1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops that contain branches on loop-invariant conditions 11 // to multiple loops. For example, it turns the left into the right code: 12 // 13 // for (...) if (lic) 14 // A for (...) 15 // if (lic) A; B; C 16 // B else 17 // C for (...) 18 // A; C 19 // 20 // This can increase the size of the code exponentially (doubling it every time 21 // a loop is unswitched) so we only unswitch if the resultant code will be 22 // smaller than a threshold. 23 // 24 // This pass expects LICM to be run before it to hoist invariant conditions out 25 // of the loop, to make the unswitching opportunity obvious. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AssumptionCache.h" 33 #include "llvm/Analysis/BlockFrequencyInfo.h" 34 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 35 #include "llvm/Analysis/BranchProbabilityInfo.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DivergenceAnalysis.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/InstructionSimplify.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/LoopPass.h" 42 #include "llvm/Analysis/ScalarEvolution.h" 43 #include "llvm/Analysis/TargetTransformInfo.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Dominators.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/Support/BranchProbability.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 58 #include "llvm/Transforms/Utils/Cloning.h" 59 #include "llvm/Transforms/Utils/Local.h" 60 #include "llvm/Transforms/Utils/LoopUtils.h" 61 #include <algorithm> 62 #include <map> 63 #include <set> 64 using namespace llvm; 65 66 #define DEBUG_TYPE "loop-unswitch" 67 68 STATISTIC(NumBranches, "Number of branches unswitched"); 69 STATISTIC(NumSwitches, "Number of switches unswitched"); 70 STATISTIC(NumGuards, "Number of guards unswitched"); 71 STATISTIC(NumSelects , "Number of selects unswitched"); 72 STATISTIC(NumTrivial , "Number of unswitches that are trivial"); 73 STATISTIC(NumSimplify, "Number of simplifications of unswitched code"); 74 STATISTIC(TotalInsts, "Total number of instructions analyzed"); 75 76 // The specific value of 100 here was chosen based only on intuition and a 77 // few specific examples. 78 static cl::opt<unsigned> 79 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), 80 cl::init(100), cl::Hidden); 81 82 namespace { 83 84 class LUAnalysisCache { 85 86 typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> > 87 UnswitchedValsMap; 88 89 typedef UnswitchedValsMap::iterator UnswitchedValsIt; 90 91 struct LoopProperties { 92 unsigned CanBeUnswitchedCount; 93 unsigned WasUnswitchedCount; 94 unsigned SizeEstimation; 95 UnswitchedValsMap UnswitchedVals; 96 }; 97 98 // Here we use std::map instead of DenseMap, since we need to keep valid 99 // LoopProperties pointer for current loop for better performance. 100 typedef std::map<const Loop*, LoopProperties> LoopPropsMap; 101 typedef LoopPropsMap::iterator LoopPropsMapIt; 102 103 LoopPropsMap LoopsProperties; 104 UnswitchedValsMap *CurLoopInstructions; 105 LoopProperties *CurrentLoopProperties; 106 107 // A loop unswitching with an estimated cost above this threshold 108 // is not performed. MaxSize is turned into unswitching quota for 109 // the current loop, and reduced correspondingly, though note that 110 // the quota is returned by releaseMemory() when the loop has been 111 // processed, so that MaxSize will return to its previous 112 // value. So in most cases MaxSize will equal the Threshold flag 113 // when a new loop is processed. An exception to that is that 114 // MaxSize will have a smaller value while processing nested loops 115 // that were introduced due to loop unswitching of an outer loop. 116 // 117 // FIXME: The way that MaxSize works is subtle and depends on the 118 // pass manager processing loops and calling releaseMemory() in a 119 // specific order. It would be good to find a more straightforward 120 // way of doing what MaxSize does. 121 unsigned MaxSize; 122 123 public: 124 LUAnalysisCache() 125 : CurLoopInstructions(nullptr), CurrentLoopProperties(nullptr), 126 MaxSize(Threshold) {} 127 128 // Analyze loop. Check its size, calculate is it possible to unswitch 129 // it. Returns true if we can unswitch this loop. 130 bool countLoop(const Loop *L, const TargetTransformInfo &TTI, 131 AssumptionCache *AC); 132 133 // Clean all data related to given loop. 134 void forgetLoop(const Loop *L); 135 136 // Mark case value as unswitched. 137 // Since SI instruction can be partly unswitched, in order to avoid 138 // extra unswitching in cloned loops keep track all unswitched values. 139 void setUnswitched(const SwitchInst *SI, const Value *V); 140 141 // Check was this case value unswitched before or not. 142 bool isUnswitched(const SwitchInst *SI, const Value *V); 143 144 // Returns true if another unswitching could be done within the cost 145 // threshold. 146 bool CostAllowsUnswitching(); 147 148 // Clone all loop-unswitch related loop properties. 149 // Redistribute unswitching quotas. 150 // Note, that new loop data is stored inside the VMap. 151 void cloneData(const Loop *NewLoop, const Loop *OldLoop, 152 const ValueToValueMapTy &VMap); 153 }; 154 155 class LoopUnswitch : public LoopPass { 156 LoopInfo *LI; // Loop information 157 LPPassManager *LPM; 158 AssumptionCache *AC; 159 160 // Used to check if second loop needs processing after 161 // RewriteLoopBodyWithConditionConstant rewrites first loop. 162 std::vector<Loop*> LoopProcessWorklist; 163 164 LUAnalysisCache BranchesInfo; 165 166 bool OptimizeForSize; 167 bool redoLoop; 168 169 Loop *currentLoop; 170 DominatorTree *DT; 171 BasicBlock *loopHeader; 172 BasicBlock *loopPreheader; 173 174 bool SanitizeMemory; 175 LoopSafetyInfo SafetyInfo; 176 177 // LoopBlocks contains all of the basic blocks of the loop, including the 178 // preheader of the loop, the body of the loop, and the exit blocks of the 179 // loop, in that order. 180 std::vector<BasicBlock*> LoopBlocks; 181 // NewBlocks contained cloned copy of basic blocks from LoopBlocks. 182 std::vector<BasicBlock*> NewBlocks; 183 184 bool hasBranchDivergence; 185 186 public: 187 static char ID; // Pass ID, replacement for typeid 188 explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false) : 189 LoopPass(ID), OptimizeForSize(Os), redoLoop(false), 190 currentLoop(nullptr), DT(nullptr), loopHeader(nullptr), 191 loopPreheader(nullptr), hasBranchDivergence(hasBranchDivergence) { 192 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry()); 193 } 194 195 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 196 bool processCurrentLoop(); 197 bool isUnreachableDueToPreviousUnswitching(BasicBlock *); 198 /// This transformation requires natural loop information & requires that 199 /// loop preheaders be inserted into the CFG. 200 /// 201 void getAnalysisUsage(AnalysisUsage &AU) const override { 202 AU.addRequired<AssumptionCacheTracker>(); 203 AU.addRequired<TargetTransformInfoWrapperPass>(); 204 if (hasBranchDivergence) 205 AU.addRequired<DivergenceAnalysis>(); 206 getLoopAnalysisUsage(AU); 207 } 208 209 private: 210 211 void releaseMemory() override { 212 BranchesInfo.forgetLoop(currentLoop); 213 } 214 215 void initLoopData() { 216 loopHeader = currentLoop->getHeader(); 217 loopPreheader = currentLoop->getLoopPreheader(); 218 } 219 220 /// Split all of the edges from inside the loop to their exit blocks. 221 /// Update the appropriate Phi nodes as we do so. 222 void SplitExitEdges(Loop *L, 223 const SmallVectorImpl<BasicBlock *> &ExitBlocks); 224 225 bool TryTrivialLoopUnswitch(bool &Changed); 226 227 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val, 228 TerminatorInst *TI = nullptr); 229 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, 230 BasicBlock *ExitBlock, TerminatorInst *TI); 231 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L, 232 TerminatorInst *TI); 233 234 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, 235 Constant *Val, bool isEqual); 236 237 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, 238 BasicBlock *TrueDest, 239 BasicBlock *FalseDest, 240 Instruction *InsertPt, 241 TerminatorInst *TI); 242 243 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L); 244 245 /// Given that the Invariant is not equal to Val. Simplify instructions 246 /// in the loop. 247 Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant, 248 Constant *Val); 249 }; 250 } 251 252 // Analyze loop. Check its size, calculate is it possible to unswitch 253 // it. Returns true if we can unswitch this loop. 254 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI, 255 AssumptionCache *AC) { 256 257 LoopPropsMapIt PropsIt; 258 bool Inserted; 259 std::tie(PropsIt, Inserted) = 260 LoopsProperties.insert(std::make_pair(L, LoopProperties())); 261 262 LoopProperties &Props = PropsIt->second; 263 264 if (Inserted) { 265 // New loop. 266 267 // Limit the number of instructions to avoid causing significant code 268 // expansion, and the number of basic blocks, to avoid loops with 269 // large numbers of branches which cause loop unswitching to go crazy. 270 // This is a very ad-hoc heuristic. 271 272 SmallPtrSet<const Value *, 32> EphValues; 273 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 274 275 // FIXME: This is overly conservative because it does not take into 276 // consideration code simplification opportunities and code that can 277 // be shared by the resultant unswitched loops. 278 CodeMetrics Metrics; 279 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; 280 ++I) 281 Metrics.analyzeBasicBlock(*I, TTI, EphValues); 282 283 Props.SizeEstimation = Metrics.NumInsts; 284 Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation); 285 Props.WasUnswitchedCount = 0; 286 MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount; 287 288 if (Metrics.notDuplicatable) { 289 DEBUG(dbgs() << "NOT unswitching loop %" 290 << L->getHeader()->getName() << ", contents cannot be " 291 << "duplicated!\n"); 292 return false; 293 } 294 } 295 296 // Be careful. This links are good only before new loop addition. 297 CurrentLoopProperties = &Props; 298 CurLoopInstructions = &Props.UnswitchedVals; 299 300 return true; 301 } 302 303 // Clean all data related to given loop. 304 void LUAnalysisCache::forgetLoop(const Loop *L) { 305 306 LoopPropsMapIt LIt = LoopsProperties.find(L); 307 308 if (LIt != LoopsProperties.end()) { 309 LoopProperties &Props = LIt->second; 310 MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) * 311 Props.SizeEstimation; 312 LoopsProperties.erase(LIt); 313 } 314 315 CurrentLoopProperties = nullptr; 316 CurLoopInstructions = nullptr; 317 } 318 319 // Mark case value as unswitched. 320 // Since SI instruction can be partly unswitched, in order to avoid 321 // extra unswitching in cloned loops keep track all unswitched values. 322 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) { 323 (*CurLoopInstructions)[SI].insert(V); 324 } 325 326 // Check was this case value unswitched before or not. 327 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) { 328 return (*CurLoopInstructions)[SI].count(V); 329 } 330 331 bool LUAnalysisCache::CostAllowsUnswitching() { 332 return CurrentLoopProperties->CanBeUnswitchedCount > 0; 333 } 334 335 // Clone all loop-unswitch related loop properties. 336 // Redistribute unswitching quotas. 337 // Note, that new loop data is stored inside the VMap. 338 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop, 339 const ValueToValueMapTy &VMap) { 340 341 LoopProperties &NewLoopProps = LoopsProperties[NewLoop]; 342 LoopProperties &OldLoopProps = *CurrentLoopProperties; 343 UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals; 344 345 // Reallocate "can-be-unswitched quota" 346 347 --OldLoopProps.CanBeUnswitchedCount; 348 ++OldLoopProps.WasUnswitchedCount; 349 NewLoopProps.WasUnswitchedCount = 0; 350 unsigned Quota = OldLoopProps.CanBeUnswitchedCount; 351 NewLoopProps.CanBeUnswitchedCount = Quota / 2; 352 OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2; 353 354 NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation; 355 356 // Clone unswitched values info: 357 // for new loop switches we clone info about values that was 358 // already unswitched and has redundant successors. 359 for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) { 360 const SwitchInst *OldInst = I->first; 361 Value *NewI = VMap.lookup(OldInst); 362 const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI); 363 assert(NewInst && "All instructions that are in SrcBB must be in VMap."); 364 365 NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst]; 366 } 367 } 368 369 char LoopUnswitch::ID = 0; 370 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops", 371 false, false) 372 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 373 INITIALIZE_PASS_DEPENDENCY(LoopPass) 374 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 375 INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis) 376 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops", 377 false, false) 378 379 Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) { 380 return new LoopUnswitch(Os, hasBranchDivergence); 381 } 382 383 /// Operator chain lattice. 384 enum OperatorChain { 385 OC_OpChainNone, ///< There is no operator. 386 OC_OpChainOr, ///< There are only ORs. 387 OC_OpChainAnd, ///< There are only ANDs. 388 OC_OpChainMixed ///< There are ANDs and ORs. 389 }; 390 391 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has 392 /// an invariant piece, return the invariant. Otherwise, return null. 393 // 394 /// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a 395 /// mixed operator chain, as we can not reliably find a value which will simplify 396 /// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0 397 /// to simplify the chain. 398 /// 399 /// NOTE: In case a partial LIV and a mixed operator chain, we may be able to 400 /// simplify the condition itself to a loop variant condition, but at the 401 /// cost of creating an entirely new loop. 402 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed, 403 OperatorChain &ParentChain, 404 DenseMap<Value *, Value *> &Cache) { 405 auto CacheIt = Cache.find(Cond); 406 if (CacheIt != Cache.end()) 407 return CacheIt->second; 408 409 // We started analyze new instruction, increment scanned instructions counter. 410 ++TotalInsts; 411 412 // We can never unswitch on vector conditions. 413 if (Cond->getType()->isVectorTy()) 414 return nullptr; 415 416 // Constants should be folded, not unswitched on! 417 if (isa<Constant>(Cond)) return nullptr; 418 419 // TODO: Handle: br (VARIANT|INVARIANT). 420 421 // Hoist simple values out. 422 if (L->makeLoopInvariant(Cond, Changed)) { 423 Cache[Cond] = Cond; 424 return Cond; 425 } 426 427 // Walk up the operator chain to find partial invariant conditions. 428 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond)) 429 if (BO->getOpcode() == Instruction::And || 430 BO->getOpcode() == Instruction::Or) { 431 // Given the previous operator, compute the current operator chain status. 432 OperatorChain NewChain; 433 switch (ParentChain) { 434 case OC_OpChainNone: 435 NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd : 436 OC_OpChainOr; 437 break; 438 case OC_OpChainOr: 439 NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr : 440 OC_OpChainMixed; 441 break; 442 case OC_OpChainAnd: 443 NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd : 444 OC_OpChainMixed; 445 break; 446 case OC_OpChainMixed: 447 NewChain = OC_OpChainMixed; 448 break; 449 } 450 451 // If we reach a Mixed state, we do not want to keep walking up as we can not 452 // reliably find a value that will simplify the chain. With this check, we 453 // will return null on the first sight of mixed chain and the caller will 454 // either backtrack to find partial LIV in other operand or return null. 455 if (NewChain != OC_OpChainMixed) { 456 // Update the current operator chain type before we search up the chain. 457 ParentChain = NewChain; 458 // If either the left or right side is invariant, we can unswitch on this, 459 // which will cause the branch to go away in one loop and the condition to 460 // simplify in the other one. 461 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed, 462 ParentChain, Cache)) { 463 Cache[Cond] = LHS; 464 return LHS; 465 } 466 // We did not manage to find a partial LIV in operand(0). Backtrack and try 467 // operand(1). 468 ParentChain = NewChain; 469 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed, 470 ParentChain, Cache)) { 471 Cache[Cond] = RHS; 472 return RHS; 473 } 474 } 475 } 476 477 Cache[Cond] = nullptr; 478 return nullptr; 479 } 480 481 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has 482 /// an invariant piece, return the invariant along with the operator chain type. 483 /// Otherwise, return null. 484 static std::pair<Value *, OperatorChain> FindLIVLoopCondition(Value *Cond, 485 Loop *L, 486 bool &Changed) { 487 DenseMap<Value *, Value *> Cache; 488 OperatorChain OpChain = OC_OpChainNone; 489 Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache); 490 491 // In case we do find a LIV, it can not be obtained by walking up a mixed 492 // operator chain. 493 assert((!FCond || OpChain != OC_OpChainMixed) && 494 "Do not expect a partial LIV with mixed operator chain"); 495 return {FCond, OpChain}; 496 } 497 498 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) { 499 if (skipLoop(L)) 500 return false; 501 502 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 503 *L->getHeader()->getParent()); 504 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 505 LPM = &LPM_Ref; 506 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 507 currentLoop = L; 508 Function *F = currentLoop->getHeader()->getParent(); 509 510 SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory); 511 if (SanitizeMemory) 512 computeLoopSafetyInfo(&SafetyInfo, L); 513 514 bool Changed = false; 515 do { 516 assert(currentLoop->isLCSSAForm(*DT)); 517 redoLoop = false; 518 Changed |= processCurrentLoop(); 519 } while(redoLoop); 520 521 // FIXME: Reconstruct dom info, because it is not preserved properly. 522 if (Changed) 523 DT->recalculate(*F); 524 return Changed; 525 } 526 527 // Return true if the BasicBlock BB is unreachable from the loop header. 528 // Return false, otherwise. 529 bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) { 530 auto *Node = DT->getNode(BB)->getIDom(); 531 BasicBlock *DomBB = Node->getBlock(); 532 while (currentLoop->contains(DomBB)) { 533 BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator()); 534 535 Node = DT->getNode(DomBB)->getIDom(); 536 DomBB = Node->getBlock(); 537 538 if (!BInst || !BInst->isConditional()) 539 continue; 540 541 Value *Cond = BInst->getCondition(); 542 if (!isa<ConstantInt>(Cond)) 543 continue; 544 545 BasicBlock *UnreachableSucc = 546 Cond == ConstantInt::getTrue(Cond->getContext()) 547 ? BInst->getSuccessor(1) 548 : BInst->getSuccessor(0); 549 550 if (DT->dominates(UnreachableSucc, BB)) 551 return true; 552 } 553 return false; 554 } 555 556 /// Do actual work and unswitch loop if possible and profitable. 557 bool LoopUnswitch::processCurrentLoop() { 558 bool Changed = false; 559 560 initLoopData(); 561 562 // If LoopSimplify was unable to form a preheader, don't do any unswitching. 563 if (!loopPreheader) 564 return false; 565 566 // Loops with indirectbr cannot be cloned. 567 if (!currentLoop->isSafeToClone()) 568 return false; 569 570 // Without dedicated exits, splitting the exit edge may fail. 571 if (!currentLoop->hasDedicatedExits()) 572 return false; 573 574 LLVMContext &Context = loopHeader->getContext(); 575 576 // Analyze loop cost, and stop unswitching if loop content can not be duplicated. 577 if (!BranchesInfo.countLoop( 578 currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 579 *currentLoop->getHeader()->getParent()), 580 AC)) 581 return false; 582 583 // Try trivial unswitch first before loop over other basic blocks in the loop. 584 if (TryTrivialLoopUnswitch(Changed)) { 585 return true; 586 } 587 588 // Run through the instructions in the loop, keeping track of three things: 589 // 590 // - That we do not unswitch loops containing convergent operations, as we 591 // might be making them control dependent on the unswitch value when they 592 // were not before. 593 // FIXME: This could be refined to only bail if the convergent operation is 594 // not already control-dependent on the unswitch value. 595 // 596 // - That basic blocks in the loop contain invokes whose predecessor edges we 597 // cannot split. 598 // 599 // - The set of guard intrinsics encountered (these are non terminator 600 // instructions that are also profitable to be unswitched). 601 602 SmallVector<IntrinsicInst *, 4> Guards; 603 604 for (const auto BB : currentLoop->blocks()) { 605 for (auto &I : *BB) { 606 auto CS = CallSite(&I); 607 if (!CS) continue; 608 if (CS.hasFnAttr(Attribute::Convergent)) 609 return false; 610 if (auto *II = dyn_cast<InvokeInst>(&I)) 611 if (!II->getUnwindDest()->canSplitPredecessors()) 612 return false; 613 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 614 if (II->getIntrinsicID() == Intrinsic::experimental_guard) 615 Guards.push_back(II); 616 } 617 } 618 619 // Do not do non-trivial unswitch while optimizing for size. 620 // FIXME: Use Function::optForSize(). 621 if (OptimizeForSize || 622 loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize)) 623 return false; 624 625 for (IntrinsicInst *Guard : Guards) { 626 Value *LoopCond = 627 FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed).first; 628 if (LoopCond && 629 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) { 630 // NB! Unswitching (if successful) could have erased some of the 631 // instructions in Guards leaving dangling pointers there. This is fine 632 // because we're returning now, and won't look at Guards again. 633 ++NumGuards; 634 return true; 635 } 636 } 637 638 // Loop over all of the basic blocks in the loop. If we find an interior 639 // block that is branching on a loop-invariant condition, we can unswitch this 640 // loop. 641 for (Loop::block_iterator I = currentLoop->block_begin(), 642 E = currentLoop->block_end(); I != E; ++I) { 643 TerminatorInst *TI = (*I)->getTerminator(); 644 645 // Unswitching on a potentially uninitialized predicate is not 646 // MSan-friendly. Limit this to the cases when the original predicate is 647 // guaranteed to execute, to avoid creating a use-of-uninitialized-value 648 // in the code that did not have one. 649 // This is a workaround for the discrepancy between LLVM IR and MSan 650 // semantics. See PR28054 for more details. 651 if (SanitizeMemory && 652 !isGuaranteedToExecute(*TI, DT, currentLoop, &SafetyInfo)) 653 continue; 654 655 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 656 // Some branches may be rendered unreachable because of previous 657 // unswitching. 658 // Unswitch only those branches that are reachable. 659 if (isUnreachableDueToPreviousUnswitching(*I)) 660 continue; 661 662 // If this isn't branching on an invariant condition, we can't unswitch 663 // it. 664 if (BI->isConditional()) { 665 // See if this, or some part of it, is loop invariant. If so, we can 666 // unswitch on it if we desire. 667 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), 668 currentLoop, Changed).first; 669 if (LoopCond && 670 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) { 671 ++NumBranches; 672 return true; 673 } 674 } 675 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 676 Value *SC = SI->getCondition(); 677 Value *LoopCond; 678 OperatorChain OpChain; 679 std::tie(LoopCond, OpChain) = 680 FindLIVLoopCondition(SC, currentLoop, Changed); 681 682 unsigned NumCases = SI->getNumCases(); 683 if (LoopCond && NumCases) { 684 // Find a value to unswitch on: 685 // FIXME: this should chose the most expensive case! 686 // FIXME: scan for a case with a non-critical edge? 687 Constant *UnswitchVal = nullptr; 688 // Find a case value such that at least one case value is unswitched 689 // out. 690 if (OpChain == OC_OpChainAnd) { 691 // If the chain only has ANDs and the switch has a case value of 0. 692 // Dropping in a 0 to the chain will unswitch out the 0-casevalue. 693 auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType())); 694 if (BranchesInfo.isUnswitched(SI, AllZero)) 695 continue; 696 // We are unswitching 0 out. 697 UnswitchVal = AllZero; 698 } else if (OpChain == OC_OpChainOr) { 699 // If the chain only has ORs and the switch has a case value of ~0. 700 // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue. 701 auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType())); 702 if (BranchesInfo.isUnswitched(SI, AllOne)) 703 continue; 704 // We are unswitching ~0 out. 705 UnswitchVal = AllOne; 706 } else { 707 assert(OpChain == OC_OpChainNone && 708 "Expect to unswitch on trivial chain"); 709 // Do not process same value again and again. 710 // At this point we have some cases already unswitched and 711 // some not yet unswitched. Let's find the first not yet unswitched one. 712 for (auto Case : SI->cases()) { 713 Constant *UnswitchValCandidate = Case.getCaseValue(); 714 if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) { 715 UnswitchVal = UnswitchValCandidate; 716 break; 717 } 718 } 719 } 720 721 if (!UnswitchVal) 722 continue; 723 724 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) { 725 ++NumSwitches; 726 // In case of a full LIV, UnswitchVal is the value we unswitched out. 727 // In case of a partial LIV, we only unswitch when its an AND-chain 728 // or OR-chain. In both cases switch input value simplifies to 729 // UnswitchVal. 730 BranchesInfo.setUnswitched(SI, UnswitchVal); 731 return true; 732 } 733 } 734 } 735 736 // Scan the instructions to check for unswitchable values. 737 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); 738 BBI != E; ++BBI) 739 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) { 740 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 741 currentLoop, Changed).first; 742 if (LoopCond && UnswitchIfProfitable(LoopCond, 743 ConstantInt::getTrue(Context))) { 744 ++NumSelects; 745 return true; 746 } 747 } 748 } 749 return Changed; 750 } 751 752 /// Check to see if all paths from BB exit the loop with no side effects 753 /// (including infinite loops). 754 /// 755 /// If true, we return true and set ExitBB to the block we 756 /// exit through. 757 /// 758 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB, 759 BasicBlock *&ExitBB, 760 std::set<BasicBlock*> &Visited) { 761 if (!Visited.insert(BB).second) { 762 // Already visited. Without more analysis, this could indicate an infinite 763 // loop. 764 return false; 765 } 766 if (!L->contains(BB)) { 767 // Otherwise, this is a loop exit, this is fine so long as this is the 768 // first exit. 769 if (ExitBB) return false; 770 ExitBB = BB; 771 return true; 772 } 773 774 // Otherwise, this is an unvisited intra-loop node. Check all successors. 775 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) { 776 // Check to see if the successor is a trivial loop exit. 777 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited)) 778 return false; 779 } 780 781 // Okay, everything after this looks good, check to make sure that this block 782 // doesn't include any side effects. 783 for (Instruction &I : *BB) 784 if (I.mayHaveSideEffects()) 785 return false; 786 787 return true; 788 } 789 790 /// Return true if the specified block unconditionally leads to an exit from 791 /// the specified loop, and has no side-effects in the process. If so, return 792 /// the block that is exited to, otherwise return null. 793 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) { 794 std::set<BasicBlock*> Visited; 795 Visited.insert(L->getHeader()); // Branches to header make infinite loops. 796 BasicBlock *ExitBB = nullptr; 797 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited)) 798 return ExitBB; 799 return nullptr; 800 } 801 802 /// We have found that we can unswitch currentLoop when LoopCond == Val to 803 /// simplify the loop. If we decide that this is profitable, 804 /// unswitch the loop, reprocess the pieces, then return true. 805 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val, 806 TerminatorInst *TI) { 807 // Check to see if it would be profitable to unswitch current loop. 808 if (!BranchesInfo.CostAllowsUnswitching()) { 809 DEBUG(dbgs() << "NOT unswitching loop %" 810 << currentLoop->getHeader()->getName() 811 << " at non-trivial condition '" << *Val 812 << "' == " << *LoopCond << "\n" 813 << ". Cost too high.\n"); 814 return false; 815 } 816 if (hasBranchDivergence && 817 getAnalysis<DivergenceAnalysis>().isDivergent(LoopCond)) { 818 DEBUG(dbgs() << "NOT unswitching loop %" 819 << currentLoop->getHeader()->getName() 820 << " at non-trivial condition '" << *Val 821 << "' == " << *LoopCond << "\n" 822 << ". Condition is divergent.\n"); 823 return false; 824 } 825 826 UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI); 827 return true; 828 } 829 830 /// Recursively clone the specified loop and all of its children, 831 /// mapping the blocks with the specified map. 832 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 833 LoopInfo *LI, LPPassManager *LPM) { 834 Loop &New = *new Loop(); 835 if (PL) 836 PL->addChildLoop(&New); 837 else 838 LI->addTopLevelLoop(&New); 839 LPM->addLoop(New); 840 841 // Add all of the blocks in L to the new loop. 842 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 843 I != E; ++I) 844 if (LI->getLoopFor(*I) == L) 845 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI); 846 847 // Add all of the subloops to the new loop. 848 for (Loop *I : *L) 849 CloneLoop(I, &New, VM, LI, LPM); 850 851 return &New; 852 } 853 854 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst, 855 /// otherwise branch to FalseDest. Insert the code immediately before InsertPt. 856 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, 857 BasicBlock *TrueDest, 858 BasicBlock *FalseDest, 859 Instruction *InsertPt, 860 TerminatorInst *TI) { 861 // Insert a conditional branch on LIC to the two preheaders. The original 862 // code is the true version and the new code is the false version. 863 Value *BranchVal = LIC; 864 bool Swapped = false; 865 if (!isa<ConstantInt>(Val) || 866 Val->getType() != Type::getInt1Ty(LIC->getContext())) 867 BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val); 868 else if (Val != ConstantInt::getTrue(Val->getContext())) { 869 // We want to enter the new loop when the condition is true. 870 std::swap(TrueDest, FalseDest); 871 Swapped = true; 872 } 873 874 // Insert the new branch. 875 BranchInst *BI = 876 IRBuilder<>(InsertPt).CreateCondBr(BranchVal, TrueDest, FalseDest, TI); 877 if (Swapped) 878 BI->swapProfMetadata(); 879 880 // If either edge is critical, split it. This helps preserve LoopSimplify 881 // form for enclosing loops. 882 auto Options = CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA(); 883 SplitCriticalEdge(BI, 0, Options); 884 SplitCriticalEdge(BI, 1, Options); 885 } 886 887 /// Given a loop that has a trivial unswitchable condition in it (a cond branch 888 /// from its header block to its latch block, where the path through the loop 889 /// that doesn't execute its body has no side-effects), unswitch it. This 890 /// doesn't involve any code duplication, just moving the conditional branch 891 /// outside of the loop and updating loop info. 892 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, 893 BasicBlock *ExitBlock, 894 TerminatorInst *TI) { 895 DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %" 896 << loopHeader->getName() << " [" << L->getBlocks().size() 897 << " blocks] in Function " 898 << L->getHeader()->getParent()->getName() << " on cond: " << *Val 899 << " == " << *Cond << "\n"); 900 901 // First step, split the preheader, so that we know that there is a safe place 902 // to insert the conditional branch. We will change loopPreheader to have a 903 // conditional branch on Cond. 904 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI); 905 906 // Now that we have a place to insert the conditional branch, create a place 907 // to branch to: this is the exit block out of the loop that we should 908 // short-circuit to. 909 910 // Split this block now, so that the loop maintains its exit block, and so 911 // that the jump from the preheader can execute the contents of the exit block 912 // without actually branching to it (the exit block should be dominated by the 913 // loop header, not the preheader). 914 assert(!L->contains(ExitBlock) && "Exit block is in the loop?"); 915 BasicBlock *NewExit = SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI); 916 917 // Okay, now we have a position to branch from and a position to branch to, 918 // insert the new conditional branch. 919 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, 920 loopPreheader->getTerminator(), TI); 921 LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L); 922 loopPreheader->getTerminator()->eraseFromParent(); 923 924 // We need to reprocess this loop, it could be unswitched again. 925 redoLoop = true; 926 927 // Now that we know that the loop is never entered when this condition is a 928 // particular value, rewrite the loop with this info. We know that this will 929 // at least eliminate the old branch. 930 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false); 931 ++NumTrivial; 932 } 933 934 /// Check if the first non-constant condition starting from the loop header is 935 /// a trivial unswitch condition: that is, a condition controls whether or not 936 /// the loop does anything at all. If it is a trivial condition, unswitching 937 /// produces no code duplications (equivalently, it produces a simpler loop and 938 /// a new empty loop, which gets deleted). Therefore always unswitch trivial 939 /// condition. 940 bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) { 941 BasicBlock *CurrentBB = currentLoop->getHeader(); 942 TerminatorInst *CurrentTerm = CurrentBB->getTerminator(); 943 LLVMContext &Context = CurrentBB->getContext(); 944 945 // If loop header has only one reachable successor (currently via an 946 // unconditional branch or constant foldable conditional branch, but 947 // should also consider adding constant foldable switch instruction in 948 // future), we should keep looking for trivial condition candidates in 949 // the successor as well. An alternative is to constant fold conditions 950 // and merge successors into loop header (then we only need to check header's 951 // terminator). The reason for not doing this in LoopUnswitch pass is that 952 // it could potentially break LoopPassManager's invariants. Folding dead 953 // branches could either eliminate the current loop or make other loops 954 // unreachable. LCSSA form might also not be preserved after deleting 955 // branches. The following code keeps traversing loop header's successors 956 // until it finds the trivial condition candidate (condition that is not a 957 // constant). Since unswitching generates branches with constant conditions, 958 // this scenario could be very common in practice. 959 SmallSet<BasicBlock*, 8> Visited; 960 961 while (true) { 962 // If we exit loop or reach a previous visited block, then 963 // we can not reach any trivial condition candidates (unfoldable 964 // branch instructions or switch instructions) and no unswitch 965 // can happen. Exit and return false. 966 if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second) 967 return false; 968 969 // Check if this loop will execute any side-effecting instructions (e.g. 970 // stores, calls, volatile loads) in the part of the loop that the code 971 // *would* execute. Check the header first. 972 for (Instruction &I : *CurrentBB) 973 if (I.mayHaveSideEffects()) 974 return false; 975 976 if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) { 977 if (BI->isUnconditional()) { 978 CurrentBB = BI->getSuccessor(0); 979 } else if (BI->getCondition() == ConstantInt::getTrue(Context)) { 980 CurrentBB = BI->getSuccessor(0); 981 } else if (BI->getCondition() == ConstantInt::getFalse(Context)) { 982 CurrentBB = BI->getSuccessor(1); 983 } else { 984 // Found a trivial condition candidate: non-foldable conditional branch. 985 break; 986 } 987 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 988 // At this point, any constant-foldable instructions should have probably 989 // been folded. 990 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 991 if (!Cond) 992 break; 993 // Find the target block we are definitely going to. 994 CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor(); 995 } else { 996 // We do not understand these terminator instructions. 997 break; 998 } 999 1000 CurrentTerm = CurrentBB->getTerminator(); 1001 } 1002 1003 // CondVal is the condition that controls the trivial condition. 1004 // LoopExitBB is the BasicBlock that loop exits when meets trivial condition. 1005 Constant *CondVal = nullptr; 1006 BasicBlock *LoopExitBB = nullptr; 1007 1008 if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) { 1009 // If this isn't branching on an invariant condition, we can't unswitch it. 1010 if (!BI->isConditional()) 1011 return false; 1012 1013 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), 1014 currentLoop, Changed).first; 1015 1016 // Unswitch only if the trivial condition itself is an LIV (not 1017 // partial LIV which could occur in and/or) 1018 if (!LoopCond || LoopCond != BI->getCondition()) 1019 return false; 1020 1021 // Check to see if a successor of the branch is guaranteed to 1022 // exit through a unique exit block without having any 1023 // side-effects. If so, determine the value of Cond that causes 1024 // it to do this. 1025 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 1026 BI->getSuccessor(0)))) { 1027 CondVal = ConstantInt::getTrue(Context); 1028 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 1029 BI->getSuccessor(1)))) { 1030 CondVal = ConstantInt::getFalse(Context); 1031 } 1032 1033 // If we didn't find a single unique LoopExit block, or if the loop exit 1034 // block contains phi nodes, this isn't trivial. 1035 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) 1036 return false; // Can't handle this. 1037 1038 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB, 1039 CurrentTerm); 1040 ++NumBranches; 1041 return true; 1042 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 1043 // If this isn't switching on an invariant condition, we can't unswitch it. 1044 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 1045 currentLoop, Changed).first; 1046 1047 // Unswitch only if the trivial condition itself is an LIV (not 1048 // partial LIV which could occur in and/or) 1049 if (!LoopCond || LoopCond != SI->getCondition()) 1050 return false; 1051 1052 // Check to see if a successor of the switch is guaranteed to go to the 1053 // latch block or exit through a one exit block without having any 1054 // side-effects. If so, determine the value of Cond that causes it to do 1055 // this. 1056 // Note that we can't trivially unswitch on the default case or 1057 // on already unswitched cases. 1058 for (auto Case : SI->cases()) { 1059 BasicBlock *LoopExitCandidate; 1060 if ((LoopExitCandidate = 1061 isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) { 1062 // Okay, we found a trivial case, remember the value that is trivial. 1063 ConstantInt *CaseVal = Case.getCaseValue(); 1064 1065 // Check that it was not unswitched before, since already unswitched 1066 // trivial vals are looks trivial too. 1067 if (BranchesInfo.isUnswitched(SI, CaseVal)) 1068 continue; 1069 LoopExitBB = LoopExitCandidate; 1070 CondVal = CaseVal; 1071 break; 1072 } 1073 } 1074 1075 // If we didn't find a single unique LoopExit block, or if the loop exit 1076 // block contains phi nodes, this isn't trivial. 1077 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) 1078 return false; // Can't handle this. 1079 1080 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB, 1081 nullptr); 1082 1083 // We are only unswitching full LIV. 1084 BranchesInfo.setUnswitched(SI, CondVal); 1085 ++NumSwitches; 1086 return true; 1087 } 1088 return false; 1089 } 1090 1091 /// Split all of the edges from inside the loop to their exit blocks. 1092 /// Update the appropriate Phi nodes as we do so. 1093 void LoopUnswitch::SplitExitEdges(Loop *L, 1094 const SmallVectorImpl<BasicBlock *> &ExitBlocks){ 1095 1096 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 1097 BasicBlock *ExitBlock = ExitBlocks[i]; 1098 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock), 1099 pred_end(ExitBlock)); 1100 1101 // Although SplitBlockPredecessors doesn't preserve loop-simplify in 1102 // general, if we call it on all predecessors of all exits then it does. 1103 SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI, 1104 /*PreserveLCSSA*/ true); 1105 } 1106 } 1107 1108 /// We determined that the loop is profitable to unswitch when LIC equal Val. 1109 /// Split it into loop versions and test the condition outside of either loop. 1110 /// Return the loops created as Out1/Out2. 1111 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, 1112 Loop *L, TerminatorInst *TI) { 1113 Function *F = loopHeader->getParent(); 1114 DEBUG(dbgs() << "loop-unswitch: Unswitching loop %" 1115 << loopHeader->getName() << " [" << L->getBlocks().size() 1116 << " blocks] in Function " << F->getName() 1117 << " when '" << *Val << "' == " << *LIC << "\n"); 1118 1119 if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>()) 1120 SEWP->getSE().forgetLoop(L); 1121 1122 LoopBlocks.clear(); 1123 NewBlocks.clear(); 1124 1125 // First step, split the preheader and exit blocks, and add these blocks to 1126 // the LoopBlocks list. 1127 BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, DT, LI); 1128 LoopBlocks.push_back(NewPreheader); 1129 1130 // We want the loop to come after the preheader, but before the exit blocks. 1131 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 1132 1133 SmallVector<BasicBlock*, 8> ExitBlocks; 1134 L->getUniqueExitBlocks(ExitBlocks); 1135 1136 // Split all of the edges from inside the loop to their exit blocks. Update 1137 // the appropriate Phi nodes as we do so. 1138 SplitExitEdges(L, ExitBlocks); 1139 1140 // The exit blocks may have been changed due to edge splitting, recompute. 1141 ExitBlocks.clear(); 1142 L->getUniqueExitBlocks(ExitBlocks); 1143 1144 // Add exit blocks to the loop blocks. 1145 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end()); 1146 1147 // Next step, clone all of the basic blocks that make up the loop (including 1148 // the loop preheader and exit blocks), keeping track of the mapping between 1149 // the instructions and blocks. 1150 NewBlocks.reserve(LoopBlocks.size()); 1151 ValueToValueMapTy VMap; 1152 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) { 1153 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F); 1154 1155 NewBlocks.push_back(NewBB); 1156 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping. 1157 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L); 1158 } 1159 1160 // Splice the newly inserted blocks into the function right before the 1161 // original preheader. 1162 F->getBasicBlockList().splice(NewPreheader->getIterator(), 1163 F->getBasicBlockList(), 1164 NewBlocks[0]->getIterator(), F->end()); 1165 1166 // Now we create the new Loop object for the versioned loop. 1167 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM); 1168 1169 // Recalculate unswitching quota, inherit simplified switches info for NewBB, 1170 // Probably clone more loop-unswitch related loop properties. 1171 BranchesInfo.cloneData(NewLoop, L, VMap); 1172 1173 Loop *ParentLoop = L->getParentLoop(); 1174 if (ParentLoop) { 1175 // Make sure to add the cloned preheader and exit blocks to the parent loop 1176 // as well. 1177 ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI); 1178 } 1179 1180 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 1181 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]); 1182 // The new exit block should be in the same loop as the old one. 1183 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i])) 1184 ExitBBLoop->addBasicBlockToLoop(NewExit, *LI); 1185 1186 assert(NewExit->getTerminator()->getNumSuccessors() == 1 && 1187 "Exit block should have been split to have one successor!"); 1188 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 1189 1190 // If the successor of the exit block had PHI nodes, add an entry for 1191 // NewExit. 1192 for (BasicBlock::iterator I = ExitSucc->begin(); 1193 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1194 Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]); 1195 ValueToValueMapTy::iterator It = VMap.find(V); 1196 if (It != VMap.end()) V = It->second; 1197 PN->addIncoming(V, NewExit); 1198 } 1199 1200 if (LandingPadInst *LPad = NewExit->getLandingPadInst()) { 1201 PHINode *PN = PHINode::Create(LPad->getType(), 0, "", 1202 &*ExitSucc->getFirstInsertionPt()); 1203 1204 for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc); 1205 I != E; ++I) { 1206 BasicBlock *BB = *I; 1207 LandingPadInst *LPI = BB->getLandingPadInst(); 1208 LPI->replaceAllUsesWith(PN); 1209 PN->addIncoming(LPI, BB); 1210 } 1211 } 1212 } 1213 1214 // Rewrite the code to refer to itself. 1215 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) { 1216 for (Instruction &I : *NewBlocks[i]) { 1217 RemapInstruction(&I, VMap, 1218 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1219 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1220 if (II->getIntrinsicID() == Intrinsic::assume) 1221 AC->registerAssumption(II); 1222 } 1223 } 1224 1225 // Rewrite the original preheader to select between versions of the loop. 1226 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator()); 1227 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] && 1228 "Preheader splitting did not work correctly!"); 1229 1230 // Emit the new branch that selects between the two versions of this loop. 1231 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR, 1232 TI); 1233 LPM->deleteSimpleAnalysisValue(OldBR, L); 1234 OldBR->eraseFromParent(); 1235 1236 LoopProcessWorklist.push_back(NewLoop); 1237 redoLoop = true; 1238 1239 // Keep a WeakTrackingVH holding onto LIC. If the first call to 1240 // RewriteLoopBody 1241 // deletes the instruction (for example by simplifying a PHI that feeds into 1242 // the condition that we're unswitching on), we don't rewrite the second 1243 // iteration. 1244 WeakTrackingVH LICHandle(LIC); 1245 1246 // Now we rewrite the original code to know that the condition is true and the 1247 // new code to know that the condition is false. 1248 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false); 1249 1250 // It's possible that simplifying one loop could cause the other to be 1251 // changed to another value or a constant. If its a constant, don't simplify 1252 // it. 1253 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop && 1254 LICHandle && !isa<Constant>(LICHandle)) 1255 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true); 1256 } 1257 1258 /// Remove all instances of I from the worklist vector specified. 1259 static void RemoveFromWorklist(Instruction *I, 1260 std::vector<Instruction*> &Worklist) { 1261 1262 Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I), 1263 Worklist.end()); 1264 } 1265 1266 /// When we find that I really equals V, remove I from the 1267 /// program, replacing all uses with V and update the worklist. 1268 static void ReplaceUsesOfWith(Instruction *I, Value *V, 1269 std::vector<Instruction*> &Worklist, 1270 Loop *L, LPPassManager *LPM) { 1271 DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n"); 1272 1273 // Add uses to the worklist, which may be dead now. 1274 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1275 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) 1276 Worklist.push_back(Use); 1277 1278 // Add users to the worklist which may be simplified now. 1279 for (User *U : I->users()) 1280 Worklist.push_back(cast<Instruction>(U)); 1281 LPM->deleteSimpleAnalysisValue(I, L); 1282 RemoveFromWorklist(I, Worklist); 1283 I->replaceAllUsesWith(V); 1284 if (!I->mayHaveSideEffects()) 1285 I->eraseFromParent(); 1286 ++NumSimplify; 1287 } 1288 1289 /// We know either that the value LIC has the value specified by Val in the 1290 /// specified loop, or we know it does NOT have that value. 1291 /// Rewrite any uses of LIC or of properties correlated to it. 1292 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, 1293 Constant *Val, 1294 bool IsEqual) { 1295 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?"); 1296 1297 // FIXME: Support correlated properties, like: 1298 // for (...) 1299 // if (li1 < li2) 1300 // ... 1301 // if (li1 > li2) 1302 // ... 1303 1304 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches, 1305 // selects, switches. 1306 std::vector<Instruction*> Worklist; 1307 LLVMContext &Context = Val->getContext(); 1308 1309 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC 1310 // in the loop with the appropriate one directly. 1311 if (IsEqual || (isa<ConstantInt>(Val) && 1312 Val->getType()->isIntegerTy(1))) { 1313 Value *Replacement; 1314 if (IsEqual) 1315 Replacement = Val; 1316 else 1317 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()), 1318 !cast<ConstantInt>(Val)->getZExtValue()); 1319 1320 for (User *U : LIC->users()) { 1321 Instruction *UI = dyn_cast<Instruction>(U); 1322 if (!UI || !L->contains(UI)) 1323 continue; 1324 Worklist.push_back(UI); 1325 } 1326 1327 for (Instruction *UI : Worklist) 1328 UI->replaceUsesOfWith(LIC, Replacement); 1329 1330 SimplifyCode(Worklist, L); 1331 return; 1332 } 1333 1334 // Otherwise, we don't know the precise value of LIC, but we do know that it 1335 // is certainly NOT "Val". As such, simplify any uses in the loop that we 1336 // can. This case occurs when we unswitch switch statements. 1337 for (User *U : LIC->users()) { 1338 Instruction *UI = dyn_cast<Instruction>(U); 1339 if (!UI || !L->contains(UI)) 1340 continue; 1341 1342 // At this point, we know LIC is definitely not Val. Try to use some simple 1343 // logic to simplify the user w.r.t. to the context. 1344 if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) { 1345 if (LI->replacementPreservesLCSSAForm(UI, Replacement)) { 1346 // This in-loop instruction has been simplified w.r.t. its context, 1347 // i.e. LIC != Val, make sure we propagate its replacement value to 1348 // all its users. 1349 // 1350 // We can not yet delete UI, the LIC user, yet, because that would invalidate 1351 // the LIC->users() iterator !. However, we can make this instruction 1352 // dead by replacing all its users and push it onto the worklist so that 1353 // it can be properly deleted and its operands simplified. 1354 UI->replaceAllUsesWith(Replacement); 1355 } 1356 } 1357 1358 // This is a LIC user, push it into the worklist so that SimplifyCode can 1359 // attempt to simplify it. 1360 Worklist.push_back(UI); 1361 1362 // If we know that LIC is not Val, use this info to simplify code. 1363 SwitchInst *SI = dyn_cast<SwitchInst>(UI); 1364 if (!SI || !isa<ConstantInt>(Val)) continue; 1365 1366 // NOTE: if a case value for the switch is unswitched out, we record it 1367 // after the unswitch finishes. We can not record it here as the switch 1368 // is not a direct user of the partial LIV. 1369 SwitchInst::CaseHandle DeadCase = 1370 *SI->findCaseValue(cast<ConstantInt>(Val)); 1371 // Default case is live for multiple values. 1372 if (DeadCase == *SI->case_default()) 1373 continue; 1374 1375 // Found a dead case value. Don't remove PHI nodes in the 1376 // successor if they become single-entry, those PHI nodes may 1377 // be in the Users list. 1378 1379 BasicBlock *Switch = SI->getParent(); 1380 BasicBlock *SISucc = DeadCase.getCaseSuccessor(); 1381 BasicBlock *Latch = L->getLoopLatch(); 1382 1383 if (!SI->findCaseDest(SISucc)) continue; // Edge is critical. 1384 // If the DeadCase successor dominates the loop latch, then the 1385 // transformation isn't safe since it will delete the sole predecessor edge 1386 // to the latch. 1387 if (Latch && DT->dominates(SISucc, Latch)) 1388 continue; 1389 1390 // FIXME: This is a hack. We need to keep the successor around 1391 // and hooked up so as to preserve the loop structure, because 1392 // trying to update it is complicated. So instead we preserve the 1393 // loop structure and put the block on a dead code path. 1394 SplitEdge(Switch, SISucc, DT, LI); 1395 // Compute the successors instead of relying on the return value 1396 // of SplitEdge, since it may have split the switch successor 1397 // after PHI nodes. 1398 BasicBlock *NewSISucc = DeadCase.getCaseSuccessor(); 1399 BasicBlock *OldSISucc = *succ_begin(NewSISucc); 1400 // Create an "unreachable" destination. 1401 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable", 1402 Switch->getParent(), 1403 OldSISucc); 1404 new UnreachableInst(Context, Abort); 1405 // Force the new case destination to branch to the "unreachable" 1406 // block while maintaining a (dead) CFG edge to the old block. 1407 NewSISucc->getTerminator()->eraseFromParent(); 1408 BranchInst::Create(Abort, OldSISucc, 1409 ConstantInt::getTrue(Context), NewSISucc); 1410 // Release the PHI operands for this edge. 1411 for (BasicBlock::iterator II = NewSISucc->begin(); 1412 PHINode *PN = dyn_cast<PHINode>(II); ++II) 1413 PN->setIncomingValue(PN->getBasicBlockIndex(Switch), 1414 UndefValue::get(PN->getType())); 1415 // Tell the domtree about the new block. We don't fully update the 1416 // domtree here -- instead we force it to do a full recomputation 1417 // after the pass is complete -- but we do need to inform it of 1418 // new blocks. 1419 DT->addNewBlock(Abort, NewSISucc); 1420 } 1421 1422 SimplifyCode(Worklist, L); 1423 } 1424 1425 /// Now that we have simplified some instructions in the loop, walk over it and 1426 /// constant prop, dce, and fold control flow where possible. Note that this is 1427 /// effectively a very simple loop-structure-aware optimizer. During processing 1428 /// of this loop, L could very well be deleted, so it must not be used. 1429 /// 1430 /// FIXME: When the loop optimizer is more mature, separate this out to a new 1431 /// pass. 1432 /// 1433 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) { 1434 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1435 while (!Worklist.empty()) { 1436 Instruction *I = Worklist.back(); 1437 Worklist.pop_back(); 1438 1439 // Simple DCE. 1440 if (isInstructionTriviallyDead(I)) { 1441 DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n"); 1442 1443 // Add uses to the worklist, which may be dead now. 1444 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1445 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) 1446 Worklist.push_back(Use); 1447 LPM->deleteSimpleAnalysisValue(I, L); 1448 RemoveFromWorklist(I, Worklist); 1449 I->eraseFromParent(); 1450 ++NumSimplify; 1451 continue; 1452 } 1453 1454 // See if instruction simplification can hack this up. This is common for 1455 // things like "select false, X, Y" after unswitching made the condition be 1456 // 'false'. TODO: update the domtree properly so we can pass it here. 1457 if (Value *V = SimplifyInstruction(I, DL)) 1458 if (LI->replacementPreservesLCSSAForm(I, V)) { 1459 ReplaceUsesOfWith(I, V, Worklist, L, LPM); 1460 continue; 1461 } 1462 1463 // Special case hacks that appear commonly in unswitched code. 1464 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1465 if (BI->isUnconditional()) { 1466 // If BI's parent is the only pred of the successor, fold the two blocks 1467 // together. 1468 BasicBlock *Pred = BI->getParent(); 1469 BasicBlock *Succ = BI->getSuccessor(0); 1470 BasicBlock *SinglePred = Succ->getSinglePredecessor(); 1471 if (!SinglePred) continue; // Nothing to do. 1472 assert(SinglePred == Pred && "CFG broken"); 1473 1474 DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- " 1475 << Succ->getName() << "\n"); 1476 1477 // Resolve any single entry PHI nodes in Succ. 1478 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin())) 1479 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM); 1480 1481 // If Succ has any successors with PHI nodes, update them to have 1482 // entries coming from Pred instead of Succ. 1483 Succ->replaceAllUsesWith(Pred); 1484 1485 // Move all of the successor contents from Succ to Pred. 1486 Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(), 1487 Succ->begin(), Succ->end()); 1488 LPM->deleteSimpleAnalysisValue(BI, L); 1489 RemoveFromWorklist(BI, Worklist); 1490 BI->eraseFromParent(); 1491 1492 // Remove Succ from the loop tree. 1493 LI->removeBlock(Succ); 1494 LPM->deleteSimpleAnalysisValue(Succ, L); 1495 Succ->eraseFromParent(); 1496 ++NumSimplify; 1497 continue; 1498 } 1499 1500 continue; 1501 } 1502 } 1503 } 1504 1505 /// Simple simplifications we can do given the information that Cond is 1506 /// definitely not equal to Val. 1507 Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst, 1508 Value *Invariant, 1509 Constant *Val) { 1510 // icmp eq cond, val -> false 1511 ICmpInst *CI = dyn_cast<ICmpInst>(Inst); 1512 if (CI && CI->isEquality()) { 1513 Value *Op0 = CI->getOperand(0); 1514 Value *Op1 = CI->getOperand(1); 1515 if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) { 1516 LLVMContext &Ctx = Inst->getContext(); 1517 if (CI->getPredicate() == CmpInst::ICMP_EQ) 1518 return ConstantInt::getFalse(Ctx); 1519 else 1520 return ConstantInt::getTrue(Ctx); 1521 } 1522 } 1523 1524 // FIXME: there may be other opportunities, e.g. comparison with floating 1525 // point, or Invariant - Val != 0, etc. 1526 return nullptr; 1527 } 1528