return false; // Can't handle this. 626 627 if (LoopExit) *LoopExit = LoopExitBB; 628 629 // We already know that nothing uses any scalar values defined inside of this 630 // loop. As such, we just have to check to see if this loop will execute any 631 // side-effecting instructions (e.g. stores, calls, volatile loads) in the 632 // part of the loop that the code *would* execute. We already checked the 633 // tail, check the header now. 634 for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I) 635 if (I->mayHaveSideEffects()) 636 return false; 637 return true; 638 } 639 640 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when 641 /// LoopCond == Val to simplify the loop. If we decide that this is profitable, 642 /// unswitch the loop, reprocess the pieces, then return true. 643 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) { 644 Function *F = loopHeader->getParent(); 645 Constant *CondVal = nullptr; 646 BasicBlock *ExitBlock = nullptr; 647 648 if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) { 649 // If the condition is trivial, always unswitch. There is no code growth 650 // for this case. 651 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock); 652 return true; 653 } 654 655 // Check to see if it would be profitable to unswitch current loop. 656 657 // Do not do non-trivial unswitch while optimizing for size. 658 if (OptimizeForSize || 659 F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 660 Attribute::OptimizeForSize)) 661 return false; 662 663 UnswitchNontrivialCondition(LoopCond, Val, currentLoop); 664 return true; 665 } 666 667 /// CloneLoop - Recursively clone the specified loop and all of its children, 668 /// mapping the blocks with the specified map. 669 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 670 LoopInfo *LI, LPPassManager *LPM) { 671 Loop *New = new Loop(); 672 LPM->insertLoop(New, PL); 673 674 // Add all of the blocks in L to the new loop. 675 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 676 I != E; ++I) 677 if (LI->getLoopFor(*I) == L) 678 New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase()); 679 680 // Add all of the subloops to the new loop. 681 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 682 CloneLoop(*I, New, VM, LI, LPM); 683 684 return New; 685 } 686 687 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values 688 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the 689 /// code immediately before InsertPt. 690 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, 691 BasicBlock *TrueDest, 692 BasicBlock *FalseDest, 693 Instruction *InsertPt) { 694 // Insert a conditional branch on LIC to the two preheaders. The original 695 // code is the true version and the new code is the false version. 696 Value *BranchVal = LIC; 697 if (!isa<ConstantInt>(Val) || 698 Val->getType() != Type::getInt1Ty(LIC->getContext())) 699 BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val); 700 else if (Val != ConstantInt::getTrue(Val->getContext())) 701 // We want to enter the new loop when the condition is true. 702 std::swap(TrueDest, FalseDest); 703 704 // Insert the new branch. 705 BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt); 706 707 // If either edge is critical, split it. This helps preserve LoopSimplify 708 // form for enclosing loops. 709 SplitCriticalEdge(BI, 0, this, false, false, true); 710 SplitCriticalEdge(BI, 1, this, false, false, true); 711 } 712 713 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable 714 /// condition in it (a cond branch from its header block to its latch block, 715 /// where the path through the loop that doesn't execute its body has no 716 /// side-effects), unswitch it. This doesn't involve any code duplication, just 717 /// moving the conditional branch outside of the loop and updating loop info. 718 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, 719 Constant *Val, 720 BasicBlock *ExitBlock) { 721 DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %" 722 << loopHeader->getName() << " [" << L->getBlocks().size() 723 << " blocks] in Function " << L->getHeader()->getParent()->getName() 724 << " on cond: " << *Val << " == " << *Cond << "\n"); 725 726 // First step, split the preheader, so that we know that there is a safe place 727 // to insert the conditional branch. We will change loopPreheader to have a 728 // conditional branch on Cond. 729 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this); 730 731 // Now that we have a place to insert the conditional branch, create a place 732 // to branch to: this is the exit block out of the loop that we should 733 // short-circuit to. 734 735 // Split this block now, so that the loop maintains its exit block, and so 736 // that the jump from the preheader can execute the contents of the exit block 737 // without actually branching to it (the exit block should be dominated by the 738 // loop header, not the preheader). 739 assert(!L->contains(ExitBlock) && "Exit block is in the loop?"); 740 BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this); 741 742 // Okay, now we have a position to branch from and a position to branch to, 743 // insert the new conditional branch. 744 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, 745 loopPreheader->getTerminator()); 746 LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L); 747 loopPreheader->getTerminator()->eraseFromParent(); 748 749 // We need to reprocess this loop, it could be unswitched again. 750 redoLoop = true; 751 752 // Now that we know that the loop is never entered when this condition is a 753 // particular value, rewrite the loop with this info. We know that this will 754 // at least eliminate the old branch. 755 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false); 756 ++NumTrivial; 757 } 758 759 /// SplitExitEdges - Split all of the edges from inside the loop to their exit 760 /// blocks. Update the appropriate Phi nodes as we do so. 761 void LoopUnswitch::SplitExitEdges(Loop *L, 762 const SmallVectorImpl<BasicBlock *> &ExitBlocks){ 763 764 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 765 BasicBlock *ExitBlock = ExitBlocks[i]; 766 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock), 767 pred_end(ExitBlock)); 768 769 // Although SplitBlockPredecessors doesn't preserve loop-simplify in 770 // general, if we call it on all predecessors of all exits then it does. 771 if (!ExitBlock->isLandingPad()) { 772 SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", this); 773 } else { 774 SmallVector<BasicBlock*, 2> NewBBs; 775 SplitLandingPadPredecessors(ExitBlock, Preds, ".us-lcssa", ".us-lcssa", 776 this, NewBBs); 777 } 778 } 779 } 780 781 /// UnswitchNontrivialCondition - We determined that the loop is profitable 782 /// to unswitch when LIC equal Val. Split it into loop versions and test the 783 /// condition outside of either loop. Return the loops created as Out1/Out2. 784 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, 785 Loop *L) { 786 Function *F = loopHeader->getParent(); 787 DEBUG(dbgs() << "loop-unswitch: Unswitching loop %" 788 << loopHeader->getName() << " [" << L->getBlocks().size() 789 << " blocks] in Function " << F->getName() 790 << " when '" << *Val << "' == " << *LIC << "\n"); 791 792 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>()) 793 SE->forgetLoop(L); 794 795 LoopBlocks.clear(); 796 NewBlocks.clear(); 797 798 // First step, split the preheader and exit blocks, and add these blocks to 799 // the LoopBlocks list. 800 BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this); 801 LoopBlocks.push_back(NewPreheader); 802 803 // We want the loop to come after the preheader, but before the exit blocks. 804 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 805 806 SmallVector<BasicBlock*, 8> ExitBlocks; 807 L->getUniqueExitBlocks(ExitBlocks); 808 809 // Split all of the edges from inside the loop to their exit blocks. Update 810 // the appropriate Phi nodes as we do so. 811 SplitExitEdges(L, ExitBlocks); 812 813 // The exit blocks may have been changed due to edge splitting, recompute. 814 ExitBlocks.clear(); 815 L->getUniqueExitBlocks(ExitBlocks); 816 817 // Add exit blocks to the loop blocks. 818 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end()); 819 820 // Next step, clone all of the basic blocks that make up the loop (including 821 // the loop preheader and exit blocks), keeping track of the mapping between 822 // the instructions and blocks. 823 NewBlocks.reserve(LoopBlocks.size()); 824 ValueToValueMapTy VMap; 825 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) { 826 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F); 827 828 NewBlocks.push_back(NewBB); 829 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping. 830 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L); 831 } 832 833 // Splice the newly inserted blocks into the function right before the 834 // original preheader. 835 F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(), 836 NewBlocks[0], F->end()); 837 838 // FIXME: We could register any cloned assumptions instead of clearing the 839 // whole function's cache. 840 AC->clear(); 841 842 // Now we create the new Loop object for the versioned loop. 843 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM); 844 845 // Recalculate unswitching quota, inherit simplified switches info for NewBB, 846 // Probably clone more loop-unswitch related loop properties. 847 BranchesInfo.cloneData(NewLoop, L, VMap); 848 849 Loop *ParentLoop = L->getParentLoop(); 850 if (ParentLoop) { 851 // Make sure to add the cloned preheader and exit blocks to the parent loop 852 // as well. 853 ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase()); 854 } 855 856 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 857 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]); 858 // The new exit block should be in the same loop as the old one. 859 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i])) 860 ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase()); 861 862 assert(NewExit->getTerminator()->getNumSuccessors() == 1 && 863 "Exit block should have been split to have one successor!"); 864 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 865 866 // If the successor of the exit block had PHI nodes, add an entry for 867 // NewExit. 868 for (BasicBlock::iterator I = ExitSucc->begin(); 869 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 870 Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]); 871 ValueToValueMapTy::iterator It = VMap.find(V); 872 if (It != VMap.end()) V = It->second; 873 PN->addIncoming(V, NewExit); 874 } 875 876 if (LandingPadInst *LPad = NewExit->getLandingPadInst()) { 877 PHINode *PN = PHINode::Create(LPad->getType(), 0, "", 878 ExitSucc->getFirstInsertionPt()); 879 880 for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc); 881 I != E; ++I) { 882 BasicBlock *BB = *I; 883 LandingPadInst *LPI = BB->getLandingPadInst(); 884 LPI->replaceAllUsesWith(PN); 885 PN->addIncoming(LPI, BB); 886 } 887 } 888 } 889 890 // Rewrite the code to refer to itself. 891 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) 892 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 893 E = NewBlocks[i]->end(); I != E; ++I) 894 RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); 895 896 // Rewrite the original preheader to select between versions of the loop. 897 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator()); 898 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] && 899 "Preheader splitting did not work correctly!"); 900 901 // Emit the new branch that selects between the two versions of this loop. 902 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR); 903 LPM->deleteSimpleAnalysisValue(OldBR, L); 904 OldBR->eraseFromParent(); 905 906 LoopProcessWorklist.push_back(NewLoop); 907 redoLoop = true; 908 909 // Keep a WeakVH holding onto LIC. If the first call to RewriteLoopBody 910 // deletes the instruction (for example by simplifying a PHI that feeds into 911 // the condition that we're unswitching on), we don't rewrite the second 912 // iteration. 913 WeakVH LICHandle(LIC); 914 915 // Now we rewrite the original code to know that the condition is true and the 916 // new code to know that the condition is false. 917 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false); 918 919 // It's possible that simplifying one loop could cause the other to be 920 // changed to another value or a constant. If its a constant, don't simplify 921 // it. 922 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop && 923 LICHandle && !isa<Constant>(LICHandle)) 924 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true); 925 } 926 927 /// RemoveFromWorklist - Remove all instances of I from the worklist vector 928 /// specified. 929 static void RemoveFromWorklist(Instruction *I, 930 std::vector<Instruction*> &Worklist) { 931 932 Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I), 933 Worklist.end()); 934 } 935 936 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the 937 /// program, replacing all uses with V and update the worklist. 938 static void ReplaceUsesOfWith(Instruction *I, Value *V, 939 std::vector<Instruction*> &Worklist, 940 Loop *L, LPPassManager *LPM) { 941 DEBUG(dbgs() << "Replace with '" << *V << "': " << *I); 942 943 // Add uses to the worklist, which may be dead now. 944 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 945 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) 946 Worklist.push_back(Use); 947 948 // Add users to the worklist which may be simplified now. 949 for (User *U : I->users()) 950 Worklist.push_back(cast<Instruction>(U)); 951 LPM->deleteSimpleAnalysisValue(I, L); 952 RemoveFromWorklist(I, Worklist); 953 I->replaceAllUsesWith(V); 954 I->eraseFromParent(); 955 ++NumSimplify; 956 } 957 958 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has 959 // the value specified by Val in the specified loop, or we know it does NOT have 960 // that value. Rewrite any uses of LIC or of properties correlated to it. 961 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, 962 Constant *Val, 963 bool IsEqual) { 964 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?"); 965 966 // FIXME: Support correlated properties, like: 967 // for (...) 968 // if (li1 < li2) 969 // ... 970 // if (li1 > li2) 971 // ... 972 973 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches, 974 // selects, switches. 975 std::vector<Instruction*> Worklist; 976 LLVMContext &Context = Val->getContext(); 977 978 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC 979 // in the loop with the appropriate one directly. 980 if (IsEqual || (isa<ConstantInt>(Val) && 981 Val->getType()->isIntegerTy(1))) { 982 Value *Replacement; 983 if (IsEqual) 984 Replacement = Val; 985 else 986 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()), 987 !cast<ConstantInt>(Val)->getZExtValue()); 988 989 for (User *U : LIC->users()) { 990 Instruction *UI = dyn_cast<Instruction>(U); 991 if (!UI || !L->contains(UI)) 992 continue; 993 Worklist.push_back(UI); 994 } 995 996 for (std::vector<Instruction*>::iterator UI = Worklist.begin(), 997 UE = Worklist.end(); UI != UE; ++UI) 998 (*UI)->replaceUsesOfWith(LIC, Replacement); 999 1000 SimplifyCode(Worklist, L); 1001 return; 1002 } 1003 1004 // Otherwise, we don't know the precise value of LIC, but we do know that it 1005 // is certainly NOT "Val". As such, simplify any uses in the loop that we 1006 // can. This case occurs when we unswitch switch statements. 1007 for (User *U : LIC->users()) { 1008 Instruction *UI = dyn_cast<Instruction>(U); 1009 if (!UI || !L->contains(UI)) 1010 continue; 1011 1012 Worklist.push_back(UI); 1013 1014 // TODO: We could do other simplifications, for example, turning 1015 // 'icmp eq LIC, Val' -> false. 1016 1017 // If we know that LIC is not Val, use this info to simplify code. 1018 SwitchInst *SI = dyn_cast<SwitchInst>(UI); 1019 if (!SI || !isa<ConstantInt>(Val)) continue; 1020 1021 SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val)); 1022 // Default case is live for multiple values. 1023 if (DeadCase == SI->case_default()) continue; 1024 1025 // Found a dead case value. Don't remove PHI nodes in the 1026 // successor if they become single-entry, those PHI nodes may 1027 // be in the Users list. 1028 1029 BasicBlock *Switch = SI->getParent(); 1030 BasicBlock *SISucc = DeadCase.getCaseSuccessor(); 1031 BasicBlock *Latch = L->getLoopLatch(); 1032 1033 BranchesInfo.setUnswitched(SI, Val); 1034 1035 if (!SI->findCaseDest(SISucc)) continue; // Edge is critical. 1036 // If the DeadCase successor dominates the loop latch, then the 1037 // transformation isn't safe since it will delete the sole predecessor edge 1038 // to the latch. 1039 if (Latch && DT->dominates(SISucc, Latch)) 1040 continue; 1041 1042 // FIXME: This is a hack. We need to keep the successor around 1043 // and hooked up so as to preserve the loop structure, because 1044 // trying to update it is complicated. So instead we preserve the 1045 // loop structure and put the block on a dead code path. 1046 SplitEdge(Switch, SISucc, this); 1047 // Compute the successors instead of relying on the return value 1048 // of SplitEdge, since it may have split the switch successor 1049 // after PHI nodes. 1050 BasicBlock *NewSISucc = DeadCase.getCaseSuccessor(); 1051 BasicBlock *OldSISucc = *succ_begin(NewSISucc); 1052 // Create an "unreachable" destination. 1053 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable", 1054 Switch->getParent(), 1055 OldSISucc); 1056 new UnreachableInst(Context, Abort); 1057 // Force the new case destination to branch to the "unreachable" 1058 // block while maintaining a (dead) CFG edge to the old block. 1059 NewSISucc->getTerminator()->eraseFromParent(); 1060 BranchInst::Create(Abort, OldSISucc, 1061 ConstantInt::getTrue(Context), NewSISucc); 1062 // Release the PHI operands for this edge. 1063 for (BasicBlock::iterator II = NewSISucc->begin(); 1064 PHINode *PN = dyn_cast<PHINode>(II); ++II) 1065 PN->setIncomingValue(PN->getBasicBlockIndex(Switch), 1066 UndefValue::get(PN->getType())); 1067 // Tell the domtree about the new block. We don't fully update the 1068 // domtree here -- instead we force it to do a full recomputation 1069 // after the pass is complete -- but we do need to inform it of 1070 // new blocks. 1071 if (DT) 1072 DT->addNewBlock(Abort, NewSISucc); 1073 } 1074 1075 SimplifyCode(Worklist, L); 1076 } 1077 1078 /// SimplifyCode - Okay, now that we have simplified some instructions in the 1079 /// loop, walk over it and constant prop, dce, and fold control flow where 1080 /// possible. Note that this is effectively a very simple loop-structure-aware 1081 /// optimizer. During processing of this loop, L could very well be deleted, so 1082 /// it must not be used. 1083 /// 1084 /// FIXME: When the loop optimizer is more mature, separate this out to a new 1085 /// pass. 1086 /// 1087 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) { 1088 while (!Worklist.empty()) { 1089 Instruction *I = Worklist.back(); 1090 Worklist.pop_back(); 1091 1092 // Simple DCE. 1093 if (isInstructionTriviallyDead(I)) { 1094 DEBUG(dbgs() << "Remove dead instruction '" << *I); 1095 1096 // Add uses to the worklist, which may be dead now. 1097 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1098 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) 1099 Worklist.push_back(Use); 1100 LPM->deleteSimpleAnalysisValue(I, L); 1101 RemoveFromWorklist(I, Worklist); 1102 I->eraseFromParent(); 1103 ++NumSimplify; 1104 continue; 1105 } 1106 1107 // See if instruction simplification can hack this up. This is common for 1108 // things like "select false, X, Y" after unswitching made the condition be 1109 // 'false'. TODO: update the domtree properly so we can pass it here. 1110 if (Value *V = SimplifyInstruction(I)) 1111 if (LI->replacementPreservesLCSSAForm(I, V)) { 1112 ReplaceUsesOfWith(I, V, Worklist, L, LPM); 1113 continue; 1114 } 1115 1116 // Special case hacks that appear commonly in unswitched code. 1117 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1118 if (BI->isUnconditional()) { 1119 // If BI's parent is the only pred of the successor, fold the two blocks 1120 // together. 1121 BasicBlock *Pred = BI->getParent(); 1122 BasicBlock *Succ = BI->getSuccessor(0); 1123 BasicBlock *SinglePred = Succ->getSinglePredecessor(); 1124 if (!SinglePred) continue; // Nothing to do. 1125 assert(SinglePred == Pred && "CFG broken"); 1126 1127 DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- " 1128 << Succ->getName() << "\n"); 1129 1130 // Resolve any single entry PHI nodes in Succ. 1131 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin())) 1132 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM); 1133 1134 // If Succ has any successors with PHI nodes, update them to have 1135 // entries coming from Pred instead of Succ. 1136 Succ->replaceAllUsesWith(Pred); 1137 1138 // Move all of the successor contents from Succ to Pred. 1139 Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(), 1140 Succ->end()); 1141 LPM->deleteSimpleAnalysisValue(BI, L); 1142 BI->eraseFromParent(); 1143 RemoveFromWorklist(BI, Worklist); 1144 1145 // Remove Succ from the loop tree. 1146 LI->removeBlock(Succ); 1147 LPM->deleteSimpleAnalysisValue(Succ, L); 1148 Succ->eraseFromParent(); 1149 ++NumSimplify; 1150 continue; 1151 } 1152 1153 continue; 1154 } 1155 } 1156 } 1157