1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops that contain branches on loop-invariant conditions 11 // to have multiple loops. For example, it turns the left into the right code: 12 // 13 // for (...) if (lic) 14 // A for (...) 15 // if (lic) A; B; C 16 // B else 17 // C for (...) 18 // A; C 19 // 20 // This can increase the size of the code exponentially (doubling it every time 21 // a loop is unswitched) so we only unswitch if the resultant code will be 22 // smaller than a threshold. 23 // 24 // This pass expects LICM to be run before it to hoist invariant conditions out 25 // of the loop, to make the unswitching opportunity obvious. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #define DEBUG_TYPE "loop-unswitch" 30 #include "llvm/Transforms/Scalar.h" 31 #include "llvm/Constants.h" 32 #include "llvm/DerivedTypes.h" 33 #include "llvm/Function.h" 34 #include "llvm/Instructions.h" 35 #include "llvm/Analysis/ConstantFolding.h" 36 #include "llvm/Analysis/InlineCost.h" 37 #include "llvm/Analysis/InstructionSimplify.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/LoopPass.h" 40 #include "llvm/Analysis/Dominators.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/STLExtras.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <set> 52 using namespace llvm; 53 54 STATISTIC(NumBranches, "Number of branches unswitched"); 55 STATISTIC(NumSwitches, "Number of switches unswitched"); 56 STATISTIC(NumSelects , "Number of selects unswitched"); 57 STATISTIC(NumTrivial , "Number of unswitches that are trivial"); 58 STATISTIC(NumSimplify, "Number of simplifications of unswitched code"); 59 60 // The specific value of 50 here was chosen based only on intuition and a 61 // few specific examples. 62 static cl::opt<unsigned> 63 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), 64 cl::init(50), cl::Hidden); 65 66 namespace { 67 class LoopUnswitch : public LoopPass { 68 LoopInfo *LI; // Loop information 69 LPPassManager *LPM; 70 71 // LoopProcessWorklist - Used to check if second loop needs processing 72 // after RewriteLoopBodyWithConditionConstant rewrites first loop. 73 std::vector<Loop*> LoopProcessWorklist; 74 SmallPtrSet<Value *,8> UnswitchedVals; 75 76 bool OptimizeForSize; 77 bool redoLoop; 78 79 Loop *currentLoop; 80 DominatorTree *DT; 81 BasicBlock *loopHeader; 82 BasicBlock *loopPreheader; 83 84 // LoopBlocks contains all of the basic blocks of the loop, including the 85 // preheader of the loop, the body of the loop, and the exit blocks of the 86 // loop, in that order. 87 std::vector<BasicBlock*> LoopBlocks; 88 // NewBlocks contained cloned copy of basic blocks from LoopBlocks. 89 std::vector<BasicBlock*> NewBlocks; 90 91 public: 92 static char ID; // Pass ID, replacement for typeid 93 explicit LoopUnswitch(bool Os = false) : 94 LoopPass(ID), OptimizeForSize(Os), redoLoop(false), 95 currentLoop(NULL), DT(NULL), loopHeader(NULL), 96 loopPreheader(NULL) {} 97 98 bool runOnLoop(Loop *L, LPPassManager &LPM); 99 bool processCurrentLoop(); 100 101 /// This transformation requires natural loop information & requires that 102 /// loop preheaders be inserted into the CFG. 103 /// 104 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 105 AU.addRequiredID(LoopSimplifyID); 106 AU.addPreservedID(LoopSimplifyID); 107 AU.addRequired<LoopInfo>(); 108 AU.addPreserved<LoopInfo>(); 109 AU.addRequiredID(LCSSAID); 110 AU.addPreservedID(LCSSAID); 111 AU.addPreserved<DominatorTree>(); 112 } 113 114 private: 115 116 virtual void releaseMemory() { 117 UnswitchedVals.clear(); 118 } 119 120 /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist, 121 /// remove it. 122 void RemoveLoopFromWorklist(Loop *L) { 123 std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(), 124 LoopProcessWorklist.end(), L); 125 if (I != LoopProcessWorklist.end()) 126 LoopProcessWorklist.erase(I); 127 } 128 129 void initLoopData() { 130 loopHeader = currentLoop->getHeader(); 131 loopPreheader = currentLoop->getLoopPreheader(); 132 } 133 134 /// Split all of the edges from inside the loop to their exit blocks. 135 /// Update the appropriate Phi nodes as we do so. 136 void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks); 137 138 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val); 139 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, 140 BasicBlock *ExitBlock); 141 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L); 142 143 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, 144 Constant *Val, bool isEqual); 145 146 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, 147 BasicBlock *TrueDest, 148 BasicBlock *FalseDest, 149 Instruction *InsertPt); 150 151 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L); 152 void RemoveBlockIfDead(BasicBlock *BB, 153 std::vector<Instruction*> &Worklist, Loop *l); 154 void RemoveLoopFromHierarchy(Loop *L); 155 bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0, 156 BasicBlock **LoopExit = 0); 157 158 }; 159 } 160 char LoopUnswitch::ID = 0; 161 INITIALIZE_PASS(LoopUnswitch, "loop-unswitch", "Unswitch loops", false, false); 162 163 Pass *llvm::createLoopUnswitchPass(bool Os) { 164 return new LoopUnswitch(Os); 165 } 166 167 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is 168 /// invariant in the loop, or has an invariant piece, return the invariant. 169 /// Otherwise, return null. 170 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) { 171 // We can never unswitch on vector conditions. 172 if (Cond->getType()->isVectorTy()) 173 return 0; 174 175 // Constants should be folded, not unswitched on! 176 if (isa<Constant>(Cond)) return 0; 177 178 // TODO: Handle: br (VARIANT|INVARIANT). 179 180 // Hoist simple values out. 181 if (L->makeLoopInvariant(Cond, Changed)) 182 return Cond; 183 184 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond)) 185 if (BO->getOpcode() == Instruction::And || 186 BO->getOpcode() == Instruction::Or) { 187 // If either the left or right side is invariant, we can unswitch on this, 188 // which will cause the branch to go away in one loop and the condition to 189 // simplify in the other one. 190 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed)) 191 return LHS; 192 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed)) 193 return RHS; 194 } 195 196 return 0; 197 } 198 199 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) { 200 LI = &getAnalysis<LoopInfo>(); 201 LPM = &LPM_Ref; 202 DT = getAnalysisIfAvailable<DominatorTree>(); 203 currentLoop = L; 204 Function *F = currentLoop->getHeader()->getParent(); 205 bool Changed = false; 206 do { 207 assert(currentLoop->isLCSSAForm(*DT)); 208 redoLoop = false; 209 Changed |= processCurrentLoop(); 210 } while(redoLoop); 211 212 if (Changed) { 213 // FIXME: Reconstruct dom info, because it is not preserved properly. 214 if (DT) 215 DT->runOnFunction(*F); 216 } 217 return Changed; 218 } 219 220 /// processCurrentLoop - Do actual work and unswitch loop if possible 221 /// and profitable. 222 bool LoopUnswitch::processCurrentLoop() { 223 bool Changed = false; 224 LLVMContext &Context = currentLoop->getHeader()->getContext(); 225 226 // Loop over all of the basic blocks in the loop. If we find an interior 227 // block that is branching on a loop-invariant condition, we can unswitch this 228 // loop. 229 for (Loop::block_iterator I = currentLoop->block_begin(), 230 E = currentLoop->block_end(); I != E; ++I) { 231 TerminatorInst *TI = (*I)->getTerminator(); 232 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 233 // If this isn't branching on an invariant condition, we can't unswitch 234 // it. 235 if (BI->isConditional()) { 236 // See if this, or some part of it, is loop invariant. If so, we can 237 // unswitch on it if we desire. 238 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), 239 currentLoop, Changed); 240 if (LoopCond && UnswitchIfProfitable(LoopCond, 241 ConstantInt::getTrue(Context))) { 242 ++NumBranches; 243 return true; 244 } 245 } 246 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 247 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 248 currentLoop, Changed); 249 if (LoopCond && SI->getNumCases() > 1) { 250 // Find a value to unswitch on: 251 // FIXME: this should chose the most expensive case! 252 Constant *UnswitchVal = SI->getCaseValue(1); 253 // Do not process same value again and again. 254 if (!UnswitchedVals.insert(UnswitchVal)) 255 continue; 256 257 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) { 258 ++NumSwitches; 259 return true; 260 } 261 } 262 } 263 264 // Scan the instructions to check for unswitchable values. 265 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); 266 BBI != E; ++BBI) 267 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) { 268 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 269 currentLoop, Changed); 270 if (LoopCond && UnswitchIfProfitable(LoopCond, 271 ConstantInt::getTrue(Context))) { 272 ++NumSelects; 273 return true; 274 } 275 } 276 } 277 return Changed; 278 } 279 280 /// isTrivialLoopExitBlock - Check to see if all paths from BB exit the 281 /// loop with no side effects (including infinite loops). 282 /// 283 /// If true, we return true and set ExitBB to the block we 284 /// exit through. 285 /// 286 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB, 287 BasicBlock *&ExitBB, 288 std::set<BasicBlock*> &Visited) { 289 if (!Visited.insert(BB).second) { 290 // Already visited. Without more analysis, this could indicate an infinte loop. 291 return false; 292 } else if (!L->contains(BB)) { 293 // Otherwise, this is a loop exit, this is fine so long as this is the 294 // first exit. 295 if (ExitBB != 0) return false; 296 ExitBB = BB; 297 return true; 298 } 299 300 // Otherwise, this is an unvisited intra-loop node. Check all successors. 301 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) { 302 // Check to see if the successor is a trivial loop exit. 303 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited)) 304 return false; 305 } 306 307 // Okay, everything after this looks good, check to make sure that this block 308 // doesn't include any side effects. 309 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 310 if (I->mayHaveSideEffects()) 311 return false; 312 313 return true; 314 } 315 316 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally 317 /// leads to an exit from the specified loop, and has no side-effects in the 318 /// process. If so, return the block that is exited to, otherwise return null. 319 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) { 320 std::set<BasicBlock*> Visited; 321 Visited.insert(L->getHeader()); // Branches to header make infinite loops. 322 BasicBlock *ExitBB = 0; 323 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited)) 324 return ExitBB; 325 return 0; 326 } 327 328 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is 329 /// trivial: that is, that the condition controls whether or not the loop does 330 /// anything at all. If this is a trivial condition, unswitching produces no 331 /// code duplications (equivalently, it produces a simpler loop and a new empty 332 /// loop, which gets deleted). 333 /// 334 /// If this is a trivial condition, return true, otherwise return false. When 335 /// returning true, this sets Cond and Val to the condition that controls the 336 /// trivial condition: when Cond dynamically equals Val, the loop is known to 337 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when 338 /// Cond == Val. 339 /// 340 bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val, 341 BasicBlock **LoopExit) { 342 BasicBlock *Header = currentLoop->getHeader(); 343 TerminatorInst *HeaderTerm = Header->getTerminator(); 344 LLVMContext &Context = Header->getContext(); 345 346 BasicBlock *LoopExitBB = 0; 347 if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) { 348 // If the header block doesn't end with a conditional branch on Cond, we 349 // can't handle it. 350 if (!BI->isConditional() || BI->getCondition() != Cond) 351 return false; 352 353 // Check to see if a successor of the branch is guaranteed to 354 // exit through a unique exit block without having any 355 // side-effects. If so, determine the value of Cond that causes it to do 356 // this. 357 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 358 BI->getSuccessor(0)))) { 359 if (Val) *Val = ConstantInt::getTrue(Context); 360 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 361 BI->getSuccessor(1)))) { 362 if (Val) *Val = ConstantInt::getFalse(Context); 363 } 364 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) { 365 // If this isn't a switch on Cond, we can't handle it. 366 if (SI->getCondition() != Cond) return false; 367 368 // Check to see if a successor of the switch is guaranteed to go to the 369 // latch block or exit through a one exit block without having any 370 // side-effects. If so, determine the value of Cond that causes it to do 371 // this. Note that we can't trivially unswitch on the default case. 372 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) 373 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 374 SI->getSuccessor(i)))) { 375 // Okay, we found a trivial case, remember the value that is trivial. 376 if (Val) *Val = SI->getCaseValue(i); 377 break; 378 } 379 } 380 381 // If we didn't find a single unique LoopExit block, or if the loop exit block 382 // contains phi nodes, this isn't trivial. 383 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) 384 return false; // Can't handle this. 385 386 if (LoopExit) *LoopExit = LoopExitBB; 387 388 // We already know that nothing uses any scalar values defined inside of this 389 // loop. As such, we just have to check to see if this loop will execute any 390 // side-effecting instructions (e.g. stores, calls, volatile loads) in the 391 // part of the loop that the code *would* execute. We already checked the 392 // tail, check the header now. 393 for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I) 394 if (I->mayHaveSideEffects()) 395 return false; 396 return true; 397 } 398 399 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when 400 /// LoopCond == Val to simplify the loop. If we decide that this is profitable, 401 /// unswitch the loop, reprocess the pieces, then return true. 402 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) { 403 404 initLoopData(); 405 406 // If LoopSimplify was unable to form a preheader, don't do any unswitching. 407 if (!loopPreheader) 408 return false; 409 410 Function *F = loopHeader->getParent(); 411 412 Constant *CondVal = 0; 413 BasicBlock *ExitBlock = 0; 414 if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) { 415 // If the condition is trivial, always unswitch. There is no code growth 416 // for this case. 417 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock); 418 return true; 419 } 420 421 // Check to see if it would be profitable to unswitch current loop. 422 423 // Do not do non-trivial unswitch while optimizing for size. 424 if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize)) 425 return false; 426 427 // FIXME: This is overly conservative because it does not take into 428 // consideration code simplification opportunities and code that can 429 // be shared by the resultant unswitched loops. 430 CodeMetrics Metrics; 431 for (Loop::block_iterator I = currentLoop->block_begin(), 432 E = currentLoop->block_end(); 433 I != E; ++I) 434 Metrics.analyzeBasicBlock(*I); 435 436 // Limit the number of instructions to avoid causing significant code 437 // expansion, and the number of basic blocks, to avoid loops with 438 // large numbers of branches which cause loop unswitching to go crazy. 439 // This is a very ad-hoc heuristic. 440 if (Metrics.NumInsts > Threshold || 441 Metrics.NumBlocks * 5 > Threshold || 442 Metrics.containsIndirectBr || Metrics.isRecursive) { 443 DEBUG(dbgs() << "NOT unswitching loop %" 444 << currentLoop->getHeader()->getName() << ", cost too high: " 445 << currentLoop->getBlocks().size() << "\n"); 446 return false; 447 } 448 449 UnswitchNontrivialCondition(LoopCond, Val, currentLoop); 450 return true; 451 } 452 453 // RemapInstruction - Convert the instruction operands from referencing the 454 // current values into those specified by VMap. 455 // 456 static inline void RemapInstruction(Instruction *I, 457 ValueMap<const Value *, Value*> &VMap) { 458 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 459 Value *Op = I->getOperand(op); 460 ValueMap<const Value *, Value*>::iterator It = VMap.find(Op); 461 if (It != VMap.end()) Op = It->second; 462 I->setOperand(op, Op); 463 } 464 } 465 466 /// CloneLoop - Recursively clone the specified loop and all of its children, 467 /// mapping the blocks with the specified map. 468 static Loop *CloneLoop(Loop *L, Loop *PL, ValueMap<const Value*, Value*> &VM, 469 LoopInfo *LI, LPPassManager *LPM) { 470 Loop *New = new Loop(); 471 LPM->insertLoop(New, PL); 472 473 // Add all of the blocks in L to the new loop. 474 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 475 I != E; ++I) 476 if (LI->getLoopFor(*I) == L) 477 New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase()); 478 479 // Add all of the subloops to the new loop. 480 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 481 CloneLoop(*I, New, VM, LI, LPM); 482 483 return New; 484 } 485 486 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values 487 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the 488 /// code immediately before InsertPt. 489 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, 490 BasicBlock *TrueDest, 491 BasicBlock *FalseDest, 492 Instruction *InsertPt) { 493 // Insert a conditional branch on LIC to the two preheaders. The original 494 // code is the true version and the new code is the false version. 495 Value *BranchVal = LIC; 496 if (!isa<ConstantInt>(Val) || 497 Val->getType() != Type::getInt1Ty(LIC->getContext())) 498 BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val, "tmp"); 499 else if (Val != ConstantInt::getTrue(Val->getContext())) 500 // We want to enter the new loop when the condition is true. 501 std::swap(TrueDest, FalseDest); 502 503 // Insert the new branch. 504 BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt); 505 506 // If either edge is critical, split it. This helps preserve LoopSimplify 507 // form for enclosing loops. 508 SplitCriticalEdge(BI, 0, this); 509 SplitCriticalEdge(BI, 1, this); 510 } 511 512 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable 513 /// condition in it (a cond branch from its header block to its latch block, 514 /// where the path through the loop that doesn't execute its body has no 515 /// side-effects), unswitch it. This doesn't involve any code duplication, just 516 /// moving the conditional branch outside of the loop and updating loop info. 517 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, 518 Constant *Val, 519 BasicBlock *ExitBlock) { 520 DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %" 521 << loopHeader->getName() << " [" << L->getBlocks().size() 522 << " blocks] in Function " << L->getHeader()->getParent()->getName() 523 << " on cond: " << *Val << " == " << *Cond << "\n"); 524 525 // First step, split the preheader, so that we know that there is a safe place 526 // to insert the conditional branch. We will change loopPreheader to have a 527 // conditional branch on Cond. 528 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this); 529 530 // Now that we have a place to insert the conditional branch, create a place 531 // to branch to: this is the exit block out of the loop that we should 532 // short-circuit to. 533 534 // Split this block now, so that the loop maintains its exit block, and so 535 // that the jump from the preheader can execute the contents of the exit block 536 // without actually branching to it (the exit block should be dominated by the 537 // loop header, not the preheader). 538 assert(!L->contains(ExitBlock) && "Exit block is in the loop?"); 539 BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this); 540 541 // Okay, now we have a position to branch from and a position to branch to, 542 // insert the new conditional branch. 543 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, 544 loopPreheader->getTerminator()); 545 LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L); 546 loopPreheader->getTerminator()->eraseFromParent(); 547 548 // We need to reprocess this loop, it could be unswitched again. 549 redoLoop = true; 550 551 // Now that we know that the loop is never entered when this condition is a 552 // particular value, rewrite the loop with this info. We know that this will 553 // at least eliminate the old branch. 554 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false); 555 ++NumTrivial; 556 } 557 558 /// SplitExitEdges - Split all of the edges from inside the loop to their exit 559 /// blocks. Update the appropriate Phi nodes as we do so. 560 void LoopUnswitch::SplitExitEdges(Loop *L, 561 const SmallVector<BasicBlock *, 8> &ExitBlocks){ 562 563 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 564 BasicBlock *ExitBlock = ExitBlocks[i]; 565 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock), 566 pred_end(ExitBlock)); 567 SplitBlockPredecessors(ExitBlock, Preds.data(), Preds.size(), 568 ".us-lcssa", this); 569 } 570 } 571 572 /// UnswitchNontrivialCondition - We determined that the loop is profitable 573 /// to unswitch when LIC equal Val. Split it into loop versions and test the 574 /// condition outside of either loop. Return the loops created as Out1/Out2. 575 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, 576 Loop *L) { 577 Function *F = loopHeader->getParent(); 578 DEBUG(dbgs() << "loop-unswitch: Unswitching loop %" 579 << loopHeader->getName() << " [" << L->getBlocks().size() 580 << " blocks] in Function " << F->getName() 581 << " when '" << *Val << "' == " << *LIC << "\n"); 582 583 LoopBlocks.clear(); 584 NewBlocks.clear(); 585 586 // First step, split the preheader and exit blocks, and add these blocks to 587 // the LoopBlocks list. 588 BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this); 589 LoopBlocks.push_back(NewPreheader); 590 591 // We want the loop to come after the preheader, but before the exit blocks. 592 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 593 594 SmallVector<BasicBlock*, 8> ExitBlocks; 595 L->getUniqueExitBlocks(ExitBlocks); 596 597 // Split all of the edges from inside the loop to their exit blocks. Update 598 // the appropriate Phi nodes as we do so. 599 SplitExitEdges(L, ExitBlocks); 600 601 // The exit blocks may have been changed due to edge splitting, recompute. 602 ExitBlocks.clear(); 603 L->getUniqueExitBlocks(ExitBlocks); 604 605 // Add exit blocks to the loop blocks. 606 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end()); 607 608 // Next step, clone all of the basic blocks that make up the loop (including 609 // the loop preheader and exit blocks), keeping track of the mapping between 610 // the instructions and blocks. 611 NewBlocks.reserve(LoopBlocks.size()); 612 ValueMap<const Value*, Value*> VMap; 613 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) { 614 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F); 615 NewBlocks.push_back(NewBB); 616 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping. 617 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L); 618 } 619 620 // Splice the newly inserted blocks into the function right before the 621 // original preheader. 622 F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(), 623 NewBlocks[0], F->end()); 624 625 // Now we create the new Loop object for the versioned loop. 626 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM); 627 Loop *ParentLoop = L->getParentLoop(); 628 if (ParentLoop) { 629 // Make sure to add the cloned preheader and exit blocks to the parent loop 630 // as well. 631 ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase()); 632 } 633 634 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 635 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]); 636 // The new exit block should be in the same loop as the old one. 637 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i])) 638 ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase()); 639 640 assert(NewExit->getTerminator()->getNumSuccessors() == 1 && 641 "Exit block should have been split to have one successor!"); 642 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 643 644 // If the successor of the exit block had PHI nodes, add an entry for 645 // NewExit. 646 PHINode *PN; 647 for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) { 648 PN = cast<PHINode>(I); 649 Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]); 650 ValueMap<const Value *, Value*>::iterator It = VMap.find(V); 651 if (It != VMap.end()) V = It->second; 652 PN->addIncoming(V, NewExit); 653 } 654 } 655 656 // Rewrite the code to refer to itself. 657 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) 658 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 659 E = NewBlocks[i]->end(); I != E; ++I) 660 RemapInstruction(I, VMap); 661 662 // Rewrite the original preheader to select between versions of the loop. 663 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator()); 664 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] && 665 "Preheader splitting did not work correctly!"); 666 667 // Emit the new branch that selects between the two versions of this loop. 668 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR); 669 LPM->deleteSimpleAnalysisValue(OldBR, L); 670 OldBR->eraseFromParent(); 671 672 LoopProcessWorklist.push_back(NewLoop); 673 redoLoop = true; 674 675 // Keep a WeakVH holding onto LIC. If the first call to RewriteLoopBody 676 // deletes the instruction (for example by simplifying a PHI that feeds into 677 // the condition that we're unswitching on), we don't rewrite the second 678 // iteration. 679 WeakVH LICHandle(LIC); 680 681 // Now we rewrite the original code to know that the condition is true and the 682 // new code to know that the condition is false. 683 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false); 684 685 // It's possible that simplifying one loop could cause the other to be 686 // changed to another value or a constant. If its a constant, don't simplify 687 // it. 688 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop && 689 LICHandle && !isa<Constant>(LICHandle)) 690 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true); 691 } 692 693 /// RemoveFromWorklist - Remove all instances of I from the worklist vector 694 /// specified. 695 static void RemoveFromWorklist(Instruction *I, 696 std::vector<Instruction*> &Worklist) { 697 std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(), 698 Worklist.end(), I); 699 while (WI != Worklist.end()) { 700 unsigned Offset = WI-Worklist.begin(); 701 Worklist.erase(WI); 702 WI = std::find(Worklist.begin()+Offset, Worklist.end(), I); 703 } 704 } 705 706 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the 707 /// program, replacing all uses with V and update the worklist. 708 static void ReplaceUsesOfWith(Instruction *I, Value *V, 709 std::vector<Instruction*> &Worklist, 710 Loop *L, LPPassManager *LPM) { 711 DEBUG(dbgs() << "Replace with '" << *V << "': " << *I); 712 713 // Add uses to the worklist, which may be dead now. 714 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 715 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) 716 Worklist.push_back(Use); 717 718 // Add users to the worklist which may be simplified now. 719 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 720 UI != E; ++UI) 721 Worklist.push_back(cast<Instruction>(*UI)); 722 LPM->deleteSimpleAnalysisValue(I, L); 723 RemoveFromWorklist(I, Worklist); 724 I->replaceAllUsesWith(V); 725 I->eraseFromParent(); 726 ++NumSimplify; 727 } 728 729 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop 730 /// information, and remove any dead successors it has. 731 /// 732 void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB, 733 std::vector<Instruction*> &Worklist, 734 Loop *L) { 735 if (pred_begin(BB) != pred_end(BB)) { 736 // This block isn't dead, since an edge to BB was just removed, see if there 737 // are any easy simplifications we can do now. 738 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 739 // If it has one pred, fold phi nodes in BB. 740 while (isa<PHINode>(BB->begin())) 741 ReplaceUsesOfWith(BB->begin(), 742 cast<PHINode>(BB->begin())->getIncomingValue(0), 743 Worklist, L, LPM); 744 745 // If this is the header of a loop and the only pred is the latch, we now 746 // have an unreachable loop. 747 if (Loop *L = LI->getLoopFor(BB)) 748 if (loopHeader == BB && L->contains(Pred)) { 749 // Remove the branch from the latch to the header block, this makes 750 // the header dead, which will make the latch dead (because the header 751 // dominates the latch). 752 LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L); 753 Pred->getTerminator()->eraseFromParent(); 754 new UnreachableInst(BB->getContext(), Pred); 755 756 // The loop is now broken, remove it from LI. 757 RemoveLoopFromHierarchy(L); 758 759 // Reprocess the header, which now IS dead. 760 RemoveBlockIfDead(BB, Worklist, L); 761 return; 762 } 763 764 // If pred ends in a uncond branch, add uncond branch to worklist so that 765 // the two blocks will get merged. 766 if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) 767 if (BI->isUnconditional()) 768 Worklist.push_back(BI); 769 } 770 return; 771 } 772 773 DEBUG(dbgs() << "Nuking dead block: " << *BB); 774 775 // Remove the instructions in the basic block from the worklist. 776 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 777 RemoveFromWorklist(I, Worklist); 778 779 // Anything that uses the instructions in this basic block should have their 780 // uses replaced with undefs. 781 // If I is not void type then replaceAllUsesWith undef. 782 // This allows ValueHandlers and custom metadata to adjust itself. 783 if (!I->getType()->isVoidTy()) 784 I->replaceAllUsesWith(UndefValue::get(I->getType())); 785 } 786 787 // If this is the edge to the header block for a loop, remove the loop and 788 // promote all subloops. 789 if (Loop *BBLoop = LI->getLoopFor(BB)) { 790 if (BBLoop->getLoopLatch() == BB) 791 RemoveLoopFromHierarchy(BBLoop); 792 } 793 794 // Remove the block from the loop info, which removes it from any loops it 795 // was in. 796 LI->removeBlock(BB); 797 798 799 // Remove phi node entries in successors for this block. 800 TerminatorInst *TI = BB->getTerminator(); 801 SmallVector<BasicBlock*, 4> Succs; 802 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 803 Succs.push_back(TI->getSuccessor(i)); 804 TI->getSuccessor(i)->removePredecessor(BB); 805 } 806 807 // Unique the successors, remove anything with multiple uses. 808 array_pod_sort(Succs.begin(), Succs.end()); 809 Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end()); 810 811 // Remove the basic block, including all of the instructions contained in it. 812 LPM->deleteSimpleAnalysisValue(BB, L); 813 BB->eraseFromParent(); 814 // Remove successor blocks here that are not dead, so that we know we only 815 // have dead blocks in this list. Nondead blocks have a way of becoming dead, 816 // then getting removed before we revisit them, which is badness. 817 // 818 for (unsigned i = 0; i != Succs.size(); ++i) 819 if (pred_begin(Succs[i]) != pred_end(Succs[i])) { 820 // One exception is loop headers. If this block was the preheader for a 821 // loop, then we DO want to visit the loop so the loop gets deleted. 822 // We know that if the successor is a loop header, that this loop had to 823 // be the preheader: the case where this was the latch block was handled 824 // above and headers can only have two predecessors. 825 if (!LI->isLoopHeader(Succs[i])) { 826 Succs.erase(Succs.begin()+i); 827 --i; 828 } 829 } 830 831 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 832 RemoveBlockIfDead(Succs[i], Worklist, L); 833 } 834 835 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has 836 /// become unwrapped, either because the backedge was deleted, or because the 837 /// edge into the header was removed. If the edge into the header from the 838 /// latch block was removed, the loop is unwrapped but subloops are still alive, 839 /// so they just reparent loops. If the loops are actually dead, they will be 840 /// removed later. 841 void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) { 842 LPM->deleteLoopFromQueue(L); 843 RemoveLoopFromWorklist(L); 844 } 845 846 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has 847 // the value specified by Val in the specified loop, or we know it does NOT have 848 // that value. Rewrite any uses of LIC or of properties correlated to it. 849 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, 850 Constant *Val, 851 bool IsEqual) { 852 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?"); 853 854 // FIXME: Support correlated properties, like: 855 // for (...) 856 // if (li1 < li2) 857 // ... 858 // if (li1 > li2) 859 // ... 860 861 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches, 862 // selects, switches. 863 std::vector<User*> Users(LIC->use_begin(), LIC->use_end()); 864 std::vector<Instruction*> Worklist; 865 LLVMContext &Context = Val->getContext(); 866 867 868 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC 869 // in the loop with the appropriate one directly. 870 if (IsEqual || (isa<ConstantInt>(Val) && 871 Val->getType()->isIntegerTy(1))) { 872 Value *Replacement; 873 if (IsEqual) 874 Replacement = Val; 875 else 876 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()), 877 !cast<ConstantInt>(Val)->getZExtValue()); 878 879 for (unsigned i = 0, e = Users.size(); i != e; ++i) 880 if (Instruction *U = cast<Instruction>(Users[i])) { 881 if (!L->contains(U)) 882 continue; 883 U->replaceUsesOfWith(LIC, Replacement); 884 Worklist.push_back(U); 885 } 886 SimplifyCode(Worklist, L); 887 return; 888 } 889 890 // Otherwise, we don't know the precise value of LIC, but we do know that it 891 // is certainly NOT "Val". As such, simplify any uses in the loop that we 892 // can. This case occurs when we unswitch switch statements. 893 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 894 Instruction *U = cast<Instruction>(Users[i]); 895 if (!L->contains(U)) 896 continue; 897 898 Worklist.push_back(U); 899 900 // TODO: We could do other simplifications, for example, turning 901 // 'icmp eq LIC, Val' -> false. 902 903 // If we know that LIC is not Val, use this info to simplify code. 904 SwitchInst *SI = dyn_cast<SwitchInst>(U); 905 if (SI == 0 || !isa<ConstantInt>(Val)) continue; 906 907 unsigned DeadCase = SI->findCaseValue(cast<ConstantInt>(Val)); 908 if (DeadCase == 0) continue; // Default case is live for multiple values. 909 910 // Found a dead case value. Don't remove PHI nodes in the 911 // successor if they become single-entry, those PHI nodes may 912 // be in the Users list. 913 914 // FIXME: This is a hack. We need to keep the successor around 915 // and hooked up so as to preserve the loop structure, because 916 // trying to update it is complicated. So instead we preserve the 917 // loop structure and put the block on a dead code path. 918 BasicBlock *Switch = SI->getParent(); 919 SplitEdge(Switch, SI->getSuccessor(DeadCase), this); 920 // Compute the successors instead of relying on the return value 921 // of SplitEdge, since it may have split the switch successor 922 // after PHI nodes. 923 BasicBlock *NewSISucc = SI->getSuccessor(DeadCase); 924 BasicBlock *OldSISucc = *succ_begin(NewSISucc); 925 // Create an "unreachable" destination. 926 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable", 927 Switch->getParent(), 928 OldSISucc); 929 new UnreachableInst(Context, Abort); 930 // Force the new case destination to branch to the "unreachable" 931 // block while maintaining a (dead) CFG edge to the old block. 932 NewSISucc->getTerminator()->eraseFromParent(); 933 BranchInst::Create(Abort, OldSISucc, 934 ConstantInt::getTrue(Context), NewSISucc); 935 // Release the PHI operands for this edge. 936 for (BasicBlock::iterator II = NewSISucc->begin(); 937 PHINode *PN = dyn_cast<PHINode>(II); ++II) 938 PN->setIncomingValue(PN->getBasicBlockIndex(Switch), 939 UndefValue::get(PN->getType())); 940 // Tell the domtree about the new block. We don't fully update the 941 // domtree here -- instead we force it to do a full recomputation 942 // after the pass is complete -- but we do need to inform it of 943 // new blocks. 944 if (DT) 945 DT->addNewBlock(Abort, NewSISucc); 946 } 947 948 SimplifyCode(Worklist, L); 949 } 950 951 /// SimplifyCode - Okay, now that we have simplified some instructions in the 952 /// loop, walk over it and constant prop, dce, and fold control flow where 953 /// possible. Note that this is effectively a very simple loop-structure-aware 954 /// optimizer. During processing of this loop, L could very well be deleted, so 955 /// it must not be used. 956 /// 957 /// FIXME: When the loop optimizer is more mature, separate this out to a new 958 /// pass. 959 /// 960 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) { 961 while (!Worklist.empty()) { 962 Instruction *I = Worklist.back(); 963 Worklist.pop_back(); 964 965 // Simple constant folding. 966 if (Constant *C = ConstantFoldInstruction(I)) { 967 ReplaceUsesOfWith(I, C, Worklist, L, LPM); 968 continue; 969 } 970 971 // Simple DCE. 972 if (isInstructionTriviallyDead(I)) { 973 DEBUG(dbgs() << "Remove dead instruction '" << *I); 974 975 // Add uses to the worklist, which may be dead now. 976 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 977 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) 978 Worklist.push_back(Use); 979 LPM->deleteSimpleAnalysisValue(I, L); 980 RemoveFromWorklist(I, Worklist); 981 I->eraseFromParent(); 982 ++NumSimplify; 983 continue; 984 } 985 986 // See if instruction simplification can hack this up. This is common for 987 // things like "select false, X, Y" after unswitching made the condition be 988 // 'false'. 989 if (Value *V = SimplifyInstruction(I)) { 990 ReplaceUsesOfWith(I, V, Worklist, L, LPM); 991 continue; 992 } 993 994 // Special case hacks that appear commonly in unswitched code. 995 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 996 if (BI->isUnconditional()) { 997 // If BI's parent is the only pred of the successor, fold the two blocks 998 // together. 999 BasicBlock *Pred = BI->getParent(); 1000 BasicBlock *Succ = BI->getSuccessor(0); 1001 BasicBlock *SinglePred = Succ->getSinglePredecessor(); 1002 if (!SinglePred) continue; // Nothing to do. 1003 assert(SinglePred == Pred && "CFG broken"); 1004 1005 DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- " 1006 << Succ->getName() << "\n"); 1007 1008 // Resolve any single entry PHI nodes in Succ. 1009 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin())) 1010 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM); 1011 1012 // Move all of the successor contents from Succ to Pred. 1013 Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(), 1014 Succ->end()); 1015 LPM->deleteSimpleAnalysisValue(BI, L); 1016 BI->eraseFromParent(); 1017 RemoveFromWorklist(BI, Worklist); 1018 1019 // If Succ has any successors with PHI nodes, update them to have 1020 // entries coming from Pred instead of Succ. 1021 Succ->replaceAllUsesWith(Pred); 1022 1023 // Remove Succ from the loop tree. 1024 LI->removeBlock(Succ); 1025 LPM->deleteSimpleAnalysisValue(Succ, L); 1026 Succ->eraseFromParent(); 1027 ++NumSimplify; 1028 continue; 1029 } 1030 1031 if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){ 1032 // Conditional branch. Turn it into an unconditional branch, then 1033 // remove dead blocks. 1034 continue; // FIXME: Enable. 1035 1036 DEBUG(dbgs() << "Folded branch: " << *BI); 1037 BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue()); 1038 BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue()); 1039 DeadSucc->removePredecessor(BI->getParent(), true); 1040 Worklist.push_back(BranchInst::Create(LiveSucc, BI)); 1041 LPM->deleteSimpleAnalysisValue(BI, L); 1042 BI->eraseFromParent(); 1043 RemoveFromWorklist(BI, Worklist); 1044 ++NumSimplify; 1045 1046 RemoveBlockIfDead(DeadSucc, Worklist, L); 1047 } 1048 continue; 1049 } 1050 } 1051 } 1052