1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops that contain branches on loop-invariant conditions 11 // to have multiple loops. For example, it turns the left into the right code: 12 // 13 // for (...) if (lic) 14 // A for (...) 15 // if (lic) A; B; C 16 // B else 17 // C for (...) 18 // A; C 19 // 20 // This can increase the size of the code exponentially (doubling it every time 21 // a loop is unswitched) so we only unswitch if the resultant code will be 22 // smaller than a threshold. 23 // 24 // This pass expects LICM to be run before it to hoist invariant conditions out 25 // of the loop, to make the unswitching opportunity obvious. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Scalar.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/AssumptionCache.h" 34 #include "llvm/Analysis/CodeMetrics.h" 35 #include "llvm/Analysis/InstructionSimplify.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/LoopPass.h" 38 #include "llvm/Analysis/ScalarEvolution.h" 39 #include "llvm/Analysis/TargetTransformInfo.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/MDBuilder.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/Cloning.h" 52 #include "llvm/Transforms/Utils/Local.h" 53 #include <algorithm> 54 #include <map> 55 #include <set> 56 using namespace llvm; 57 58 #define DEBUG_TYPE "loop-unswitch" 59 60 STATISTIC(NumBranches, "Number of branches unswitched"); 61 STATISTIC(NumSwitches, "Number of switches unswitched"); 62 STATISTIC(NumSelects , "Number of selects unswitched"); 63 STATISTIC(NumTrivial , "Number of unswitches that are trivial"); 64 STATISTIC(NumSimplify, "Number of simplifications of unswitched code"); 65 STATISTIC(TotalInsts, "Total number of instructions analyzed"); 66 67 // The specific value of 100 here was chosen based only on intuition and a 68 // few specific examples. 69 static cl::opt<unsigned> 70 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), 71 cl::init(100), cl::Hidden); 72 73 namespace { 74 75 class LUAnalysisCache { 76 77 typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> > 78 UnswitchedValsMap; 79 80 typedef UnswitchedValsMap::iterator UnswitchedValsIt; 81 82 struct LoopProperties { 83 unsigned CanBeUnswitchedCount; 84 unsigned WasUnswitchedCount; 85 unsigned SizeEstimation; 86 UnswitchedValsMap UnswitchedVals; 87 }; 88 89 // Here we use std::map instead of DenseMap, since we need to keep valid 90 // LoopProperties pointer for current loop for better performance. 91 typedef std::map<const Loop*, LoopProperties> LoopPropsMap; 92 typedef LoopPropsMap::iterator LoopPropsMapIt; 93 94 LoopPropsMap LoopsProperties; 95 UnswitchedValsMap *CurLoopInstructions; 96 LoopProperties *CurrentLoopProperties; 97 98 // A loop unswitching with an estimated cost above this threshold 99 // is not performed. MaxSize is turned into unswitching quota for 100 // the current loop, and reduced correspondingly, though note that 101 // the quota is returned by releaseMemory() when the loop has been 102 // processed, so that MaxSize will return to its previous 103 // value. So in most cases MaxSize will equal the Threshold flag 104 // when a new loop is processed. An exception to that is that 105 // MaxSize will have a smaller value while processing nested loops 106 // that were introduced due to loop unswitching of an outer loop. 107 // 108 // FIXME: The way that MaxSize works is subtle and depends on the 109 // pass manager processing loops and calling releaseMemory() in a 110 // specific order. It would be good to find a more straightforward 111 // way of doing what MaxSize does. 112 unsigned MaxSize; 113 114 public: 115 LUAnalysisCache() 116 : CurLoopInstructions(nullptr), CurrentLoopProperties(nullptr), 117 MaxSize(Threshold) {} 118 119 // Analyze loop. Check its size, calculate is it possible to unswitch 120 // it. Returns true if we can unswitch this loop. 121 bool countLoop(const Loop *L, const TargetTransformInfo &TTI, 122 AssumptionCache *AC); 123 124 // Clean all data related to given loop. 125 void forgetLoop(const Loop *L); 126 127 // Mark case value as unswitched. 128 // Since SI instruction can be partly unswitched, in order to avoid 129 // extra unswitching in cloned loops keep track all unswitched values. 130 void setUnswitched(const SwitchInst *SI, const Value *V); 131 132 // Check was this case value unswitched before or not. 133 bool isUnswitched(const SwitchInst *SI, const Value *V); 134 135 // Returns true if another unswitching could be done within the cost 136 // threshold. 137 bool CostAllowsUnswitching(); 138 139 // Clone all loop-unswitch related loop properties. 140 // Redistribute unswitching quotas. 141 // Note, that new loop data is stored inside the VMap. 142 void cloneData(const Loop *NewLoop, const Loop *OldLoop, 143 const ValueToValueMapTy &VMap); 144 }; 145 146 class LoopUnswitch : public LoopPass { 147 LoopInfo *LI; // Loop information 148 LPPassManager *LPM; 149 AssumptionCache *AC; 150 151 // LoopProcessWorklist - Used to check if second loop needs processing 152 // after RewriteLoopBodyWithConditionConstant rewrites first loop. 153 std::vector<Loop*> LoopProcessWorklist; 154 155 LUAnalysisCache BranchesInfo; 156 157 bool OptimizeForSize; 158 bool redoLoop; 159 160 Loop *currentLoop; 161 DominatorTree *DT; 162 BasicBlock *loopHeader; 163 BasicBlock *loopPreheader; 164 165 // LoopBlocks contains all of the basic blocks of the loop, including the 166 // preheader of the loop, the body of the loop, and the exit blocks of the 167 // loop, in that order. 168 std::vector<BasicBlock*> LoopBlocks; 169 // NewBlocks contained cloned copy of basic blocks from LoopBlocks. 170 std::vector<BasicBlock*> NewBlocks; 171 172 public: 173 static char ID; // Pass ID, replacement for typeid 174 explicit LoopUnswitch(bool Os = false) : 175 LoopPass(ID), OptimizeForSize(Os), redoLoop(false), 176 currentLoop(nullptr), DT(nullptr), loopHeader(nullptr), 177 loopPreheader(nullptr) { 178 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry()); 179 } 180 181 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 182 bool processCurrentLoop(); 183 184 /// This transformation requires natural loop information & requires that 185 /// loop preheaders be inserted into the CFG. 186 /// 187 void getAnalysisUsage(AnalysisUsage &AU) const override { 188 AU.addRequired<AssumptionCacheTracker>(); 189 AU.addRequiredID(LoopSimplifyID); 190 AU.addPreservedID(LoopSimplifyID); 191 AU.addRequired<LoopInfoWrapperPass>(); 192 AU.addPreserved<LoopInfoWrapperPass>(); 193 AU.addRequiredID(LCSSAID); 194 AU.addPreservedID(LCSSAID); 195 AU.addPreserved<DominatorTreeWrapperPass>(); 196 AU.addPreserved<ScalarEvolution>(); 197 AU.addRequired<TargetTransformInfoWrapperPass>(); 198 } 199 200 private: 201 202 void releaseMemory() override { 203 BranchesInfo.forgetLoop(currentLoop); 204 } 205 206 void initLoopData() { 207 loopHeader = currentLoop->getHeader(); 208 loopPreheader = currentLoop->getLoopPreheader(); 209 } 210 211 /// Split all of the edges from inside the loop to their exit blocks. 212 /// Update the appropriate Phi nodes as we do so. 213 void SplitExitEdges(Loop *L, const SmallVectorImpl<BasicBlock *> &ExitBlocks); 214 215 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val, 216 TerminatorInst *TI = nullptr); 217 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, 218 BasicBlock *ExitBlock, TerminatorInst *TI); 219 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L, 220 TerminatorInst *TI); 221 222 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, 223 Constant *Val, bool isEqual); 224 225 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, 226 BasicBlock *TrueDest, 227 BasicBlock *FalseDest, 228 Instruction *InsertPt, 229 TerminatorInst *TI); 230 231 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L); 232 bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = nullptr, 233 BasicBlock **LoopExit = nullptr); 234 235 }; 236 } 237 238 // Analyze loop. Check its size, calculate is it possible to unswitch 239 // it. Returns true if we can unswitch this loop. 240 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI, 241 AssumptionCache *AC) { 242 243 LoopPropsMapIt PropsIt; 244 bool Inserted; 245 std::tie(PropsIt, Inserted) = 246 LoopsProperties.insert(std::make_pair(L, LoopProperties())); 247 248 LoopProperties &Props = PropsIt->second; 249 250 if (Inserted) { 251 // New loop. 252 253 // Limit the number of instructions to avoid causing significant code 254 // expansion, and the number of basic blocks, to avoid loops with 255 // large numbers of branches which cause loop unswitching to go crazy. 256 // This is a very ad-hoc heuristic. 257 258 SmallPtrSet<const Value *, 32> EphValues; 259 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 260 261 // FIXME: This is overly conservative because it does not take into 262 // consideration code simplification opportunities and code that can 263 // be shared by the resultant unswitched loops. 264 CodeMetrics Metrics; 265 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; 266 ++I) 267 Metrics.analyzeBasicBlock(*I, TTI, EphValues); 268 269 Props.SizeEstimation = Metrics.NumInsts; 270 Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation); 271 Props.WasUnswitchedCount = 0; 272 MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount; 273 274 if (Metrics.notDuplicatable) { 275 DEBUG(dbgs() << "NOT unswitching loop %" 276 << L->getHeader()->getName() << ", contents cannot be " 277 << "duplicated!\n"); 278 return false; 279 } 280 } 281 282 // Be careful. This links are good only before new loop addition. 283 CurrentLoopProperties = &Props; 284 CurLoopInstructions = &Props.UnswitchedVals; 285 286 return true; 287 } 288 289 // Clean all data related to given loop. 290 void LUAnalysisCache::forgetLoop(const Loop *L) { 291 292 LoopPropsMapIt LIt = LoopsProperties.find(L); 293 294 if (LIt != LoopsProperties.end()) { 295 LoopProperties &Props = LIt->second; 296 MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) * 297 Props.SizeEstimation; 298 LoopsProperties.erase(LIt); 299 } 300 301 CurrentLoopProperties = nullptr; 302 CurLoopInstructions = nullptr; 303 } 304 305 // Mark case value as unswitched. 306 // Since SI instruction can be partly unswitched, in order to avoid 307 // extra unswitching in cloned loops keep track all unswitched values. 308 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) { 309 (*CurLoopInstructions)[SI].insert(V); 310 } 311 312 // Check was this case value unswitched before or not. 313 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) { 314 return (*CurLoopInstructions)[SI].count(V); 315 } 316 317 bool LUAnalysisCache::CostAllowsUnswitching() { 318 return CurrentLoopProperties->CanBeUnswitchedCount > 0; 319 } 320 321 // Clone all loop-unswitch related loop properties. 322 // Redistribute unswitching quotas. 323 // Note, that new loop data is stored inside the VMap. 324 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop, 325 const ValueToValueMapTy &VMap) { 326 327 LoopProperties &NewLoopProps = LoopsProperties[NewLoop]; 328 LoopProperties &OldLoopProps = *CurrentLoopProperties; 329 UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals; 330 331 // Reallocate "can-be-unswitched quota" 332 333 --OldLoopProps.CanBeUnswitchedCount; 334 ++OldLoopProps.WasUnswitchedCount; 335 NewLoopProps.WasUnswitchedCount = 0; 336 unsigned Quota = OldLoopProps.CanBeUnswitchedCount; 337 NewLoopProps.CanBeUnswitchedCount = Quota / 2; 338 OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2; 339 340 NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation; 341 342 // Clone unswitched values info: 343 // for new loop switches we clone info about values that was 344 // already unswitched and has redundant successors. 345 for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) { 346 const SwitchInst *OldInst = I->first; 347 Value *NewI = VMap.lookup(OldInst); 348 const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI); 349 assert(NewInst && "All instructions that are in SrcBB must be in VMap."); 350 351 NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst]; 352 } 353 } 354 355 char LoopUnswitch::ID = 0; 356 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops", 357 false, false) 358 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 359 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 360 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 361 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 362 INITIALIZE_PASS_DEPENDENCY(LCSSA) 363 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops", 364 false, false) 365 366 Pass *llvm::createLoopUnswitchPass(bool Os) { 367 return new LoopUnswitch(Os); 368 } 369 370 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is 371 /// invariant in the loop, or has an invariant piece, return the invariant. 372 /// Otherwise, return null. 373 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) { 374 375 // We started analyze new instruction, increment scanned instructions counter. 376 ++TotalInsts; 377 378 // We can never unswitch on vector conditions. 379 if (Cond->getType()->isVectorTy()) 380 return nullptr; 381 382 // Constants should be folded, not unswitched on! 383 if (isa<Constant>(Cond)) return nullptr; 384 385 // TODO: Handle: br (VARIANT|INVARIANT). 386 387 // Hoist simple values out. 388 if (L->makeLoopInvariant(Cond, Changed)) 389 return Cond; 390 391 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond)) 392 if (BO->getOpcode() == Instruction::And || 393 BO->getOpcode() == Instruction::Or) { 394 // If either the left or right side is invariant, we can unswitch on this, 395 // which will cause the branch to go away in one loop and the condition to 396 // simplify in the other one. 397 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed)) 398 return LHS; 399 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed)) 400 return RHS; 401 } 402 403 return nullptr; 404 } 405 406 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) { 407 if (skipOptnoneFunction(L)) 408 return false; 409 410 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 411 *L->getHeader()->getParent()); 412 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 413 LPM = &LPM_Ref; 414 DominatorTreeWrapperPass *DTWP = 415 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 416 DT = DTWP ? &DTWP->getDomTree() : nullptr; 417 currentLoop = L; 418 Function *F = currentLoop->getHeader()->getParent(); 419 bool Changed = false; 420 do { 421 assert(currentLoop->isLCSSAForm(*DT)); 422 redoLoop = false; 423 Changed |= processCurrentLoop(); 424 } while(redoLoop); 425 426 if (Changed) { 427 // FIXME: Reconstruct dom info, because it is not preserved properly. 428 if (DT) 429 DT->recalculate(*F); 430 } 431 return Changed; 432 } 433 434 /// processCurrentLoop - Do actual work and unswitch loop if possible 435 /// and profitable. 436 bool LoopUnswitch::processCurrentLoop() { 437 bool Changed = false; 438 439 initLoopData(); 440 441 // If LoopSimplify was unable to form a preheader, don't do any unswitching. 442 if (!loopPreheader) 443 return false; 444 445 // Loops with indirectbr cannot be cloned. 446 if (!currentLoop->isSafeToClone()) 447 return false; 448 449 // Without dedicated exits, splitting the exit edge may fail. 450 if (!currentLoop->hasDedicatedExits()) 451 return false; 452 453 LLVMContext &Context = loopHeader->getContext(); 454 455 // Probably we reach the quota of branches for this loop. If so 456 // stop unswitching. 457 if (!BranchesInfo.countLoop( 458 currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 459 *currentLoop->getHeader()->getParent()), 460 AC)) 461 return false; 462 463 // Loop over all of the basic blocks in the loop. If we find an interior 464 // block that is branching on a loop-invariant condition, we can unswitch this 465 // loop. 466 for (Loop::block_iterator I = currentLoop->block_begin(), 467 E = currentLoop->block_end(); I != E; ++I) { 468 TerminatorInst *TI = (*I)->getTerminator(); 469 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 470 // If this isn't branching on an invariant condition, we can't unswitch 471 // it. 472 if (BI->isConditional()) { 473 // See if this, or some part of it, is loop invariant. If so, we can 474 // unswitch on it if we desire. 475 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), 476 currentLoop, Changed); 477 if (LoopCond && 478 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) { 479 ++NumBranches; 480 return true; 481 } 482 } 483 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 484 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 485 currentLoop, Changed); 486 unsigned NumCases = SI->getNumCases(); 487 if (LoopCond && NumCases) { 488 // Find a value to unswitch on: 489 // FIXME: this should chose the most expensive case! 490 // FIXME: scan for a case with a non-critical edge? 491 Constant *UnswitchVal = nullptr; 492 493 // Do not process same value again and again. 494 // At this point we have some cases already unswitched and 495 // some not yet unswitched. Let's find the first not yet unswitched one. 496 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 497 i != e; ++i) { 498 Constant *UnswitchValCandidate = i.getCaseValue(); 499 if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) { 500 UnswitchVal = UnswitchValCandidate; 501 break; 502 } 503 } 504 505 if (!UnswitchVal) 506 continue; 507 508 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) { 509 ++NumSwitches; 510 return true; 511 } 512 } 513 } 514 515 // Scan the instructions to check for unswitchable values. 516 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); 517 BBI != E; ++BBI) 518 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) { 519 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 520 currentLoop, Changed); 521 if (LoopCond && UnswitchIfProfitable(LoopCond, 522 ConstantInt::getTrue(Context))) { 523 ++NumSelects; 524 return true; 525 } 526 } 527 } 528 return Changed; 529 } 530 531 /// isTrivialLoopExitBlock - Check to see if all paths from BB exit the 532 /// loop with no side effects (including infinite loops). 533 /// 534 /// If true, we return true and set ExitBB to the block we 535 /// exit through. 536 /// 537 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB, 538 BasicBlock *&ExitBB, 539 std::set<BasicBlock*> &Visited) { 540 if (!Visited.insert(BB).second) { 541 // Already visited. Without more analysis, this could indicate an infinite 542 // loop. 543 return false; 544 } 545 if (!L->contains(BB)) { 546 // Otherwise, this is a loop exit, this is fine so long as this is the 547 // first exit. 548 if (ExitBB) return false; 549 ExitBB = BB; 550 return true; 551 } 552 553 // Otherwise, this is an unvisited intra-loop node. Check all successors. 554 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) { 555 // Check to see if the successor is a trivial loop exit. 556 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited)) 557 return false; 558 } 559 560 // Okay, everything after this looks good, check to make sure that this block 561 // doesn't include any side effects. 562 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 563 if (I->mayHaveSideEffects()) 564 return false; 565 566 return true; 567 } 568 569 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally 570 /// leads to an exit from the specified loop, and has no side-effects in the 571 /// process. If so, return the block that is exited to, otherwise return null. 572 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) { 573 std::set<BasicBlock*> Visited; 574 Visited.insert(L->getHeader()); // Branches to header make infinite loops. 575 BasicBlock *ExitBB = nullptr; 576 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited)) 577 return ExitBB; 578 return nullptr; 579 } 580 581 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is 582 /// trivial: that is, that the condition controls whether or not the loop does 583 /// anything at all. If this is a trivial condition, unswitching produces no 584 /// code duplications (equivalently, it produces a simpler loop and a new empty 585 /// loop, which gets deleted). 586 /// 587 /// If this is a trivial condition, return true, otherwise return false. When 588 /// returning true, this sets Cond and Val to the condition that controls the 589 /// trivial condition: when Cond dynamically equals Val, the loop is known to 590 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when 591 /// Cond == Val. 592 /// 593 bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val, 594 BasicBlock **LoopExit) { 595 BasicBlock *Header = currentLoop->getHeader(); 596 TerminatorInst *HeaderTerm = Header->getTerminator(); 597 LLVMContext &Context = Header->getContext(); 598 599 BasicBlock *LoopExitBB = nullptr; 600 if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) { 601 // If the header block doesn't end with a conditional branch on Cond, we 602 // can't handle it. 603 if (!BI->isConditional() || BI->getCondition() != Cond) 604 return false; 605 606 // Check to see if a successor of the branch is guaranteed to 607 // exit through a unique exit block without having any 608 // side-effects. If so, determine the value of Cond that causes it to do 609 // this. 610 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 611 BI->getSuccessor(0)))) { 612 if (Val) *Val = ConstantInt::getTrue(Context); 613 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 614 BI->getSuccessor(1)))) { 615 if (Val) *Val = ConstantInt::getFalse(Context); 616 } 617 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) { 618 // If this isn't a switch on Cond, we can't handle it. 619 if (SI->getCondition() != Cond) return false; 620 621 // Check to see if a successor of the switch is guaranteed to go to the 622 // latch block or exit through a one exit block without having any 623 // side-effects. If so, determine the value of Cond that causes it to do 624 // this. 625 // Note that we can't trivially unswitch on the default case or 626 // on already unswitched cases. 627 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 628 i != e; ++i) { 629 BasicBlock *LoopExitCandidate; 630 if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop, 631 i.getCaseSuccessor()))) { 632 // Okay, we found a trivial case, remember the value that is trivial. 633 ConstantInt *CaseVal = i.getCaseValue(); 634 635 // Check that it was not unswitched before, since already unswitched 636 // trivial vals are looks trivial too. 637 if (BranchesInfo.isUnswitched(SI, CaseVal)) 638 continue; 639 LoopExitBB = LoopExitCandidate; 640 if (Val) *Val = CaseVal; 641 break; 642 } 643 } 644 } 645 646 // If we didn't find a single unique LoopExit block, or if the loop exit block 647 // contains phi nodes, this isn't trivial. 648 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) 649 return false; // Can't handle this. 650 651 if (LoopExit) *LoopExit = LoopExitBB; 652 653 // We already know that nothing uses any scalar values defined inside of this 654 // loop. As such, we just have to check to see if this loop will execute any 655 // side-effecting instructions (e.g. stores, calls, volatile loads) in the 656 // part of the loop that the code *would* execute. We already checked the 657 // tail, check the header now. 658 for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I) 659 if (I->mayHaveSideEffects()) 660 return false; 661 return true; 662 } 663 664 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when 665 /// LoopCond == Val to simplify the loop. If we decide that this is profitable, 666 /// unswitch the loop, reprocess the pieces, then return true. 667 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val, 668 TerminatorInst *TI) { 669 Function *F = loopHeader->getParent(); 670 Constant *CondVal = nullptr; 671 BasicBlock *ExitBlock = nullptr; 672 673 if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) { 674 // If the condition is trivial, always unswitch. There is no code growth 675 // for this case. 676 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock, TI); 677 return true; 678 } 679 680 // Check to see if it would be profitable to unswitch current loop. 681 if (!BranchesInfo.CostAllowsUnswitching()) { 682 DEBUG(dbgs() << "NOT unswitching loop %" 683 << currentLoop->getHeader()->getName() 684 << " at non-trivial condition '" << *Val 685 << "' == " << *LoopCond << "\n" 686 << ". Cost too high.\n"); 687 return false; 688 } 689 690 // Do not do non-trivial unswitch while optimizing for size. 691 if (OptimizeForSize || F->hasFnAttribute(Attribute::OptimizeForSize)) 692 return false; 693 694 UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI); 695 return true; 696 } 697 698 /// CloneLoop - Recursively clone the specified loop and all of its children, 699 /// mapping the blocks with the specified map. 700 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 701 LoopInfo *LI, LPPassManager *LPM) { 702 Loop *New = new Loop(); 703 LPM->insertLoop(New, PL); 704 705 // Add all of the blocks in L to the new loop. 706 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 707 I != E; ++I) 708 if (LI->getLoopFor(*I) == L) 709 New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI); 710 711 // Add all of the subloops to the new loop. 712 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 713 CloneLoop(*I, New, VM, LI, LPM); 714 715 return New; 716 } 717 718 static void copyMetadata(Instruction *DstInst, const Instruction *SrcInst, 719 bool Swapped) { 720 if (!SrcInst || !SrcInst->hasMetadata()) 721 return; 722 723 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 724 SrcInst->getAllMetadata(MDs); 725 for (auto &MD : MDs) { 726 switch (MD.first) { 727 default: 728 break; 729 case LLVMContext::MD_prof: 730 if (Swapped && MD.second->getNumOperands() == 3 && 731 isa<MDString>(MD.second->getOperand(0))) { 732 MDString *MDName = cast<MDString>(MD.second->getOperand(0)); 733 if (MDName->getString() == "branch_weights") { 734 auto *ValT = cast_or_null<ConstantAsMetadata>( 735 MD.second->getOperand(1))->getValue(); 736 auto *ValF = cast_or_null<ConstantAsMetadata>( 737 MD.second->getOperand(2))->getValue(); 738 assert(ValT && ValF && "Invalid Operands of branch_weights"); 739 auto NewMD = 740 MDBuilder(DstInst->getParent()->getContext()) 741 .createBranchWeights(cast<ConstantInt>(ValF)->getZExtValue(), 742 cast<ConstantInt>(ValT)->getZExtValue()); 743 MD.second = NewMD; 744 } 745 } 746 // fallthrough. 747 case LLVMContext::MD_dbg: 748 DstInst->setMetadata(MD.first, MD.second); 749 } 750 } 751 } 752 753 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values 754 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the 755 /// code immediately before InsertPt. 756 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, 757 BasicBlock *TrueDest, 758 BasicBlock *FalseDest, 759 Instruction *InsertPt, 760 TerminatorInst *TI) { 761 // Insert a conditional branch on LIC to the two preheaders. The original 762 // code is the true version and the new code is the false version. 763 Value *BranchVal = LIC; 764 bool Swapped = false; 765 if (!isa<ConstantInt>(Val) || 766 Val->getType() != Type::getInt1Ty(LIC->getContext())) 767 BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val); 768 else if (Val != ConstantInt::getTrue(Val->getContext())) { 769 // We want to enter the new loop when the condition is true. 770 std::swap(TrueDest, FalseDest); 771 Swapped = true; 772 } 773 774 // Insert the new branch. 775 BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt); 776 copyMetadata(BI, TI, Swapped); 777 778 // If either edge is critical, split it. This helps preserve LoopSimplify 779 // form for enclosing loops. 780 auto Options = CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA(); 781 SplitCriticalEdge(BI, 0, Options); 782 SplitCriticalEdge(BI, 1, Options); 783 } 784 785 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable 786 /// condition in it (a cond branch from its header block to its latch block, 787 /// where the path through the loop that doesn't execute its body has no 788 /// side-effects), unswitch it. This doesn't involve any code duplication, just 789 /// moving the conditional branch outside of the loop and updating loop info. 790 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, 791 BasicBlock *ExitBlock, 792 TerminatorInst *TI) { 793 DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %" 794 << loopHeader->getName() << " [" << L->getBlocks().size() 795 << " blocks] in Function " 796 << L->getHeader()->getParent()->getName() << " on cond: " << *Val 797 << " == " << *Cond << "\n"); 798 799 // First step, split the preheader, so that we know that there is a safe place 800 // to insert the conditional branch. We will change loopPreheader to have a 801 // conditional branch on Cond. 802 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI); 803 804 // Now that we have a place to insert the conditional branch, create a place 805 // to branch to: this is the exit block out of the loop that we should 806 // short-circuit to. 807 808 // Split this block now, so that the loop maintains its exit block, and so 809 // that the jump from the preheader can execute the contents of the exit block 810 // without actually branching to it (the exit block should be dominated by the 811 // loop header, not the preheader). 812 assert(!L->contains(ExitBlock) && "Exit block is in the loop?"); 813 BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), DT, LI); 814 815 // Okay, now we have a position to branch from and a position to branch to, 816 // insert the new conditional branch. 817 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, 818 loopPreheader->getTerminator(), TI); 819 LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L); 820 loopPreheader->getTerminator()->eraseFromParent(); 821 822 // We need to reprocess this loop, it could be unswitched again. 823 redoLoop = true; 824 825 // Now that we know that the loop is never entered when this condition is a 826 // particular value, rewrite the loop with this info. We know that this will 827 // at least eliminate the old branch. 828 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false); 829 ++NumTrivial; 830 } 831 832 /// SplitExitEdges - Split all of the edges from inside the loop to their exit 833 /// blocks. Update the appropriate Phi nodes as we do so. 834 void LoopUnswitch::SplitExitEdges(Loop *L, 835 const SmallVectorImpl<BasicBlock *> &ExitBlocks){ 836 837 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 838 BasicBlock *ExitBlock = ExitBlocks[i]; 839 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock), 840 pred_end(ExitBlock)); 841 842 // Although SplitBlockPredecessors doesn't preserve loop-simplify in 843 // general, if we call it on all predecessors of all exits then it does. 844 SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", 845 /*AliasAnalysis*/ nullptr, DT, LI, 846 /*PreserveLCSSA*/ true); 847 } 848 } 849 850 /// UnswitchNontrivialCondition - We determined that the loop is profitable 851 /// to unswitch when LIC equal Val. Split it into loop versions and test the 852 /// condition outside of either loop. Return the loops created as Out1/Out2. 853 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, 854 Loop *L, TerminatorInst *TI) { 855 Function *F = loopHeader->getParent(); 856 DEBUG(dbgs() << "loop-unswitch: Unswitching loop %" 857 << loopHeader->getName() << " [" << L->getBlocks().size() 858 << " blocks] in Function " << F->getName() 859 << " when '" << *Val << "' == " << *LIC << "\n"); 860 861 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>()) 862 SE->forgetLoop(L); 863 864 LoopBlocks.clear(); 865 NewBlocks.clear(); 866 867 // First step, split the preheader and exit blocks, and add these blocks to 868 // the LoopBlocks list. 869 BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, DT, LI); 870 LoopBlocks.push_back(NewPreheader); 871 872 // We want the loop to come after the preheader, but before the exit blocks. 873 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 874 875 SmallVector<BasicBlock*, 8> ExitBlocks; 876 L->getUniqueExitBlocks(ExitBlocks); 877 878 // Split all of the edges from inside the loop to their exit blocks. Update 879 // the appropriate Phi nodes as we do so. 880 SplitExitEdges(L, ExitBlocks); 881 882 // The exit blocks may have been changed due to edge splitting, recompute. 883 ExitBlocks.clear(); 884 L->getUniqueExitBlocks(ExitBlocks); 885 886 // Add exit blocks to the loop blocks. 887 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end()); 888 889 // Next step, clone all of the basic blocks that make up the loop (including 890 // the loop preheader and exit blocks), keeping track of the mapping between 891 // the instructions and blocks. 892 NewBlocks.reserve(LoopBlocks.size()); 893 ValueToValueMapTy VMap; 894 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) { 895 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F); 896 897 NewBlocks.push_back(NewBB); 898 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping. 899 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L); 900 } 901 902 // Splice the newly inserted blocks into the function right before the 903 // original preheader. 904 F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(), 905 NewBlocks[0], F->end()); 906 907 // FIXME: We could register any cloned assumptions instead of clearing the 908 // whole function's cache. 909 AC->clear(); 910 911 // Now we create the new Loop object for the versioned loop. 912 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM); 913 914 // Recalculate unswitching quota, inherit simplified switches info for NewBB, 915 // Probably clone more loop-unswitch related loop properties. 916 BranchesInfo.cloneData(NewLoop, L, VMap); 917 918 Loop *ParentLoop = L->getParentLoop(); 919 if (ParentLoop) { 920 // Make sure to add the cloned preheader and exit blocks to the parent loop 921 // as well. 922 ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI); 923 } 924 925 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 926 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]); 927 // The new exit block should be in the same loop as the old one. 928 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i])) 929 ExitBBLoop->addBasicBlockToLoop(NewExit, *LI); 930 931 assert(NewExit->getTerminator()->getNumSuccessors() == 1 && 932 "Exit block should have been split to have one successor!"); 933 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 934 935 // If the successor of the exit block had PHI nodes, add an entry for 936 // NewExit. 937 for (BasicBlock::iterator I = ExitSucc->begin(); 938 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 939 Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]); 940 ValueToValueMapTy::iterator It = VMap.find(V); 941 if (It != VMap.end()) V = It->second; 942 PN->addIncoming(V, NewExit); 943 } 944 945 if (LandingPadInst *LPad = NewExit->getLandingPadInst()) { 946 PHINode *PN = PHINode::Create(LPad->getType(), 0, "", 947 ExitSucc->getFirstInsertionPt()); 948 949 for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc); 950 I != E; ++I) { 951 BasicBlock *BB = *I; 952 LandingPadInst *LPI = BB->getLandingPadInst(); 953 LPI->replaceAllUsesWith(PN); 954 PN->addIncoming(LPI, BB); 955 } 956 } 957 } 958 959 // Rewrite the code to refer to itself. 960 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) 961 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 962 E = NewBlocks[i]->end(); I != E; ++I) 963 RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries); 964 965 // Rewrite the original preheader to select between versions of the loop. 966 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator()); 967 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] && 968 "Preheader splitting did not work correctly!"); 969 970 // Emit the new branch that selects between the two versions of this loop. 971 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR, 972 TI); 973 LPM->deleteSimpleAnalysisValue(OldBR, L); 974 OldBR->eraseFromParent(); 975 976 LoopProcessWorklist.push_back(NewLoop); 977 redoLoop = true; 978 979 // Keep a WeakVH holding onto LIC. If the first call to RewriteLoopBody 980 // deletes the instruction (for example by simplifying a PHI that feeds into 981 // the condition that we're unswitching on), we don't rewrite the second 982 // iteration. 983 WeakVH LICHandle(LIC); 984 985 // Now we rewrite the original code to know that the condition is true and the 986 // new code to know that the condition is false. 987 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false); 988 989 // It's possible that simplifying one loop could cause the other to be 990 // changed to another value or a constant. If its a constant, don't simplify 991 // it. 992 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop && 993 LICHandle && !isa<Constant>(LICHandle)) 994 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true); 995 } 996 997 /// RemoveFromWorklist - Remove all instances of I from the worklist vector 998 /// specified. 999 static void RemoveFromWorklist(Instruction *I, 1000 std::vector<Instruction*> &Worklist) { 1001 1002 Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I), 1003 Worklist.end()); 1004 } 1005 1006 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the 1007 /// program, replacing all uses with V and update the worklist. 1008 static void ReplaceUsesOfWith(Instruction *I, Value *V, 1009 std::vector<Instruction*> &Worklist, 1010 Loop *L, LPPassManager *LPM) { 1011 DEBUG(dbgs() << "Replace with '" << *V << "': " << *I); 1012 1013 // Add uses to the worklist, which may be dead now. 1014 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1015 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) 1016 Worklist.push_back(Use); 1017 1018 // Add users to the worklist which may be simplified now. 1019 for (User *U : I->users()) 1020 Worklist.push_back(cast<Instruction>(U)); 1021 LPM->deleteSimpleAnalysisValue(I, L); 1022 RemoveFromWorklist(I, Worklist); 1023 I->replaceAllUsesWith(V); 1024 I->eraseFromParent(); 1025 ++NumSimplify; 1026 } 1027 1028 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has 1029 // the value specified by Val in the specified loop, or we know it does NOT have 1030 // that value. Rewrite any uses of LIC or of properties correlated to it. 1031 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, 1032 Constant *Val, 1033 bool IsEqual) { 1034 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?"); 1035 1036 // FIXME: Support correlated properties, like: 1037 // for (...) 1038 // if (li1 < li2) 1039 // ... 1040 // if (li1 > li2) 1041 // ... 1042 1043 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches, 1044 // selects, switches. 1045 std::vector<Instruction*> Worklist; 1046 LLVMContext &Context = Val->getContext(); 1047 1048 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC 1049 // in the loop with the appropriate one directly. 1050 if (IsEqual || (isa<ConstantInt>(Val) && 1051 Val->getType()->isIntegerTy(1))) { 1052 Value *Replacement; 1053 if (IsEqual) 1054 Replacement = Val; 1055 else 1056 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()), 1057 !cast<ConstantInt>(Val)->getZExtValue()); 1058 1059 for (User *U : LIC->users()) { 1060 Instruction *UI = dyn_cast<Instruction>(U); 1061 if (!UI || !L->contains(UI)) 1062 continue; 1063 Worklist.push_back(UI); 1064 } 1065 1066 for (std::vector<Instruction*>::iterator UI = Worklist.begin(), 1067 UE = Worklist.end(); UI != UE; ++UI) 1068 (*UI)->replaceUsesOfWith(LIC, Replacement); 1069 1070 SimplifyCode(Worklist, L); 1071 return; 1072 } 1073 1074 // Otherwise, we don't know the precise value of LIC, but we do know that it 1075 // is certainly NOT "Val". As such, simplify any uses in the loop that we 1076 // can. This case occurs when we unswitch switch statements. 1077 for (User *U : LIC->users()) { 1078 Instruction *UI = dyn_cast<Instruction>(U); 1079 if (!UI || !L->contains(UI)) 1080 continue; 1081 1082 Worklist.push_back(UI); 1083 1084 // TODO: We could do other simplifications, for example, turning 1085 // 'icmp eq LIC, Val' -> false. 1086 1087 // If we know that LIC is not Val, use this info to simplify code. 1088 SwitchInst *SI = dyn_cast<SwitchInst>(UI); 1089 if (!SI || !isa<ConstantInt>(Val)) continue; 1090 1091 SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val)); 1092 // Default case is live for multiple values. 1093 if (DeadCase == SI->case_default()) continue; 1094 1095 // Found a dead case value. Don't remove PHI nodes in the 1096 // successor if they become single-entry, those PHI nodes may 1097 // be in the Users list. 1098 1099 BasicBlock *Switch = SI->getParent(); 1100 BasicBlock *SISucc = DeadCase.getCaseSuccessor(); 1101 BasicBlock *Latch = L->getLoopLatch(); 1102 1103 BranchesInfo.setUnswitched(SI, Val); 1104 1105 if (!SI->findCaseDest(SISucc)) continue; // Edge is critical. 1106 // If the DeadCase successor dominates the loop latch, then the 1107 // transformation isn't safe since it will delete the sole predecessor edge 1108 // to the latch. 1109 if (Latch && DT->dominates(SISucc, Latch)) 1110 continue; 1111 1112 // FIXME: This is a hack. We need to keep the successor around 1113 // and hooked up so as to preserve the loop structure, because 1114 // trying to update it is complicated. So instead we preserve the 1115 // loop structure and put the block on a dead code path. 1116 SplitEdge(Switch, SISucc, DT, LI); 1117 // Compute the successors instead of relying on the return value 1118 // of SplitEdge, since it may have split the switch successor 1119 // after PHI nodes. 1120 BasicBlock *NewSISucc = DeadCase.getCaseSuccessor(); 1121 BasicBlock *OldSISucc = *succ_begin(NewSISucc); 1122 // Create an "unreachable" destination. 1123 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable", 1124 Switch->getParent(), 1125 OldSISucc); 1126 new UnreachableInst(Context, Abort); 1127 // Force the new case destination to branch to the "unreachable" 1128 // block while maintaining a (dead) CFG edge to the old block. 1129 NewSISucc->getTerminator()->eraseFromParent(); 1130 BranchInst::Create(Abort, OldSISucc, 1131 ConstantInt::getTrue(Context), NewSISucc); 1132 // Release the PHI operands for this edge. 1133 for (BasicBlock::iterator II = NewSISucc->begin(); 1134 PHINode *PN = dyn_cast<PHINode>(II); ++II) 1135 PN->setIncomingValue(PN->getBasicBlockIndex(Switch), 1136 UndefValue::get(PN->getType())); 1137 // Tell the domtree about the new block. We don't fully update the 1138 // domtree here -- instead we force it to do a full recomputation 1139 // after the pass is complete -- but we do need to inform it of 1140 // new blocks. 1141 if (DT) 1142 DT->addNewBlock(Abort, NewSISucc); 1143 } 1144 1145 SimplifyCode(Worklist, L); 1146 } 1147 1148 /// SimplifyCode - Okay, now that we have simplified some instructions in the 1149 /// loop, walk over it and constant prop, dce, and fold control flow where 1150 /// possible. Note that this is effectively a very simple loop-structure-aware 1151 /// optimizer. During processing of this loop, L could very well be deleted, so 1152 /// it must not be used. 1153 /// 1154 /// FIXME: When the loop optimizer is more mature, separate this out to a new 1155 /// pass. 1156 /// 1157 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) { 1158 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1159 while (!Worklist.empty()) { 1160 Instruction *I = Worklist.back(); 1161 Worklist.pop_back(); 1162 1163 // Simple DCE. 1164 if (isInstructionTriviallyDead(I)) { 1165 DEBUG(dbgs() << "Remove dead instruction '" << *I); 1166 1167 // Add uses to the worklist, which may be dead now. 1168 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1169 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) 1170 Worklist.push_back(Use); 1171 LPM->deleteSimpleAnalysisValue(I, L); 1172 RemoveFromWorklist(I, Worklist); 1173 I->eraseFromParent(); 1174 ++NumSimplify; 1175 continue; 1176 } 1177 1178 // See if instruction simplification can hack this up. This is common for 1179 // things like "select false, X, Y" after unswitching made the condition be 1180 // 'false'. TODO: update the domtree properly so we can pass it here. 1181 if (Value *V = SimplifyInstruction(I, DL)) 1182 if (LI->replacementPreservesLCSSAForm(I, V)) { 1183 ReplaceUsesOfWith(I, V, Worklist, L, LPM); 1184 continue; 1185 } 1186 1187 // Special case hacks that appear commonly in unswitched code. 1188 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1189 if (BI->isUnconditional()) { 1190 // If BI's parent is the only pred of the successor, fold the two blocks 1191 // together. 1192 BasicBlock *Pred = BI->getParent(); 1193 BasicBlock *Succ = BI->getSuccessor(0); 1194 BasicBlock *SinglePred = Succ->getSinglePredecessor(); 1195 if (!SinglePred) continue; // Nothing to do. 1196 assert(SinglePred == Pred && "CFG broken"); 1197 1198 DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- " 1199 << Succ->getName() << "\n"); 1200 1201 // Resolve any single entry PHI nodes in Succ. 1202 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin())) 1203 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM); 1204 1205 // If Succ has any successors with PHI nodes, update them to have 1206 // entries coming from Pred instead of Succ. 1207 Succ->replaceAllUsesWith(Pred); 1208 1209 // Move all of the successor contents from Succ to Pred. 1210 Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(), 1211 Succ->end()); 1212 LPM->deleteSimpleAnalysisValue(BI, L); 1213 BI->eraseFromParent(); 1214 RemoveFromWorklist(BI, Worklist); 1215 1216 // Remove Succ from the loop tree. 1217 LI->removeBlock(Succ); 1218 LPM->deleteSimpleAnalysisValue(Succ, L); 1219 Succ->eraseFromParent(); 1220 ++NumSimplify; 1221 continue; 1222 } 1223 1224 continue; 1225 } 1226 } 1227 } 1228