1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/Hashing.h" 61 #include "llvm/ADT/PointerIntPair.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SetVector.h" 64 #include "llvm/ADT/SmallBitVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 75 #include "llvm/Analysis/TargetTransformInfo.h" 76 #include "llvm/IR/BasicBlock.h" 77 #include "llvm/IR/Constant.h" 78 #include "llvm/IR/Constants.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Dominators.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/IRBuilder.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Module.h" 87 #include "llvm/IR/OperandTraits.h" 88 #include "llvm/IR/Operator.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Transforms/Scalar.h" 101 #include "llvm/Transforms/Scalar/LoopPassManager.h" 102 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstddef> 107 #include <cstdint> 108 #include <cstdlib> 109 #include <iterator> 110 #include <map> 111 #include <tuple> 112 #include <utility> 113 114 using namespace llvm; 115 116 #define DEBUG_TYPE "loop-reduce" 117 118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 119 /// bail out. This threshold is far beyond the number of users that LSR can 120 /// conceivably solve, so it should not affect generated code, but catches the 121 /// worst cases before LSR burns too much compile time and stack space. 122 static const unsigned MaxIVUsers = 200; 123 124 // Temporary flag to cleanup congruent phis after LSR phi expansion. 125 // It's currently disabled until we can determine whether it's truly useful or 126 // not. The flag should be removed after the v3.0 release. 127 // This is now needed for ivchains. 128 static cl::opt<bool> EnablePhiElim( 129 "enable-lsr-phielim", cl::Hidden, cl::init(true), 130 cl::desc("Enable LSR phi elimination")); 131 132 #ifndef NDEBUG 133 // Stress test IV chain generation. 134 static cl::opt<bool> StressIVChain( 135 "stress-ivchain", cl::Hidden, cl::init(false), 136 cl::desc("Stress test LSR IV chains")); 137 #else 138 static bool StressIVChain = false; 139 #endif 140 141 namespace { 142 143 struct MemAccessTy { 144 /// Used in situations where the accessed memory type is unknown. 145 static const unsigned UnknownAddressSpace = ~0u; 146 147 Type *MemTy; 148 unsigned AddrSpace; 149 150 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} 151 152 MemAccessTy(Type *Ty, unsigned AS) : 153 MemTy(Ty), AddrSpace(AS) {} 154 155 bool operator==(MemAccessTy Other) const { 156 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 157 } 158 159 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 160 161 static MemAccessTy getUnknown(LLVMContext &Ctx, 162 unsigned AS = UnknownAddressSpace) { 163 return MemAccessTy(Type::getVoidTy(Ctx), AS); 164 } 165 }; 166 167 /// This class holds data which is used to order reuse candidates. 168 class RegSortData { 169 public: 170 /// This represents the set of LSRUse indices which reference 171 /// a particular register. 172 SmallBitVector UsedByIndices; 173 174 void print(raw_ostream &OS) const; 175 void dump() const; 176 }; 177 178 } // end anonymous namespace 179 180 void RegSortData::print(raw_ostream &OS) const { 181 OS << "[NumUses=" << UsedByIndices.count() << ']'; 182 } 183 184 LLVM_DUMP_METHOD 185 void RegSortData::dump() const { 186 print(errs()); errs() << '\n'; 187 } 188 189 namespace { 190 191 /// Map register candidates to information about how they are used. 192 class RegUseTracker { 193 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 194 195 RegUsesTy RegUsesMap; 196 SmallVector<const SCEV *, 16> RegSequence; 197 198 public: 199 void countRegister(const SCEV *Reg, size_t LUIdx); 200 void dropRegister(const SCEV *Reg, size_t LUIdx); 201 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 202 203 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 204 205 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 206 207 void clear(); 208 209 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 210 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 211 iterator begin() { return RegSequence.begin(); } 212 iterator end() { return RegSequence.end(); } 213 const_iterator begin() const { return RegSequence.begin(); } 214 const_iterator end() const { return RegSequence.end(); } 215 }; 216 217 } // end anonymous namespace 218 219 void 220 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 221 std::pair<RegUsesTy::iterator, bool> Pair = 222 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 223 RegSortData &RSD = Pair.first->second; 224 if (Pair.second) 225 RegSequence.push_back(Reg); 226 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 227 RSD.UsedByIndices.set(LUIdx); 228 } 229 230 void 231 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 232 RegUsesTy::iterator It = RegUsesMap.find(Reg); 233 assert(It != RegUsesMap.end()); 234 RegSortData &RSD = It->second; 235 assert(RSD.UsedByIndices.size() > LUIdx); 236 RSD.UsedByIndices.reset(LUIdx); 237 } 238 239 void 240 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 241 assert(LUIdx <= LastLUIdx); 242 243 // Update RegUses. The data structure is not optimized for this purpose; 244 // we must iterate through it and update each of the bit vectors. 245 for (auto &Pair : RegUsesMap) { 246 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 247 if (LUIdx < UsedByIndices.size()) 248 UsedByIndices[LUIdx] = 249 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 250 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 251 } 252 } 253 254 bool 255 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 256 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 257 if (I == RegUsesMap.end()) 258 return false; 259 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 260 int i = UsedByIndices.find_first(); 261 if (i == -1) return false; 262 if ((size_t)i != LUIdx) return true; 263 return UsedByIndices.find_next(i) != -1; 264 } 265 266 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 267 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 268 assert(I != RegUsesMap.end() && "Unknown register!"); 269 return I->second.UsedByIndices; 270 } 271 272 void RegUseTracker::clear() { 273 RegUsesMap.clear(); 274 RegSequence.clear(); 275 } 276 277 namespace { 278 279 /// This class holds information that describes a formula for computing 280 /// satisfying a use. It may include broken-out immediates and scaled registers. 281 struct Formula { 282 /// Global base address used for complex addressing. 283 GlobalValue *BaseGV; 284 285 /// Base offset for complex addressing. 286 int64_t BaseOffset; 287 288 /// Whether any complex addressing has a base register. 289 bool HasBaseReg; 290 291 /// The scale of any complex addressing. 292 int64_t Scale; 293 294 /// The list of "base" registers for this use. When this is non-empty. The 295 /// canonical representation of a formula is 296 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 297 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 298 /// #1 enforces that the scaled register is always used when at least two 299 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 300 /// #2 enforces that 1 * reg is reg. 301 /// This invariant can be temporarly broken while building a formula. 302 /// However, every formula inserted into the LSRInstance must be in canonical 303 /// form. 304 SmallVector<const SCEV *, 4> BaseRegs; 305 306 /// The 'scaled' register for this use. This should be non-null when Scale is 307 /// not zero. 308 const SCEV *ScaledReg; 309 310 /// An additional constant offset which added near the use. This requires a 311 /// temporary register, but the offset itself can live in an add immediate 312 /// field rather than a register. 313 int64_t UnfoldedOffset; 314 315 Formula() 316 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 317 ScaledReg(nullptr), UnfoldedOffset(0) {} 318 319 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 320 321 bool isCanonical() const; 322 323 void canonicalize(); 324 325 bool unscale(); 326 327 size_t getNumRegs() const; 328 Type *getType() const; 329 330 void deleteBaseReg(const SCEV *&S); 331 332 bool referencesReg(const SCEV *S) const; 333 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 334 const RegUseTracker &RegUses) const; 335 336 void print(raw_ostream &OS) const; 337 void dump() const; 338 }; 339 340 } // end anonymous namespace 341 342 /// Recursion helper for initialMatch. 343 static void DoInitialMatch(const SCEV *S, Loop *L, 344 SmallVectorImpl<const SCEV *> &Good, 345 SmallVectorImpl<const SCEV *> &Bad, 346 ScalarEvolution &SE) { 347 // Collect expressions which properly dominate the loop header. 348 if (SE.properlyDominates(S, L->getHeader())) { 349 Good.push_back(S); 350 return; 351 } 352 353 // Look at add operands. 354 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 355 for (const SCEV *S : Add->operands()) 356 DoInitialMatch(S, L, Good, Bad, SE); 357 return; 358 } 359 360 // Look at addrec operands. 361 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 362 if (!AR->getStart()->isZero() && AR->isAffine()) { 363 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 364 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 365 AR->getStepRecurrence(SE), 366 // FIXME: AR->getNoWrapFlags() 367 AR->getLoop(), SCEV::FlagAnyWrap), 368 L, Good, Bad, SE); 369 return; 370 } 371 372 // Handle a multiplication by -1 (negation) if it didn't fold. 373 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 374 if (Mul->getOperand(0)->isAllOnesValue()) { 375 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 376 const SCEV *NewMul = SE.getMulExpr(Ops); 377 378 SmallVector<const SCEV *, 4> MyGood; 379 SmallVector<const SCEV *, 4> MyBad; 380 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 381 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 382 SE.getEffectiveSCEVType(NewMul->getType()))); 383 for (const SCEV *S : MyGood) 384 Good.push_back(SE.getMulExpr(NegOne, S)); 385 for (const SCEV *S : MyBad) 386 Bad.push_back(SE.getMulExpr(NegOne, S)); 387 return; 388 } 389 390 // Ok, we can't do anything interesting. Just stuff the whole thing into a 391 // register and hope for the best. 392 Bad.push_back(S); 393 } 394 395 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 396 /// all loop-invariant and loop-computable values in a single base register. 397 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 398 SmallVector<const SCEV *, 4> Good; 399 SmallVector<const SCEV *, 4> Bad; 400 DoInitialMatch(S, L, Good, Bad, SE); 401 if (!Good.empty()) { 402 const SCEV *Sum = SE.getAddExpr(Good); 403 if (!Sum->isZero()) 404 BaseRegs.push_back(Sum); 405 HasBaseReg = true; 406 } 407 if (!Bad.empty()) { 408 const SCEV *Sum = SE.getAddExpr(Bad); 409 if (!Sum->isZero()) 410 BaseRegs.push_back(Sum); 411 HasBaseReg = true; 412 } 413 canonicalize(); 414 } 415 416 /// \brief Check whether or not this formula statisfies the canonical 417 /// representation. 418 /// \see Formula::BaseRegs. 419 bool Formula::isCanonical() const { 420 if (ScaledReg) 421 return Scale != 1 || !BaseRegs.empty(); 422 return BaseRegs.size() <= 1; 423 } 424 425 /// \brief Helper method to morph a formula into its canonical representation. 426 /// \see Formula::BaseRegs. 427 /// Every formula having more than one base register, must use the ScaledReg 428 /// field. Otherwise, we would have to do special cases everywhere in LSR 429 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 430 /// On the other hand, 1*reg should be canonicalized into reg. 431 void Formula::canonicalize() { 432 if (isCanonical()) 433 return; 434 // So far we did not need this case. This is easy to implement but it is 435 // useless to maintain dead code. Beside it could hurt compile time. 436 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 437 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 438 ScaledReg = BaseRegs.back(); 439 BaseRegs.pop_back(); 440 Scale = 1; 441 size_t BaseRegsSize = BaseRegs.size(); 442 size_t Try = 0; 443 // If ScaledReg is an invariant, try to find a variant expression. 444 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) 445 std::swap(ScaledReg, BaseRegs[Try++]); 446 } 447 448 /// \brief Get rid of the scale in the formula. 449 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 450 /// \return true if it was possible to get rid of the scale, false otherwise. 451 /// \note After this operation the formula may not be in the canonical form. 452 bool Formula::unscale() { 453 if (Scale != 1) 454 return false; 455 Scale = 0; 456 BaseRegs.push_back(ScaledReg); 457 ScaledReg = nullptr; 458 return true; 459 } 460 461 /// Return the total number of register operands used by this formula. This does 462 /// not include register uses implied by non-constant addrec strides. 463 size_t Formula::getNumRegs() const { 464 return !!ScaledReg + BaseRegs.size(); 465 } 466 467 /// Return the type of this formula, if it has one, or null otherwise. This type 468 /// is meaningless except for the bit size. 469 Type *Formula::getType() const { 470 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 471 ScaledReg ? ScaledReg->getType() : 472 BaseGV ? BaseGV->getType() : 473 nullptr; 474 } 475 476 /// Delete the given base reg from the BaseRegs list. 477 void Formula::deleteBaseReg(const SCEV *&S) { 478 if (&S != &BaseRegs.back()) 479 std::swap(S, BaseRegs.back()); 480 BaseRegs.pop_back(); 481 } 482 483 /// Test if this formula references the given register. 484 bool Formula::referencesReg(const SCEV *S) const { 485 return S == ScaledReg || is_contained(BaseRegs, S); 486 } 487 488 /// Test whether this formula uses registers which are used by uses other than 489 /// the use with the given index. 490 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 491 const RegUseTracker &RegUses) const { 492 if (ScaledReg) 493 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 494 return true; 495 for (const SCEV *BaseReg : BaseRegs) 496 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 497 return true; 498 return false; 499 } 500 501 void Formula::print(raw_ostream &OS) const { 502 bool First = true; 503 if (BaseGV) { 504 if (!First) OS << " + "; else First = false; 505 BaseGV->printAsOperand(OS, /*PrintType=*/false); 506 } 507 if (BaseOffset != 0) { 508 if (!First) OS << " + "; else First = false; 509 OS << BaseOffset; 510 } 511 for (const SCEV *BaseReg : BaseRegs) { 512 if (!First) OS << " + "; else First = false; 513 OS << "reg(" << *BaseReg << ')'; 514 } 515 if (HasBaseReg && BaseRegs.empty()) { 516 if (!First) OS << " + "; else First = false; 517 OS << "**error: HasBaseReg**"; 518 } else if (!HasBaseReg && !BaseRegs.empty()) { 519 if (!First) OS << " + "; else First = false; 520 OS << "**error: !HasBaseReg**"; 521 } 522 if (Scale != 0) { 523 if (!First) OS << " + "; else First = false; 524 OS << Scale << "*reg("; 525 if (ScaledReg) 526 OS << *ScaledReg; 527 else 528 OS << "<unknown>"; 529 OS << ')'; 530 } 531 if (UnfoldedOffset != 0) { 532 if (!First) OS << " + "; 533 OS << "imm(" << UnfoldedOffset << ')'; 534 } 535 } 536 537 LLVM_DUMP_METHOD 538 void Formula::dump() const { 539 print(errs()); errs() << '\n'; 540 } 541 542 /// Return true if the given addrec can be sign-extended without changing its 543 /// value. 544 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 545 Type *WideTy = 546 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 547 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 548 } 549 550 /// Return true if the given add can be sign-extended without changing its 551 /// value. 552 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 553 Type *WideTy = 554 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 555 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 556 } 557 558 /// Return true if the given mul can be sign-extended without changing its 559 /// value. 560 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 561 Type *WideTy = 562 IntegerType::get(SE.getContext(), 563 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 564 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 565 } 566 567 /// Return an expression for LHS /s RHS, if it can be determined and if the 568 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 569 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 570 /// the multiplication may overflow, which is useful when the result will be 571 /// used in a context where the most significant bits are ignored. 572 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 573 ScalarEvolution &SE, 574 bool IgnoreSignificantBits = false) { 575 // Handle the trivial case, which works for any SCEV type. 576 if (LHS == RHS) 577 return SE.getConstant(LHS->getType(), 1); 578 579 // Handle a few RHS special cases. 580 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 581 if (RC) { 582 const APInt &RA = RC->getAPInt(); 583 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 584 // some folding. 585 if (RA.isAllOnesValue()) 586 return SE.getMulExpr(LHS, RC); 587 // Handle x /s 1 as x. 588 if (RA == 1) 589 return LHS; 590 } 591 592 // Check for a division of a constant by a constant. 593 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 594 if (!RC) 595 return nullptr; 596 const APInt &LA = C->getAPInt(); 597 const APInt &RA = RC->getAPInt(); 598 if (LA.srem(RA) != 0) 599 return nullptr; 600 return SE.getConstant(LA.sdiv(RA)); 601 } 602 603 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 604 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 605 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 606 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 607 IgnoreSignificantBits); 608 if (!Step) return nullptr; 609 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 610 IgnoreSignificantBits); 611 if (!Start) return nullptr; 612 // FlagNW is independent of the start value, step direction, and is 613 // preserved with smaller magnitude steps. 614 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 615 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 616 } 617 return nullptr; 618 } 619 620 // Distribute the sdiv over add operands, if the add doesn't overflow. 621 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 622 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 623 SmallVector<const SCEV *, 8> Ops; 624 for (const SCEV *S : Add->operands()) { 625 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 626 if (!Op) return nullptr; 627 Ops.push_back(Op); 628 } 629 return SE.getAddExpr(Ops); 630 } 631 return nullptr; 632 } 633 634 // Check for a multiply operand that we can pull RHS out of. 635 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 636 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 637 SmallVector<const SCEV *, 4> Ops; 638 bool Found = false; 639 for (const SCEV *S : Mul->operands()) { 640 if (!Found) 641 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 642 IgnoreSignificantBits)) { 643 S = Q; 644 Found = true; 645 } 646 Ops.push_back(S); 647 } 648 return Found ? SE.getMulExpr(Ops) : nullptr; 649 } 650 return nullptr; 651 } 652 653 // Otherwise we don't know. 654 return nullptr; 655 } 656 657 /// If S involves the addition of a constant integer value, return that integer 658 /// value, and mutate S to point to a new SCEV with that value excluded. 659 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 660 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 661 if (C->getAPInt().getMinSignedBits() <= 64) { 662 S = SE.getConstant(C->getType(), 0); 663 return C->getValue()->getSExtValue(); 664 } 665 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 666 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 667 int64_t Result = ExtractImmediate(NewOps.front(), SE); 668 if (Result != 0) 669 S = SE.getAddExpr(NewOps); 670 return Result; 671 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 672 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 673 int64_t Result = ExtractImmediate(NewOps.front(), SE); 674 if (Result != 0) 675 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 676 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 677 SCEV::FlagAnyWrap); 678 return Result; 679 } 680 return 0; 681 } 682 683 /// If S involves the addition of a GlobalValue address, return that symbol, and 684 /// mutate S to point to a new SCEV with that value excluded. 685 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 686 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 687 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 688 S = SE.getConstant(GV->getType(), 0); 689 return GV; 690 } 691 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 692 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 693 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 694 if (Result) 695 S = SE.getAddExpr(NewOps); 696 return Result; 697 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 698 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 699 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 700 if (Result) 701 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 702 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 703 SCEV::FlagAnyWrap); 704 return Result; 705 } 706 return nullptr; 707 } 708 709 /// Returns true if the specified instruction is using the specified value as an 710 /// address. 711 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 712 bool isAddress = isa<LoadInst>(Inst); 713 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 714 if (SI->getOperand(1) == OperandVal) 715 isAddress = true; 716 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 717 // Addressing modes can also be folded into prefetches and a variety 718 // of intrinsics. 719 switch (II->getIntrinsicID()) { 720 default: break; 721 case Intrinsic::prefetch: 722 if (II->getArgOperand(0) == OperandVal) 723 isAddress = true; 724 break; 725 } 726 } 727 return isAddress; 728 } 729 730 /// Return the type of the memory being accessed. 731 static MemAccessTy getAccessType(const Instruction *Inst) { 732 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 733 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 734 AccessTy.MemTy = SI->getOperand(0)->getType(); 735 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 736 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 737 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 738 } 739 740 // All pointers have the same requirements, so canonicalize them to an 741 // arbitrary pointer type to minimize variation. 742 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 743 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 744 PTy->getAddressSpace()); 745 746 return AccessTy; 747 } 748 749 /// Return true if this AddRec is already a phi in its loop. 750 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 751 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 752 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 753 if (SE.isSCEVable(PN->getType()) && 754 (SE.getEffectiveSCEVType(PN->getType()) == 755 SE.getEffectiveSCEVType(AR->getType())) && 756 SE.getSCEV(PN) == AR) 757 return true; 758 } 759 return false; 760 } 761 762 /// Check if expanding this expression is likely to incur significant cost. This 763 /// is tricky because SCEV doesn't track which expressions are actually computed 764 /// by the current IR. 765 /// 766 /// We currently allow expansion of IV increments that involve adds, 767 /// multiplication by constants, and AddRecs from existing phis. 768 /// 769 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 770 /// obvious multiple of the UDivExpr. 771 static bool isHighCostExpansion(const SCEV *S, 772 SmallPtrSetImpl<const SCEV*> &Processed, 773 ScalarEvolution &SE) { 774 // Zero/One operand expressions 775 switch (S->getSCEVType()) { 776 case scUnknown: 777 case scConstant: 778 return false; 779 case scTruncate: 780 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 781 Processed, SE); 782 case scZeroExtend: 783 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 784 Processed, SE); 785 case scSignExtend: 786 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 787 Processed, SE); 788 } 789 790 if (!Processed.insert(S).second) 791 return false; 792 793 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 794 for (const SCEV *S : Add->operands()) { 795 if (isHighCostExpansion(S, Processed, SE)) 796 return true; 797 } 798 return false; 799 } 800 801 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 802 if (Mul->getNumOperands() == 2) { 803 // Multiplication by a constant is ok 804 if (isa<SCEVConstant>(Mul->getOperand(0))) 805 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 806 807 // If we have the value of one operand, check if an existing 808 // multiplication already generates this expression. 809 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 810 Value *UVal = U->getValue(); 811 for (User *UR : UVal->users()) { 812 // If U is a constant, it may be used by a ConstantExpr. 813 Instruction *UI = dyn_cast<Instruction>(UR); 814 if (UI && UI->getOpcode() == Instruction::Mul && 815 SE.isSCEVable(UI->getType())) { 816 return SE.getSCEV(UI) == Mul; 817 } 818 } 819 } 820 } 821 } 822 823 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 824 if (isExistingPhi(AR, SE)) 825 return false; 826 } 827 828 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 829 return true; 830 } 831 832 /// If any of the instructions is the specified set are trivially dead, delete 833 /// them and see if this makes any of their operands subsequently dead. 834 static bool 835 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 836 bool Changed = false; 837 838 while (!DeadInsts.empty()) { 839 Value *V = DeadInsts.pop_back_val(); 840 Instruction *I = dyn_cast_or_null<Instruction>(V); 841 842 if (!I || !isInstructionTriviallyDead(I)) 843 continue; 844 845 for (Use &O : I->operands()) 846 if (Instruction *U = dyn_cast<Instruction>(O)) { 847 O = nullptr; 848 if (U->use_empty()) 849 DeadInsts.emplace_back(U); 850 } 851 852 I->eraseFromParent(); 853 Changed = true; 854 } 855 856 return Changed; 857 } 858 859 namespace { 860 861 class LSRUse; 862 863 } // end anonymous namespace 864 865 /// \brief Check if the addressing mode defined by \p F is completely 866 /// folded in \p LU at isel time. 867 /// This includes address-mode folding and special icmp tricks. 868 /// This function returns true if \p LU can accommodate what \p F 869 /// defines and up to 1 base + 1 scaled + offset. 870 /// In other words, if \p F has several base registers, this function may 871 /// still return true. Therefore, users still need to account for 872 /// additional base registers and/or unfolded offsets to derive an 873 /// accurate cost model. 874 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 875 const LSRUse &LU, const Formula &F); 876 // Get the cost of the scaling factor used in F for LU. 877 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 878 const LSRUse &LU, const Formula &F); 879 880 namespace { 881 882 /// This class is used to measure and compare candidate formulae. 883 class Cost { 884 /// TODO: Some of these could be merged. Also, a lexical ordering 885 /// isn't always optimal. 886 unsigned NumRegs; 887 unsigned AddRecCost; 888 unsigned NumIVMuls; 889 unsigned NumBaseAdds; 890 unsigned ImmCost; 891 unsigned SetupCost; 892 unsigned ScaleCost; 893 894 public: 895 Cost() 896 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 897 SetupCost(0), ScaleCost(0) {} 898 899 bool operator<(const Cost &Other) const; 900 901 void Lose(); 902 903 #ifndef NDEBUG 904 // Once any of the metrics loses, they must all remain losers. 905 bool isValid() { 906 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 907 | ImmCost | SetupCost | ScaleCost) != ~0u) 908 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 909 & ImmCost & SetupCost & ScaleCost) == ~0u); 910 } 911 #endif 912 913 bool isLoser() { 914 assert(isValid() && "invalid cost"); 915 return NumRegs == ~0u; 916 } 917 918 void RateFormula(const TargetTransformInfo &TTI, 919 const Formula &F, 920 SmallPtrSetImpl<const SCEV *> &Regs, 921 const DenseSet<const SCEV *> &VisitedRegs, 922 const Loop *L, 923 ScalarEvolution &SE, DominatorTree &DT, 924 const LSRUse &LU, 925 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 926 927 void print(raw_ostream &OS) const; 928 void dump() const; 929 930 private: 931 void RateRegister(const SCEV *Reg, 932 SmallPtrSetImpl<const SCEV *> &Regs, 933 const Loop *L, 934 ScalarEvolution &SE, DominatorTree &DT); 935 void RatePrimaryRegister(const SCEV *Reg, 936 SmallPtrSetImpl<const SCEV *> &Regs, 937 const Loop *L, 938 ScalarEvolution &SE, DominatorTree &DT, 939 SmallPtrSetImpl<const SCEV *> *LoserRegs); 940 }; 941 942 /// An operand value in an instruction which is to be replaced with some 943 /// equivalent, possibly strength-reduced, replacement. 944 struct LSRFixup { 945 /// The instruction which will be updated. 946 Instruction *UserInst; 947 948 /// The operand of the instruction which will be replaced. The operand may be 949 /// used more than once; every instance will be replaced. 950 Value *OperandValToReplace; 951 952 /// If this user is to use the post-incremented value of an induction 953 /// variable, this variable is non-null and holds the loop associated with the 954 /// induction variable. 955 PostIncLoopSet PostIncLoops; 956 957 /// A constant offset to be added to the LSRUse expression. This allows 958 /// multiple fixups to share the same LSRUse with different offsets, for 959 /// example in an unrolled loop. 960 int64_t Offset; 961 962 bool isUseFullyOutsideLoop(const Loop *L) const; 963 964 LSRFixup(); 965 966 void print(raw_ostream &OS) const; 967 void dump() const; 968 }; 969 970 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 971 /// SmallVectors of const SCEV*. 972 struct UniquifierDenseMapInfo { 973 static SmallVector<const SCEV *, 4> getEmptyKey() { 974 SmallVector<const SCEV *, 4> V; 975 V.push_back(reinterpret_cast<const SCEV *>(-1)); 976 return V; 977 } 978 979 static SmallVector<const SCEV *, 4> getTombstoneKey() { 980 SmallVector<const SCEV *, 4> V; 981 V.push_back(reinterpret_cast<const SCEV *>(-2)); 982 return V; 983 } 984 985 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 986 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 987 } 988 989 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 990 const SmallVector<const SCEV *, 4> &RHS) { 991 return LHS == RHS; 992 } 993 }; 994 995 /// This class holds the state that LSR keeps for each use in IVUsers, as well 996 /// as uses invented by LSR itself. It includes information about what kinds of 997 /// things can be folded into the user, information about the user itself, and 998 /// information about how the use may be satisfied. TODO: Represent multiple 999 /// users of the same expression in common? 1000 class LSRUse { 1001 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1002 1003 public: 1004 /// An enum for a kind of use, indicating what types of scaled and immediate 1005 /// operands it might support. 1006 enum KindType { 1007 Basic, ///< A normal use, with no folding. 1008 Special, ///< A special case of basic, allowing -1 scales. 1009 Address, ///< An address use; folding according to TargetLowering 1010 ICmpZero ///< An equality icmp with both operands folded into one. 1011 // TODO: Add a generic icmp too? 1012 }; 1013 1014 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1015 1016 KindType Kind; 1017 MemAccessTy AccessTy; 1018 1019 /// The list of operands which are to be replaced. 1020 SmallVector<LSRFixup, 8> Fixups; 1021 1022 /// Keep track of the min and max offsets of the fixups. 1023 int64_t MinOffset; 1024 int64_t MaxOffset; 1025 1026 /// This records whether all of the fixups using this LSRUse are outside of 1027 /// the loop, in which case some special-case heuristics may be used. 1028 bool AllFixupsOutsideLoop; 1029 1030 /// RigidFormula is set to true to guarantee that this use will be associated 1031 /// with a single formula--the one that initially matched. Some SCEV 1032 /// expressions cannot be expanded. This allows LSR to consider the registers 1033 /// used by those expressions without the need to expand them later after 1034 /// changing the formula. 1035 bool RigidFormula; 1036 1037 /// This records the widest use type for any fixup using this 1038 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1039 /// fixup widths to be equivalent, because the narrower one may be relying on 1040 /// the implicit truncation to truncate away bogus bits. 1041 Type *WidestFixupType; 1042 1043 /// A list of ways to build a value that can satisfy this user. After the 1044 /// list is populated, one of these is selected heuristically and used to 1045 /// formulate a replacement for OperandValToReplace in UserInst. 1046 SmallVector<Formula, 12> Formulae; 1047 1048 /// The set of register candidates used by all formulae in this LSRUse. 1049 SmallPtrSet<const SCEV *, 4> Regs; 1050 1051 LSRUse(KindType K, MemAccessTy AT) 1052 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), 1053 AllFixupsOutsideLoop(true), RigidFormula(false), 1054 WidestFixupType(nullptr) {} 1055 1056 LSRFixup &getNewFixup() { 1057 Fixups.push_back(LSRFixup()); 1058 return Fixups.back(); 1059 } 1060 1061 void pushFixup(LSRFixup &f) { 1062 Fixups.push_back(f); 1063 if (f.Offset > MaxOffset) 1064 MaxOffset = f.Offset; 1065 if (f.Offset < MinOffset) 1066 MinOffset = f.Offset; 1067 } 1068 1069 bool HasFormulaWithSameRegs(const Formula &F) const; 1070 bool InsertFormula(const Formula &F); 1071 void DeleteFormula(Formula &F); 1072 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1073 1074 void print(raw_ostream &OS) const; 1075 void dump() const; 1076 }; 1077 1078 } // end anonymous namespace 1079 1080 /// Tally up interesting quantities from the given register. 1081 void Cost::RateRegister(const SCEV *Reg, 1082 SmallPtrSetImpl<const SCEV *> &Regs, 1083 const Loop *L, 1084 ScalarEvolution &SE, DominatorTree &DT) { 1085 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1086 // If this is an addrec for another loop, don't second-guess its addrec phi 1087 // nodes. LSR isn't currently smart enough to reason about more than one 1088 // loop at a time. LSR has already run on inner loops, will not run on outer 1089 // loops, and cannot be expected to change sibling loops. 1090 if (AR->getLoop() != L) { 1091 // If the AddRec exists, consider it's register free and leave it alone. 1092 if (isExistingPhi(AR, SE)) 1093 return; 1094 1095 // Otherwise, do not consider this formula at all. 1096 Lose(); 1097 return; 1098 } 1099 AddRecCost += 1; /// TODO: This should be a function of the stride. 1100 1101 // Add the step value register, if it needs one. 1102 // TODO: The non-affine case isn't precisely modeled here. 1103 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1104 if (!Regs.count(AR->getOperand(1))) { 1105 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 1106 if (isLoser()) 1107 return; 1108 } 1109 } 1110 } 1111 ++NumRegs; 1112 1113 // Rough heuristic; favor registers which don't require extra setup 1114 // instructions in the preheader. 1115 if (!isa<SCEVUnknown>(Reg) && 1116 !isa<SCEVConstant>(Reg) && 1117 !(isa<SCEVAddRecExpr>(Reg) && 1118 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1119 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1120 ++SetupCost; 1121 1122 NumIVMuls += isa<SCEVMulExpr>(Reg) && 1123 SE.hasComputableLoopEvolution(Reg, L); 1124 } 1125 1126 /// Record this register in the set. If we haven't seen it before, rate 1127 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1128 /// one of those regs an instant loser. 1129 void Cost::RatePrimaryRegister(const SCEV *Reg, 1130 SmallPtrSetImpl<const SCEV *> &Regs, 1131 const Loop *L, 1132 ScalarEvolution &SE, DominatorTree &DT, 1133 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1134 if (LoserRegs && LoserRegs->count(Reg)) { 1135 Lose(); 1136 return; 1137 } 1138 if (Regs.insert(Reg).second) { 1139 RateRegister(Reg, Regs, L, SE, DT); 1140 if (LoserRegs && isLoser()) 1141 LoserRegs->insert(Reg); 1142 } 1143 } 1144 1145 void Cost::RateFormula(const TargetTransformInfo &TTI, 1146 const Formula &F, 1147 SmallPtrSetImpl<const SCEV *> &Regs, 1148 const DenseSet<const SCEV *> &VisitedRegs, 1149 const Loop *L, 1150 ScalarEvolution &SE, DominatorTree &DT, 1151 const LSRUse &LU, 1152 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1153 assert(F.isCanonical() && "Cost is accurate only for canonical formula"); 1154 // Tally up the registers. 1155 if (const SCEV *ScaledReg = F.ScaledReg) { 1156 if (VisitedRegs.count(ScaledReg)) { 1157 Lose(); 1158 return; 1159 } 1160 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1161 if (isLoser()) 1162 return; 1163 } 1164 for (const SCEV *BaseReg : F.BaseRegs) { 1165 if (VisitedRegs.count(BaseReg)) { 1166 Lose(); 1167 return; 1168 } 1169 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1170 if (isLoser()) 1171 return; 1172 } 1173 1174 // Determine how many (unfolded) adds we'll need inside the loop. 1175 size_t NumBaseParts = F.getNumRegs(); 1176 if (NumBaseParts > 1) 1177 // Do not count the base and a possible second register if the target 1178 // allows to fold 2 registers. 1179 NumBaseAdds += 1180 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1181 NumBaseAdds += (F.UnfoldedOffset != 0); 1182 1183 // Accumulate non-free scaling amounts. 1184 ScaleCost += getScalingFactorCost(TTI, LU, F); 1185 1186 // Tally up the non-zero immediates. 1187 for (const LSRFixup &Fixup : LU.Fixups) { 1188 int64_t O = Fixup.Offset; 1189 int64_t Offset = (uint64_t)O + F.BaseOffset; 1190 if (F.BaseGV) 1191 ImmCost += 64; // Handle symbolic values conservatively. 1192 // TODO: This should probably be the pointer size. 1193 else if (Offset != 0) 1194 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1195 1196 // Check with target if this offset with this instruction is 1197 // specifically not supported. 1198 if ((isa<LoadInst>(Fixup.UserInst) || isa<StoreInst>(Fixup.UserInst)) && 1199 !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset)) 1200 NumBaseAdds++; 1201 } 1202 assert(isValid() && "invalid cost"); 1203 } 1204 1205 /// Set this cost to a losing value. 1206 void Cost::Lose() { 1207 NumRegs = ~0u; 1208 AddRecCost = ~0u; 1209 NumIVMuls = ~0u; 1210 NumBaseAdds = ~0u; 1211 ImmCost = ~0u; 1212 SetupCost = ~0u; 1213 ScaleCost = ~0u; 1214 } 1215 1216 /// Choose the lower cost. 1217 bool Cost::operator<(const Cost &Other) const { 1218 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1219 ImmCost, SetupCost) < 1220 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1221 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1222 Other.SetupCost); 1223 } 1224 1225 void Cost::print(raw_ostream &OS) const { 1226 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1227 if (AddRecCost != 0) 1228 OS << ", with addrec cost " << AddRecCost; 1229 if (NumIVMuls != 0) 1230 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1231 if (NumBaseAdds != 0) 1232 OS << ", plus " << NumBaseAdds << " base add" 1233 << (NumBaseAdds == 1 ? "" : "s"); 1234 if (ScaleCost != 0) 1235 OS << ", plus " << ScaleCost << " scale cost"; 1236 if (ImmCost != 0) 1237 OS << ", plus " << ImmCost << " imm cost"; 1238 if (SetupCost != 0) 1239 OS << ", plus " << SetupCost << " setup cost"; 1240 } 1241 1242 LLVM_DUMP_METHOD 1243 void Cost::dump() const { 1244 print(errs()); errs() << '\n'; 1245 } 1246 1247 LSRFixup::LSRFixup() 1248 : UserInst(nullptr), OperandValToReplace(nullptr), 1249 Offset(0) {} 1250 1251 /// Test whether this fixup always uses its value outside of the given loop. 1252 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1253 // PHI nodes use their value in their incoming blocks. 1254 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1255 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1256 if (PN->getIncomingValue(i) == OperandValToReplace && 1257 L->contains(PN->getIncomingBlock(i))) 1258 return false; 1259 return true; 1260 } 1261 1262 return !L->contains(UserInst); 1263 } 1264 1265 void LSRFixup::print(raw_ostream &OS) const { 1266 OS << "UserInst="; 1267 // Store is common and interesting enough to be worth special-casing. 1268 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1269 OS << "store "; 1270 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1271 } else if (UserInst->getType()->isVoidTy()) 1272 OS << UserInst->getOpcodeName(); 1273 else 1274 UserInst->printAsOperand(OS, /*PrintType=*/false); 1275 1276 OS << ", OperandValToReplace="; 1277 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1278 1279 for (const Loop *PIL : PostIncLoops) { 1280 OS << ", PostIncLoop="; 1281 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1282 } 1283 1284 if (Offset != 0) 1285 OS << ", Offset=" << Offset; 1286 } 1287 1288 LLVM_DUMP_METHOD 1289 void LSRFixup::dump() const { 1290 print(errs()); errs() << '\n'; 1291 } 1292 1293 /// Test whether this use as a formula which has the same registers as the given 1294 /// formula. 1295 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1296 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1297 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1298 // Unstable sort by host order ok, because this is only used for uniquifying. 1299 std::sort(Key.begin(), Key.end()); 1300 return Uniquifier.count(Key); 1301 } 1302 1303 /// If the given formula has not yet been inserted, add it to the list, and 1304 /// return true. Return false otherwise. The formula must be in canonical form. 1305 bool LSRUse::InsertFormula(const Formula &F) { 1306 assert(F.isCanonical() && "Invalid canonical representation"); 1307 1308 if (!Formulae.empty() && RigidFormula) 1309 return false; 1310 1311 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1312 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1313 // Unstable sort by host order ok, because this is only used for uniquifying. 1314 std::sort(Key.begin(), Key.end()); 1315 1316 if (!Uniquifier.insert(Key).second) 1317 return false; 1318 1319 // Using a register to hold the value of 0 is not profitable. 1320 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1321 "Zero allocated in a scaled register!"); 1322 #ifndef NDEBUG 1323 for (const SCEV *BaseReg : F.BaseRegs) 1324 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1325 #endif 1326 1327 // Add the formula to the list. 1328 Formulae.push_back(F); 1329 1330 // Record registers now being used by this use. 1331 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1332 if (F.ScaledReg) 1333 Regs.insert(F.ScaledReg); 1334 1335 return true; 1336 } 1337 1338 /// Remove the given formula from this use's list. 1339 void LSRUse::DeleteFormula(Formula &F) { 1340 if (&F != &Formulae.back()) 1341 std::swap(F, Formulae.back()); 1342 Formulae.pop_back(); 1343 } 1344 1345 /// Recompute the Regs field, and update RegUses. 1346 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1347 // Now that we've filtered out some formulae, recompute the Regs set. 1348 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1349 Regs.clear(); 1350 for (const Formula &F : Formulae) { 1351 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1352 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1353 } 1354 1355 // Update the RegTracker. 1356 for (const SCEV *S : OldRegs) 1357 if (!Regs.count(S)) 1358 RegUses.dropRegister(S, LUIdx); 1359 } 1360 1361 void LSRUse::print(raw_ostream &OS) const { 1362 OS << "LSR Use: Kind="; 1363 switch (Kind) { 1364 case Basic: OS << "Basic"; break; 1365 case Special: OS << "Special"; break; 1366 case ICmpZero: OS << "ICmpZero"; break; 1367 case Address: 1368 OS << "Address of "; 1369 if (AccessTy.MemTy->isPointerTy()) 1370 OS << "pointer"; // the full pointer type could be really verbose 1371 else { 1372 OS << *AccessTy.MemTy; 1373 } 1374 1375 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1376 } 1377 1378 OS << ", Offsets={"; 1379 bool NeedComma = false; 1380 for (const LSRFixup &Fixup : Fixups) { 1381 if (NeedComma) OS << ','; 1382 OS << Fixup.Offset; 1383 NeedComma = true; 1384 } 1385 OS << '}'; 1386 1387 if (AllFixupsOutsideLoop) 1388 OS << ", all-fixups-outside-loop"; 1389 1390 if (WidestFixupType) 1391 OS << ", widest fixup type: " << *WidestFixupType; 1392 } 1393 1394 LLVM_DUMP_METHOD 1395 void LSRUse::dump() const { 1396 print(errs()); errs() << '\n'; 1397 } 1398 1399 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1400 LSRUse::KindType Kind, MemAccessTy AccessTy, 1401 GlobalValue *BaseGV, int64_t BaseOffset, 1402 bool HasBaseReg, int64_t Scale) { 1403 switch (Kind) { 1404 case LSRUse::Address: 1405 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1406 HasBaseReg, Scale, AccessTy.AddrSpace); 1407 1408 case LSRUse::ICmpZero: 1409 // There's not even a target hook for querying whether it would be legal to 1410 // fold a GV into an ICmp. 1411 if (BaseGV) 1412 return false; 1413 1414 // ICmp only has two operands; don't allow more than two non-trivial parts. 1415 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1416 return false; 1417 1418 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1419 // putting the scaled register in the other operand of the icmp. 1420 if (Scale != 0 && Scale != -1) 1421 return false; 1422 1423 // If we have low-level target information, ask the target if it can fold an 1424 // integer immediate on an icmp. 1425 if (BaseOffset != 0) { 1426 // We have one of: 1427 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1428 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1429 // Offs is the ICmp immediate. 1430 if (Scale == 0) 1431 // The cast does the right thing with INT64_MIN. 1432 BaseOffset = -(uint64_t)BaseOffset; 1433 return TTI.isLegalICmpImmediate(BaseOffset); 1434 } 1435 1436 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1437 return true; 1438 1439 case LSRUse::Basic: 1440 // Only handle single-register values. 1441 return !BaseGV && Scale == 0 && BaseOffset == 0; 1442 1443 case LSRUse::Special: 1444 // Special case Basic to handle -1 scales. 1445 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1446 } 1447 1448 llvm_unreachable("Invalid LSRUse Kind!"); 1449 } 1450 1451 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1452 int64_t MinOffset, int64_t MaxOffset, 1453 LSRUse::KindType Kind, MemAccessTy AccessTy, 1454 GlobalValue *BaseGV, int64_t BaseOffset, 1455 bool HasBaseReg, int64_t Scale) { 1456 // Check for overflow. 1457 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1458 (MinOffset > 0)) 1459 return false; 1460 MinOffset = (uint64_t)BaseOffset + MinOffset; 1461 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1462 (MaxOffset > 0)) 1463 return false; 1464 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1465 1466 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1467 HasBaseReg, Scale) && 1468 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1469 HasBaseReg, Scale); 1470 } 1471 1472 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1473 int64_t MinOffset, int64_t MaxOffset, 1474 LSRUse::KindType Kind, MemAccessTy AccessTy, 1475 const Formula &F) { 1476 // For the purpose of isAMCompletelyFolded either having a canonical formula 1477 // or a scale not equal to zero is correct. 1478 // Problems may arise from non canonical formulae having a scale == 0. 1479 // Strictly speaking it would best to just rely on canonical formulae. 1480 // However, when we generate the scaled formulae, we first check that the 1481 // scaling factor is profitable before computing the actual ScaledReg for 1482 // compile time sake. 1483 assert((F.isCanonical() || F.Scale != 0)); 1484 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1485 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1486 } 1487 1488 /// Test whether we know how to expand the current formula. 1489 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1490 int64_t MaxOffset, LSRUse::KindType Kind, 1491 MemAccessTy AccessTy, GlobalValue *BaseGV, 1492 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1493 // We know how to expand completely foldable formulae. 1494 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1495 BaseOffset, HasBaseReg, Scale) || 1496 // Or formulae that use a base register produced by a sum of base 1497 // registers. 1498 (Scale == 1 && 1499 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1500 BaseGV, BaseOffset, true, 0)); 1501 } 1502 1503 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1504 int64_t MaxOffset, LSRUse::KindType Kind, 1505 MemAccessTy AccessTy, const Formula &F) { 1506 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1507 F.BaseOffset, F.HasBaseReg, F.Scale); 1508 } 1509 1510 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1511 const LSRUse &LU, const Formula &F) { 1512 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1513 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1514 F.Scale); 1515 } 1516 1517 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1518 const LSRUse &LU, const Formula &F) { 1519 if (!F.Scale) 1520 return 0; 1521 1522 // If the use is not completely folded in that instruction, we will have to 1523 // pay an extra cost only for scale != 1. 1524 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1525 LU.AccessTy, F)) 1526 return F.Scale != 1; 1527 1528 switch (LU.Kind) { 1529 case LSRUse::Address: { 1530 // Check the scaling factor cost with both the min and max offsets. 1531 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1532 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1533 F.Scale, LU.AccessTy.AddrSpace); 1534 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1535 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1536 F.Scale, LU.AccessTy.AddrSpace); 1537 1538 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1539 "Legal addressing mode has an illegal cost!"); 1540 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1541 } 1542 case LSRUse::ICmpZero: 1543 case LSRUse::Basic: 1544 case LSRUse::Special: 1545 // The use is completely folded, i.e., everything is folded into the 1546 // instruction. 1547 return 0; 1548 } 1549 1550 llvm_unreachable("Invalid LSRUse Kind!"); 1551 } 1552 1553 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1554 LSRUse::KindType Kind, MemAccessTy AccessTy, 1555 GlobalValue *BaseGV, int64_t BaseOffset, 1556 bool HasBaseReg) { 1557 // Fast-path: zero is always foldable. 1558 if (BaseOffset == 0 && !BaseGV) return true; 1559 1560 // Conservatively, create an address with an immediate and a 1561 // base and a scale. 1562 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1563 1564 // Canonicalize a scale of 1 to a base register if the formula doesn't 1565 // already have a base register. 1566 if (!HasBaseReg && Scale == 1) { 1567 Scale = 0; 1568 HasBaseReg = true; 1569 } 1570 1571 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1572 HasBaseReg, Scale); 1573 } 1574 1575 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1576 ScalarEvolution &SE, int64_t MinOffset, 1577 int64_t MaxOffset, LSRUse::KindType Kind, 1578 MemAccessTy AccessTy, const SCEV *S, 1579 bool HasBaseReg) { 1580 // Fast-path: zero is always foldable. 1581 if (S->isZero()) return true; 1582 1583 // Conservatively, create an address with an immediate and a 1584 // base and a scale. 1585 int64_t BaseOffset = ExtractImmediate(S, SE); 1586 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1587 1588 // If there's anything else involved, it's not foldable. 1589 if (!S->isZero()) return false; 1590 1591 // Fast-path: zero is always foldable. 1592 if (BaseOffset == 0 && !BaseGV) return true; 1593 1594 // Conservatively, create an address with an immediate and a 1595 // base and a scale. 1596 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1597 1598 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1599 BaseOffset, HasBaseReg, Scale); 1600 } 1601 1602 namespace { 1603 1604 /// An individual increment in a Chain of IV increments. Relate an IV user to 1605 /// an expression that computes the IV it uses from the IV used by the previous 1606 /// link in the Chain. 1607 /// 1608 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1609 /// original IVOperand. The head of the chain's IVOperand is only valid during 1610 /// chain collection, before LSR replaces IV users. During chain generation, 1611 /// IncExpr can be used to find the new IVOperand that computes the same 1612 /// expression. 1613 struct IVInc { 1614 Instruction *UserInst; 1615 Value* IVOperand; 1616 const SCEV *IncExpr; 1617 1618 IVInc(Instruction *U, Value *O, const SCEV *E): 1619 UserInst(U), IVOperand(O), IncExpr(E) {} 1620 }; 1621 1622 // The list of IV increments in program order. We typically add the head of a 1623 // chain without finding subsequent links. 1624 struct IVChain { 1625 SmallVector<IVInc,1> Incs; 1626 const SCEV *ExprBase; 1627 1628 IVChain() : ExprBase(nullptr) {} 1629 1630 IVChain(const IVInc &Head, const SCEV *Base) 1631 : Incs(1, Head), ExprBase(Base) {} 1632 1633 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1634 1635 // Return the first increment in the chain. 1636 const_iterator begin() const { 1637 assert(!Incs.empty()); 1638 return std::next(Incs.begin()); 1639 } 1640 const_iterator end() const { 1641 return Incs.end(); 1642 } 1643 1644 // Returns true if this chain contains any increments. 1645 bool hasIncs() const { return Incs.size() >= 2; } 1646 1647 // Add an IVInc to the end of this chain. 1648 void add(const IVInc &X) { Incs.push_back(X); } 1649 1650 // Returns the last UserInst in the chain. 1651 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1652 1653 // Returns true if IncExpr can be profitably added to this chain. 1654 bool isProfitableIncrement(const SCEV *OperExpr, 1655 const SCEV *IncExpr, 1656 ScalarEvolution&); 1657 }; 1658 1659 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1660 /// between FarUsers that definitely cross IV increments and NearUsers that may 1661 /// be used between IV increments. 1662 struct ChainUsers { 1663 SmallPtrSet<Instruction*, 4> FarUsers; 1664 SmallPtrSet<Instruction*, 4> NearUsers; 1665 }; 1666 1667 /// This class holds state for the main loop strength reduction logic. 1668 class LSRInstance { 1669 IVUsers &IU; 1670 ScalarEvolution &SE; 1671 DominatorTree &DT; 1672 LoopInfo &LI; 1673 const TargetTransformInfo &TTI; 1674 Loop *const L; 1675 bool Changed; 1676 1677 /// This is the insert position that the current loop's induction variable 1678 /// increment should be placed. In simple loops, this is the latch block's 1679 /// terminator. But in more complicated cases, this is a position which will 1680 /// dominate all the in-loop post-increment users. 1681 Instruction *IVIncInsertPos; 1682 1683 /// Interesting factors between use strides. 1684 /// 1685 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1686 /// default, a SmallDenseSet, because we need to use the full range of 1687 /// int64_ts, and there's currently no good way of doing that with 1688 /// SmallDenseSet. 1689 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1690 1691 /// Interesting use types, to facilitate truncation reuse. 1692 SmallSetVector<Type *, 4> Types; 1693 1694 /// The list of interesting uses. 1695 SmallVector<LSRUse, 16> Uses; 1696 1697 /// Track which uses use which register candidates. 1698 RegUseTracker RegUses; 1699 1700 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1701 // have more than a few IV increment chains in a loop. Missing a Chain falls 1702 // back to normal LSR behavior for those uses. 1703 static const unsigned MaxChains = 8; 1704 1705 /// IV users can form a chain of IV increments. 1706 SmallVector<IVChain, MaxChains> IVChainVec; 1707 1708 /// IV users that belong to profitable IVChains. 1709 SmallPtrSet<Use*, MaxChains> IVIncSet; 1710 1711 void OptimizeShadowIV(); 1712 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1713 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1714 void OptimizeLoopTermCond(); 1715 1716 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1717 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1718 void FinalizeChain(IVChain &Chain); 1719 void CollectChains(); 1720 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1721 SmallVectorImpl<WeakVH> &DeadInsts); 1722 1723 void CollectInterestingTypesAndFactors(); 1724 void CollectFixupsAndInitialFormulae(); 1725 1726 // Support for sharing of LSRUses between LSRFixups. 1727 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1728 UseMapTy UseMap; 1729 1730 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1731 LSRUse::KindType Kind, MemAccessTy AccessTy); 1732 1733 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1734 MemAccessTy AccessTy); 1735 1736 void DeleteUse(LSRUse &LU, size_t LUIdx); 1737 1738 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1739 1740 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1741 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1742 void CountRegisters(const Formula &F, size_t LUIdx); 1743 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1744 1745 void CollectLoopInvariantFixupsAndFormulae(); 1746 1747 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1748 unsigned Depth = 0); 1749 1750 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1751 const Formula &Base, unsigned Depth, 1752 size_t Idx, bool IsScaledReg = false); 1753 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1754 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1755 const Formula &Base, size_t Idx, 1756 bool IsScaledReg = false); 1757 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1758 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1759 const Formula &Base, 1760 const SmallVectorImpl<int64_t> &Worklist, 1761 size_t Idx, bool IsScaledReg = false); 1762 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1763 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1764 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1765 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1766 void GenerateCrossUseConstantOffsets(); 1767 void GenerateAllReuseFormulae(); 1768 1769 void FilterOutUndesirableDedicatedRegisters(); 1770 1771 size_t EstimateSearchSpaceComplexity() const; 1772 void NarrowSearchSpaceByDetectingSupersets(); 1773 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1774 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1775 void NarrowSearchSpaceByPickingWinnerRegs(); 1776 void NarrowSearchSpaceUsingHeuristics(); 1777 1778 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1779 Cost &SolutionCost, 1780 SmallVectorImpl<const Formula *> &Workspace, 1781 const Cost &CurCost, 1782 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1783 DenseSet<const SCEV *> &VisitedRegs) const; 1784 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1785 1786 BasicBlock::iterator 1787 HoistInsertPosition(BasicBlock::iterator IP, 1788 const SmallVectorImpl<Instruction *> &Inputs) const; 1789 BasicBlock::iterator 1790 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1791 const LSRFixup &LF, 1792 const LSRUse &LU, 1793 SCEVExpander &Rewriter) const; 1794 1795 Value *Expand(const LSRUse &LU, const LSRFixup &LF, 1796 const Formula &F, 1797 BasicBlock::iterator IP, 1798 SCEVExpander &Rewriter, 1799 SmallVectorImpl<WeakVH> &DeadInsts) const; 1800 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 1801 const Formula &F, 1802 SCEVExpander &Rewriter, 1803 SmallVectorImpl<WeakVH> &DeadInsts) const; 1804 void Rewrite(const LSRUse &LU, const LSRFixup &LF, 1805 const Formula &F, 1806 SCEVExpander &Rewriter, 1807 SmallVectorImpl<WeakVH> &DeadInsts) const; 1808 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1809 1810 public: 1811 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1812 LoopInfo &LI, const TargetTransformInfo &TTI); 1813 1814 bool getChanged() const { return Changed; } 1815 1816 void print_factors_and_types(raw_ostream &OS) const; 1817 void print_fixups(raw_ostream &OS) const; 1818 void print_uses(raw_ostream &OS) const; 1819 void print(raw_ostream &OS) const; 1820 void dump() const; 1821 }; 1822 1823 } // end anonymous namespace 1824 1825 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1826 /// the cast operation. 1827 void LSRInstance::OptimizeShadowIV() { 1828 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1829 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1830 return; 1831 1832 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1833 UI != E; /* empty */) { 1834 IVUsers::const_iterator CandidateUI = UI; 1835 ++UI; 1836 Instruction *ShadowUse = CandidateUI->getUser(); 1837 Type *DestTy = nullptr; 1838 bool IsSigned = false; 1839 1840 /* If shadow use is a int->float cast then insert a second IV 1841 to eliminate this cast. 1842 1843 for (unsigned i = 0; i < n; ++i) 1844 foo((double)i); 1845 1846 is transformed into 1847 1848 double d = 0.0; 1849 for (unsigned i = 0; i < n; ++i, ++d) 1850 foo(d); 1851 */ 1852 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1853 IsSigned = false; 1854 DestTy = UCast->getDestTy(); 1855 } 1856 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1857 IsSigned = true; 1858 DestTy = SCast->getDestTy(); 1859 } 1860 if (!DestTy) continue; 1861 1862 // If target does not support DestTy natively then do not apply 1863 // this transformation. 1864 if (!TTI.isTypeLegal(DestTy)) continue; 1865 1866 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1867 if (!PH) continue; 1868 if (PH->getNumIncomingValues() != 2) continue; 1869 1870 Type *SrcTy = PH->getType(); 1871 int Mantissa = DestTy->getFPMantissaWidth(); 1872 if (Mantissa == -1) continue; 1873 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1874 continue; 1875 1876 unsigned Entry, Latch; 1877 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1878 Entry = 0; 1879 Latch = 1; 1880 } else { 1881 Entry = 1; 1882 Latch = 0; 1883 } 1884 1885 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1886 if (!Init) continue; 1887 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1888 (double)Init->getSExtValue() : 1889 (double)Init->getZExtValue()); 1890 1891 BinaryOperator *Incr = 1892 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1893 if (!Incr) continue; 1894 if (Incr->getOpcode() != Instruction::Add 1895 && Incr->getOpcode() != Instruction::Sub) 1896 continue; 1897 1898 /* Initialize new IV, double d = 0.0 in above example. */ 1899 ConstantInt *C = nullptr; 1900 if (Incr->getOperand(0) == PH) 1901 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1902 else if (Incr->getOperand(1) == PH) 1903 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1904 else 1905 continue; 1906 1907 if (!C) continue; 1908 1909 // Ignore negative constants, as the code below doesn't handle them 1910 // correctly. TODO: Remove this restriction. 1911 if (!C->getValue().isStrictlyPositive()) continue; 1912 1913 /* Add new PHINode. */ 1914 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1915 1916 /* create new increment. '++d' in above example. */ 1917 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1918 BinaryOperator *NewIncr = 1919 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1920 Instruction::FAdd : Instruction::FSub, 1921 NewPH, CFP, "IV.S.next.", Incr); 1922 1923 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1924 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1925 1926 /* Remove cast operation */ 1927 ShadowUse->replaceAllUsesWith(NewPH); 1928 ShadowUse->eraseFromParent(); 1929 Changed = true; 1930 break; 1931 } 1932 } 1933 1934 /// If Cond has an operand that is an expression of an IV, set the IV user and 1935 /// stride information and return true, otherwise return false. 1936 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1937 for (IVStrideUse &U : IU) 1938 if (U.getUser() == Cond) { 1939 // NOTE: we could handle setcc instructions with multiple uses here, but 1940 // InstCombine does it as well for simple uses, it's not clear that it 1941 // occurs enough in real life to handle. 1942 CondUse = &U; 1943 return true; 1944 } 1945 return false; 1946 } 1947 1948 /// Rewrite the loop's terminating condition if it uses a max computation. 1949 /// 1950 /// This is a narrow solution to a specific, but acute, problem. For loops 1951 /// like this: 1952 /// 1953 /// i = 0; 1954 /// do { 1955 /// p[i] = 0.0; 1956 /// } while (++i < n); 1957 /// 1958 /// the trip count isn't just 'n', because 'n' might not be positive. And 1959 /// unfortunately this can come up even for loops where the user didn't use 1960 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1961 /// will commonly be lowered like this: 1962 // 1963 /// if (n > 0) { 1964 /// i = 0; 1965 /// do { 1966 /// p[i] = 0.0; 1967 /// } while (++i < n); 1968 /// } 1969 /// 1970 /// and then it's possible for subsequent optimization to obscure the if 1971 /// test in such a way that indvars can't find it. 1972 /// 1973 /// When indvars can't find the if test in loops like this, it creates a 1974 /// max expression, which allows it to give the loop a canonical 1975 /// induction variable: 1976 /// 1977 /// i = 0; 1978 /// max = n < 1 ? 1 : n; 1979 /// do { 1980 /// p[i] = 0.0; 1981 /// } while (++i != max); 1982 /// 1983 /// Canonical induction variables are necessary because the loop passes 1984 /// are designed around them. The most obvious example of this is the 1985 /// LoopInfo analysis, which doesn't remember trip count values. It 1986 /// expects to be able to rediscover the trip count each time it is 1987 /// needed, and it does this using a simple analysis that only succeeds if 1988 /// the loop has a canonical induction variable. 1989 /// 1990 /// However, when it comes time to generate code, the maximum operation 1991 /// can be quite costly, especially if it's inside of an outer loop. 1992 /// 1993 /// This function solves this problem by detecting this type of loop and 1994 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1995 /// the instructions for the maximum computation. 1996 /// 1997 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1998 // Check that the loop matches the pattern we're looking for. 1999 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2000 Cond->getPredicate() != CmpInst::ICMP_NE) 2001 return Cond; 2002 2003 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2004 if (!Sel || !Sel->hasOneUse()) return Cond; 2005 2006 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2007 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2008 return Cond; 2009 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2010 2011 // Add one to the backedge-taken count to get the trip count. 2012 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2013 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2014 2015 // Check for a max calculation that matches the pattern. There's no check 2016 // for ICMP_ULE here because the comparison would be with zero, which 2017 // isn't interesting. 2018 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2019 const SCEVNAryExpr *Max = nullptr; 2020 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2021 Pred = ICmpInst::ICMP_SLE; 2022 Max = S; 2023 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2024 Pred = ICmpInst::ICMP_SLT; 2025 Max = S; 2026 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2027 Pred = ICmpInst::ICMP_ULT; 2028 Max = U; 2029 } else { 2030 // No match; bail. 2031 return Cond; 2032 } 2033 2034 // To handle a max with more than two operands, this optimization would 2035 // require additional checking and setup. 2036 if (Max->getNumOperands() != 2) 2037 return Cond; 2038 2039 const SCEV *MaxLHS = Max->getOperand(0); 2040 const SCEV *MaxRHS = Max->getOperand(1); 2041 2042 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2043 // for a comparison with 1. For <= and >=, a comparison with zero. 2044 if (!MaxLHS || 2045 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2046 return Cond; 2047 2048 // Check the relevant induction variable for conformance to 2049 // the pattern. 2050 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2051 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2052 if (!AR || !AR->isAffine() || 2053 AR->getStart() != One || 2054 AR->getStepRecurrence(SE) != One) 2055 return Cond; 2056 2057 assert(AR->getLoop() == L && 2058 "Loop condition operand is an addrec in a different loop!"); 2059 2060 // Check the right operand of the select, and remember it, as it will 2061 // be used in the new comparison instruction. 2062 Value *NewRHS = nullptr; 2063 if (ICmpInst::isTrueWhenEqual(Pred)) { 2064 // Look for n+1, and grab n. 2065 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2066 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2067 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2068 NewRHS = BO->getOperand(0); 2069 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2070 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2071 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2072 NewRHS = BO->getOperand(0); 2073 if (!NewRHS) 2074 return Cond; 2075 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2076 NewRHS = Sel->getOperand(1); 2077 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2078 NewRHS = Sel->getOperand(2); 2079 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2080 NewRHS = SU->getValue(); 2081 else 2082 // Max doesn't match expected pattern. 2083 return Cond; 2084 2085 // Determine the new comparison opcode. It may be signed or unsigned, 2086 // and the original comparison may be either equality or inequality. 2087 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2088 Pred = CmpInst::getInversePredicate(Pred); 2089 2090 // Ok, everything looks ok to change the condition into an SLT or SGE and 2091 // delete the max calculation. 2092 ICmpInst *NewCond = 2093 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2094 2095 // Delete the max calculation instructions. 2096 Cond->replaceAllUsesWith(NewCond); 2097 CondUse->setUser(NewCond); 2098 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2099 Cond->eraseFromParent(); 2100 Sel->eraseFromParent(); 2101 if (Cmp->use_empty()) 2102 Cmp->eraseFromParent(); 2103 return NewCond; 2104 } 2105 2106 /// Change loop terminating condition to use the postinc iv when possible. 2107 void 2108 LSRInstance::OptimizeLoopTermCond() { 2109 SmallPtrSet<Instruction *, 4> PostIncs; 2110 2111 // We need a different set of heuristics for rotated and non-rotated loops. 2112 // If a loop is rotated then the latch is also the backedge, so inserting 2113 // post-inc expressions just before the latch is ideal. To reduce live ranges 2114 // it also makes sense to rewrite terminating conditions to use post-inc 2115 // expressions. 2116 // 2117 // If the loop is not rotated then the latch is not a backedge; the latch 2118 // check is done in the loop head. Adding post-inc expressions before the 2119 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2120 // in the loop body. In this case we do *not* want to use post-inc expressions 2121 // in the latch check, and we want to insert post-inc expressions before 2122 // the backedge. 2123 BasicBlock *LatchBlock = L->getLoopLatch(); 2124 SmallVector<BasicBlock*, 8> ExitingBlocks; 2125 L->getExitingBlocks(ExitingBlocks); 2126 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2127 return LatchBlock != BB; 2128 })) { 2129 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2130 IVIncInsertPos = LatchBlock->getTerminator(); 2131 return; 2132 } 2133 2134 // Otherwise treat this as a rotated loop. 2135 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2136 2137 // Get the terminating condition for the loop if possible. If we 2138 // can, we want to change it to use a post-incremented version of its 2139 // induction variable, to allow coalescing the live ranges for the IV into 2140 // one register value. 2141 2142 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2143 if (!TermBr) 2144 continue; 2145 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2146 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2147 continue; 2148 2149 // Search IVUsesByStride to find Cond's IVUse if there is one. 2150 IVStrideUse *CondUse = nullptr; 2151 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2152 if (!FindIVUserForCond(Cond, CondUse)) 2153 continue; 2154 2155 // If the trip count is computed in terms of a max (due to ScalarEvolution 2156 // being unable to find a sufficient guard, for example), change the loop 2157 // comparison to use SLT or ULT instead of NE. 2158 // One consequence of doing this now is that it disrupts the count-down 2159 // optimization. That's not always a bad thing though, because in such 2160 // cases it may still be worthwhile to avoid a max. 2161 Cond = OptimizeMax(Cond, CondUse); 2162 2163 // If this exiting block dominates the latch block, it may also use 2164 // the post-inc value if it won't be shared with other uses. 2165 // Check for dominance. 2166 if (!DT.dominates(ExitingBlock, LatchBlock)) 2167 continue; 2168 2169 // Conservatively avoid trying to use the post-inc value in non-latch 2170 // exits if there may be pre-inc users in intervening blocks. 2171 if (LatchBlock != ExitingBlock) 2172 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2173 // Test if the use is reachable from the exiting block. This dominator 2174 // query is a conservative approximation of reachability. 2175 if (&*UI != CondUse && 2176 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2177 // Conservatively assume there may be reuse if the quotient of their 2178 // strides could be a legal scale. 2179 const SCEV *A = IU.getStride(*CondUse, L); 2180 const SCEV *B = IU.getStride(*UI, L); 2181 if (!A || !B) continue; 2182 if (SE.getTypeSizeInBits(A->getType()) != 2183 SE.getTypeSizeInBits(B->getType())) { 2184 if (SE.getTypeSizeInBits(A->getType()) > 2185 SE.getTypeSizeInBits(B->getType())) 2186 B = SE.getSignExtendExpr(B, A->getType()); 2187 else 2188 A = SE.getSignExtendExpr(A, B->getType()); 2189 } 2190 if (const SCEVConstant *D = 2191 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2192 const ConstantInt *C = D->getValue(); 2193 // Stride of one or negative one can have reuse with non-addresses. 2194 if (C->isOne() || C->isAllOnesValue()) 2195 goto decline_post_inc; 2196 // Avoid weird situations. 2197 if (C->getValue().getMinSignedBits() >= 64 || 2198 C->getValue().isMinSignedValue()) 2199 goto decline_post_inc; 2200 // Check for possible scaled-address reuse. 2201 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2202 int64_t Scale = C->getSExtValue(); 2203 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2204 /*BaseOffset=*/0, 2205 /*HasBaseReg=*/false, Scale, 2206 AccessTy.AddrSpace)) 2207 goto decline_post_inc; 2208 Scale = -Scale; 2209 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2210 /*BaseOffset=*/0, 2211 /*HasBaseReg=*/false, Scale, 2212 AccessTy.AddrSpace)) 2213 goto decline_post_inc; 2214 } 2215 } 2216 2217 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2218 << *Cond << '\n'); 2219 2220 // It's possible for the setcc instruction to be anywhere in the loop, and 2221 // possible for it to have multiple users. If it is not immediately before 2222 // the exiting block branch, move it. 2223 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2224 if (Cond->hasOneUse()) { 2225 Cond->moveBefore(TermBr); 2226 } else { 2227 // Clone the terminating condition and insert into the loopend. 2228 ICmpInst *OldCond = Cond; 2229 Cond = cast<ICmpInst>(Cond->clone()); 2230 Cond->setName(L->getHeader()->getName() + ".termcond"); 2231 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2232 2233 // Clone the IVUse, as the old use still exists! 2234 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2235 TermBr->replaceUsesOfWith(OldCond, Cond); 2236 } 2237 } 2238 2239 // If we get to here, we know that we can transform the setcc instruction to 2240 // use the post-incremented version of the IV, allowing us to coalesce the 2241 // live ranges for the IV correctly. 2242 CondUse->transformToPostInc(L); 2243 Changed = true; 2244 2245 PostIncs.insert(Cond); 2246 decline_post_inc:; 2247 } 2248 2249 // Determine an insertion point for the loop induction variable increment. It 2250 // must dominate all the post-inc comparisons we just set up, and it must 2251 // dominate the loop latch edge. 2252 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2253 for (Instruction *Inst : PostIncs) { 2254 BasicBlock *BB = 2255 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2256 Inst->getParent()); 2257 if (BB == Inst->getParent()) 2258 IVIncInsertPos = Inst; 2259 else if (BB != IVIncInsertPos->getParent()) 2260 IVIncInsertPos = BB->getTerminator(); 2261 } 2262 } 2263 2264 /// Determine if the given use can accommodate a fixup at the given offset and 2265 /// other details. If so, update the use and return true. 2266 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2267 bool HasBaseReg, LSRUse::KindType Kind, 2268 MemAccessTy AccessTy) { 2269 int64_t NewMinOffset = LU.MinOffset; 2270 int64_t NewMaxOffset = LU.MaxOffset; 2271 MemAccessTy NewAccessTy = AccessTy; 2272 2273 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2274 // something conservative, however this can pessimize in the case that one of 2275 // the uses will have all its uses outside the loop, for example. 2276 if (LU.Kind != Kind) 2277 return false; 2278 2279 // Check for a mismatched access type, and fall back conservatively as needed. 2280 // TODO: Be less conservative when the type is similar and can use the same 2281 // addressing modes. 2282 if (Kind == LSRUse::Address) { 2283 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2284 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2285 AccessTy.AddrSpace); 2286 } 2287 } 2288 2289 // Conservatively assume HasBaseReg is true for now. 2290 if (NewOffset < LU.MinOffset) { 2291 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2292 LU.MaxOffset - NewOffset, HasBaseReg)) 2293 return false; 2294 NewMinOffset = NewOffset; 2295 } else if (NewOffset > LU.MaxOffset) { 2296 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2297 NewOffset - LU.MinOffset, HasBaseReg)) 2298 return false; 2299 NewMaxOffset = NewOffset; 2300 } 2301 2302 // Update the use. 2303 LU.MinOffset = NewMinOffset; 2304 LU.MaxOffset = NewMaxOffset; 2305 LU.AccessTy = NewAccessTy; 2306 return true; 2307 } 2308 2309 /// Return an LSRUse index and an offset value for a fixup which needs the given 2310 /// expression, with the given kind and optional access type. Either reuse an 2311 /// existing use or create a new one, as needed. 2312 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2313 LSRUse::KindType Kind, 2314 MemAccessTy AccessTy) { 2315 const SCEV *Copy = Expr; 2316 int64_t Offset = ExtractImmediate(Expr, SE); 2317 2318 // Basic uses can't accept any offset, for example. 2319 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2320 Offset, /*HasBaseReg=*/ true)) { 2321 Expr = Copy; 2322 Offset = 0; 2323 } 2324 2325 std::pair<UseMapTy::iterator, bool> P = 2326 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2327 if (!P.second) { 2328 // A use already existed with this base. 2329 size_t LUIdx = P.first->second; 2330 LSRUse &LU = Uses[LUIdx]; 2331 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2332 // Reuse this use. 2333 return std::make_pair(LUIdx, Offset); 2334 } 2335 2336 // Create a new use. 2337 size_t LUIdx = Uses.size(); 2338 P.first->second = LUIdx; 2339 Uses.push_back(LSRUse(Kind, AccessTy)); 2340 LSRUse &LU = Uses[LUIdx]; 2341 2342 LU.MinOffset = Offset; 2343 LU.MaxOffset = Offset; 2344 return std::make_pair(LUIdx, Offset); 2345 } 2346 2347 /// Delete the given use from the Uses list. 2348 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2349 if (&LU != &Uses.back()) 2350 std::swap(LU, Uses.back()); 2351 Uses.pop_back(); 2352 2353 // Update RegUses. 2354 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2355 } 2356 2357 /// Look for a use distinct from OrigLU which is has a formula that has the same 2358 /// registers as the given formula. 2359 LSRUse * 2360 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2361 const LSRUse &OrigLU) { 2362 // Search all uses for the formula. This could be more clever. 2363 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2364 LSRUse &LU = Uses[LUIdx]; 2365 // Check whether this use is close enough to OrigLU, to see whether it's 2366 // worthwhile looking through its formulae. 2367 // Ignore ICmpZero uses because they may contain formulae generated by 2368 // GenerateICmpZeroScales, in which case adding fixup offsets may 2369 // be invalid. 2370 if (&LU != &OrigLU && 2371 LU.Kind != LSRUse::ICmpZero && 2372 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2373 LU.WidestFixupType == OrigLU.WidestFixupType && 2374 LU.HasFormulaWithSameRegs(OrigF)) { 2375 // Scan through this use's formulae. 2376 for (const Formula &F : LU.Formulae) { 2377 // Check to see if this formula has the same registers and symbols 2378 // as OrigF. 2379 if (F.BaseRegs == OrigF.BaseRegs && 2380 F.ScaledReg == OrigF.ScaledReg && 2381 F.BaseGV == OrigF.BaseGV && 2382 F.Scale == OrigF.Scale && 2383 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2384 if (F.BaseOffset == 0) 2385 return &LU; 2386 // This is the formula where all the registers and symbols matched; 2387 // there aren't going to be any others. Since we declined it, we 2388 // can skip the rest of the formulae and proceed to the next LSRUse. 2389 break; 2390 } 2391 } 2392 } 2393 } 2394 2395 // Nothing looked good. 2396 return nullptr; 2397 } 2398 2399 void LSRInstance::CollectInterestingTypesAndFactors() { 2400 SmallSetVector<const SCEV *, 4> Strides; 2401 2402 // Collect interesting types and strides. 2403 SmallVector<const SCEV *, 4> Worklist; 2404 for (const IVStrideUse &U : IU) { 2405 const SCEV *Expr = IU.getExpr(U); 2406 2407 // Collect interesting types. 2408 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2409 2410 // Add strides for mentioned loops. 2411 Worklist.push_back(Expr); 2412 do { 2413 const SCEV *S = Worklist.pop_back_val(); 2414 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2415 if (AR->getLoop() == L) 2416 Strides.insert(AR->getStepRecurrence(SE)); 2417 Worklist.push_back(AR->getStart()); 2418 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2419 Worklist.append(Add->op_begin(), Add->op_end()); 2420 } 2421 } while (!Worklist.empty()); 2422 } 2423 2424 // Compute interesting factors from the set of interesting strides. 2425 for (SmallSetVector<const SCEV *, 4>::const_iterator 2426 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2427 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2428 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2429 const SCEV *OldStride = *I; 2430 const SCEV *NewStride = *NewStrideIter; 2431 2432 if (SE.getTypeSizeInBits(OldStride->getType()) != 2433 SE.getTypeSizeInBits(NewStride->getType())) { 2434 if (SE.getTypeSizeInBits(OldStride->getType()) > 2435 SE.getTypeSizeInBits(NewStride->getType())) 2436 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2437 else 2438 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2439 } 2440 if (const SCEVConstant *Factor = 2441 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2442 SE, true))) { 2443 if (Factor->getAPInt().getMinSignedBits() <= 64) 2444 Factors.insert(Factor->getAPInt().getSExtValue()); 2445 } else if (const SCEVConstant *Factor = 2446 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2447 NewStride, 2448 SE, true))) { 2449 if (Factor->getAPInt().getMinSignedBits() <= 64) 2450 Factors.insert(Factor->getAPInt().getSExtValue()); 2451 } 2452 } 2453 2454 // If all uses use the same type, don't bother looking for truncation-based 2455 // reuse. 2456 if (Types.size() == 1) 2457 Types.clear(); 2458 2459 DEBUG(print_factors_and_types(dbgs())); 2460 } 2461 2462 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2463 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2464 /// IVStrideUses, we could partially skip this. 2465 static User::op_iterator 2466 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2467 Loop *L, ScalarEvolution &SE) { 2468 for(; OI != OE; ++OI) { 2469 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2470 if (!SE.isSCEVable(Oper->getType())) 2471 continue; 2472 2473 if (const SCEVAddRecExpr *AR = 2474 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2475 if (AR->getLoop() == L) 2476 break; 2477 } 2478 } 2479 } 2480 return OI; 2481 } 2482 2483 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2484 /// a convenient helper. 2485 static Value *getWideOperand(Value *Oper) { 2486 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2487 return Trunc->getOperand(0); 2488 return Oper; 2489 } 2490 2491 /// Return true if we allow an IV chain to include both types. 2492 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2493 Type *LType = LVal->getType(); 2494 Type *RType = RVal->getType(); 2495 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2496 } 2497 2498 /// Return an approximation of this SCEV expression's "base", or NULL for any 2499 /// constant. Returning the expression itself is conservative. Returning a 2500 /// deeper subexpression is more precise and valid as long as it isn't less 2501 /// complex than another subexpression. For expressions involving multiple 2502 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2503 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2504 /// IVInc==b-a. 2505 /// 2506 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2507 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2508 static const SCEV *getExprBase(const SCEV *S) { 2509 switch (S->getSCEVType()) { 2510 default: // uncluding scUnknown. 2511 return S; 2512 case scConstant: 2513 return nullptr; 2514 case scTruncate: 2515 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2516 case scZeroExtend: 2517 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2518 case scSignExtend: 2519 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2520 case scAddExpr: { 2521 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2522 // there's nothing more complex. 2523 // FIXME: not sure if we want to recognize negation. 2524 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2525 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2526 E(Add->op_begin()); I != E; ++I) { 2527 const SCEV *SubExpr = *I; 2528 if (SubExpr->getSCEVType() == scAddExpr) 2529 return getExprBase(SubExpr); 2530 2531 if (SubExpr->getSCEVType() != scMulExpr) 2532 return SubExpr; 2533 } 2534 return S; // all operands are scaled, be conservative. 2535 } 2536 case scAddRecExpr: 2537 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2538 } 2539 } 2540 2541 /// Return true if the chain increment is profitable to expand into a loop 2542 /// invariant value, which may require its own register. A profitable chain 2543 /// increment will be an offset relative to the same base. We allow such offsets 2544 /// to potentially be used as chain increment as long as it's not obviously 2545 /// expensive to expand using real instructions. 2546 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2547 const SCEV *IncExpr, 2548 ScalarEvolution &SE) { 2549 // Aggressively form chains when -stress-ivchain. 2550 if (StressIVChain) 2551 return true; 2552 2553 // Do not replace a constant offset from IV head with a nonconstant IV 2554 // increment. 2555 if (!isa<SCEVConstant>(IncExpr)) { 2556 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2557 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2558 return false; 2559 } 2560 2561 SmallPtrSet<const SCEV*, 8> Processed; 2562 return !isHighCostExpansion(IncExpr, Processed, SE); 2563 } 2564 2565 /// Return true if the number of registers needed for the chain is estimated to 2566 /// be less than the number required for the individual IV users. First prohibit 2567 /// any IV users that keep the IV live across increments (the Users set should 2568 /// be empty). Next count the number and type of increments in the chain. 2569 /// 2570 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2571 /// effectively use postinc addressing modes. Only consider it profitable it the 2572 /// increments can be computed in fewer registers when chained. 2573 /// 2574 /// TODO: Consider IVInc free if it's already used in another chains. 2575 static bool 2576 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2577 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2578 if (StressIVChain) 2579 return true; 2580 2581 if (!Chain.hasIncs()) 2582 return false; 2583 2584 if (!Users.empty()) { 2585 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2586 for (Instruction *Inst : Users) { 2587 dbgs() << " " << *Inst << "\n"; 2588 }); 2589 return false; 2590 } 2591 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2592 2593 // The chain itself may require a register, so intialize cost to 1. 2594 int cost = 1; 2595 2596 // A complete chain likely eliminates the need for keeping the original IV in 2597 // a register. LSR does not currently know how to form a complete chain unless 2598 // the header phi already exists. 2599 if (isa<PHINode>(Chain.tailUserInst()) 2600 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2601 --cost; 2602 } 2603 const SCEV *LastIncExpr = nullptr; 2604 unsigned NumConstIncrements = 0; 2605 unsigned NumVarIncrements = 0; 2606 unsigned NumReusedIncrements = 0; 2607 for (const IVInc &Inc : Chain) { 2608 if (Inc.IncExpr->isZero()) 2609 continue; 2610 2611 // Incrementing by zero or some constant is neutral. We assume constants can 2612 // be folded into an addressing mode or an add's immediate operand. 2613 if (isa<SCEVConstant>(Inc.IncExpr)) { 2614 ++NumConstIncrements; 2615 continue; 2616 } 2617 2618 if (Inc.IncExpr == LastIncExpr) 2619 ++NumReusedIncrements; 2620 else 2621 ++NumVarIncrements; 2622 2623 LastIncExpr = Inc.IncExpr; 2624 } 2625 // An IV chain with a single increment is handled by LSR's postinc 2626 // uses. However, a chain with multiple increments requires keeping the IV's 2627 // value live longer than it needs to be if chained. 2628 if (NumConstIncrements > 1) 2629 --cost; 2630 2631 // Materializing increment expressions in the preheader that didn't exist in 2632 // the original code may cost a register. For example, sign-extended array 2633 // indices can produce ridiculous increments like this: 2634 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2635 cost += NumVarIncrements; 2636 2637 // Reusing variable increments likely saves a register to hold the multiple of 2638 // the stride. 2639 cost -= NumReusedIncrements; 2640 2641 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2642 << "\n"); 2643 2644 return cost < 0; 2645 } 2646 2647 /// Add this IV user to an existing chain or make it the head of a new chain. 2648 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2649 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2650 // When IVs are used as types of varying widths, they are generally converted 2651 // to a wider type with some uses remaining narrow under a (free) trunc. 2652 Value *const NextIV = getWideOperand(IVOper); 2653 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2654 const SCEV *const OperExprBase = getExprBase(OperExpr); 2655 2656 // Visit all existing chains. Check if its IVOper can be computed as a 2657 // profitable loop invariant increment from the last link in the Chain. 2658 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2659 const SCEV *LastIncExpr = nullptr; 2660 for (; ChainIdx < NChains; ++ChainIdx) { 2661 IVChain &Chain = IVChainVec[ChainIdx]; 2662 2663 // Prune the solution space aggressively by checking that both IV operands 2664 // are expressions that operate on the same unscaled SCEVUnknown. This 2665 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2666 // first avoids creating extra SCEV expressions. 2667 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2668 continue; 2669 2670 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2671 if (!isCompatibleIVType(PrevIV, NextIV)) 2672 continue; 2673 2674 // A phi node terminates a chain. 2675 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2676 continue; 2677 2678 // The increment must be loop-invariant so it can be kept in a register. 2679 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2680 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2681 if (!SE.isLoopInvariant(IncExpr, L)) 2682 continue; 2683 2684 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2685 LastIncExpr = IncExpr; 2686 break; 2687 } 2688 } 2689 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2690 // bother for phi nodes, because they must be last in the chain. 2691 if (ChainIdx == NChains) { 2692 if (isa<PHINode>(UserInst)) 2693 return; 2694 if (NChains >= MaxChains && !StressIVChain) { 2695 DEBUG(dbgs() << "IV Chain Limit\n"); 2696 return; 2697 } 2698 LastIncExpr = OperExpr; 2699 // IVUsers may have skipped over sign/zero extensions. We don't currently 2700 // attempt to form chains involving extensions unless they can be hoisted 2701 // into this loop's AddRec. 2702 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2703 return; 2704 ++NChains; 2705 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2706 OperExprBase)); 2707 ChainUsersVec.resize(NChains); 2708 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2709 << ") IV=" << *LastIncExpr << "\n"); 2710 } else { 2711 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2712 << ") IV+" << *LastIncExpr << "\n"); 2713 // Add this IV user to the end of the chain. 2714 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2715 } 2716 IVChain &Chain = IVChainVec[ChainIdx]; 2717 2718 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2719 // This chain's NearUsers become FarUsers. 2720 if (!LastIncExpr->isZero()) { 2721 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2722 NearUsers.end()); 2723 NearUsers.clear(); 2724 } 2725 2726 // All other uses of IVOperand become near uses of the chain. 2727 // We currently ignore intermediate values within SCEV expressions, assuming 2728 // they will eventually be used be the current chain, or can be computed 2729 // from one of the chain increments. To be more precise we could 2730 // transitively follow its user and only add leaf IV users to the set. 2731 for (User *U : IVOper->users()) { 2732 Instruction *OtherUse = dyn_cast<Instruction>(U); 2733 if (!OtherUse) 2734 continue; 2735 // Uses in the chain will no longer be uses if the chain is formed. 2736 // Include the head of the chain in this iteration (not Chain.begin()). 2737 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2738 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2739 for( ; IncIter != IncEnd; ++IncIter) { 2740 if (IncIter->UserInst == OtherUse) 2741 break; 2742 } 2743 if (IncIter != IncEnd) 2744 continue; 2745 2746 if (SE.isSCEVable(OtherUse->getType()) 2747 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2748 && IU.isIVUserOrOperand(OtherUse)) { 2749 continue; 2750 } 2751 NearUsers.insert(OtherUse); 2752 } 2753 2754 // Since this user is part of the chain, it's no longer considered a use 2755 // of the chain. 2756 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2757 } 2758 2759 /// Populate the vector of Chains. 2760 /// 2761 /// This decreases ILP at the architecture level. Targets with ample registers, 2762 /// multiple memory ports, and no register renaming probably don't want 2763 /// this. However, such targets should probably disable LSR altogether. 2764 /// 2765 /// The job of LSR is to make a reasonable choice of induction variables across 2766 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2767 /// ILP *within the loop* if the target wants it. 2768 /// 2769 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2770 /// will not reorder memory operations, it will recognize this as a chain, but 2771 /// will generate redundant IV increments. Ideally this would be corrected later 2772 /// by a smart scheduler: 2773 /// = A[i] 2774 /// = A[i+x] 2775 /// A[i] = 2776 /// A[i+x] = 2777 /// 2778 /// TODO: Walk the entire domtree within this loop, not just the path to the 2779 /// loop latch. This will discover chains on side paths, but requires 2780 /// maintaining multiple copies of the Chains state. 2781 void LSRInstance::CollectChains() { 2782 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2783 SmallVector<ChainUsers, 8> ChainUsersVec; 2784 2785 SmallVector<BasicBlock *,8> LatchPath; 2786 BasicBlock *LoopHeader = L->getHeader(); 2787 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2788 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2789 LatchPath.push_back(Rung->getBlock()); 2790 } 2791 LatchPath.push_back(LoopHeader); 2792 2793 // Walk the instruction stream from the loop header to the loop latch. 2794 for (BasicBlock *BB : reverse(LatchPath)) { 2795 for (Instruction &I : *BB) { 2796 // Skip instructions that weren't seen by IVUsers analysis. 2797 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2798 continue; 2799 2800 // Ignore users that are part of a SCEV expression. This way we only 2801 // consider leaf IV Users. This effectively rediscovers a portion of 2802 // IVUsers analysis but in program order this time. 2803 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2804 continue; 2805 2806 // Remove this instruction from any NearUsers set it may be in. 2807 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2808 ChainIdx < NChains; ++ChainIdx) { 2809 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 2810 } 2811 // Search for operands that can be chained. 2812 SmallPtrSet<Instruction*, 4> UniqueOperands; 2813 User::op_iterator IVOpEnd = I.op_end(); 2814 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 2815 while (IVOpIter != IVOpEnd) { 2816 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2817 if (UniqueOperands.insert(IVOpInst).second) 2818 ChainInstruction(&I, IVOpInst, ChainUsersVec); 2819 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2820 } 2821 } // Continue walking down the instructions. 2822 } // Continue walking down the domtree. 2823 // Visit phi backedges to determine if the chain can generate the IV postinc. 2824 for (BasicBlock::iterator I = L->getHeader()->begin(); 2825 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2826 if (!SE.isSCEVable(PN->getType())) 2827 continue; 2828 2829 Instruction *IncV = 2830 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2831 if (IncV) 2832 ChainInstruction(PN, IncV, ChainUsersVec); 2833 } 2834 // Remove any unprofitable chains. 2835 unsigned ChainIdx = 0; 2836 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2837 UsersIdx < NChains; ++UsersIdx) { 2838 if (!isProfitableChain(IVChainVec[UsersIdx], 2839 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2840 continue; 2841 // Preserve the chain at UsesIdx. 2842 if (ChainIdx != UsersIdx) 2843 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2844 FinalizeChain(IVChainVec[ChainIdx]); 2845 ++ChainIdx; 2846 } 2847 IVChainVec.resize(ChainIdx); 2848 } 2849 2850 void LSRInstance::FinalizeChain(IVChain &Chain) { 2851 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2852 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2853 2854 for (const IVInc &Inc : Chain) { 2855 DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 2856 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 2857 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 2858 IVIncSet.insert(UseI); 2859 } 2860 } 2861 2862 /// Return true if the IVInc can be folded into an addressing mode. 2863 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2864 Value *Operand, const TargetTransformInfo &TTI) { 2865 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2866 if (!IncConst || !isAddressUse(UserInst, Operand)) 2867 return false; 2868 2869 if (IncConst->getAPInt().getMinSignedBits() > 64) 2870 return false; 2871 2872 MemAccessTy AccessTy = getAccessType(UserInst); 2873 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2874 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 2875 IncOffset, /*HaseBaseReg=*/false)) 2876 return false; 2877 2878 return true; 2879 } 2880 2881 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 2882 /// user's operand from the previous IV user's operand. 2883 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2884 SmallVectorImpl<WeakVH> &DeadInsts) { 2885 // Find the new IVOperand for the head of the chain. It may have been replaced 2886 // by LSR. 2887 const IVInc &Head = Chain.Incs[0]; 2888 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2889 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2890 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2891 IVOpEnd, L, SE); 2892 Value *IVSrc = nullptr; 2893 while (IVOpIter != IVOpEnd) { 2894 IVSrc = getWideOperand(*IVOpIter); 2895 2896 // If this operand computes the expression that the chain needs, we may use 2897 // it. (Check this after setting IVSrc which is used below.) 2898 // 2899 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2900 // narrow for the chain, so we can no longer use it. We do allow using a 2901 // wider phi, assuming the LSR checked for free truncation. In that case we 2902 // should already have a truncate on this operand such that 2903 // getSCEV(IVSrc) == IncExpr. 2904 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2905 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2906 break; 2907 } 2908 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2909 } 2910 if (IVOpIter == IVOpEnd) { 2911 // Gracefully give up on this chain. 2912 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2913 return; 2914 } 2915 2916 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2917 Type *IVTy = IVSrc->getType(); 2918 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2919 const SCEV *LeftOverExpr = nullptr; 2920 for (const IVInc &Inc : Chain) { 2921 Instruction *InsertPt = Inc.UserInst; 2922 if (isa<PHINode>(InsertPt)) 2923 InsertPt = L->getLoopLatch()->getTerminator(); 2924 2925 // IVOper will replace the current IV User's operand. IVSrc is the IV 2926 // value currently held in a register. 2927 Value *IVOper = IVSrc; 2928 if (!Inc.IncExpr->isZero()) { 2929 // IncExpr was the result of subtraction of two narrow values, so must 2930 // be signed. 2931 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 2932 LeftOverExpr = LeftOverExpr ? 2933 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2934 } 2935 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2936 // Expand the IV increment. 2937 Rewriter.clearPostInc(); 2938 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2939 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2940 SE.getUnknown(IncV)); 2941 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2942 2943 // If an IV increment can't be folded, use it as the next IV value. 2944 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 2945 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2946 IVSrc = IVOper; 2947 LeftOverExpr = nullptr; 2948 } 2949 } 2950 Type *OperTy = Inc.IVOperand->getType(); 2951 if (IVTy != OperTy) { 2952 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2953 "cannot extend a chained IV"); 2954 IRBuilder<> Builder(InsertPt); 2955 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2956 } 2957 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 2958 DeadInsts.emplace_back(Inc.IVOperand); 2959 } 2960 // If LSR created a new, wider phi, we may also replace its postinc. We only 2961 // do this if we also found a wide value for the head of the chain. 2962 if (isa<PHINode>(Chain.tailUserInst())) { 2963 for (BasicBlock::iterator I = L->getHeader()->begin(); 2964 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2965 if (!isCompatibleIVType(Phi, IVSrc)) 2966 continue; 2967 Instruction *PostIncV = dyn_cast<Instruction>( 2968 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2969 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2970 continue; 2971 Value *IVOper = IVSrc; 2972 Type *PostIncTy = PostIncV->getType(); 2973 if (IVTy != PostIncTy) { 2974 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2975 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2976 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2977 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2978 } 2979 Phi->replaceUsesOfWith(PostIncV, IVOper); 2980 DeadInsts.emplace_back(PostIncV); 2981 } 2982 } 2983 } 2984 2985 void LSRInstance::CollectFixupsAndInitialFormulae() { 2986 for (const IVStrideUse &U : IU) { 2987 Instruction *UserInst = U.getUser(); 2988 // Skip IV users that are part of profitable IV Chains. 2989 User::op_iterator UseI = 2990 find(UserInst->operands(), U.getOperandValToReplace()); 2991 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2992 if (IVIncSet.count(UseI)) 2993 continue; 2994 2995 LSRUse::KindType Kind = LSRUse::Basic; 2996 MemAccessTy AccessTy; 2997 if (isAddressUse(UserInst, U.getOperandValToReplace())) { 2998 Kind = LSRUse::Address; 2999 AccessTy = getAccessType(UserInst); 3000 } 3001 3002 const SCEV *S = IU.getExpr(U); 3003 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3004 3005 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3006 // (N - i == 0), and this allows (N - i) to be the expression that we work 3007 // with rather than just N or i, so we can consider the register 3008 // requirements for both N and i at the same time. Limiting this code to 3009 // equality icmps is not a problem because all interesting loops use 3010 // equality icmps, thanks to IndVarSimplify. 3011 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3012 if (CI->isEquality()) { 3013 // Swap the operands if needed to put the OperandValToReplace on the 3014 // left, for consistency. 3015 Value *NV = CI->getOperand(1); 3016 if (NV == U.getOperandValToReplace()) { 3017 CI->setOperand(1, CI->getOperand(0)); 3018 CI->setOperand(0, NV); 3019 NV = CI->getOperand(1); 3020 Changed = true; 3021 } 3022 3023 // x == y --> x - y == 0 3024 const SCEV *N = SE.getSCEV(NV); 3025 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3026 // S is normalized, so normalize N before folding it into S 3027 // to keep the result normalized. 3028 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 3029 TmpPostIncLoops, SE, DT); 3030 Kind = LSRUse::ICmpZero; 3031 S = SE.getMinusSCEV(N, S); 3032 } 3033 3034 // -1 and the negations of all interesting strides (except the negation 3035 // of -1) are now also interesting. 3036 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3037 if (Factors[i] != -1) 3038 Factors.insert(-(uint64_t)Factors[i]); 3039 Factors.insert(-1); 3040 } 3041 3042 // Get or create an LSRUse. 3043 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3044 size_t LUIdx = P.first; 3045 int64_t Offset = P.second; 3046 LSRUse &LU = Uses[LUIdx]; 3047 3048 // Record the fixup. 3049 LSRFixup &LF = LU.getNewFixup(); 3050 LF.UserInst = UserInst; 3051 LF.OperandValToReplace = U.getOperandValToReplace(); 3052 LF.PostIncLoops = TmpPostIncLoops; 3053 LF.Offset = Offset; 3054 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3055 3056 if (!LU.WidestFixupType || 3057 SE.getTypeSizeInBits(LU.WidestFixupType) < 3058 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3059 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3060 3061 // If this is the first use of this LSRUse, give it a formula. 3062 if (LU.Formulae.empty()) { 3063 InsertInitialFormula(S, LU, LUIdx); 3064 CountRegisters(LU.Formulae.back(), LUIdx); 3065 } 3066 } 3067 3068 DEBUG(print_fixups(dbgs())); 3069 } 3070 3071 /// Insert a formula for the given expression into the given use, separating out 3072 /// loop-variant portions from loop-invariant and loop-computable portions. 3073 void 3074 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3075 // Mark uses whose expressions cannot be expanded. 3076 if (!isSafeToExpand(S, SE)) 3077 LU.RigidFormula = true; 3078 3079 Formula F; 3080 F.initialMatch(S, L, SE); 3081 bool Inserted = InsertFormula(LU, LUIdx, F); 3082 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3083 } 3084 3085 /// Insert a simple single-register formula for the given expression into the 3086 /// given use. 3087 void 3088 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3089 LSRUse &LU, size_t LUIdx) { 3090 Formula F; 3091 F.BaseRegs.push_back(S); 3092 F.HasBaseReg = true; 3093 bool Inserted = InsertFormula(LU, LUIdx, F); 3094 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3095 } 3096 3097 /// Note which registers are used by the given formula, updating RegUses. 3098 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3099 if (F.ScaledReg) 3100 RegUses.countRegister(F.ScaledReg, LUIdx); 3101 for (const SCEV *BaseReg : F.BaseRegs) 3102 RegUses.countRegister(BaseReg, LUIdx); 3103 } 3104 3105 /// If the given formula has not yet been inserted, add it to the list, and 3106 /// return true. Return false otherwise. 3107 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3108 // Do not insert formula that we will not be able to expand. 3109 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3110 "Formula is illegal"); 3111 if (!LU.InsertFormula(F)) 3112 return false; 3113 3114 CountRegisters(F, LUIdx); 3115 return true; 3116 } 3117 3118 /// Check for other uses of loop-invariant values which we're tracking. These 3119 /// other uses will pin these values in registers, making them less profitable 3120 /// for elimination. 3121 /// TODO: This currently misses non-constant addrec step registers. 3122 /// TODO: Should this give more weight to users inside the loop? 3123 void 3124 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3125 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3126 SmallPtrSet<const SCEV *, 32> Visited; 3127 3128 while (!Worklist.empty()) { 3129 const SCEV *S = Worklist.pop_back_val(); 3130 3131 // Don't process the same SCEV twice 3132 if (!Visited.insert(S).second) 3133 continue; 3134 3135 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3136 Worklist.append(N->op_begin(), N->op_end()); 3137 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3138 Worklist.push_back(C->getOperand()); 3139 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3140 Worklist.push_back(D->getLHS()); 3141 Worklist.push_back(D->getRHS()); 3142 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3143 const Value *V = US->getValue(); 3144 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3145 // Look for instructions defined outside the loop. 3146 if (L->contains(Inst)) continue; 3147 } else if (isa<UndefValue>(V)) 3148 // Undef doesn't have a live range, so it doesn't matter. 3149 continue; 3150 for (const Use &U : V->uses()) { 3151 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3152 // Ignore non-instructions. 3153 if (!UserInst) 3154 continue; 3155 // Ignore instructions in other functions (as can happen with 3156 // Constants). 3157 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3158 continue; 3159 // Ignore instructions not dominated by the loop. 3160 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3161 UserInst->getParent() : 3162 cast<PHINode>(UserInst)->getIncomingBlock( 3163 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3164 if (!DT.dominates(L->getHeader(), UseBB)) 3165 continue; 3166 // Don't bother if the instruction is in a BB which ends in an EHPad. 3167 if (UseBB->getTerminator()->isEHPad()) 3168 continue; 3169 // Don't bother rewriting PHIs in catchswitch blocks. 3170 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3171 continue; 3172 // Ignore uses which are part of other SCEV expressions, to avoid 3173 // analyzing them multiple times. 3174 if (SE.isSCEVable(UserInst->getType())) { 3175 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3176 // If the user is a no-op, look through to its uses. 3177 if (!isa<SCEVUnknown>(UserS)) 3178 continue; 3179 if (UserS == US) { 3180 Worklist.push_back( 3181 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3182 continue; 3183 } 3184 } 3185 // Ignore icmp instructions which are already being analyzed. 3186 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3187 unsigned OtherIdx = !U.getOperandNo(); 3188 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3189 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3190 continue; 3191 } 3192 3193 std::pair<size_t, int64_t> P = getUse( 3194 S, LSRUse::Basic, MemAccessTy()); 3195 size_t LUIdx = P.first; 3196 int64_t Offset = P.second; 3197 LSRUse &LU = Uses[LUIdx]; 3198 LSRFixup &LF = LU.getNewFixup(); 3199 LF.UserInst = const_cast<Instruction *>(UserInst); 3200 LF.OperandValToReplace = U; 3201 LF.Offset = Offset; 3202 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3203 if (!LU.WidestFixupType || 3204 SE.getTypeSizeInBits(LU.WidestFixupType) < 3205 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3206 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3207 InsertSupplementalFormula(US, LU, LUIdx); 3208 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3209 break; 3210 } 3211 } 3212 } 3213 } 3214 3215 /// Split S into subexpressions which can be pulled out into separate 3216 /// registers. If C is non-null, multiply each subexpression by C. 3217 /// 3218 /// Return remainder expression after factoring the subexpressions captured by 3219 /// Ops. If Ops is complete, return NULL. 3220 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3221 SmallVectorImpl<const SCEV *> &Ops, 3222 const Loop *L, 3223 ScalarEvolution &SE, 3224 unsigned Depth = 0) { 3225 // Arbitrarily cap recursion to protect compile time. 3226 if (Depth >= 3) 3227 return S; 3228 3229 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3230 // Break out add operands. 3231 for (const SCEV *S : Add->operands()) { 3232 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3233 if (Remainder) 3234 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3235 } 3236 return nullptr; 3237 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3238 // Split a non-zero base out of an addrec. 3239 if (AR->getStart()->isZero() || !AR->isAffine()) 3240 return S; 3241 3242 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3243 C, Ops, L, SE, Depth+1); 3244 // Split the non-zero AddRec unless it is part of a nested recurrence that 3245 // does not pertain to this loop. 3246 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3247 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3248 Remainder = nullptr; 3249 } 3250 if (Remainder != AR->getStart()) { 3251 if (!Remainder) 3252 Remainder = SE.getConstant(AR->getType(), 0); 3253 return SE.getAddRecExpr(Remainder, 3254 AR->getStepRecurrence(SE), 3255 AR->getLoop(), 3256 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3257 SCEV::FlagAnyWrap); 3258 } 3259 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3260 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3261 if (Mul->getNumOperands() != 2) 3262 return S; 3263 if (const SCEVConstant *Op0 = 3264 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3265 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3266 const SCEV *Remainder = 3267 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3268 if (Remainder) 3269 Ops.push_back(SE.getMulExpr(C, Remainder)); 3270 return nullptr; 3271 } 3272 } 3273 return S; 3274 } 3275 3276 /// \brief Helper function for LSRInstance::GenerateReassociations. 3277 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3278 const Formula &Base, 3279 unsigned Depth, size_t Idx, 3280 bool IsScaledReg) { 3281 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3282 SmallVector<const SCEV *, 8> AddOps; 3283 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3284 if (Remainder) 3285 AddOps.push_back(Remainder); 3286 3287 if (AddOps.size() == 1) 3288 return; 3289 3290 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3291 JE = AddOps.end(); 3292 J != JE; ++J) { 3293 3294 // Loop-variant "unknown" values are uninteresting; we won't be able to 3295 // do anything meaningful with them. 3296 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3297 continue; 3298 3299 // Don't pull a constant into a register if the constant could be folded 3300 // into an immediate field. 3301 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3302 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3303 continue; 3304 3305 // Collect all operands except *J. 3306 SmallVector<const SCEV *, 8> InnerAddOps( 3307 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3308 InnerAddOps.append(std::next(J), 3309 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3310 3311 // Don't leave just a constant behind in a register if the constant could 3312 // be folded into an immediate field. 3313 if (InnerAddOps.size() == 1 && 3314 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3315 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3316 continue; 3317 3318 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3319 if (InnerSum->isZero()) 3320 continue; 3321 Formula F = Base; 3322 3323 // Add the remaining pieces of the add back into the new formula. 3324 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3325 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3326 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3327 InnerSumSC->getValue()->getZExtValue())) { 3328 F.UnfoldedOffset = 3329 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3330 if (IsScaledReg) 3331 F.ScaledReg = nullptr; 3332 else 3333 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3334 } else if (IsScaledReg) 3335 F.ScaledReg = InnerSum; 3336 else 3337 F.BaseRegs[Idx] = InnerSum; 3338 3339 // Add J as its own register, or an unfolded immediate. 3340 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3341 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3342 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3343 SC->getValue()->getZExtValue())) 3344 F.UnfoldedOffset = 3345 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3346 else 3347 F.BaseRegs.push_back(*J); 3348 // We may have changed the number of register in base regs, adjust the 3349 // formula accordingly. 3350 F.canonicalize(); 3351 3352 if (InsertFormula(LU, LUIdx, F)) 3353 // If that formula hadn't been seen before, recurse to find more like 3354 // it. 3355 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3356 } 3357 } 3358 3359 /// Split out subexpressions from adds and the bases of addrecs. 3360 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3361 Formula Base, unsigned Depth) { 3362 assert(Base.isCanonical() && "Input must be in the canonical form"); 3363 // Arbitrarily cap recursion to protect compile time. 3364 if (Depth >= 3) 3365 return; 3366 3367 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3368 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3369 3370 if (Base.Scale == 1) 3371 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3372 /* Idx */ -1, /* IsScaledReg */ true); 3373 } 3374 3375 /// Generate a formula consisting of all of the loop-dominating registers added 3376 /// into a single register. 3377 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3378 Formula Base) { 3379 // This method is only interesting on a plurality of registers. 3380 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3381 return; 3382 3383 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3384 // processing the formula. 3385 Base.unscale(); 3386 Formula F = Base; 3387 F.BaseRegs.clear(); 3388 SmallVector<const SCEV *, 4> Ops; 3389 for (const SCEV *BaseReg : Base.BaseRegs) { 3390 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3391 !SE.hasComputableLoopEvolution(BaseReg, L)) 3392 Ops.push_back(BaseReg); 3393 else 3394 F.BaseRegs.push_back(BaseReg); 3395 } 3396 if (Ops.size() > 1) { 3397 const SCEV *Sum = SE.getAddExpr(Ops); 3398 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3399 // opportunity to fold something. For now, just ignore such cases 3400 // rather than proceed with zero in a register. 3401 if (!Sum->isZero()) { 3402 F.BaseRegs.push_back(Sum); 3403 F.canonicalize(); 3404 (void)InsertFormula(LU, LUIdx, F); 3405 } 3406 } 3407 } 3408 3409 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3410 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3411 const Formula &Base, size_t Idx, 3412 bool IsScaledReg) { 3413 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3414 GlobalValue *GV = ExtractSymbol(G, SE); 3415 if (G->isZero() || !GV) 3416 return; 3417 Formula F = Base; 3418 F.BaseGV = GV; 3419 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3420 return; 3421 if (IsScaledReg) 3422 F.ScaledReg = G; 3423 else 3424 F.BaseRegs[Idx] = G; 3425 (void)InsertFormula(LU, LUIdx, F); 3426 } 3427 3428 /// Generate reuse formulae using symbolic offsets. 3429 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3430 Formula Base) { 3431 // We can't add a symbolic offset if the address already contains one. 3432 if (Base.BaseGV) return; 3433 3434 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3435 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3436 if (Base.Scale == 1) 3437 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3438 /* IsScaledReg */ true); 3439 } 3440 3441 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3442 void LSRInstance::GenerateConstantOffsetsImpl( 3443 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3444 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3445 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3446 for (int64_t Offset : Worklist) { 3447 Formula F = Base; 3448 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3449 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3450 LU.AccessTy, F)) { 3451 // Add the offset to the base register. 3452 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3453 // If it cancelled out, drop the base register, otherwise update it. 3454 if (NewG->isZero()) { 3455 if (IsScaledReg) { 3456 F.Scale = 0; 3457 F.ScaledReg = nullptr; 3458 } else 3459 F.deleteBaseReg(F.BaseRegs[Idx]); 3460 F.canonicalize(); 3461 } else if (IsScaledReg) 3462 F.ScaledReg = NewG; 3463 else 3464 F.BaseRegs[Idx] = NewG; 3465 3466 (void)InsertFormula(LU, LUIdx, F); 3467 } 3468 } 3469 3470 int64_t Imm = ExtractImmediate(G, SE); 3471 if (G->isZero() || Imm == 0) 3472 return; 3473 Formula F = Base; 3474 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3475 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3476 return; 3477 if (IsScaledReg) 3478 F.ScaledReg = G; 3479 else 3480 F.BaseRegs[Idx] = G; 3481 (void)InsertFormula(LU, LUIdx, F); 3482 } 3483 3484 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3485 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3486 Formula Base) { 3487 // TODO: For now, just add the min and max offset, because it usually isn't 3488 // worthwhile looking at everything inbetween. 3489 SmallVector<int64_t, 2> Worklist; 3490 Worklist.push_back(LU.MinOffset); 3491 if (LU.MaxOffset != LU.MinOffset) 3492 Worklist.push_back(LU.MaxOffset); 3493 3494 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3495 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3496 if (Base.Scale == 1) 3497 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3498 /* IsScaledReg */ true); 3499 } 3500 3501 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3502 /// == y -> x*c == y*c. 3503 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3504 Formula Base) { 3505 if (LU.Kind != LSRUse::ICmpZero) return; 3506 3507 // Determine the integer type for the base formula. 3508 Type *IntTy = Base.getType(); 3509 if (!IntTy) return; 3510 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3511 3512 // Don't do this if there is more than one offset. 3513 if (LU.MinOffset != LU.MaxOffset) return; 3514 3515 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3516 3517 // Check each interesting stride. 3518 for (int64_t Factor : Factors) { 3519 // Check that the multiplication doesn't overflow. 3520 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3521 continue; 3522 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3523 if (NewBaseOffset / Factor != Base.BaseOffset) 3524 continue; 3525 // If the offset will be truncated at this use, check that it is in bounds. 3526 if (!IntTy->isPointerTy() && 3527 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3528 continue; 3529 3530 // Check that multiplying with the use offset doesn't overflow. 3531 int64_t Offset = LU.MinOffset; 3532 if (Offset == INT64_MIN && Factor == -1) 3533 continue; 3534 Offset = (uint64_t)Offset * Factor; 3535 if (Offset / Factor != LU.MinOffset) 3536 continue; 3537 // If the offset will be truncated at this use, check that it is in bounds. 3538 if (!IntTy->isPointerTy() && 3539 !ConstantInt::isValueValidForType(IntTy, Offset)) 3540 continue; 3541 3542 Formula F = Base; 3543 F.BaseOffset = NewBaseOffset; 3544 3545 // Check that this scale is legal. 3546 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3547 continue; 3548 3549 // Compensate for the use having MinOffset built into it. 3550 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3551 3552 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3553 3554 // Check that multiplying with each base register doesn't overflow. 3555 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3556 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3557 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3558 goto next; 3559 } 3560 3561 // Check that multiplying with the scaled register doesn't overflow. 3562 if (F.ScaledReg) { 3563 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3564 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3565 continue; 3566 } 3567 3568 // Check that multiplying with the unfolded offset doesn't overflow. 3569 if (F.UnfoldedOffset != 0) { 3570 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3571 continue; 3572 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3573 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3574 continue; 3575 // If the offset will be truncated, check that it is in bounds. 3576 if (!IntTy->isPointerTy() && 3577 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3578 continue; 3579 } 3580 3581 // If we make it here and it's legal, add it. 3582 (void)InsertFormula(LU, LUIdx, F); 3583 next:; 3584 } 3585 } 3586 3587 /// Generate stride factor reuse formulae by making use of scaled-offset address 3588 /// modes, for example. 3589 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3590 // Determine the integer type for the base formula. 3591 Type *IntTy = Base.getType(); 3592 if (!IntTy) return; 3593 3594 // If this Formula already has a scaled register, we can't add another one. 3595 // Try to unscale the formula to generate a better scale. 3596 if (Base.Scale != 0 && !Base.unscale()) 3597 return; 3598 3599 assert(Base.Scale == 0 && "unscale did not did its job!"); 3600 3601 // Check each interesting stride. 3602 for (int64_t Factor : Factors) { 3603 Base.Scale = Factor; 3604 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3605 // Check whether this scale is going to be legal. 3606 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3607 Base)) { 3608 // As a special-case, handle special out-of-loop Basic users specially. 3609 // TODO: Reconsider this special case. 3610 if (LU.Kind == LSRUse::Basic && 3611 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3612 LU.AccessTy, Base) && 3613 LU.AllFixupsOutsideLoop) 3614 LU.Kind = LSRUse::Special; 3615 else 3616 continue; 3617 } 3618 // For an ICmpZero, negating a solitary base register won't lead to 3619 // new solutions. 3620 if (LU.Kind == LSRUse::ICmpZero && 3621 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3622 continue; 3623 // For each addrec base reg, apply the scale, if possible. 3624 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3625 if (const SCEVAddRecExpr *AR = 3626 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3627 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3628 if (FactorS->isZero()) 3629 continue; 3630 // Divide out the factor, ignoring high bits, since we'll be 3631 // scaling the value back up in the end. 3632 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3633 // TODO: This could be optimized to avoid all the copying. 3634 Formula F = Base; 3635 F.ScaledReg = Quotient; 3636 F.deleteBaseReg(F.BaseRegs[i]); 3637 // The canonical representation of 1*reg is reg, which is already in 3638 // Base. In that case, do not try to insert the formula, it will be 3639 // rejected anyway. 3640 if (F.Scale == 1 && F.BaseRegs.empty()) 3641 continue; 3642 (void)InsertFormula(LU, LUIdx, F); 3643 } 3644 } 3645 } 3646 } 3647 3648 /// Generate reuse formulae from different IV types. 3649 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3650 // Don't bother truncating symbolic values. 3651 if (Base.BaseGV) return; 3652 3653 // Determine the integer type for the base formula. 3654 Type *DstTy = Base.getType(); 3655 if (!DstTy) return; 3656 DstTy = SE.getEffectiveSCEVType(DstTy); 3657 3658 for (Type *SrcTy : Types) { 3659 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3660 Formula F = Base; 3661 3662 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3663 for (const SCEV *&BaseReg : F.BaseRegs) 3664 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3665 3666 // TODO: This assumes we've done basic processing on all uses and 3667 // have an idea what the register usage is. 3668 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3669 continue; 3670 3671 (void)InsertFormula(LU, LUIdx, F); 3672 } 3673 } 3674 } 3675 3676 namespace { 3677 3678 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3679 /// modifications so that the search phase doesn't have to worry about the data 3680 /// structures moving underneath it. 3681 struct WorkItem { 3682 size_t LUIdx; 3683 int64_t Imm; 3684 const SCEV *OrigReg; 3685 3686 WorkItem(size_t LI, int64_t I, const SCEV *R) 3687 : LUIdx(LI), Imm(I), OrigReg(R) {} 3688 3689 void print(raw_ostream &OS) const; 3690 void dump() const; 3691 }; 3692 3693 } // end anonymous namespace 3694 3695 void WorkItem::print(raw_ostream &OS) const { 3696 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3697 << " , add offset " << Imm; 3698 } 3699 3700 LLVM_DUMP_METHOD 3701 void WorkItem::dump() const { 3702 print(errs()); errs() << '\n'; 3703 } 3704 3705 /// Look for registers which are a constant distance apart and try to form reuse 3706 /// opportunities between them. 3707 void LSRInstance::GenerateCrossUseConstantOffsets() { 3708 // Group the registers by their value without any added constant offset. 3709 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3710 DenseMap<const SCEV *, ImmMapTy> Map; 3711 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3712 SmallVector<const SCEV *, 8> Sequence; 3713 for (const SCEV *Use : RegUses) { 3714 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3715 int64_t Imm = ExtractImmediate(Reg, SE); 3716 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3717 if (Pair.second) 3718 Sequence.push_back(Reg); 3719 Pair.first->second.insert(std::make_pair(Imm, Use)); 3720 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3721 } 3722 3723 // Now examine each set of registers with the same base value. Build up 3724 // a list of work to do and do the work in a separate step so that we're 3725 // not adding formulae and register counts while we're searching. 3726 SmallVector<WorkItem, 32> WorkItems; 3727 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3728 for (const SCEV *Reg : Sequence) { 3729 const ImmMapTy &Imms = Map.find(Reg)->second; 3730 3731 // It's not worthwhile looking for reuse if there's only one offset. 3732 if (Imms.size() == 1) 3733 continue; 3734 3735 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3736 for (const auto &Entry : Imms) 3737 dbgs() << ' ' << Entry.first; 3738 dbgs() << '\n'); 3739 3740 // Examine each offset. 3741 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3742 J != JE; ++J) { 3743 const SCEV *OrigReg = J->second; 3744 3745 int64_t JImm = J->first; 3746 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3747 3748 if (!isa<SCEVConstant>(OrigReg) && 3749 UsedByIndicesMap[Reg].count() == 1) { 3750 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3751 continue; 3752 } 3753 3754 // Conservatively examine offsets between this orig reg a few selected 3755 // other orig regs. 3756 ImmMapTy::const_iterator OtherImms[] = { 3757 Imms.begin(), std::prev(Imms.end()), 3758 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3759 2) 3760 }; 3761 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3762 ImmMapTy::const_iterator M = OtherImms[i]; 3763 if (M == J || M == JE) continue; 3764 3765 // Compute the difference between the two. 3766 int64_t Imm = (uint64_t)JImm - M->first; 3767 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3768 LUIdx = UsedByIndices.find_next(LUIdx)) 3769 // Make a memo of this use, offset, and register tuple. 3770 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3771 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3772 } 3773 } 3774 } 3775 3776 Map.clear(); 3777 Sequence.clear(); 3778 UsedByIndicesMap.clear(); 3779 UniqueItems.clear(); 3780 3781 // Now iterate through the worklist and add new formulae. 3782 for (const WorkItem &WI : WorkItems) { 3783 size_t LUIdx = WI.LUIdx; 3784 LSRUse &LU = Uses[LUIdx]; 3785 int64_t Imm = WI.Imm; 3786 const SCEV *OrigReg = WI.OrigReg; 3787 3788 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3789 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3790 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3791 3792 // TODO: Use a more targeted data structure. 3793 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3794 Formula F = LU.Formulae[L]; 3795 // FIXME: The code for the scaled and unscaled registers looks 3796 // very similar but slightly different. Investigate if they 3797 // could be merged. That way, we would not have to unscale the 3798 // Formula. 3799 F.unscale(); 3800 // Use the immediate in the scaled register. 3801 if (F.ScaledReg == OrigReg) { 3802 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3803 // Don't create 50 + reg(-50). 3804 if (F.referencesReg(SE.getSCEV( 3805 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3806 continue; 3807 Formula NewF = F; 3808 NewF.BaseOffset = Offset; 3809 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3810 NewF)) 3811 continue; 3812 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3813 3814 // If the new scale is a constant in a register, and adding the constant 3815 // value to the immediate would produce a value closer to zero than the 3816 // immediate itself, then the formula isn't worthwhile. 3817 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3818 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 3819 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 3820 .ule(std::abs(NewF.BaseOffset))) 3821 continue; 3822 3823 // OK, looks good. 3824 NewF.canonicalize(); 3825 (void)InsertFormula(LU, LUIdx, NewF); 3826 } else { 3827 // Use the immediate in a base register. 3828 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3829 const SCEV *BaseReg = F.BaseRegs[N]; 3830 if (BaseReg != OrigReg) 3831 continue; 3832 Formula NewF = F; 3833 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3834 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3835 LU.Kind, LU.AccessTy, NewF)) { 3836 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3837 continue; 3838 NewF = F; 3839 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3840 } 3841 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3842 3843 // If the new formula has a constant in a register, and adding the 3844 // constant value to the immediate would produce a value closer to 3845 // zero than the immediate itself, then the formula isn't worthwhile. 3846 for (const SCEV *NewReg : NewF.BaseRegs) 3847 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 3848 if ((C->getAPInt() + NewF.BaseOffset) 3849 .abs() 3850 .slt(std::abs(NewF.BaseOffset)) && 3851 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 3852 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3853 goto skip_formula; 3854 3855 // Ok, looks good. 3856 NewF.canonicalize(); 3857 (void)InsertFormula(LU, LUIdx, NewF); 3858 break; 3859 skip_formula:; 3860 } 3861 } 3862 } 3863 } 3864 } 3865 3866 /// Generate formulae for each use. 3867 void 3868 LSRInstance::GenerateAllReuseFormulae() { 3869 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3870 // queries are more precise. 3871 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3872 LSRUse &LU = Uses[LUIdx]; 3873 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3874 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3875 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3876 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3877 } 3878 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3879 LSRUse &LU = Uses[LUIdx]; 3880 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3881 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3882 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3883 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3884 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3885 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3886 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3887 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3888 } 3889 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3890 LSRUse &LU = Uses[LUIdx]; 3891 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3892 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3893 } 3894 3895 GenerateCrossUseConstantOffsets(); 3896 3897 DEBUG(dbgs() << "\n" 3898 "After generating reuse formulae:\n"; 3899 print_uses(dbgs())); 3900 } 3901 3902 /// If there are multiple formulae with the same set of registers used 3903 /// by other uses, pick the best one and delete the others. 3904 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3905 DenseSet<const SCEV *> VisitedRegs; 3906 SmallPtrSet<const SCEV *, 16> Regs; 3907 SmallPtrSet<const SCEV *, 16> LoserRegs; 3908 #ifndef NDEBUG 3909 bool ChangedFormulae = false; 3910 #endif 3911 3912 // Collect the best formula for each unique set of shared registers. This 3913 // is reset for each use. 3914 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3915 BestFormulaeTy; 3916 BestFormulaeTy BestFormulae; 3917 3918 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3919 LSRUse &LU = Uses[LUIdx]; 3920 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3921 3922 bool Any = false; 3923 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3924 FIdx != NumForms; ++FIdx) { 3925 Formula &F = LU.Formulae[FIdx]; 3926 3927 // Some formulas are instant losers. For example, they may depend on 3928 // nonexistent AddRecs from other loops. These need to be filtered 3929 // immediately, otherwise heuristics could choose them over others leading 3930 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3931 // avoids the need to recompute this information across formulae using the 3932 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3933 // the corresponding bad register from the Regs set. 3934 Cost CostF; 3935 Regs.clear(); 3936 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 3937 if (CostF.isLoser()) { 3938 // During initial formula generation, undesirable formulae are generated 3939 // by uses within other loops that have some non-trivial address mode or 3940 // use the postinc form of the IV. LSR needs to provide these formulae 3941 // as the basis of rediscovering the desired formula that uses an AddRec 3942 // corresponding to the existing phi. Once all formulae have been 3943 // generated, these initial losers may be pruned. 3944 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3945 dbgs() << "\n"); 3946 } 3947 else { 3948 SmallVector<const SCEV *, 4> Key; 3949 for (const SCEV *Reg : F.BaseRegs) { 3950 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3951 Key.push_back(Reg); 3952 } 3953 if (F.ScaledReg && 3954 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3955 Key.push_back(F.ScaledReg); 3956 // Unstable sort by host order ok, because this is only used for 3957 // uniquifying. 3958 std::sort(Key.begin(), Key.end()); 3959 3960 std::pair<BestFormulaeTy::const_iterator, bool> P = 3961 BestFormulae.insert(std::make_pair(Key, FIdx)); 3962 if (P.second) 3963 continue; 3964 3965 Formula &Best = LU.Formulae[P.first->second]; 3966 3967 Cost CostBest; 3968 Regs.clear(); 3969 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 3970 if (CostF < CostBest) 3971 std::swap(F, Best); 3972 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3973 dbgs() << "\n" 3974 " in favor of formula "; Best.print(dbgs()); 3975 dbgs() << '\n'); 3976 } 3977 #ifndef NDEBUG 3978 ChangedFormulae = true; 3979 #endif 3980 LU.DeleteFormula(F); 3981 --FIdx; 3982 --NumForms; 3983 Any = true; 3984 } 3985 3986 // Now that we've filtered out some formulae, recompute the Regs set. 3987 if (Any) 3988 LU.RecomputeRegs(LUIdx, RegUses); 3989 3990 // Reset this to prepare for the next use. 3991 BestFormulae.clear(); 3992 } 3993 3994 DEBUG(if (ChangedFormulae) { 3995 dbgs() << "\n" 3996 "After filtering out undesirable candidates:\n"; 3997 print_uses(dbgs()); 3998 }); 3999 } 4000 4001 // This is a rough guess that seems to work fairly well. 4002 static const size_t ComplexityLimit = UINT16_MAX; 4003 4004 /// Estimate the worst-case number of solutions the solver might have to 4005 /// consider. It almost never considers this many solutions because it prune the 4006 /// search space, but the pruning isn't always sufficient. 4007 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4008 size_t Power = 1; 4009 for (const LSRUse &LU : Uses) { 4010 size_t FSize = LU.Formulae.size(); 4011 if (FSize >= ComplexityLimit) { 4012 Power = ComplexityLimit; 4013 break; 4014 } 4015 Power *= FSize; 4016 if (Power >= ComplexityLimit) 4017 break; 4018 } 4019 return Power; 4020 } 4021 4022 /// When one formula uses a superset of the registers of another formula, it 4023 /// won't help reduce register pressure (though it may not necessarily hurt 4024 /// register pressure); remove it to simplify the system. 4025 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4026 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4027 DEBUG(dbgs() << "The search space is too complex.\n"); 4028 4029 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4030 "which use a superset of registers used by other " 4031 "formulae.\n"); 4032 4033 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4034 LSRUse &LU = Uses[LUIdx]; 4035 bool Any = false; 4036 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4037 Formula &F = LU.Formulae[i]; 4038 // Look for a formula with a constant or GV in a register. If the use 4039 // also has a formula with that same value in an immediate field, 4040 // delete the one that uses a register. 4041 for (SmallVectorImpl<const SCEV *>::const_iterator 4042 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4043 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4044 Formula NewF = F; 4045 NewF.BaseOffset += C->getValue()->getSExtValue(); 4046 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4047 (I - F.BaseRegs.begin())); 4048 if (LU.HasFormulaWithSameRegs(NewF)) { 4049 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4050 LU.DeleteFormula(F); 4051 --i; 4052 --e; 4053 Any = true; 4054 break; 4055 } 4056 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4057 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4058 if (!F.BaseGV) { 4059 Formula NewF = F; 4060 NewF.BaseGV = GV; 4061 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4062 (I - F.BaseRegs.begin())); 4063 if (LU.HasFormulaWithSameRegs(NewF)) { 4064 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4065 dbgs() << '\n'); 4066 LU.DeleteFormula(F); 4067 --i; 4068 --e; 4069 Any = true; 4070 break; 4071 } 4072 } 4073 } 4074 } 4075 } 4076 if (Any) 4077 LU.RecomputeRegs(LUIdx, RegUses); 4078 } 4079 4080 DEBUG(dbgs() << "After pre-selection:\n"; 4081 print_uses(dbgs())); 4082 } 4083 } 4084 4085 /// When there are many registers for expressions like A, A+1, A+2, etc., 4086 /// allocate a single register for them. 4087 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4088 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4089 return; 4090 4091 DEBUG(dbgs() << "The search space is too complex.\n" 4092 "Narrowing the search space by assuming that uses separated " 4093 "by a constant offset will use the same registers.\n"); 4094 4095 // This is especially useful for unrolled loops. 4096 4097 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4098 LSRUse &LU = Uses[LUIdx]; 4099 for (const Formula &F : LU.Formulae) { 4100 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4101 continue; 4102 4103 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4104 if (!LUThatHas) 4105 continue; 4106 4107 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4108 LU.Kind, LU.AccessTy)) 4109 continue; 4110 4111 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4112 4113 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4114 4115 // Transfer the fixups of LU to LUThatHas. 4116 for (LSRFixup &Fixup : LU.Fixups) { 4117 Fixup.Offset += F.BaseOffset; 4118 LUThatHas->pushFixup(Fixup); 4119 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4120 } 4121 4122 // Delete formulae from the new use which are no longer legal. 4123 bool Any = false; 4124 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4125 Formula &F = LUThatHas->Formulae[i]; 4126 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4127 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4128 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4129 dbgs() << '\n'); 4130 LUThatHas->DeleteFormula(F); 4131 --i; 4132 --e; 4133 Any = true; 4134 } 4135 } 4136 4137 if (Any) 4138 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4139 4140 // Delete the old use. 4141 DeleteUse(LU, LUIdx); 4142 --LUIdx; 4143 --NumUses; 4144 break; 4145 } 4146 } 4147 4148 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4149 } 4150 4151 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4152 /// we've done more filtering, as it may be able to find more formulae to 4153 /// eliminate. 4154 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4155 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4156 DEBUG(dbgs() << "The search space is too complex.\n"); 4157 4158 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4159 "undesirable dedicated registers.\n"); 4160 4161 FilterOutUndesirableDedicatedRegisters(); 4162 4163 DEBUG(dbgs() << "After pre-selection:\n"; 4164 print_uses(dbgs())); 4165 } 4166 } 4167 4168 /// Pick a register which seems likely to be profitable, and then in any use 4169 /// which has any reference to that register, delete all formulae which do not 4170 /// reference that register. 4171 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4172 // With all other options exhausted, loop until the system is simple 4173 // enough to handle. 4174 SmallPtrSet<const SCEV *, 4> Taken; 4175 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4176 // Ok, we have too many of formulae on our hands to conveniently handle. 4177 // Use a rough heuristic to thin out the list. 4178 DEBUG(dbgs() << "The search space is too complex.\n"); 4179 4180 // Pick the register which is used by the most LSRUses, which is likely 4181 // to be a good reuse register candidate. 4182 const SCEV *Best = nullptr; 4183 unsigned BestNum = 0; 4184 for (const SCEV *Reg : RegUses) { 4185 if (Taken.count(Reg)) 4186 continue; 4187 if (!Best) { 4188 Best = Reg; 4189 BestNum = RegUses.getUsedByIndices(Reg).count(); 4190 } else { 4191 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4192 if (Count > BestNum) { 4193 Best = Reg; 4194 BestNum = Count; 4195 } 4196 } 4197 } 4198 4199 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4200 << " will yield profitable reuse.\n"); 4201 Taken.insert(Best); 4202 4203 // In any use with formulae which references this register, delete formulae 4204 // which don't reference it. 4205 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4206 LSRUse &LU = Uses[LUIdx]; 4207 if (!LU.Regs.count(Best)) continue; 4208 4209 bool Any = false; 4210 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4211 Formula &F = LU.Formulae[i]; 4212 if (!F.referencesReg(Best)) { 4213 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4214 LU.DeleteFormula(F); 4215 --e; 4216 --i; 4217 Any = true; 4218 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4219 continue; 4220 } 4221 } 4222 4223 if (Any) 4224 LU.RecomputeRegs(LUIdx, RegUses); 4225 } 4226 4227 DEBUG(dbgs() << "After pre-selection:\n"; 4228 print_uses(dbgs())); 4229 } 4230 } 4231 4232 /// If there are an extraordinary number of formulae to choose from, use some 4233 /// rough heuristics to prune down the number of formulae. This keeps the main 4234 /// solver from taking an extraordinary amount of time in some worst-case 4235 /// scenarios. 4236 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4237 NarrowSearchSpaceByDetectingSupersets(); 4238 NarrowSearchSpaceByCollapsingUnrolledCode(); 4239 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4240 NarrowSearchSpaceByPickingWinnerRegs(); 4241 } 4242 4243 /// This is the recursive solver. 4244 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4245 Cost &SolutionCost, 4246 SmallVectorImpl<const Formula *> &Workspace, 4247 const Cost &CurCost, 4248 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4249 DenseSet<const SCEV *> &VisitedRegs) const { 4250 // Some ideas: 4251 // - prune more: 4252 // - use more aggressive filtering 4253 // - sort the formula so that the most profitable solutions are found first 4254 // - sort the uses too 4255 // - search faster: 4256 // - don't compute a cost, and then compare. compare while computing a cost 4257 // and bail early. 4258 // - track register sets with SmallBitVector 4259 4260 const LSRUse &LU = Uses[Workspace.size()]; 4261 4262 // If this use references any register that's already a part of the 4263 // in-progress solution, consider it a requirement that a formula must 4264 // reference that register in order to be considered. This prunes out 4265 // unprofitable searching. 4266 SmallSetVector<const SCEV *, 4> ReqRegs; 4267 for (const SCEV *S : CurRegs) 4268 if (LU.Regs.count(S)) 4269 ReqRegs.insert(S); 4270 4271 SmallPtrSet<const SCEV *, 16> NewRegs; 4272 Cost NewCost; 4273 for (const Formula &F : LU.Formulae) { 4274 // Ignore formulae which may not be ideal in terms of register reuse of 4275 // ReqRegs. The formula should use all required registers before 4276 // introducing new ones. 4277 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4278 for (const SCEV *Reg : ReqRegs) { 4279 if ((F.ScaledReg && F.ScaledReg == Reg) || 4280 is_contained(F.BaseRegs, Reg)) { 4281 --NumReqRegsToFind; 4282 if (NumReqRegsToFind == 0) 4283 break; 4284 } 4285 } 4286 if (NumReqRegsToFind != 0) { 4287 // If none of the formulae satisfied the required registers, then we could 4288 // clear ReqRegs and try again. Currently, we simply give up in this case. 4289 continue; 4290 } 4291 4292 // Evaluate the cost of the current formula. If it's already worse than 4293 // the current best, prune the search at that point. 4294 NewCost = CurCost; 4295 NewRegs = CurRegs; 4296 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4297 if (NewCost < SolutionCost) { 4298 Workspace.push_back(&F); 4299 if (Workspace.size() != Uses.size()) { 4300 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4301 NewRegs, VisitedRegs); 4302 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4303 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4304 } else { 4305 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4306 dbgs() << ".\n Regs:"; 4307 for (const SCEV *S : NewRegs) 4308 dbgs() << ' ' << *S; 4309 dbgs() << '\n'); 4310 4311 SolutionCost = NewCost; 4312 Solution = Workspace; 4313 } 4314 Workspace.pop_back(); 4315 } 4316 } 4317 } 4318 4319 /// Choose one formula from each use. Return the results in the given Solution 4320 /// vector. 4321 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4322 SmallVector<const Formula *, 8> Workspace; 4323 Cost SolutionCost; 4324 SolutionCost.Lose(); 4325 Cost CurCost; 4326 SmallPtrSet<const SCEV *, 16> CurRegs; 4327 DenseSet<const SCEV *> VisitedRegs; 4328 Workspace.reserve(Uses.size()); 4329 4330 // SolveRecurse does all the work. 4331 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4332 CurRegs, VisitedRegs); 4333 if (Solution.empty()) { 4334 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4335 return; 4336 } 4337 4338 // Ok, we've now made all our decisions. 4339 DEBUG(dbgs() << "\n" 4340 "The chosen solution requires "; SolutionCost.print(dbgs()); 4341 dbgs() << ":\n"; 4342 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4343 dbgs() << " "; 4344 Uses[i].print(dbgs()); 4345 dbgs() << "\n" 4346 " "; 4347 Solution[i]->print(dbgs()); 4348 dbgs() << '\n'; 4349 }); 4350 4351 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4352 } 4353 4354 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4355 /// we can go while still being dominated by the input positions. This helps 4356 /// canonicalize the insert position, which encourages sharing. 4357 BasicBlock::iterator 4358 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4359 const SmallVectorImpl<Instruction *> &Inputs) 4360 const { 4361 Instruction *Tentative = &*IP; 4362 while (true) { 4363 bool AllDominate = true; 4364 Instruction *BetterPos = nullptr; 4365 // Don't bother attempting to insert before a catchswitch, their basic block 4366 // cannot have other non-PHI instructions. 4367 if (isa<CatchSwitchInst>(Tentative)) 4368 return IP; 4369 4370 for (Instruction *Inst : Inputs) { 4371 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4372 AllDominate = false; 4373 break; 4374 } 4375 // Attempt to find an insert position in the middle of the block, 4376 // instead of at the end, so that it can be used for other expansions. 4377 if (Tentative->getParent() == Inst->getParent() && 4378 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4379 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4380 } 4381 if (!AllDominate) 4382 break; 4383 if (BetterPos) 4384 IP = BetterPos->getIterator(); 4385 else 4386 IP = Tentative->getIterator(); 4387 4388 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4389 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4390 4391 BasicBlock *IDom; 4392 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4393 if (!Rung) return IP; 4394 Rung = Rung->getIDom(); 4395 if (!Rung) return IP; 4396 IDom = Rung->getBlock(); 4397 4398 // Don't climb into a loop though. 4399 const Loop *IDomLoop = LI.getLoopFor(IDom); 4400 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4401 if (IDomDepth <= IPLoopDepth && 4402 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4403 break; 4404 } 4405 4406 Tentative = IDom->getTerminator(); 4407 } 4408 4409 return IP; 4410 } 4411 4412 /// Determine an input position which will be dominated by the operands and 4413 /// which will dominate the result. 4414 BasicBlock::iterator 4415 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4416 const LSRFixup &LF, 4417 const LSRUse &LU, 4418 SCEVExpander &Rewriter) const { 4419 // Collect some instructions which must be dominated by the 4420 // expanding replacement. These must be dominated by any operands that 4421 // will be required in the expansion. 4422 SmallVector<Instruction *, 4> Inputs; 4423 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4424 Inputs.push_back(I); 4425 if (LU.Kind == LSRUse::ICmpZero) 4426 if (Instruction *I = 4427 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4428 Inputs.push_back(I); 4429 if (LF.PostIncLoops.count(L)) { 4430 if (LF.isUseFullyOutsideLoop(L)) 4431 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4432 else 4433 Inputs.push_back(IVIncInsertPos); 4434 } 4435 // The expansion must also be dominated by the increment positions of any 4436 // loops it for which it is using post-inc mode. 4437 for (const Loop *PIL : LF.PostIncLoops) { 4438 if (PIL == L) continue; 4439 4440 // Be dominated by the loop exit. 4441 SmallVector<BasicBlock *, 4> ExitingBlocks; 4442 PIL->getExitingBlocks(ExitingBlocks); 4443 if (!ExitingBlocks.empty()) { 4444 BasicBlock *BB = ExitingBlocks[0]; 4445 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4446 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4447 Inputs.push_back(BB->getTerminator()); 4448 } 4449 } 4450 4451 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4452 && !isa<DbgInfoIntrinsic>(LowestIP) && 4453 "Insertion point must be a normal instruction"); 4454 4455 // Then, climb up the immediate dominator tree as far as we can go while 4456 // still being dominated by the input positions. 4457 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4458 4459 // Don't insert instructions before PHI nodes. 4460 while (isa<PHINode>(IP)) ++IP; 4461 4462 // Ignore landingpad instructions. 4463 while (IP->isEHPad()) ++IP; 4464 4465 // Ignore debug intrinsics. 4466 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4467 4468 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4469 // IP consistent across expansions and allows the previously inserted 4470 // instructions to be reused by subsequent expansion. 4471 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4472 ++IP; 4473 4474 return IP; 4475 } 4476 4477 /// Emit instructions for the leading candidate expression for this LSRUse (this 4478 /// is called "expanding"). 4479 Value *LSRInstance::Expand(const LSRUse &LU, 4480 const LSRFixup &LF, 4481 const Formula &F, 4482 BasicBlock::iterator IP, 4483 SCEVExpander &Rewriter, 4484 SmallVectorImpl<WeakVH> &DeadInsts) const { 4485 if (LU.RigidFormula) 4486 return LF.OperandValToReplace; 4487 4488 // Determine an input position which will be dominated by the operands and 4489 // which will dominate the result. 4490 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4491 Rewriter.setInsertPoint(&*IP); 4492 4493 // Inform the Rewriter if we have a post-increment use, so that it can 4494 // perform an advantageous expansion. 4495 Rewriter.setPostInc(LF.PostIncLoops); 4496 4497 // This is the type that the user actually needs. 4498 Type *OpTy = LF.OperandValToReplace->getType(); 4499 // This will be the type that we'll initially expand to. 4500 Type *Ty = F.getType(); 4501 if (!Ty) 4502 // No type known; just expand directly to the ultimate type. 4503 Ty = OpTy; 4504 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4505 // Expand directly to the ultimate type if it's the right size. 4506 Ty = OpTy; 4507 // This is the type to do integer arithmetic in. 4508 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4509 4510 // Build up a list of operands to add together to form the full base. 4511 SmallVector<const SCEV *, 8> Ops; 4512 4513 // Expand the BaseRegs portion. 4514 for (const SCEV *Reg : F.BaseRegs) { 4515 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4516 4517 // If we're expanding for a post-inc user, make the post-inc adjustment. 4518 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4519 Reg = TransformForPostIncUse(Denormalize, Reg, 4520 LF.UserInst, LF.OperandValToReplace, 4521 Loops, SE, DT); 4522 4523 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 4524 } 4525 4526 // Expand the ScaledReg portion. 4527 Value *ICmpScaledV = nullptr; 4528 if (F.Scale != 0) { 4529 const SCEV *ScaledS = F.ScaledReg; 4530 4531 // If we're expanding for a post-inc user, make the post-inc adjustment. 4532 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4533 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4534 LF.UserInst, LF.OperandValToReplace, 4535 Loops, SE, DT); 4536 4537 if (LU.Kind == LSRUse::ICmpZero) { 4538 // Expand ScaleReg as if it was part of the base regs. 4539 if (F.Scale == 1) 4540 Ops.push_back( 4541 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 4542 else { 4543 // An interesting way of "folding" with an icmp is to use a negated 4544 // scale, which we'll implement by inserting it into the other operand 4545 // of the icmp. 4546 assert(F.Scale == -1 && 4547 "The only scale supported by ICmpZero uses is -1!"); 4548 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 4549 } 4550 } else { 4551 // Otherwise just expand the scaled register and an explicit scale, 4552 // which is expected to be matched as part of the address. 4553 4554 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4555 // Unless the addressing mode will not be folded. 4556 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4557 isAMCompletelyFolded(TTI, LU, F)) { 4558 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4559 Ops.clear(); 4560 Ops.push_back(SE.getUnknown(FullV)); 4561 } 4562 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 4563 if (F.Scale != 1) 4564 ScaledS = 4565 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4566 Ops.push_back(ScaledS); 4567 } 4568 } 4569 4570 // Expand the GV portion. 4571 if (F.BaseGV) { 4572 // Flush the operand list to suppress SCEVExpander hoisting. 4573 if (!Ops.empty()) { 4574 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4575 Ops.clear(); 4576 Ops.push_back(SE.getUnknown(FullV)); 4577 } 4578 Ops.push_back(SE.getUnknown(F.BaseGV)); 4579 } 4580 4581 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4582 // unfolded offsets. LSR assumes they both live next to their uses. 4583 if (!Ops.empty()) { 4584 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4585 Ops.clear(); 4586 Ops.push_back(SE.getUnknown(FullV)); 4587 } 4588 4589 // Expand the immediate portion. 4590 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4591 if (Offset != 0) { 4592 if (LU.Kind == LSRUse::ICmpZero) { 4593 // The other interesting way of "folding" with an ICmpZero is to use a 4594 // negated immediate. 4595 if (!ICmpScaledV) 4596 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4597 else { 4598 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4599 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4600 } 4601 } else { 4602 // Just add the immediate values. These again are expected to be matched 4603 // as part of the address. 4604 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4605 } 4606 } 4607 4608 // Expand the unfolded offset portion. 4609 int64_t UnfoldedOffset = F.UnfoldedOffset; 4610 if (UnfoldedOffset != 0) { 4611 // Just add the immediate values. 4612 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4613 UnfoldedOffset))); 4614 } 4615 4616 // Emit instructions summing all the operands. 4617 const SCEV *FullS = Ops.empty() ? 4618 SE.getConstant(IntTy, 0) : 4619 SE.getAddExpr(Ops); 4620 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 4621 4622 // We're done expanding now, so reset the rewriter. 4623 Rewriter.clearPostInc(); 4624 4625 // An ICmpZero Formula represents an ICmp which we're handling as a 4626 // comparison against zero. Now that we've expanded an expression for that 4627 // form, update the ICmp's other operand. 4628 if (LU.Kind == LSRUse::ICmpZero) { 4629 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4630 DeadInsts.emplace_back(CI->getOperand(1)); 4631 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4632 "a scale at the same time!"); 4633 if (F.Scale == -1) { 4634 if (ICmpScaledV->getType() != OpTy) { 4635 Instruction *Cast = 4636 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4637 OpTy, false), 4638 ICmpScaledV, OpTy, "tmp", CI); 4639 ICmpScaledV = Cast; 4640 } 4641 CI->setOperand(1, ICmpScaledV); 4642 } else { 4643 // A scale of 1 means that the scale has been expanded as part of the 4644 // base regs. 4645 assert((F.Scale == 0 || F.Scale == 1) && 4646 "ICmp does not support folding a global value and " 4647 "a scale at the same time!"); 4648 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4649 -(uint64_t)Offset); 4650 if (C->getType() != OpTy) 4651 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4652 OpTy, false), 4653 C, OpTy); 4654 4655 CI->setOperand(1, C); 4656 } 4657 } 4658 4659 return FullV; 4660 } 4661 4662 /// Helper for Rewrite. PHI nodes are special because the use of their operands 4663 /// effectively happens in their predecessor blocks, so the expression may need 4664 /// to be expanded in multiple places. 4665 void LSRInstance::RewriteForPHI(PHINode *PN, 4666 const LSRUse &LU, 4667 const LSRFixup &LF, 4668 const Formula &F, 4669 SCEVExpander &Rewriter, 4670 SmallVectorImpl<WeakVH> &DeadInsts) const { 4671 DenseMap<BasicBlock *, Value *> Inserted; 4672 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4673 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4674 BasicBlock *BB = PN->getIncomingBlock(i); 4675 4676 // If this is a critical edge, split the edge so that we do not insert 4677 // the code on all predecessor/successor paths. We do this unless this 4678 // is the canonical backedge for this loop, which complicates post-inc 4679 // users. 4680 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4681 !isa<IndirectBrInst>(BB->getTerminator()) && 4682 !isa<CatchSwitchInst>(BB->getTerminator())) { 4683 BasicBlock *Parent = PN->getParent(); 4684 Loop *PNLoop = LI.getLoopFor(Parent); 4685 if (!PNLoop || Parent != PNLoop->getHeader()) { 4686 // Split the critical edge. 4687 BasicBlock *NewBB = nullptr; 4688 if (!Parent->isLandingPad()) { 4689 NewBB = SplitCriticalEdge(BB, Parent, 4690 CriticalEdgeSplittingOptions(&DT, &LI) 4691 .setMergeIdenticalEdges() 4692 .setDontDeleteUselessPHIs()); 4693 } else { 4694 SmallVector<BasicBlock*, 2> NewBBs; 4695 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 4696 NewBB = NewBBs[0]; 4697 } 4698 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4699 // phi predecessors are identical. The simple thing to do is skip 4700 // splitting in this case rather than complicate the API. 4701 if (NewBB) { 4702 // If PN is outside of the loop and BB is in the loop, we want to 4703 // move the block to be immediately before the PHI block, not 4704 // immediately after BB. 4705 if (L->contains(BB) && !L->contains(PN)) 4706 NewBB->moveBefore(PN->getParent()); 4707 4708 // Splitting the edge can reduce the number of PHI entries we have. 4709 e = PN->getNumIncomingValues(); 4710 BB = NewBB; 4711 i = PN->getBasicBlockIndex(BB); 4712 } 4713 } 4714 } 4715 4716 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4717 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4718 if (!Pair.second) 4719 PN->setIncomingValue(i, Pair.first->second); 4720 else { 4721 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 4722 Rewriter, DeadInsts); 4723 4724 // If this is reuse-by-noop-cast, insert the noop cast. 4725 Type *OpTy = LF.OperandValToReplace->getType(); 4726 if (FullV->getType() != OpTy) 4727 FullV = 4728 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4729 OpTy, false), 4730 FullV, LF.OperandValToReplace->getType(), 4731 "tmp", BB->getTerminator()); 4732 4733 PN->setIncomingValue(i, FullV); 4734 Pair.first->second = FullV; 4735 } 4736 } 4737 } 4738 4739 /// Emit instructions for the leading candidate expression for this LSRUse (this 4740 /// is called "expanding"), and update the UserInst to reference the newly 4741 /// expanded value. 4742 void LSRInstance::Rewrite(const LSRUse &LU, 4743 const LSRFixup &LF, 4744 const Formula &F, 4745 SCEVExpander &Rewriter, 4746 SmallVectorImpl<WeakVH> &DeadInsts) const { 4747 // First, find an insertion point that dominates UserInst. For PHI nodes, 4748 // find the nearest block which dominates all the relevant uses. 4749 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4750 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 4751 } else { 4752 Value *FullV = 4753 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 4754 4755 // If this is reuse-by-noop-cast, insert the noop cast. 4756 Type *OpTy = LF.OperandValToReplace->getType(); 4757 if (FullV->getType() != OpTy) { 4758 Instruction *Cast = 4759 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4760 FullV, OpTy, "tmp", LF.UserInst); 4761 FullV = Cast; 4762 } 4763 4764 // Update the user. ICmpZero is handled specially here (for now) because 4765 // Expand may have updated one of the operands of the icmp already, and 4766 // its new value may happen to be equal to LF.OperandValToReplace, in 4767 // which case doing replaceUsesOfWith leads to replacing both operands 4768 // with the same value. TODO: Reorganize this. 4769 if (LU.Kind == LSRUse::ICmpZero) 4770 LF.UserInst->setOperand(0, FullV); 4771 else 4772 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4773 } 4774 4775 DeadInsts.emplace_back(LF.OperandValToReplace); 4776 } 4777 4778 /// Rewrite all the fixup locations with new values, following the chosen 4779 /// solution. 4780 void LSRInstance::ImplementSolution( 4781 const SmallVectorImpl<const Formula *> &Solution) { 4782 // Keep track of instructions we may have made dead, so that 4783 // we can remove them after we are done working. 4784 SmallVector<WeakVH, 16> DeadInsts; 4785 4786 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 4787 "lsr"); 4788 #ifndef NDEBUG 4789 Rewriter.setDebugType(DEBUG_TYPE); 4790 #endif 4791 Rewriter.disableCanonicalMode(); 4792 Rewriter.enableLSRMode(); 4793 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4794 4795 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4796 for (const IVChain &Chain : IVChainVec) { 4797 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 4798 Rewriter.setChainedPhi(PN); 4799 } 4800 4801 // Expand the new value definitions and update the users. 4802 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 4803 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 4804 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 4805 Changed = true; 4806 } 4807 4808 for (const IVChain &Chain : IVChainVec) { 4809 GenerateIVChain(Chain, Rewriter, DeadInsts); 4810 Changed = true; 4811 } 4812 // Clean up after ourselves. This must be done before deleting any 4813 // instructions. 4814 Rewriter.clear(); 4815 4816 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4817 } 4818 4819 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 4820 DominatorTree &DT, LoopInfo &LI, 4821 const TargetTransformInfo &TTI) 4822 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false), 4823 IVIncInsertPos(nullptr) { 4824 // If LoopSimplify form is not available, stay out of trouble. 4825 if (!L->isLoopSimplifyForm()) 4826 return; 4827 4828 // If there's no interesting work to be done, bail early. 4829 if (IU.empty()) return; 4830 4831 // If there's too much analysis to be done, bail early. We won't be able to 4832 // model the problem anyway. 4833 unsigned NumUsers = 0; 4834 for (const IVStrideUse &U : IU) { 4835 if (++NumUsers > MaxIVUsers) { 4836 (void)U; 4837 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 4838 return; 4839 } 4840 // Bail out if we have a PHI on an EHPad that gets a value from a 4841 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 4842 // no good place to stick any instructions. 4843 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 4844 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 4845 if (isa<FuncletPadInst>(FirstNonPHI) || 4846 isa<CatchSwitchInst>(FirstNonPHI)) 4847 for (BasicBlock *PredBB : PN->blocks()) 4848 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 4849 return; 4850 } 4851 } 4852 4853 #ifndef NDEBUG 4854 // All dominating loops must have preheaders, or SCEVExpander may not be able 4855 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4856 // 4857 // IVUsers analysis should only create users that are dominated by simple loop 4858 // headers. Since this loop should dominate all of its users, its user list 4859 // should be empty if this loop itself is not within a simple loop nest. 4860 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4861 Rung; Rung = Rung->getIDom()) { 4862 BasicBlock *BB = Rung->getBlock(); 4863 const Loop *DomLoop = LI.getLoopFor(BB); 4864 if (DomLoop && DomLoop->getHeader() == BB) { 4865 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4866 } 4867 } 4868 #endif // DEBUG 4869 4870 DEBUG(dbgs() << "\nLSR on loop "; 4871 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4872 dbgs() << ":\n"); 4873 4874 // First, perform some low-level loop optimizations. 4875 OptimizeShadowIV(); 4876 OptimizeLoopTermCond(); 4877 4878 // If loop preparation eliminates all interesting IV users, bail. 4879 if (IU.empty()) return; 4880 4881 // Skip nested loops until we can model them better with formulae. 4882 if (!L->empty()) { 4883 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4884 return; 4885 } 4886 4887 // Start collecting data and preparing for the solver. 4888 CollectChains(); 4889 CollectInterestingTypesAndFactors(); 4890 CollectFixupsAndInitialFormulae(); 4891 CollectLoopInvariantFixupsAndFormulae(); 4892 4893 assert(!Uses.empty() && "IVUsers reported at least one use"); 4894 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4895 print_uses(dbgs())); 4896 4897 // Now use the reuse data to generate a bunch of interesting ways 4898 // to formulate the values needed for the uses. 4899 GenerateAllReuseFormulae(); 4900 4901 FilterOutUndesirableDedicatedRegisters(); 4902 NarrowSearchSpaceUsingHeuristics(); 4903 4904 SmallVector<const Formula *, 8> Solution; 4905 Solve(Solution); 4906 4907 // Release memory that is no longer needed. 4908 Factors.clear(); 4909 Types.clear(); 4910 RegUses.clear(); 4911 4912 if (Solution.empty()) 4913 return; 4914 4915 #ifndef NDEBUG 4916 // Formulae should be legal. 4917 for (const LSRUse &LU : Uses) { 4918 for (const Formula &F : LU.Formulae) 4919 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4920 F) && "Illegal formula generated!"); 4921 }; 4922 #endif 4923 4924 // Now that we've decided what we want, make it so. 4925 ImplementSolution(Solution); 4926 } 4927 4928 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4929 if (Factors.empty() && Types.empty()) return; 4930 4931 OS << "LSR has identified the following interesting factors and types: "; 4932 bool First = true; 4933 4934 for (int64_t Factor : Factors) { 4935 if (!First) OS << ", "; 4936 First = false; 4937 OS << '*' << Factor; 4938 } 4939 4940 for (Type *Ty : Types) { 4941 if (!First) OS << ", "; 4942 First = false; 4943 OS << '(' << *Ty << ')'; 4944 } 4945 OS << '\n'; 4946 } 4947 4948 void LSRInstance::print_fixups(raw_ostream &OS) const { 4949 OS << "LSR is examining the following fixup sites:\n"; 4950 for (const LSRUse &LU : Uses) 4951 for (const LSRFixup &LF : LU.Fixups) { 4952 dbgs() << " "; 4953 LF.print(OS); 4954 OS << '\n'; 4955 } 4956 } 4957 4958 void LSRInstance::print_uses(raw_ostream &OS) const { 4959 OS << "LSR is examining the following uses:\n"; 4960 for (const LSRUse &LU : Uses) { 4961 dbgs() << " "; 4962 LU.print(OS); 4963 OS << '\n'; 4964 for (const Formula &F : LU.Formulae) { 4965 OS << " "; 4966 F.print(OS); 4967 OS << '\n'; 4968 } 4969 } 4970 } 4971 4972 void LSRInstance::print(raw_ostream &OS) const { 4973 print_factors_and_types(OS); 4974 print_fixups(OS); 4975 print_uses(OS); 4976 } 4977 4978 LLVM_DUMP_METHOD 4979 void LSRInstance::dump() const { 4980 print(errs()); errs() << '\n'; 4981 } 4982 4983 namespace { 4984 4985 class LoopStrengthReduce : public LoopPass { 4986 public: 4987 static char ID; // Pass ID, replacement for typeid 4988 4989 LoopStrengthReduce(); 4990 4991 private: 4992 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 4993 void getAnalysisUsage(AnalysisUsage &AU) const override; 4994 }; 4995 4996 } // end anonymous namespace 4997 4998 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 4999 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5000 } 5001 5002 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5003 // We split critical edges, so we change the CFG. However, we do update 5004 // many analyses if they are around. 5005 AU.addPreservedID(LoopSimplifyID); 5006 5007 AU.addRequired<LoopInfoWrapperPass>(); 5008 AU.addPreserved<LoopInfoWrapperPass>(); 5009 AU.addRequiredID(LoopSimplifyID); 5010 AU.addRequired<DominatorTreeWrapperPass>(); 5011 AU.addPreserved<DominatorTreeWrapperPass>(); 5012 AU.addRequired<ScalarEvolutionWrapperPass>(); 5013 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5014 // Requiring LoopSimplify a second time here prevents IVUsers from running 5015 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5016 AU.addRequiredID(LoopSimplifyID); 5017 AU.addRequired<IVUsersWrapperPass>(); 5018 AU.addPreserved<IVUsersWrapperPass>(); 5019 AU.addRequired<TargetTransformInfoWrapperPass>(); 5020 } 5021 5022 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5023 DominatorTree &DT, LoopInfo &LI, 5024 const TargetTransformInfo &TTI) { 5025 bool Changed = false; 5026 5027 // Run the main LSR transformation. 5028 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5029 5030 // Remove any extra phis created by processing inner loops. 5031 Changed |= DeleteDeadPHIs(L->getHeader()); 5032 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5033 SmallVector<WeakVH, 16> DeadInsts; 5034 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5035 SCEVExpander Rewriter(SE, DL, "lsr"); 5036 #ifndef NDEBUG 5037 Rewriter.setDebugType(DEBUG_TYPE); 5038 #endif 5039 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5040 if (numFolded) { 5041 Changed = true; 5042 DeleteTriviallyDeadInstructions(DeadInsts); 5043 DeleteDeadPHIs(L->getHeader()); 5044 } 5045 } 5046 return Changed; 5047 } 5048 5049 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5050 if (skipLoop(L)) 5051 return false; 5052 5053 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5054 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5055 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5056 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5057 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5058 *L->getHeader()->getParent()); 5059 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5060 } 5061 5062 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5063 LoopStandardAnalysisResults &AR, 5064 LPMUpdater &) { 5065 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5066 AR.DT, AR.LI, AR.TTI)) 5067 return PreservedAnalyses::all(); 5068 5069 return getLoopPassPreservedAnalyses(); 5070 } 5071 5072 char LoopStrengthReduce::ID = 0; 5073 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5074 "Loop Strength Reduction", false, false) 5075 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5076 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5077 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5078 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5079 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5080 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5081 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5082 "Loop Strength Reduction", false, false) 5083 5084 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5085