1 //===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops that contain branches on loop-invariant conditions 11 // to multiple loops. For example, it turns the left into the right code: 12 // 13 // for (...) if (lic) 14 // A for (...) 15 // if (lic) A; B; C 16 // B else 17 // C for (...) 18 // A; C 19 // 20 // This can increase the size of the code exponentially (doubling it every time 21 // a loop is unswitched) so we only unswitch if the resultant code will be 22 // smaller than a threshold. 23 // 24 // This pass expects LICM to be run before it to hoist invariant conditions out 25 // of the loop, to make the unswitching opportunity obvious. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DivergenceAnalysis.h" 37 #include "llvm/Analysis/InstructionSimplify.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/LoopPass.h" 40 #include "llvm/Analysis/ScalarEvolution.h" 41 #include "llvm/Analysis/TargetTransformInfo.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/IRBuilder.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/ValueHandle.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Cloning.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/LoopUtils.h" 71 #include "llvm/Transforms/Utils/ValueMapper.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <map> 75 #include <set> 76 #include <tuple> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 #define DEBUG_TYPE "loop-unswitch" 83 84 STATISTIC(NumBranches, "Number of branches unswitched"); 85 STATISTIC(NumSwitches, "Number of switches unswitched"); 86 STATISTIC(NumGuards, "Number of guards unswitched"); 87 STATISTIC(NumSelects , "Number of selects unswitched"); 88 STATISTIC(NumTrivial , "Number of unswitches that are trivial"); 89 STATISTIC(NumSimplify, "Number of simplifications of unswitched code"); 90 STATISTIC(TotalInsts, "Total number of instructions analyzed"); 91 92 // The specific value of 100 here was chosen based only on intuition and a 93 // few specific examples. 94 static cl::opt<unsigned> 95 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), 96 cl::init(100), cl::Hidden); 97 98 namespace { 99 100 class LUAnalysisCache { 101 using UnswitchedValsMap = 102 DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>; 103 using UnswitchedValsIt = UnswitchedValsMap::iterator; 104 105 struct LoopProperties { 106 unsigned CanBeUnswitchedCount; 107 unsigned WasUnswitchedCount; 108 unsigned SizeEstimation; 109 UnswitchedValsMap UnswitchedVals; 110 }; 111 112 // Here we use std::map instead of DenseMap, since we need to keep valid 113 // LoopProperties pointer for current loop for better performance. 114 using LoopPropsMap = std::map<const Loop *, LoopProperties>; 115 using LoopPropsMapIt = LoopPropsMap::iterator; 116 117 LoopPropsMap LoopsProperties; 118 UnswitchedValsMap *CurLoopInstructions = nullptr; 119 LoopProperties *CurrentLoopProperties = nullptr; 120 121 // A loop unswitching with an estimated cost above this threshold 122 // is not performed. MaxSize is turned into unswitching quota for 123 // the current loop, and reduced correspondingly, though note that 124 // the quota is returned by releaseMemory() when the loop has been 125 // processed, so that MaxSize will return to its previous 126 // value. So in most cases MaxSize will equal the Threshold flag 127 // when a new loop is processed. An exception to that is that 128 // MaxSize will have a smaller value while processing nested loops 129 // that were introduced due to loop unswitching of an outer loop. 130 // 131 // FIXME: The way that MaxSize works is subtle and depends on the 132 // pass manager processing loops and calling releaseMemory() in a 133 // specific order. It would be good to find a more straightforward 134 // way of doing what MaxSize does. 135 unsigned MaxSize; 136 137 public: 138 LUAnalysisCache() : MaxSize(Threshold) {} 139 140 // Analyze loop. Check its size, calculate is it possible to unswitch 141 // it. Returns true if we can unswitch this loop. 142 bool countLoop(const Loop *L, const TargetTransformInfo &TTI, 143 AssumptionCache *AC); 144 145 // Clean all data related to given loop. 146 void forgetLoop(const Loop *L); 147 148 // Mark case value as unswitched. 149 // Since SI instruction can be partly unswitched, in order to avoid 150 // extra unswitching in cloned loops keep track all unswitched values. 151 void setUnswitched(const SwitchInst *SI, const Value *V); 152 153 // Check was this case value unswitched before or not. 154 bool isUnswitched(const SwitchInst *SI, const Value *V); 155 156 // Returns true if another unswitching could be done within the cost 157 // threshold. 158 bool CostAllowsUnswitching(); 159 160 // Clone all loop-unswitch related loop properties. 161 // Redistribute unswitching quotas. 162 // Note, that new loop data is stored inside the VMap. 163 void cloneData(const Loop *NewLoop, const Loop *OldLoop, 164 const ValueToValueMapTy &VMap); 165 }; 166 167 class LoopUnswitch : public LoopPass { 168 LoopInfo *LI; // Loop information 169 LPPassManager *LPM; 170 AssumptionCache *AC; 171 172 // Used to check if second loop needs processing after 173 // RewriteLoopBodyWithConditionConstant rewrites first loop. 174 std::vector<Loop*> LoopProcessWorklist; 175 176 LUAnalysisCache BranchesInfo; 177 178 bool OptimizeForSize; 179 bool redoLoop = false; 180 181 Loop *currentLoop = nullptr; 182 DominatorTree *DT = nullptr; 183 BasicBlock *loopHeader = nullptr; 184 BasicBlock *loopPreheader = nullptr; 185 186 bool SanitizeMemory; 187 LoopSafetyInfo SafetyInfo; 188 189 // LoopBlocks contains all of the basic blocks of the loop, including the 190 // preheader of the loop, the body of the loop, and the exit blocks of the 191 // loop, in that order. 192 std::vector<BasicBlock*> LoopBlocks; 193 // NewBlocks contained cloned copy of basic blocks from LoopBlocks. 194 std::vector<BasicBlock*> NewBlocks; 195 196 bool hasBranchDivergence; 197 198 public: 199 static char ID; // Pass ID, replacement for typeid 200 201 explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false) 202 : LoopPass(ID), OptimizeForSize(Os), 203 hasBranchDivergence(hasBranchDivergence) { 204 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry()); 205 } 206 207 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 208 bool processCurrentLoop(); 209 bool isUnreachableDueToPreviousUnswitching(BasicBlock *); 210 211 /// This transformation requires natural loop information & requires that 212 /// loop preheaders be inserted into the CFG. 213 /// 214 void getAnalysisUsage(AnalysisUsage &AU) const override { 215 AU.addRequired<AssumptionCacheTracker>(); 216 AU.addRequired<TargetTransformInfoWrapperPass>(); 217 if (hasBranchDivergence) 218 AU.addRequired<DivergenceAnalysis>(); 219 getLoopAnalysisUsage(AU); 220 } 221 222 private: 223 void releaseMemory() override { 224 BranchesInfo.forgetLoop(currentLoop); 225 } 226 227 void initLoopData() { 228 loopHeader = currentLoop->getHeader(); 229 loopPreheader = currentLoop->getLoopPreheader(); 230 } 231 232 /// Split all of the edges from inside the loop to their exit blocks. 233 /// Update the appropriate Phi nodes as we do so. 234 void SplitExitEdges(Loop *L, 235 const SmallVectorImpl<BasicBlock *> &ExitBlocks); 236 237 bool TryTrivialLoopUnswitch(bool &Changed); 238 239 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val, 240 TerminatorInst *TI = nullptr); 241 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, 242 BasicBlock *ExitBlock, TerminatorInst *TI); 243 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L, 244 TerminatorInst *TI); 245 246 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, 247 Constant *Val, bool isEqual); 248 249 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, 250 BasicBlock *TrueDest, 251 BasicBlock *FalseDest, 252 BranchInst *OldBranch, 253 TerminatorInst *TI); 254 255 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L); 256 257 /// Given that the Invariant is not equal to Val. Simplify instructions 258 /// in the loop. 259 Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant, 260 Constant *Val); 261 }; 262 263 } // end anonymous namespace 264 265 // Analyze loop. Check its size, calculate is it possible to unswitch 266 // it. Returns true if we can unswitch this loop. 267 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI, 268 AssumptionCache *AC) { 269 LoopPropsMapIt PropsIt; 270 bool Inserted; 271 std::tie(PropsIt, Inserted) = 272 LoopsProperties.insert(std::make_pair(L, LoopProperties())); 273 274 LoopProperties &Props = PropsIt->second; 275 276 if (Inserted) { 277 // New loop. 278 279 // Limit the number of instructions to avoid causing significant code 280 // expansion, and the number of basic blocks, to avoid loops with 281 // large numbers of branches which cause loop unswitching to go crazy. 282 // This is a very ad-hoc heuristic. 283 284 SmallPtrSet<const Value *, 32> EphValues; 285 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 286 287 // FIXME: This is overly conservative because it does not take into 288 // consideration code simplification opportunities and code that can 289 // be shared by the resultant unswitched loops. 290 CodeMetrics Metrics; 291 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; 292 ++I) 293 Metrics.analyzeBasicBlock(*I, TTI, EphValues); 294 295 Props.SizeEstimation = Metrics.NumInsts; 296 Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation); 297 Props.WasUnswitchedCount = 0; 298 MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount; 299 300 if (Metrics.notDuplicatable) { 301 DEBUG(dbgs() << "NOT unswitching loop %" 302 << L->getHeader()->getName() << ", contents cannot be " 303 << "duplicated!\n"); 304 return false; 305 } 306 } 307 308 // Be careful. This links are good only before new loop addition. 309 CurrentLoopProperties = &Props; 310 CurLoopInstructions = &Props.UnswitchedVals; 311 312 return true; 313 } 314 315 // Clean all data related to given loop. 316 void LUAnalysisCache::forgetLoop(const Loop *L) { 317 LoopPropsMapIt LIt = LoopsProperties.find(L); 318 319 if (LIt != LoopsProperties.end()) { 320 LoopProperties &Props = LIt->second; 321 MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) * 322 Props.SizeEstimation; 323 LoopsProperties.erase(LIt); 324 } 325 326 CurrentLoopProperties = nullptr; 327 CurLoopInstructions = nullptr; 328 } 329 330 // Mark case value as unswitched. 331 // Since SI instruction can be partly unswitched, in order to avoid 332 // extra unswitching in cloned loops keep track all unswitched values. 333 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) { 334 (*CurLoopInstructions)[SI].insert(V); 335 } 336 337 // Check was this case value unswitched before or not. 338 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) { 339 return (*CurLoopInstructions)[SI].count(V); 340 } 341 342 bool LUAnalysisCache::CostAllowsUnswitching() { 343 return CurrentLoopProperties->CanBeUnswitchedCount > 0; 344 } 345 346 // Clone all loop-unswitch related loop properties. 347 // Redistribute unswitching quotas. 348 // Note, that new loop data is stored inside the VMap. 349 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop, 350 const ValueToValueMapTy &VMap) { 351 LoopProperties &NewLoopProps = LoopsProperties[NewLoop]; 352 LoopProperties &OldLoopProps = *CurrentLoopProperties; 353 UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals; 354 355 // Reallocate "can-be-unswitched quota" 356 357 --OldLoopProps.CanBeUnswitchedCount; 358 ++OldLoopProps.WasUnswitchedCount; 359 NewLoopProps.WasUnswitchedCount = 0; 360 unsigned Quota = OldLoopProps.CanBeUnswitchedCount; 361 NewLoopProps.CanBeUnswitchedCount = Quota / 2; 362 OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2; 363 364 NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation; 365 366 // Clone unswitched values info: 367 // for new loop switches we clone info about values that was 368 // already unswitched and has redundant successors. 369 for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) { 370 const SwitchInst *OldInst = I->first; 371 Value *NewI = VMap.lookup(OldInst); 372 const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI); 373 assert(NewInst && "All instructions that are in SrcBB must be in VMap."); 374 375 NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst]; 376 } 377 } 378 379 char LoopUnswitch::ID = 0; 380 381 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops", 382 false, false) 383 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 384 INITIALIZE_PASS_DEPENDENCY(LoopPass) 385 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 386 INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis) 387 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops", 388 false, false) 389 390 Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) { 391 return new LoopUnswitch(Os, hasBranchDivergence); 392 } 393 394 /// Operator chain lattice. 395 enum OperatorChain { 396 OC_OpChainNone, ///< There is no operator. 397 OC_OpChainOr, ///< There are only ORs. 398 OC_OpChainAnd, ///< There are only ANDs. 399 OC_OpChainMixed ///< There are ANDs and ORs. 400 }; 401 402 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has 403 /// an invariant piece, return the invariant. Otherwise, return null. 404 // 405 /// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a 406 /// mixed operator chain, as we can not reliably find a value which will simplify 407 /// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0 408 /// to simplify the chain. 409 /// 410 /// NOTE: In case a partial LIV and a mixed operator chain, we may be able to 411 /// simplify the condition itself to a loop variant condition, but at the 412 /// cost of creating an entirely new loop. 413 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed, 414 OperatorChain &ParentChain, 415 DenseMap<Value *, Value *> &Cache) { 416 auto CacheIt = Cache.find(Cond); 417 if (CacheIt != Cache.end()) 418 return CacheIt->second; 419 420 // We started analyze new instruction, increment scanned instructions counter. 421 ++TotalInsts; 422 423 // We can never unswitch on vector conditions. 424 if (Cond->getType()->isVectorTy()) 425 return nullptr; 426 427 // Constants should be folded, not unswitched on! 428 if (isa<Constant>(Cond)) return nullptr; 429 430 // TODO: Handle: br (VARIANT|INVARIANT). 431 432 // Hoist simple values out. 433 if (L->makeLoopInvariant(Cond, Changed)) { 434 Cache[Cond] = Cond; 435 return Cond; 436 } 437 438 // Walk up the operator chain to find partial invariant conditions. 439 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond)) 440 if (BO->getOpcode() == Instruction::And || 441 BO->getOpcode() == Instruction::Or) { 442 // Given the previous operator, compute the current operator chain status. 443 OperatorChain NewChain; 444 switch (ParentChain) { 445 case OC_OpChainNone: 446 NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd : 447 OC_OpChainOr; 448 break; 449 case OC_OpChainOr: 450 NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr : 451 OC_OpChainMixed; 452 break; 453 case OC_OpChainAnd: 454 NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd : 455 OC_OpChainMixed; 456 break; 457 case OC_OpChainMixed: 458 NewChain = OC_OpChainMixed; 459 break; 460 } 461 462 // If we reach a Mixed state, we do not want to keep walking up as we can not 463 // reliably find a value that will simplify the chain. With this check, we 464 // will return null on the first sight of mixed chain and the caller will 465 // either backtrack to find partial LIV in other operand or return null. 466 if (NewChain != OC_OpChainMixed) { 467 // Update the current operator chain type before we search up the chain. 468 ParentChain = NewChain; 469 // If either the left or right side is invariant, we can unswitch on this, 470 // which will cause the branch to go away in one loop and the condition to 471 // simplify in the other one. 472 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed, 473 ParentChain, Cache)) { 474 Cache[Cond] = LHS; 475 return LHS; 476 } 477 // We did not manage to find a partial LIV in operand(0). Backtrack and try 478 // operand(1). 479 ParentChain = NewChain; 480 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed, 481 ParentChain, Cache)) { 482 Cache[Cond] = RHS; 483 return RHS; 484 } 485 } 486 } 487 488 Cache[Cond] = nullptr; 489 return nullptr; 490 } 491 492 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has 493 /// an invariant piece, return the invariant along with the operator chain type. 494 /// Otherwise, return null. 495 static std::pair<Value *, OperatorChain> FindLIVLoopCondition(Value *Cond, 496 Loop *L, 497 bool &Changed) { 498 DenseMap<Value *, Value *> Cache; 499 OperatorChain OpChain = OC_OpChainNone; 500 Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache); 501 502 // In case we do find a LIV, it can not be obtained by walking up a mixed 503 // operator chain. 504 assert((!FCond || OpChain != OC_OpChainMixed) && 505 "Do not expect a partial LIV with mixed operator chain"); 506 return {FCond, OpChain}; 507 } 508 509 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) { 510 if (skipLoop(L)) 511 return false; 512 513 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 514 *L->getHeader()->getParent()); 515 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 516 LPM = &LPM_Ref; 517 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 518 currentLoop = L; 519 Function *F = currentLoop->getHeader()->getParent(); 520 521 SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory); 522 if (SanitizeMemory) 523 computeLoopSafetyInfo(&SafetyInfo, L); 524 525 bool Changed = false; 526 do { 527 assert(currentLoop->isLCSSAForm(*DT)); 528 redoLoop = false; 529 Changed |= processCurrentLoop(); 530 } while(redoLoop); 531 532 return Changed; 533 } 534 535 // Return true if the BasicBlock BB is unreachable from the loop header. 536 // Return false, otherwise. 537 bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) { 538 auto *Node = DT->getNode(BB)->getIDom(); 539 BasicBlock *DomBB = Node->getBlock(); 540 while (currentLoop->contains(DomBB)) { 541 BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator()); 542 543 Node = DT->getNode(DomBB)->getIDom(); 544 DomBB = Node->getBlock(); 545 546 if (!BInst || !BInst->isConditional()) 547 continue; 548 549 Value *Cond = BInst->getCondition(); 550 if (!isa<ConstantInt>(Cond)) 551 continue; 552 553 BasicBlock *UnreachableSucc = 554 Cond == ConstantInt::getTrue(Cond->getContext()) 555 ? BInst->getSuccessor(1) 556 : BInst->getSuccessor(0); 557 558 if (DT->dominates(UnreachableSucc, BB)) 559 return true; 560 } 561 return false; 562 } 563 564 /// FIXME: Remove this workaround when freeze related patches are done. 565 /// LoopUnswitch and Equality propagation in GVN have discrepancy about 566 /// whether branch on undef/poison has undefine behavior. Here it is to 567 /// rule out some common cases that we found such discrepancy already 568 /// causing problems. Detail could be found in PR31652. Note if the 569 /// func returns true, it is unsafe. But if it is false, it doesn't mean 570 /// it is necessarily safe. 571 static bool EqualityPropUnSafe(Value &LoopCond) { 572 ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond); 573 if (!CI || !CI->isEquality()) 574 return false; 575 576 Value *LHS = CI->getOperand(0); 577 Value *RHS = CI->getOperand(1); 578 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 579 return true; 580 581 auto hasUndefInPHI = [](PHINode &PN) { 582 for (Value *Opd : PN.incoming_values()) { 583 if (isa<UndefValue>(Opd)) 584 return true; 585 } 586 return false; 587 }; 588 PHINode *LPHI = dyn_cast<PHINode>(LHS); 589 PHINode *RPHI = dyn_cast<PHINode>(RHS); 590 if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI))) 591 return true; 592 593 auto hasUndefInSelect = [](SelectInst &SI) { 594 if (isa<UndefValue>(SI.getTrueValue()) || 595 isa<UndefValue>(SI.getFalseValue())) 596 return true; 597 return false; 598 }; 599 SelectInst *LSI = dyn_cast<SelectInst>(LHS); 600 SelectInst *RSI = dyn_cast<SelectInst>(RHS); 601 if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI))) 602 return true; 603 return false; 604 } 605 606 /// Do actual work and unswitch loop if possible and profitable. 607 bool LoopUnswitch::processCurrentLoop() { 608 bool Changed = false; 609 610 initLoopData(); 611 612 // If LoopSimplify was unable to form a preheader, don't do any unswitching. 613 if (!loopPreheader) 614 return false; 615 616 // Loops with indirectbr cannot be cloned. 617 if (!currentLoop->isSafeToClone()) 618 return false; 619 620 // Without dedicated exits, splitting the exit edge may fail. 621 if (!currentLoop->hasDedicatedExits()) 622 return false; 623 624 LLVMContext &Context = loopHeader->getContext(); 625 626 // Analyze loop cost, and stop unswitching if loop content can not be duplicated. 627 if (!BranchesInfo.countLoop( 628 currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 629 *currentLoop->getHeader()->getParent()), 630 AC)) 631 return false; 632 633 // Try trivial unswitch first before loop over other basic blocks in the loop. 634 if (TryTrivialLoopUnswitch(Changed)) { 635 return true; 636 } 637 638 // Run through the instructions in the loop, keeping track of three things: 639 // 640 // - That we do not unswitch loops containing convergent operations, as we 641 // might be making them control dependent on the unswitch value when they 642 // were not before. 643 // FIXME: This could be refined to only bail if the convergent operation is 644 // not already control-dependent on the unswitch value. 645 // 646 // - That basic blocks in the loop contain invokes whose predecessor edges we 647 // cannot split. 648 // 649 // - The set of guard intrinsics encountered (these are non terminator 650 // instructions that are also profitable to be unswitched). 651 652 SmallVector<IntrinsicInst *, 4> Guards; 653 654 for (const auto BB : currentLoop->blocks()) { 655 for (auto &I : *BB) { 656 auto CS = CallSite(&I); 657 if (!CS) continue; 658 if (CS.hasFnAttr(Attribute::Convergent)) 659 return false; 660 if (auto *II = dyn_cast<InvokeInst>(&I)) 661 if (!II->getUnwindDest()->canSplitPredecessors()) 662 return false; 663 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 664 if (II->getIntrinsicID() == Intrinsic::experimental_guard) 665 Guards.push_back(II); 666 } 667 } 668 669 // Do not do non-trivial unswitch while optimizing for size. 670 // FIXME: Use Function::optForSize(). 671 if (OptimizeForSize || 672 loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize)) 673 return false; 674 675 for (IntrinsicInst *Guard : Guards) { 676 Value *LoopCond = 677 FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed).first; 678 if (LoopCond && 679 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) { 680 // NB! Unswitching (if successful) could have erased some of the 681 // instructions in Guards leaving dangling pointers there. This is fine 682 // because we're returning now, and won't look at Guards again. 683 ++NumGuards; 684 return true; 685 } 686 } 687 688 // Loop over all of the basic blocks in the loop. If we find an interior 689 // block that is branching on a loop-invariant condition, we can unswitch this 690 // loop. 691 for (Loop::block_iterator I = currentLoop->block_begin(), 692 E = currentLoop->block_end(); I != E; ++I) { 693 TerminatorInst *TI = (*I)->getTerminator(); 694 695 // Unswitching on a potentially uninitialized predicate is not 696 // MSan-friendly. Limit this to the cases when the original predicate is 697 // guaranteed to execute, to avoid creating a use-of-uninitialized-value 698 // in the code that did not have one. 699 // This is a workaround for the discrepancy between LLVM IR and MSan 700 // semantics. See PR28054 for more details. 701 if (SanitizeMemory && 702 !isGuaranteedToExecute(*TI, DT, currentLoop, &SafetyInfo)) 703 continue; 704 705 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 706 // Some branches may be rendered unreachable because of previous 707 // unswitching. 708 // Unswitch only those branches that are reachable. 709 if (isUnreachableDueToPreviousUnswitching(*I)) 710 continue; 711 712 // If this isn't branching on an invariant condition, we can't unswitch 713 // it. 714 if (BI->isConditional()) { 715 // See if this, or some part of it, is loop invariant. If so, we can 716 // unswitch on it if we desire. 717 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), 718 currentLoop, Changed).first; 719 if (LoopCond && !EqualityPropUnSafe(*LoopCond) && 720 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) { 721 ++NumBranches; 722 return true; 723 } 724 } 725 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 726 Value *SC = SI->getCondition(); 727 Value *LoopCond; 728 OperatorChain OpChain; 729 std::tie(LoopCond, OpChain) = 730 FindLIVLoopCondition(SC, currentLoop, Changed); 731 732 unsigned NumCases = SI->getNumCases(); 733 if (LoopCond && NumCases) { 734 // Find a value to unswitch on: 735 // FIXME: this should chose the most expensive case! 736 // FIXME: scan for a case with a non-critical edge? 737 Constant *UnswitchVal = nullptr; 738 // Find a case value such that at least one case value is unswitched 739 // out. 740 if (OpChain == OC_OpChainAnd) { 741 // If the chain only has ANDs and the switch has a case value of 0. 742 // Dropping in a 0 to the chain will unswitch out the 0-casevalue. 743 auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType())); 744 if (BranchesInfo.isUnswitched(SI, AllZero)) 745 continue; 746 // We are unswitching 0 out. 747 UnswitchVal = AllZero; 748 } else if (OpChain == OC_OpChainOr) { 749 // If the chain only has ORs and the switch has a case value of ~0. 750 // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue. 751 auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType())); 752 if (BranchesInfo.isUnswitched(SI, AllOne)) 753 continue; 754 // We are unswitching ~0 out. 755 UnswitchVal = AllOne; 756 } else { 757 assert(OpChain == OC_OpChainNone && 758 "Expect to unswitch on trivial chain"); 759 // Do not process same value again and again. 760 // At this point we have some cases already unswitched and 761 // some not yet unswitched. Let's find the first not yet unswitched one. 762 for (auto Case : SI->cases()) { 763 Constant *UnswitchValCandidate = Case.getCaseValue(); 764 if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) { 765 UnswitchVal = UnswitchValCandidate; 766 break; 767 } 768 } 769 } 770 771 if (!UnswitchVal) 772 continue; 773 774 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) { 775 ++NumSwitches; 776 // In case of a full LIV, UnswitchVal is the value we unswitched out. 777 // In case of a partial LIV, we only unswitch when its an AND-chain 778 // or OR-chain. In both cases switch input value simplifies to 779 // UnswitchVal. 780 BranchesInfo.setUnswitched(SI, UnswitchVal); 781 return true; 782 } 783 } 784 } 785 786 // Scan the instructions to check for unswitchable values. 787 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); 788 BBI != E; ++BBI) 789 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) { 790 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 791 currentLoop, Changed).first; 792 if (LoopCond && UnswitchIfProfitable(LoopCond, 793 ConstantInt::getTrue(Context))) { 794 ++NumSelects; 795 return true; 796 } 797 } 798 } 799 return Changed; 800 } 801 802 /// Check to see if all paths from BB exit the loop with no side effects 803 /// (including infinite loops). 804 /// 805 /// If true, we return true and set ExitBB to the block we 806 /// exit through. 807 /// 808 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB, 809 BasicBlock *&ExitBB, 810 std::set<BasicBlock*> &Visited) { 811 if (!Visited.insert(BB).second) { 812 // Already visited. Without more analysis, this could indicate an infinite 813 // loop. 814 return false; 815 } 816 if (!L->contains(BB)) { 817 // Otherwise, this is a loop exit, this is fine so long as this is the 818 // first exit. 819 if (ExitBB) return false; 820 ExitBB = BB; 821 return true; 822 } 823 824 // Otherwise, this is an unvisited intra-loop node. Check all successors. 825 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) { 826 // Check to see if the successor is a trivial loop exit. 827 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited)) 828 return false; 829 } 830 831 // Okay, everything after this looks good, check to make sure that this block 832 // doesn't include any side effects. 833 for (Instruction &I : *BB) 834 if (I.mayHaveSideEffects()) 835 return false; 836 837 return true; 838 } 839 840 /// Return true if the specified block unconditionally leads to an exit from 841 /// the specified loop, and has no side-effects in the process. If so, return 842 /// the block that is exited to, otherwise return null. 843 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) { 844 std::set<BasicBlock*> Visited; 845 Visited.insert(L->getHeader()); // Branches to header make infinite loops. 846 BasicBlock *ExitBB = nullptr; 847 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited)) 848 return ExitBB; 849 return nullptr; 850 } 851 852 /// We have found that we can unswitch currentLoop when LoopCond == Val to 853 /// simplify the loop. If we decide that this is profitable, 854 /// unswitch the loop, reprocess the pieces, then return true. 855 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val, 856 TerminatorInst *TI) { 857 // Check to see if it would be profitable to unswitch current loop. 858 if (!BranchesInfo.CostAllowsUnswitching()) { 859 DEBUG(dbgs() << "NOT unswitching loop %" 860 << currentLoop->getHeader()->getName() 861 << " at non-trivial condition '" << *Val 862 << "' == " << *LoopCond << "\n" 863 << ". Cost too high.\n"); 864 return false; 865 } 866 if (hasBranchDivergence && 867 getAnalysis<DivergenceAnalysis>().isDivergent(LoopCond)) { 868 DEBUG(dbgs() << "NOT unswitching loop %" 869 << currentLoop->getHeader()->getName() 870 << " at non-trivial condition '" << *Val 871 << "' == " << *LoopCond << "\n" 872 << ". Condition is divergent.\n"); 873 return false; 874 } 875 876 UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI); 877 return true; 878 } 879 880 /// Recursively clone the specified loop and all of its children, 881 /// mapping the blocks with the specified map. 882 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, 883 LoopInfo *LI, LPPassManager *LPM) { 884 Loop &New = *LI->AllocateLoop(); 885 if (PL) 886 PL->addChildLoop(&New); 887 else 888 LI->addTopLevelLoop(&New); 889 LPM->addLoop(New); 890 891 // Add all of the blocks in L to the new loop. 892 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); 893 I != E; ++I) 894 if (LI->getLoopFor(*I) == L) 895 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI); 896 897 // Add all of the subloops to the new loop. 898 for (Loop *I : *L) 899 CloneLoop(I, &New, VM, LI, LPM); 900 901 return &New; 902 } 903 904 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst, 905 /// otherwise branch to FalseDest. Insert the code immediately before OldBranch 906 /// and remove (but not erase!) it from the function. 907 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, 908 BasicBlock *TrueDest, 909 BasicBlock *FalseDest, 910 BranchInst *OldBranch, 911 TerminatorInst *TI) { 912 assert(OldBranch->isUnconditional() && "Preheader is not split correctly"); 913 // Insert a conditional branch on LIC to the two preheaders. The original 914 // code is the true version and the new code is the false version. 915 Value *BranchVal = LIC; 916 bool Swapped = false; 917 if (!isa<ConstantInt>(Val) || 918 Val->getType() != Type::getInt1Ty(LIC->getContext())) 919 BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val); 920 else if (Val != ConstantInt::getTrue(Val->getContext())) { 921 // We want to enter the new loop when the condition is true. 922 std::swap(TrueDest, FalseDest); 923 Swapped = true; 924 } 925 926 // Old branch will be removed, so save its parent and successor to update the 927 // DomTree. 928 auto *OldBranchSucc = OldBranch->getSuccessor(0); 929 auto *OldBranchParent = OldBranch->getParent(); 930 931 // Insert the new branch. 932 BranchInst *BI = 933 IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI); 934 if (Swapped) 935 BI->swapProfMetadata(); 936 937 // Remove the old branch so there is only one branch at the end. This is 938 // needed to perform DomTree's internal DFS walk on the function's CFG. 939 OldBranch->removeFromParent(); 940 941 // Inform the DT about the new branch. 942 if (DT) { 943 // First, add both successors. 944 SmallVector<DominatorTree::UpdateType, 3> Updates; 945 if (TrueDest != OldBranchParent) 946 Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest}); 947 if (FalseDest != OldBranchParent) 948 Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest}); 949 // If both of the new successors are different from the old one, inform the 950 // DT that the edge was deleted. 951 if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) { 952 Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc}); 953 } 954 955 DT->applyUpdates(Updates); 956 } 957 958 // If either edge is critical, split it. This helps preserve LoopSimplify 959 // form for enclosing loops. 960 auto Options = CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA(); 961 SplitCriticalEdge(BI, 0, Options); 962 SplitCriticalEdge(BI, 1, Options); 963 } 964 965 /// Given a loop that has a trivial unswitchable condition in it (a cond branch 966 /// from its header block to its latch block, where the path through the loop 967 /// that doesn't execute its body has no side-effects), unswitch it. This 968 /// doesn't involve any code duplication, just moving the conditional branch 969 /// outside of the loop and updating loop info. 970 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, 971 BasicBlock *ExitBlock, 972 TerminatorInst *TI) { 973 DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %" 974 << loopHeader->getName() << " [" << L->getBlocks().size() 975 << " blocks] in Function " 976 << L->getHeader()->getParent()->getName() << " on cond: " << *Val 977 << " == " << *Cond << "\n"); 978 979 // First step, split the preheader, so that we know that there is a safe place 980 // to insert the conditional branch. We will change loopPreheader to have a 981 // conditional branch on Cond. 982 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI); 983 984 // Now that we have a place to insert the conditional branch, create a place 985 // to branch to: this is the exit block out of the loop that we should 986 // short-circuit to. 987 988 // Split this block now, so that the loop maintains its exit block, and so 989 // that the jump from the preheader can execute the contents of the exit block 990 // without actually branching to it (the exit block should be dominated by the 991 // loop header, not the preheader). 992 assert(!L->contains(ExitBlock) && "Exit block is in the loop?"); 993 BasicBlock *NewExit = SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI); 994 995 // Okay, now we have a position to branch from and a position to branch to, 996 // insert the new conditional branch. 997 auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator()); 998 assert(OldBranch && "Failed to split the preheader"); 999 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI); 1000 LPM->deleteSimpleAnalysisValue(OldBranch, L); 1001 1002 // EmitPreheaderBranchOnCondition removed the OldBranch from the function. 1003 // Delete it, as it is no longer needed. 1004 delete OldBranch; 1005 1006 // We need to reprocess this loop, it could be unswitched again. 1007 redoLoop = true; 1008 1009 // Now that we know that the loop is never entered when this condition is a 1010 // particular value, rewrite the loop with this info. We know that this will 1011 // at least eliminate the old branch. 1012 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false); 1013 ++NumTrivial; 1014 } 1015 1016 /// Check if the first non-constant condition starting from the loop header is 1017 /// a trivial unswitch condition: that is, a condition controls whether or not 1018 /// the loop does anything at all. If it is a trivial condition, unswitching 1019 /// produces no code duplications (equivalently, it produces a simpler loop and 1020 /// a new empty loop, which gets deleted). Therefore always unswitch trivial 1021 /// condition. 1022 bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) { 1023 BasicBlock *CurrentBB = currentLoop->getHeader(); 1024 TerminatorInst *CurrentTerm = CurrentBB->getTerminator(); 1025 LLVMContext &Context = CurrentBB->getContext(); 1026 1027 // If loop header has only one reachable successor (currently via an 1028 // unconditional branch or constant foldable conditional branch, but 1029 // should also consider adding constant foldable switch instruction in 1030 // future), we should keep looking for trivial condition candidates in 1031 // the successor as well. An alternative is to constant fold conditions 1032 // and merge successors into loop header (then we only need to check header's 1033 // terminator). The reason for not doing this in LoopUnswitch pass is that 1034 // it could potentially break LoopPassManager's invariants. Folding dead 1035 // branches could either eliminate the current loop or make other loops 1036 // unreachable. LCSSA form might also not be preserved after deleting 1037 // branches. The following code keeps traversing loop header's successors 1038 // until it finds the trivial condition candidate (condition that is not a 1039 // constant). Since unswitching generates branches with constant conditions, 1040 // this scenario could be very common in practice. 1041 SmallSet<BasicBlock*, 8> Visited; 1042 1043 while (true) { 1044 // If we exit loop or reach a previous visited block, then 1045 // we can not reach any trivial condition candidates (unfoldable 1046 // branch instructions or switch instructions) and no unswitch 1047 // can happen. Exit and return false. 1048 if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second) 1049 return false; 1050 1051 // Check if this loop will execute any side-effecting instructions (e.g. 1052 // stores, calls, volatile loads) in the part of the loop that the code 1053 // *would* execute. Check the header first. 1054 for (Instruction &I : *CurrentBB) 1055 if (I.mayHaveSideEffects()) 1056 return false; 1057 1058 if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) { 1059 if (BI->isUnconditional()) { 1060 CurrentBB = BI->getSuccessor(0); 1061 } else if (BI->getCondition() == ConstantInt::getTrue(Context)) { 1062 CurrentBB = BI->getSuccessor(0); 1063 } else if (BI->getCondition() == ConstantInt::getFalse(Context)) { 1064 CurrentBB = BI->getSuccessor(1); 1065 } else { 1066 // Found a trivial condition candidate: non-foldable conditional branch. 1067 break; 1068 } 1069 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 1070 // At this point, any constant-foldable instructions should have probably 1071 // been folded. 1072 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 1073 if (!Cond) 1074 break; 1075 // Find the target block we are definitely going to. 1076 CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor(); 1077 } else { 1078 // We do not understand these terminator instructions. 1079 break; 1080 } 1081 1082 CurrentTerm = CurrentBB->getTerminator(); 1083 } 1084 1085 // CondVal is the condition that controls the trivial condition. 1086 // LoopExitBB is the BasicBlock that loop exits when meets trivial condition. 1087 Constant *CondVal = nullptr; 1088 BasicBlock *LoopExitBB = nullptr; 1089 1090 if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) { 1091 // If this isn't branching on an invariant condition, we can't unswitch it. 1092 if (!BI->isConditional()) 1093 return false; 1094 1095 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), 1096 currentLoop, Changed).first; 1097 1098 // Unswitch only if the trivial condition itself is an LIV (not 1099 // partial LIV which could occur in and/or) 1100 if (!LoopCond || LoopCond != BI->getCondition()) 1101 return false; 1102 1103 // Check to see if a successor of the branch is guaranteed to 1104 // exit through a unique exit block without having any 1105 // side-effects. If so, determine the value of Cond that causes 1106 // it to do this. 1107 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 1108 BI->getSuccessor(0)))) { 1109 CondVal = ConstantInt::getTrue(Context); 1110 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, 1111 BI->getSuccessor(1)))) { 1112 CondVal = ConstantInt::getFalse(Context); 1113 } 1114 1115 // If we didn't find a single unique LoopExit block, or if the loop exit 1116 // block contains phi nodes, this isn't trivial. 1117 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) 1118 return false; // Can't handle this. 1119 1120 if (EqualityPropUnSafe(*LoopCond)) 1121 return false; 1122 1123 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB, 1124 CurrentTerm); 1125 ++NumBranches; 1126 return true; 1127 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 1128 // If this isn't switching on an invariant condition, we can't unswitch it. 1129 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), 1130 currentLoop, Changed).first; 1131 1132 // Unswitch only if the trivial condition itself is an LIV (not 1133 // partial LIV which could occur in and/or) 1134 if (!LoopCond || LoopCond != SI->getCondition()) 1135 return false; 1136 1137 // Check to see if a successor of the switch is guaranteed to go to the 1138 // latch block or exit through a one exit block without having any 1139 // side-effects. If so, determine the value of Cond that causes it to do 1140 // this. 1141 // Note that we can't trivially unswitch on the default case or 1142 // on already unswitched cases. 1143 for (auto Case : SI->cases()) { 1144 BasicBlock *LoopExitCandidate; 1145 if ((LoopExitCandidate = 1146 isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) { 1147 // Okay, we found a trivial case, remember the value that is trivial. 1148 ConstantInt *CaseVal = Case.getCaseValue(); 1149 1150 // Check that it was not unswitched before, since already unswitched 1151 // trivial vals are looks trivial too. 1152 if (BranchesInfo.isUnswitched(SI, CaseVal)) 1153 continue; 1154 LoopExitBB = LoopExitCandidate; 1155 CondVal = CaseVal; 1156 break; 1157 } 1158 } 1159 1160 // If we didn't find a single unique LoopExit block, or if the loop exit 1161 // block contains phi nodes, this isn't trivial. 1162 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) 1163 return false; // Can't handle this. 1164 1165 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB, 1166 nullptr); 1167 1168 // We are only unswitching full LIV. 1169 BranchesInfo.setUnswitched(SI, CondVal); 1170 ++NumSwitches; 1171 return true; 1172 } 1173 return false; 1174 } 1175 1176 /// Split all of the edges from inside the loop to their exit blocks. 1177 /// Update the appropriate Phi nodes as we do so. 1178 void LoopUnswitch::SplitExitEdges(Loop *L, 1179 const SmallVectorImpl<BasicBlock *> &ExitBlocks){ 1180 1181 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 1182 BasicBlock *ExitBlock = ExitBlocks[i]; 1183 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock), 1184 pred_end(ExitBlock)); 1185 1186 // Although SplitBlockPredecessors doesn't preserve loop-simplify in 1187 // general, if we call it on all predecessors of all exits then it does. 1188 SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI, 1189 /*PreserveLCSSA*/ true); 1190 } 1191 } 1192 1193 /// We determined that the loop is profitable to unswitch when LIC equal Val. 1194 /// Split it into loop versions and test the condition outside of either loop. 1195 /// Return the loops created as Out1/Out2. 1196 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, 1197 Loop *L, TerminatorInst *TI) { 1198 Function *F = loopHeader->getParent(); 1199 DEBUG(dbgs() << "loop-unswitch: Unswitching loop %" 1200 << loopHeader->getName() << " [" << L->getBlocks().size() 1201 << " blocks] in Function " << F->getName() 1202 << " when '" << *Val << "' == " << *LIC << "\n"); 1203 1204 if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>()) 1205 SEWP->getSE().forgetLoop(L); 1206 1207 LoopBlocks.clear(); 1208 NewBlocks.clear(); 1209 1210 // First step, split the preheader and exit blocks, and add these blocks to 1211 // the LoopBlocks list. 1212 BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, DT, LI); 1213 LoopBlocks.push_back(NewPreheader); 1214 1215 // We want the loop to come after the preheader, but before the exit blocks. 1216 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 1217 1218 SmallVector<BasicBlock*, 8> ExitBlocks; 1219 L->getUniqueExitBlocks(ExitBlocks); 1220 1221 // Split all of the edges from inside the loop to their exit blocks. Update 1222 // the appropriate Phi nodes as we do so. 1223 SplitExitEdges(L, ExitBlocks); 1224 1225 // The exit blocks may have been changed due to edge splitting, recompute. 1226 ExitBlocks.clear(); 1227 L->getUniqueExitBlocks(ExitBlocks); 1228 1229 // Add exit blocks to the loop blocks. 1230 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end()); 1231 1232 // Next step, clone all of the basic blocks that make up the loop (including 1233 // the loop preheader and exit blocks), keeping track of the mapping between 1234 // the instructions and blocks. 1235 NewBlocks.reserve(LoopBlocks.size()); 1236 ValueToValueMapTy VMap; 1237 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) { 1238 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F); 1239 1240 NewBlocks.push_back(NewBB); 1241 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping. 1242 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L); 1243 } 1244 1245 // Splice the newly inserted blocks into the function right before the 1246 // original preheader. 1247 F->getBasicBlockList().splice(NewPreheader->getIterator(), 1248 F->getBasicBlockList(), 1249 NewBlocks[0]->getIterator(), F->end()); 1250 1251 // Now we create the new Loop object for the versioned loop. 1252 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM); 1253 1254 // Recalculate unswitching quota, inherit simplified switches info for NewBB, 1255 // Probably clone more loop-unswitch related loop properties. 1256 BranchesInfo.cloneData(NewLoop, L, VMap); 1257 1258 Loop *ParentLoop = L->getParentLoop(); 1259 if (ParentLoop) { 1260 // Make sure to add the cloned preheader and exit blocks to the parent loop 1261 // as well. 1262 ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI); 1263 } 1264 1265 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 1266 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]); 1267 // The new exit block should be in the same loop as the old one. 1268 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i])) 1269 ExitBBLoop->addBasicBlockToLoop(NewExit, *LI); 1270 1271 assert(NewExit->getTerminator()->getNumSuccessors() == 1 && 1272 "Exit block should have been split to have one successor!"); 1273 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 1274 1275 // If the successor of the exit block had PHI nodes, add an entry for 1276 // NewExit. 1277 for (PHINode &PN : ExitSucc->phis()) { 1278 Value *V = PN.getIncomingValueForBlock(ExitBlocks[i]); 1279 ValueToValueMapTy::iterator It = VMap.find(V); 1280 if (It != VMap.end()) V = It->second; 1281 PN.addIncoming(V, NewExit); 1282 } 1283 1284 if (LandingPadInst *LPad = NewExit->getLandingPadInst()) { 1285 PHINode *PN = PHINode::Create(LPad->getType(), 0, "", 1286 &*ExitSucc->getFirstInsertionPt()); 1287 1288 for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc); 1289 I != E; ++I) { 1290 BasicBlock *BB = *I; 1291 LandingPadInst *LPI = BB->getLandingPadInst(); 1292 LPI->replaceAllUsesWith(PN); 1293 PN->addIncoming(LPI, BB); 1294 } 1295 } 1296 } 1297 1298 // Rewrite the code to refer to itself. 1299 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) { 1300 for (Instruction &I : *NewBlocks[i]) { 1301 RemapInstruction(&I, VMap, 1302 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1303 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1304 if (II->getIntrinsicID() == Intrinsic::assume) 1305 AC->registerAssumption(II); 1306 } 1307 } 1308 1309 // Rewrite the original preheader to select between versions of the loop. 1310 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator()); 1311 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] && 1312 "Preheader splitting did not work correctly!"); 1313 1314 // Emit the new branch that selects between the two versions of this loop. 1315 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR, 1316 TI); 1317 LPM->deleteSimpleAnalysisValue(OldBR, L); 1318 1319 // The OldBr was replaced by a new one and removed (but not erased) by 1320 // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it. 1321 delete OldBR; 1322 1323 LoopProcessWorklist.push_back(NewLoop); 1324 redoLoop = true; 1325 1326 // Keep a WeakTrackingVH holding onto LIC. If the first call to 1327 // RewriteLoopBody 1328 // deletes the instruction (for example by simplifying a PHI that feeds into 1329 // the condition that we're unswitching on), we don't rewrite the second 1330 // iteration. 1331 WeakTrackingVH LICHandle(LIC); 1332 1333 // Now we rewrite the original code to know that the condition is true and the 1334 // new code to know that the condition is false. 1335 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false); 1336 1337 // It's possible that simplifying one loop could cause the other to be 1338 // changed to another value or a constant. If its a constant, don't simplify 1339 // it. 1340 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop && 1341 LICHandle && !isa<Constant>(LICHandle)) 1342 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true); 1343 } 1344 1345 /// Remove all instances of I from the worklist vector specified. 1346 static void RemoveFromWorklist(Instruction *I, 1347 std::vector<Instruction*> &Worklist) { 1348 1349 Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I), 1350 Worklist.end()); 1351 } 1352 1353 /// When we find that I really equals V, remove I from the 1354 /// program, replacing all uses with V and update the worklist. 1355 static void ReplaceUsesOfWith(Instruction *I, Value *V, 1356 std::vector<Instruction*> &Worklist, 1357 Loop *L, LPPassManager *LPM) { 1358 DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n"); 1359 1360 // Add uses to the worklist, which may be dead now. 1361 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1362 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) 1363 Worklist.push_back(Use); 1364 1365 // Add users to the worklist which may be simplified now. 1366 for (User *U : I->users()) 1367 Worklist.push_back(cast<Instruction>(U)); 1368 LPM->deleteSimpleAnalysisValue(I, L); 1369 RemoveFromWorklist(I, Worklist); 1370 I->replaceAllUsesWith(V); 1371 if (!I->mayHaveSideEffects()) 1372 I->eraseFromParent(); 1373 ++NumSimplify; 1374 } 1375 1376 /// We know either that the value LIC has the value specified by Val in the 1377 /// specified loop, or we know it does NOT have that value. 1378 /// Rewrite any uses of LIC or of properties correlated to it. 1379 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, 1380 Constant *Val, 1381 bool IsEqual) { 1382 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?"); 1383 1384 // FIXME: Support correlated properties, like: 1385 // for (...) 1386 // if (li1 < li2) 1387 // ... 1388 // if (li1 > li2) 1389 // ... 1390 1391 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches, 1392 // selects, switches. 1393 std::vector<Instruction*> Worklist; 1394 LLVMContext &Context = Val->getContext(); 1395 1396 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC 1397 // in the loop with the appropriate one directly. 1398 if (IsEqual || (isa<ConstantInt>(Val) && 1399 Val->getType()->isIntegerTy(1))) { 1400 Value *Replacement; 1401 if (IsEqual) 1402 Replacement = Val; 1403 else 1404 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()), 1405 !cast<ConstantInt>(Val)->getZExtValue()); 1406 1407 for (User *U : LIC->users()) { 1408 Instruction *UI = dyn_cast<Instruction>(U); 1409 if (!UI || !L->contains(UI)) 1410 continue; 1411 Worklist.push_back(UI); 1412 } 1413 1414 for (Instruction *UI : Worklist) 1415 UI->replaceUsesOfWith(LIC, Replacement); 1416 1417 SimplifyCode(Worklist, L); 1418 return; 1419 } 1420 1421 // Otherwise, we don't know the precise value of LIC, but we do know that it 1422 // is certainly NOT "Val". As such, simplify any uses in the loop that we 1423 // can. This case occurs when we unswitch switch statements. 1424 for (User *U : LIC->users()) { 1425 Instruction *UI = dyn_cast<Instruction>(U); 1426 if (!UI || !L->contains(UI)) 1427 continue; 1428 1429 // At this point, we know LIC is definitely not Val. Try to use some simple 1430 // logic to simplify the user w.r.t. to the context. 1431 if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) { 1432 if (LI->replacementPreservesLCSSAForm(UI, Replacement)) { 1433 // This in-loop instruction has been simplified w.r.t. its context, 1434 // i.e. LIC != Val, make sure we propagate its replacement value to 1435 // all its users. 1436 // 1437 // We can not yet delete UI, the LIC user, yet, because that would invalidate 1438 // the LIC->users() iterator !. However, we can make this instruction 1439 // dead by replacing all its users and push it onto the worklist so that 1440 // it can be properly deleted and its operands simplified. 1441 UI->replaceAllUsesWith(Replacement); 1442 } 1443 } 1444 1445 // This is a LIC user, push it into the worklist so that SimplifyCode can 1446 // attempt to simplify it. 1447 Worklist.push_back(UI); 1448 1449 // If we know that LIC is not Val, use this info to simplify code. 1450 SwitchInst *SI = dyn_cast<SwitchInst>(UI); 1451 if (!SI || !isa<ConstantInt>(Val)) continue; 1452 1453 // NOTE: if a case value for the switch is unswitched out, we record it 1454 // after the unswitch finishes. We can not record it here as the switch 1455 // is not a direct user of the partial LIV. 1456 SwitchInst::CaseHandle DeadCase = 1457 *SI->findCaseValue(cast<ConstantInt>(Val)); 1458 // Default case is live for multiple values. 1459 if (DeadCase == *SI->case_default()) 1460 continue; 1461 1462 // Found a dead case value. Don't remove PHI nodes in the 1463 // successor if they become single-entry, those PHI nodes may 1464 // be in the Users list. 1465 1466 BasicBlock *Switch = SI->getParent(); 1467 BasicBlock *SISucc = DeadCase.getCaseSuccessor(); 1468 BasicBlock *Latch = L->getLoopLatch(); 1469 1470 if (!SI->findCaseDest(SISucc)) continue; // Edge is critical. 1471 // If the DeadCase successor dominates the loop latch, then the 1472 // transformation isn't safe since it will delete the sole predecessor edge 1473 // to the latch. 1474 if (Latch && DT->dominates(SISucc, Latch)) 1475 continue; 1476 1477 // FIXME: This is a hack. We need to keep the successor around 1478 // and hooked up so as to preserve the loop structure, because 1479 // trying to update it is complicated. So instead we preserve the 1480 // loop structure and put the block on a dead code path. 1481 SplitEdge(Switch, SISucc, DT, LI); 1482 // Compute the successors instead of relying on the return value 1483 // of SplitEdge, since it may have split the switch successor 1484 // after PHI nodes. 1485 BasicBlock *NewSISucc = DeadCase.getCaseSuccessor(); 1486 BasicBlock *OldSISucc = *succ_begin(NewSISucc); 1487 // Create an "unreachable" destination. 1488 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable", 1489 Switch->getParent(), 1490 OldSISucc); 1491 new UnreachableInst(Context, Abort); 1492 // Force the new case destination to branch to the "unreachable" 1493 // block while maintaining a (dead) CFG edge to the old block. 1494 NewSISucc->getTerminator()->eraseFromParent(); 1495 BranchInst::Create(Abort, OldSISucc, 1496 ConstantInt::getTrue(Context), NewSISucc); 1497 // Release the PHI operands for this edge. 1498 for (PHINode &PN : NewSISucc->phis()) 1499 PN.setIncomingValue(PN.getBasicBlockIndex(Switch), 1500 UndefValue::get(PN.getType())); 1501 // Tell the domtree about the new block. We don't fully update the 1502 // domtree here -- instead we force it to do a full recomputation 1503 // after the pass is complete -- but we do need to inform it of 1504 // new blocks. 1505 DT->addNewBlock(Abort, NewSISucc); 1506 } 1507 1508 SimplifyCode(Worklist, L); 1509 } 1510 1511 /// Now that we have simplified some instructions in the loop, walk over it and 1512 /// constant prop, dce, and fold control flow where possible. Note that this is 1513 /// effectively a very simple loop-structure-aware optimizer. During processing 1514 /// of this loop, L could very well be deleted, so it must not be used. 1515 /// 1516 /// FIXME: When the loop optimizer is more mature, separate this out to a new 1517 /// pass. 1518 /// 1519 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) { 1520 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1521 while (!Worklist.empty()) { 1522 Instruction *I = Worklist.back(); 1523 Worklist.pop_back(); 1524 1525 // Simple DCE. 1526 if (isInstructionTriviallyDead(I)) { 1527 DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n"); 1528 1529 // Add uses to the worklist, which may be dead now. 1530 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1531 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) 1532 Worklist.push_back(Use); 1533 LPM->deleteSimpleAnalysisValue(I, L); 1534 RemoveFromWorklist(I, Worklist); 1535 I->eraseFromParent(); 1536 ++NumSimplify; 1537 continue; 1538 } 1539 1540 // See if instruction simplification can hack this up. This is common for 1541 // things like "select false, X, Y" after unswitching made the condition be 1542 // 'false'. TODO: update the domtree properly so we can pass it here. 1543 if (Value *V = SimplifyInstruction(I, DL)) 1544 if (LI->replacementPreservesLCSSAForm(I, V)) { 1545 ReplaceUsesOfWith(I, V, Worklist, L, LPM); 1546 continue; 1547 } 1548 1549 // Special case hacks that appear commonly in unswitched code. 1550 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1551 if (BI->isUnconditional()) { 1552 // If BI's parent is the only pred of the successor, fold the two blocks 1553 // together. 1554 BasicBlock *Pred = BI->getParent(); 1555 BasicBlock *Succ = BI->getSuccessor(0); 1556 BasicBlock *SinglePred = Succ->getSinglePredecessor(); 1557 if (!SinglePred) continue; // Nothing to do. 1558 assert(SinglePred == Pred && "CFG broken"); 1559 1560 DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- " 1561 << Succ->getName() << "\n"); 1562 1563 // Resolve any single entry PHI nodes in Succ. 1564 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin())) 1565 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM); 1566 1567 // If Succ has any successors with PHI nodes, update them to have 1568 // entries coming from Pred instead of Succ. 1569 Succ->replaceAllUsesWith(Pred); 1570 1571 // Move all of the successor contents from Succ to Pred. 1572 Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(), 1573 Succ->begin(), Succ->end()); 1574 LPM->deleteSimpleAnalysisValue(BI, L); 1575 RemoveFromWorklist(BI, Worklist); 1576 BI->eraseFromParent(); 1577 1578 // Remove Succ from the loop tree. 1579 LI->removeBlock(Succ); 1580 LPM->deleteSimpleAnalysisValue(Succ, L); 1581 Succ->eraseFromParent(); 1582 ++NumSimplify; 1583 continue; 1584 } 1585 1586 continue; 1587 } 1588 } 1589 } 1590 1591 /// Simple simplifications we can do given the information that Cond is 1592 /// definitely not equal to Val. 1593 Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst, 1594 Value *Invariant, 1595 Constant *Val) { 1596 // icmp eq cond, val -> false 1597 ICmpInst *CI = dyn_cast<ICmpInst>(Inst); 1598 if (CI && CI->isEquality()) { 1599 Value *Op0 = CI->getOperand(0); 1600 Value *Op1 = CI->getOperand(1); 1601 if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) { 1602 LLVMContext &Ctx = Inst->getContext(); 1603 if (CI->getPredicate() == CmpInst::ICMP_EQ) 1604 return ConstantInt::getFalse(Ctx); 1605 else 1606 return ConstantInt::getTrue(Ctx); 1607 } 1608 } 1609 1610 // FIXME: there may be other opportunities, e.g. comparison with floating 1611 // point, or Invariant - Val != 0, etc. 1612 return nullptr; 1613 } 1614