1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/Hashing.h" 61 #include "llvm/ADT/PointerIntPair.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SetVector.h" 64 #include "llvm/ADT/SmallBitVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 75 #include "llvm/Analysis/TargetTransformInfo.h" 76 #include "llvm/IR/BasicBlock.h" 77 #include "llvm/IR/Constant.h" 78 #include "llvm/IR/Constants.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Dominators.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/IRBuilder.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Module.h" 87 #include "llvm/IR/OperandTraits.h" 88 #include "llvm/IR/Operator.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Transforms/Scalar.h" 101 #include "llvm/Transforms/Scalar/LoopPassManager.h" 102 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstddef> 107 #include <cstdint> 108 #include <cstdlib> 109 #include <iterator> 110 #include <map> 111 #include <tuple> 112 #include <utility> 113 114 using namespace llvm; 115 116 #define DEBUG_TYPE "loop-reduce" 117 118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 119 /// bail out. This threshold is far beyond the number of users that LSR can 120 /// conceivably solve, so it should not affect generated code, but catches the 121 /// worst cases before LSR burns too much compile time and stack space. 122 static const unsigned MaxIVUsers = 200; 123 124 // Temporary flag to cleanup congruent phis after LSR phi expansion. 125 // It's currently disabled until we can determine whether it's truly useful or 126 // not. The flag should be removed after the v3.0 release. 127 // This is now needed for ivchains. 128 static cl::opt<bool> EnablePhiElim( 129 "enable-lsr-phielim", cl::Hidden, cl::init(true), 130 cl::desc("Enable LSR phi elimination")); 131 132 // The flag adds instruction count to solutions cost comparision. 133 static cl::opt<bool> InsnsCost( 134 "lsr-insns-cost", cl::Hidden, cl::init(false), 135 cl::desc("Add instruction count to a LSR cost model")); 136 137 // Flag to choose how to narrow complex lsr solution 138 static cl::opt<bool> LSRExpNarrow( 139 "lsr-exp-narrow", cl::Hidden, cl::init(false), 140 cl::desc("Narrow LSR complex solution using" 141 " expectation of registers number")); 142 143 // Flag to narrow search space by filtering non-optimal formulae with 144 // the same ScaledReg and Scale. 145 static cl::opt<bool> FilterSameScaledReg( 146 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 147 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 148 " with the same ScaledReg and Scale")); 149 150 #ifndef NDEBUG 151 // Stress test IV chain generation. 152 static cl::opt<bool> StressIVChain( 153 "stress-ivchain", cl::Hidden, cl::init(false), 154 cl::desc("Stress test LSR IV chains")); 155 #else 156 static bool StressIVChain = false; 157 #endif 158 159 namespace { 160 161 struct MemAccessTy { 162 /// Used in situations where the accessed memory type is unknown. 163 static const unsigned UnknownAddressSpace = ~0u; 164 165 Type *MemTy; 166 unsigned AddrSpace; 167 168 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} 169 170 MemAccessTy(Type *Ty, unsigned AS) : 171 MemTy(Ty), AddrSpace(AS) {} 172 173 bool operator==(MemAccessTy Other) const { 174 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 175 } 176 177 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 178 179 static MemAccessTy getUnknown(LLVMContext &Ctx, 180 unsigned AS = UnknownAddressSpace) { 181 return MemAccessTy(Type::getVoidTy(Ctx), AS); 182 } 183 }; 184 185 /// This class holds data which is used to order reuse candidates. 186 class RegSortData { 187 public: 188 /// This represents the set of LSRUse indices which reference 189 /// a particular register. 190 SmallBitVector UsedByIndices; 191 192 void print(raw_ostream &OS) const; 193 void dump() const; 194 }; 195 196 } // end anonymous namespace 197 198 void RegSortData::print(raw_ostream &OS) const { 199 OS << "[NumUses=" << UsedByIndices.count() << ']'; 200 } 201 202 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 203 LLVM_DUMP_METHOD void RegSortData::dump() const { 204 print(errs()); errs() << '\n'; 205 } 206 #endif 207 208 namespace { 209 210 /// Map register candidates to information about how they are used. 211 class RegUseTracker { 212 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 213 214 RegUsesTy RegUsesMap; 215 SmallVector<const SCEV *, 16> RegSequence; 216 217 public: 218 void countRegister(const SCEV *Reg, size_t LUIdx); 219 void dropRegister(const SCEV *Reg, size_t LUIdx); 220 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 221 222 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 223 224 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 225 226 void clear(); 227 228 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 229 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 230 iterator begin() { return RegSequence.begin(); } 231 iterator end() { return RegSequence.end(); } 232 const_iterator begin() const { return RegSequence.begin(); } 233 const_iterator end() const { return RegSequence.end(); } 234 }; 235 236 } // end anonymous namespace 237 238 void 239 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 240 std::pair<RegUsesTy::iterator, bool> Pair = 241 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 242 RegSortData &RSD = Pair.first->second; 243 if (Pair.second) 244 RegSequence.push_back(Reg); 245 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 246 RSD.UsedByIndices.set(LUIdx); 247 } 248 249 void 250 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 251 RegUsesTy::iterator It = RegUsesMap.find(Reg); 252 assert(It != RegUsesMap.end()); 253 RegSortData &RSD = It->second; 254 assert(RSD.UsedByIndices.size() > LUIdx); 255 RSD.UsedByIndices.reset(LUIdx); 256 } 257 258 void 259 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 260 assert(LUIdx <= LastLUIdx); 261 262 // Update RegUses. The data structure is not optimized for this purpose; 263 // we must iterate through it and update each of the bit vectors. 264 for (auto &Pair : RegUsesMap) { 265 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 266 if (LUIdx < UsedByIndices.size()) 267 UsedByIndices[LUIdx] = 268 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 269 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 270 } 271 } 272 273 bool 274 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 275 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 276 if (I == RegUsesMap.end()) 277 return false; 278 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 279 int i = UsedByIndices.find_first(); 280 if (i == -1) return false; 281 if ((size_t)i != LUIdx) return true; 282 return UsedByIndices.find_next(i) != -1; 283 } 284 285 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 286 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 287 assert(I != RegUsesMap.end() && "Unknown register!"); 288 return I->second.UsedByIndices; 289 } 290 291 void RegUseTracker::clear() { 292 RegUsesMap.clear(); 293 RegSequence.clear(); 294 } 295 296 namespace { 297 298 /// This class holds information that describes a formula for computing 299 /// satisfying a use. It may include broken-out immediates and scaled registers. 300 struct Formula { 301 /// Global base address used for complex addressing. 302 GlobalValue *BaseGV; 303 304 /// Base offset for complex addressing. 305 int64_t BaseOffset; 306 307 /// Whether any complex addressing has a base register. 308 bool HasBaseReg; 309 310 /// The scale of any complex addressing. 311 int64_t Scale; 312 313 /// The list of "base" registers for this use. When this is non-empty. The 314 /// canonical representation of a formula is 315 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 316 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 317 /// 3. The reg containing recurrent expr related with currect loop in the 318 /// formula should be put in the ScaledReg. 319 /// #1 enforces that the scaled register is always used when at least two 320 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 321 /// #2 enforces that 1 * reg is reg. 322 /// #3 ensures invariant regs with respect to current loop can be combined 323 /// together in LSR codegen. 324 /// This invariant can be temporarly broken while building a formula. 325 /// However, every formula inserted into the LSRInstance must be in canonical 326 /// form. 327 SmallVector<const SCEV *, 4> BaseRegs; 328 329 /// The 'scaled' register for this use. This should be non-null when Scale is 330 /// not zero. 331 const SCEV *ScaledReg; 332 333 /// An additional constant offset which added near the use. This requires a 334 /// temporary register, but the offset itself can live in an add immediate 335 /// field rather than a register. 336 int64_t UnfoldedOffset; 337 338 Formula() 339 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 340 ScaledReg(nullptr), UnfoldedOffset(0) {} 341 342 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 343 344 bool isCanonical(const Loop &L) const; 345 346 void canonicalize(const Loop &L); 347 348 bool unscale(); 349 350 bool hasZeroEnd() const; 351 352 size_t getNumRegs() const; 353 Type *getType() const; 354 355 void deleteBaseReg(const SCEV *&S); 356 357 bool referencesReg(const SCEV *S) const; 358 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 359 const RegUseTracker &RegUses) const; 360 361 void print(raw_ostream &OS) const; 362 void dump() const; 363 }; 364 365 } // end anonymous namespace 366 367 /// Recursion helper for initialMatch. 368 static void DoInitialMatch(const SCEV *S, Loop *L, 369 SmallVectorImpl<const SCEV *> &Good, 370 SmallVectorImpl<const SCEV *> &Bad, 371 ScalarEvolution &SE) { 372 // Collect expressions which properly dominate the loop header. 373 if (SE.properlyDominates(S, L->getHeader())) { 374 Good.push_back(S); 375 return; 376 } 377 378 // Look at add operands. 379 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 380 for (const SCEV *S : Add->operands()) 381 DoInitialMatch(S, L, Good, Bad, SE); 382 return; 383 } 384 385 // Look at addrec operands. 386 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 387 if (!AR->getStart()->isZero() && AR->isAffine()) { 388 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 389 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 390 AR->getStepRecurrence(SE), 391 // FIXME: AR->getNoWrapFlags() 392 AR->getLoop(), SCEV::FlagAnyWrap), 393 L, Good, Bad, SE); 394 return; 395 } 396 397 // Handle a multiplication by -1 (negation) if it didn't fold. 398 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 399 if (Mul->getOperand(0)->isAllOnesValue()) { 400 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 401 const SCEV *NewMul = SE.getMulExpr(Ops); 402 403 SmallVector<const SCEV *, 4> MyGood; 404 SmallVector<const SCEV *, 4> MyBad; 405 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 406 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 407 SE.getEffectiveSCEVType(NewMul->getType()))); 408 for (const SCEV *S : MyGood) 409 Good.push_back(SE.getMulExpr(NegOne, S)); 410 for (const SCEV *S : MyBad) 411 Bad.push_back(SE.getMulExpr(NegOne, S)); 412 return; 413 } 414 415 // Ok, we can't do anything interesting. Just stuff the whole thing into a 416 // register and hope for the best. 417 Bad.push_back(S); 418 } 419 420 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 421 /// all loop-invariant and loop-computable values in a single base register. 422 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 423 SmallVector<const SCEV *, 4> Good; 424 SmallVector<const SCEV *, 4> Bad; 425 DoInitialMatch(S, L, Good, Bad, SE); 426 if (!Good.empty()) { 427 const SCEV *Sum = SE.getAddExpr(Good); 428 if (!Sum->isZero()) 429 BaseRegs.push_back(Sum); 430 HasBaseReg = true; 431 } 432 if (!Bad.empty()) { 433 const SCEV *Sum = SE.getAddExpr(Bad); 434 if (!Sum->isZero()) 435 BaseRegs.push_back(Sum); 436 HasBaseReg = true; 437 } 438 canonicalize(*L); 439 } 440 441 /// \brief Check whether or not this formula statisfies the canonical 442 /// representation. 443 /// \see Formula::BaseRegs. 444 bool Formula::isCanonical(const Loop &L) const { 445 if (!ScaledReg) 446 return BaseRegs.size() <= 1; 447 448 if (Scale != 1) 449 return true; 450 451 if (Scale == 1 && BaseRegs.empty()) 452 return false; 453 454 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 455 if (SAR && SAR->getLoop() == &L) 456 return true; 457 458 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 459 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 460 // loop, we want to swap the reg in BaseRegs with ScaledReg. 461 auto I = 462 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 463 return isa<const SCEVAddRecExpr>(S) && 464 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 465 }); 466 return I == BaseRegs.end(); 467 } 468 469 /// \brief Helper method to morph a formula into its canonical representation. 470 /// \see Formula::BaseRegs. 471 /// Every formula having more than one base register, must use the ScaledReg 472 /// field. Otherwise, we would have to do special cases everywhere in LSR 473 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 474 /// On the other hand, 1*reg should be canonicalized into reg. 475 void Formula::canonicalize(const Loop &L) { 476 if (isCanonical(L)) 477 return; 478 // So far we did not need this case. This is easy to implement but it is 479 // useless to maintain dead code. Beside it could hurt compile time. 480 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 481 482 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 483 if (!ScaledReg) { 484 ScaledReg = BaseRegs.back(); 485 BaseRegs.pop_back(); 486 Scale = 1; 487 } 488 489 // If ScaledReg is an invariant with respect to L, find the reg from 490 // BaseRegs containing the recurrent expr related with Loop L. Swap the 491 // reg with ScaledReg. 492 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 493 if (!SAR || SAR->getLoop() != &L) { 494 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 495 [&](const SCEV *S) { 496 return isa<const SCEVAddRecExpr>(S) && 497 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 498 }); 499 if (I != BaseRegs.end()) 500 std::swap(ScaledReg, *I); 501 } 502 } 503 504 /// \brief Get rid of the scale in the formula. 505 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 506 /// \return true if it was possible to get rid of the scale, false otherwise. 507 /// \note After this operation the formula may not be in the canonical form. 508 bool Formula::unscale() { 509 if (Scale != 1) 510 return false; 511 Scale = 0; 512 BaseRegs.push_back(ScaledReg); 513 ScaledReg = nullptr; 514 return true; 515 } 516 517 bool Formula::hasZeroEnd() const { 518 if (UnfoldedOffset || BaseOffset) 519 return false; 520 if (BaseRegs.size() != 1 || ScaledReg) 521 return false; 522 return true; 523 } 524 525 /// Return the total number of register operands used by this formula. This does 526 /// not include register uses implied by non-constant addrec strides. 527 size_t Formula::getNumRegs() const { 528 return !!ScaledReg + BaseRegs.size(); 529 } 530 531 /// Return the type of this formula, if it has one, or null otherwise. This type 532 /// is meaningless except for the bit size. 533 Type *Formula::getType() const { 534 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 535 ScaledReg ? ScaledReg->getType() : 536 BaseGV ? BaseGV->getType() : 537 nullptr; 538 } 539 540 /// Delete the given base reg from the BaseRegs list. 541 void Formula::deleteBaseReg(const SCEV *&S) { 542 if (&S != &BaseRegs.back()) 543 std::swap(S, BaseRegs.back()); 544 BaseRegs.pop_back(); 545 } 546 547 /// Test if this formula references the given register. 548 bool Formula::referencesReg(const SCEV *S) const { 549 return S == ScaledReg || is_contained(BaseRegs, S); 550 } 551 552 /// Test whether this formula uses registers which are used by uses other than 553 /// the use with the given index. 554 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 555 const RegUseTracker &RegUses) const { 556 if (ScaledReg) 557 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 558 return true; 559 for (const SCEV *BaseReg : BaseRegs) 560 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 561 return true; 562 return false; 563 } 564 565 void Formula::print(raw_ostream &OS) const { 566 bool First = true; 567 if (BaseGV) { 568 if (!First) OS << " + "; else First = false; 569 BaseGV->printAsOperand(OS, /*PrintType=*/false); 570 } 571 if (BaseOffset != 0) { 572 if (!First) OS << " + "; else First = false; 573 OS << BaseOffset; 574 } 575 for (const SCEV *BaseReg : BaseRegs) { 576 if (!First) OS << " + "; else First = false; 577 OS << "reg(" << *BaseReg << ')'; 578 } 579 if (HasBaseReg && BaseRegs.empty()) { 580 if (!First) OS << " + "; else First = false; 581 OS << "**error: HasBaseReg**"; 582 } else if (!HasBaseReg && !BaseRegs.empty()) { 583 if (!First) OS << " + "; else First = false; 584 OS << "**error: !HasBaseReg**"; 585 } 586 if (Scale != 0) { 587 if (!First) OS << " + "; else First = false; 588 OS << Scale << "*reg("; 589 if (ScaledReg) 590 OS << *ScaledReg; 591 else 592 OS << "<unknown>"; 593 OS << ')'; 594 } 595 if (UnfoldedOffset != 0) { 596 if (!First) OS << " + "; 597 OS << "imm(" << UnfoldedOffset << ')'; 598 } 599 } 600 601 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 602 LLVM_DUMP_METHOD void Formula::dump() const { 603 print(errs()); errs() << '\n'; 604 } 605 #endif 606 607 /// Return true if the given addrec can be sign-extended without changing its 608 /// value. 609 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 610 Type *WideTy = 611 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 612 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 613 } 614 615 /// Return true if the given add can be sign-extended without changing its 616 /// value. 617 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 618 Type *WideTy = 619 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 620 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 621 } 622 623 /// Return true if the given mul can be sign-extended without changing its 624 /// value. 625 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 626 Type *WideTy = 627 IntegerType::get(SE.getContext(), 628 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 629 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 630 } 631 632 /// Return an expression for LHS /s RHS, if it can be determined and if the 633 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 634 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 635 /// the multiplication may overflow, which is useful when the result will be 636 /// used in a context where the most significant bits are ignored. 637 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 638 ScalarEvolution &SE, 639 bool IgnoreSignificantBits = false) { 640 // Handle the trivial case, which works for any SCEV type. 641 if (LHS == RHS) 642 return SE.getConstant(LHS->getType(), 1); 643 644 // Handle a few RHS special cases. 645 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 646 if (RC) { 647 const APInt &RA = RC->getAPInt(); 648 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 649 // some folding. 650 if (RA.isAllOnesValue()) 651 return SE.getMulExpr(LHS, RC); 652 // Handle x /s 1 as x. 653 if (RA == 1) 654 return LHS; 655 } 656 657 // Check for a division of a constant by a constant. 658 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 659 if (!RC) 660 return nullptr; 661 const APInt &LA = C->getAPInt(); 662 const APInt &RA = RC->getAPInt(); 663 if (LA.srem(RA) != 0) 664 return nullptr; 665 return SE.getConstant(LA.sdiv(RA)); 666 } 667 668 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 669 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 670 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 671 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 672 IgnoreSignificantBits); 673 if (!Step) return nullptr; 674 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 675 IgnoreSignificantBits); 676 if (!Start) return nullptr; 677 // FlagNW is independent of the start value, step direction, and is 678 // preserved with smaller magnitude steps. 679 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 680 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 681 } 682 return nullptr; 683 } 684 685 // Distribute the sdiv over add operands, if the add doesn't overflow. 686 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 687 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 688 SmallVector<const SCEV *, 8> Ops; 689 for (const SCEV *S : Add->operands()) { 690 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 691 if (!Op) return nullptr; 692 Ops.push_back(Op); 693 } 694 return SE.getAddExpr(Ops); 695 } 696 return nullptr; 697 } 698 699 // Check for a multiply operand that we can pull RHS out of. 700 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 701 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 702 SmallVector<const SCEV *, 4> Ops; 703 bool Found = false; 704 for (const SCEV *S : Mul->operands()) { 705 if (!Found) 706 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 707 IgnoreSignificantBits)) { 708 S = Q; 709 Found = true; 710 } 711 Ops.push_back(S); 712 } 713 return Found ? SE.getMulExpr(Ops) : nullptr; 714 } 715 return nullptr; 716 } 717 718 // Otherwise we don't know. 719 return nullptr; 720 } 721 722 /// If S involves the addition of a constant integer value, return that integer 723 /// value, and mutate S to point to a new SCEV with that value excluded. 724 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 725 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 726 if (C->getAPInt().getMinSignedBits() <= 64) { 727 S = SE.getConstant(C->getType(), 0); 728 return C->getValue()->getSExtValue(); 729 } 730 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 731 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 732 int64_t Result = ExtractImmediate(NewOps.front(), SE); 733 if (Result != 0) 734 S = SE.getAddExpr(NewOps); 735 return Result; 736 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 737 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 738 int64_t Result = ExtractImmediate(NewOps.front(), SE); 739 if (Result != 0) 740 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 741 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 742 SCEV::FlagAnyWrap); 743 return Result; 744 } 745 return 0; 746 } 747 748 /// If S involves the addition of a GlobalValue address, return that symbol, and 749 /// mutate S to point to a new SCEV with that value excluded. 750 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 751 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 752 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 753 S = SE.getConstant(GV->getType(), 0); 754 return GV; 755 } 756 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 757 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 758 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 759 if (Result) 760 S = SE.getAddExpr(NewOps); 761 return Result; 762 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 763 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 764 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 765 if (Result) 766 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 767 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 768 SCEV::FlagAnyWrap); 769 return Result; 770 } 771 return nullptr; 772 } 773 774 /// Returns true if the specified instruction is using the specified value as an 775 /// address. 776 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 777 bool isAddress = isa<LoadInst>(Inst); 778 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 779 if (SI->getPointerOperand() == OperandVal) 780 isAddress = true; 781 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 782 // Addressing modes can also be folded into prefetches and a variety 783 // of intrinsics. 784 switch (II->getIntrinsicID()) { 785 default: break; 786 case Intrinsic::prefetch: 787 if (II->getArgOperand(0) == OperandVal) 788 isAddress = true; 789 break; 790 } 791 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 792 if (RMW->getPointerOperand() == OperandVal) 793 isAddress = true; 794 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 795 if (CmpX->getPointerOperand() == OperandVal) 796 isAddress = true; 797 } 798 return isAddress; 799 } 800 801 /// Return the type of the memory being accessed. 802 static MemAccessTy getAccessType(const Instruction *Inst) { 803 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 804 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 805 AccessTy.MemTy = SI->getOperand(0)->getType(); 806 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 807 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 808 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 809 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 810 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 811 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 812 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 813 } 814 815 // All pointers have the same requirements, so canonicalize them to an 816 // arbitrary pointer type to minimize variation. 817 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 818 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 819 PTy->getAddressSpace()); 820 821 return AccessTy; 822 } 823 824 /// Return true if this AddRec is already a phi in its loop. 825 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 826 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 827 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 828 if (SE.isSCEVable(PN->getType()) && 829 (SE.getEffectiveSCEVType(PN->getType()) == 830 SE.getEffectiveSCEVType(AR->getType())) && 831 SE.getSCEV(PN) == AR) 832 return true; 833 } 834 return false; 835 } 836 837 /// Check if expanding this expression is likely to incur significant cost. This 838 /// is tricky because SCEV doesn't track which expressions are actually computed 839 /// by the current IR. 840 /// 841 /// We currently allow expansion of IV increments that involve adds, 842 /// multiplication by constants, and AddRecs from existing phis. 843 /// 844 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 845 /// obvious multiple of the UDivExpr. 846 static bool isHighCostExpansion(const SCEV *S, 847 SmallPtrSetImpl<const SCEV*> &Processed, 848 ScalarEvolution &SE) { 849 // Zero/One operand expressions 850 switch (S->getSCEVType()) { 851 case scUnknown: 852 case scConstant: 853 return false; 854 case scTruncate: 855 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 856 Processed, SE); 857 case scZeroExtend: 858 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 859 Processed, SE); 860 case scSignExtend: 861 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 862 Processed, SE); 863 } 864 865 if (!Processed.insert(S).second) 866 return false; 867 868 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 869 for (const SCEV *S : Add->operands()) { 870 if (isHighCostExpansion(S, Processed, SE)) 871 return true; 872 } 873 return false; 874 } 875 876 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 877 if (Mul->getNumOperands() == 2) { 878 // Multiplication by a constant is ok 879 if (isa<SCEVConstant>(Mul->getOperand(0))) 880 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 881 882 // If we have the value of one operand, check if an existing 883 // multiplication already generates this expression. 884 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 885 Value *UVal = U->getValue(); 886 for (User *UR : UVal->users()) { 887 // If U is a constant, it may be used by a ConstantExpr. 888 Instruction *UI = dyn_cast<Instruction>(UR); 889 if (UI && UI->getOpcode() == Instruction::Mul && 890 SE.isSCEVable(UI->getType())) { 891 return SE.getSCEV(UI) == Mul; 892 } 893 } 894 } 895 } 896 } 897 898 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 899 if (isExistingPhi(AR, SE)) 900 return false; 901 } 902 903 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 904 return true; 905 } 906 907 /// If any of the instructions is the specified set are trivially dead, delete 908 /// them and see if this makes any of their operands subsequently dead. 909 static bool 910 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 911 bool Changed = false; 912 913 while (!DeadInsts.empty()) { 914 Value *V = DeadInsts.pop_back_val(); 915 Instruction *I = dyn_cast_or_null<Instruction>(V); 916 917 if (!I || !isInstructionTriviallyDead(I)) 918 continue; 919 920 for (Use &O : I->operands()) 921 if (Instruction *U = dyn_cast<Instruction>(O)) { 922 O = nullptr; 923 if (U->use_empty()) 924 DeadInsts.emplace_back(U); 925 } 926 927 I->eraseFromParent(); 928 Changed = true; 929 } 930 931 return Changed; 932 } 933 934 namespace { 935 936 class LSRUse; 937 938 } // end anonymous namespace 939 940 /// \brief Check if the addressing mode defined by \p F is completely 941 /// folded in \p LU at isel time. 942 /// This includes address-mode folding and special icmp tricks. 943 /// This function returns true if \p LU can accommodate what \p F 944 /// defines and up to 1 base + 1 scaled + offset. 945 /// In other words, if \p F has several base registers, this function may 946 /// still return true. Therefore, users still need to account for 947 /// additional base registers and/or unfolded offsets to derive an 948 /// accurate cost model. 949 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 950 const LSRUse &LU, const Formula &F); 951 // Get the cost of the scaling factor used in F for LU. 952 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 953 const LSRUse &LU, const Formula &F, 954 const Loop &L); 955 956 namespace { 957 958 /// This class is used to measure and compare candidate formulae. 959 class Cost { 960 TargetTransformInfo::LSRCost C; 961 962 public: 963 Cost() { 964 C.Insns = 0; 965 C.NumRegs = 0; 966 C.AddRecCost = 0; 967 C.NumIVMuls = 0; 968 C.NumBaseAdds = 0; 969 C.ImmCost = 0; 970 C.SetupCost = 0; 971 C.ScaleCost = 0; 972 } 973 974 bool isLess(Cost &Other, const TargetTransformInfo &TTI); 975 976 void Lose(); 977 978 #ifndef NDEBUG 979 // Once any of the metrics loses, they must all remain losers. 980 bool isValid() { 981 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 982 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 983 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 984 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 985 } 986 #endif 987 988 bool isLoser() { 989 assert(isValid() && "invalid cost"); 990 return C.NumRegs == ~0u; 991 } 992 993 void RateFormula(const TargetTransformInfo &TTI, 994 const Formula &F, 995 SmallPtrSetImpl<const SCEV *> &Regs, 996 const DenseSet<const SCEV *> &VisitedRegs, 997 const Loop *L, 998 ScalarEvolution &SE, DominatorTree &DT, 999 const LSRUse &LU, 1000 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1001 1002 void print(raw_ostream &OS) const; 1003 void dump() const; 1004 1005 private: 1006 void RateRegister(const SCEV *Reg, 1007 SmallPtrSetImpl<const SCEV *> &Regs, 1008 const Loop *L, 1009 ScalarEvolution &SE, DominatorTree &DT); 1010 void RatePrimaryRegister(const SCEV *Reg, 1011 SmallPtrSetImpl<const SCEV *> &Regs, 1012 const Loop *L, 1013 ScalarEvolution &SE, DominatorTree &DT, 1014 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1015 }; 1016 1017 /// An operand value in an instruction which is to be replaced with some 1018 /// equivalent, possibly strength-reduced, replacement. 1019 struct LSRFixup { 1020 /// The instruction which will be updated. 1021 Instruction *UserInst; 1022 1023 /// The operand of the instruction which will be replaced. The operand may be 1024 /// used more than once; every instance will be replaced. 1025 Value *OperandValToReplace; 1026 1027 /// If this user is to use the post-incremented value of an induction 1028 /// variable, this variable is non-null and holds the loop associated with the 1029 /// induction variable. 1030 PostIncLoopSet PostIncLoops; 1031 1032 /// A constant offset to be added to the LSRUse expression. This allows 1033 /// multiple fixups to share the same LSRUse with different offsets, for 1034 /// example in an unrolled loop. 1035 int64_t Offset; 1036 1037 bool isUseFullyOutsideLoop(const Loop *L) const; 1038 1039 LSRFixup(); 1040 1041 void print(raw_ostream &OS) const; 1042 void dump() const; 1043 }; 1044 1045 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1046 /// SmallVectors of const SCEV*. 1047 struct UniquifierDenseMapInfo { 1048 static SmallVector<const SCEV *, 4> getEmptyKey() { 1049 SmallVector<const SCEV *, 4> V; 1050 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1051 return V; 1052 } 1053 1054 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1055 SmallVector<const SCEV *, 4> V; 1056 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1057 return V; 1058 } 1059 1060 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1061 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1062 } 1063 1064 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1065 const SmallVector<const SCEV *, 4> &RHS) { 1066 return LHS == RHS; 1067 } 1068 }; 1069 1070 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1071 /// as uses invented by LSR itself. It includes information about what kinds of 1072 /// things can be folded into the user, information about the user itself, and 1073 /// information about how the use may be satisfied. TODO: Represent multiple 1074 /// users of the same expression in common? 1075 class LSRUse { 1076 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1077 1078 public: 1079 /// An enum for a kind of use, indicating what types of scaled and immediate 1080 /// operands it might support. 1081 enum KindType { 1082 Basic, ///< A normal use, with no folding. 1083 Special, ///< A special case of basic, allowing -1 scales. 1084 Address, ///< An address use; folding according to TargetLowering 1085 ICmpZero ///< An equality icmp with both operands folded into one. 1086 // TODO: Add a generic icmp too? 1087 }; 1088 1089 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1090 1091 KindType Kind; 1092 MemAccessTy AccessTy; 1093 1094 /// The list of operands which are to be replaced. 1095 SmallVector<LSRFixup, 8> Fixups; 1096 1097 /// Keep track of the min and max offsets of the fixups. 1098 int64_t MinOffset; 1099 int64_t MaxOffset; 1100 1101 /// This records whether all of the fixups using this LSRUse are outside of 1102 /// the loop, in which case some special-case heuristics may be used. 1103 bool AllFixupsOutsideLoop; 1104 1105 /// RigidFormula is set to true to guarantee that this use will be associated 1106 /// with a single formula--the one that initially matched. Some SCEV 1107 /// expressions cannot be expanded. This allows LSR to consider the registers 1108 /// used by those expressions without the need to expand them later after 1109 /// changing the formula. 1110 bool RigidFormula; 1111 1112 /// This records the widest use type for any fixup using this 1113 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1114 /// fixup widths to be equivalent, because the narrower one may be relying on 1115 /// the implicit truncation to truncate away bogus bits. 1116 Type *WidestFixupType; 1117 1118 /// A list of ways to build a value that can satisfy this user. After the 1119 /// list is populated, one of these is selected heuristically and used to 1120 /// formulate a replacement for OperandValToReplace in UserInst. 1121 SmallVector<Formula, 12> Formulae; 1122 1123 /// The set of register candidates used by all formulae in this LSRUse. 1124 SmallPtrSet<const SCEV *, 4> Regs; 1125 1126 LSRUse(KindType K, MemAccessTy AT) 1127 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), 1128 AllFixupsOutsideLoop(true), RigidFormula(false), 1129 WidestFixupType(nullptr) {} 1130 1131 LSRFixup &getNewFixup() { 1132 Fixups.push_back(LSRFixup()); 1133 return Fixups.back(); 1134 } 1135 1136 void pushFixup(LSRFixup &f) { 1137 Fixups.push_back(f); 1138 if (f.Offset > MaxOffset) 1139 MaxOffset = f.Offset; 1140 if (f.Offset < MinOffset) 1141 MinOffset = f.Offset; 1142 } 1143 1144 bool HasFormulaWithSameRegs(const Formula &F) const; 1145 float getNotSelectedProbability(const SCEV *Reg) const; 1146 bool InsertFormula(const Formula &F, const Loop &L); 1147 void DeleteFormula(Formula &F); 1148 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1149 1150 void print(raw_ostream &OS) const; 1151 void dump() const; 1152 }; 1153 1154 } // end anonymous namespace 1155 1156 /// Tally up interesting quantities from the given register. 1157 void Cost::RateRegister(const SCEV *Reg, 1158 SmallPtrSetImpl<const SCEV *> &Regs, 1159 const Loop *L, 1160 ScalarEvolution &SE, DominatorTree &DT) { 1161 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1162 // If this is an addrec for another loop, it should be an invariant 1163 // with respect to L since L is the innermost loop (at least 1164 // for now LSR only handles innermost loops). 1165 if (AR->getLoop() != L) { 1166 // If the AddRec exists, consider it's register free and leave it alone. 1167 if (isExistingPhi(AR, SE)) 1168 return; 1169 1170 // It is bad to allow LSR for current loop to add induction variables 1171 // for its sibling loops. 1172 if (!AR->getLoop()->contains(L)) { 1173 Lose(); 1174 return; 1175 } 1176 1177 // Otherwise, it will be an invariant with respect to Loop L. 1178 ++C.NumRegs; 1179 return; 1180 } 1181 C.AddRecCost += 1; /// TODO: This should be a function of the stride. 1182 1183 // Add the step value register, if it needs one. 1184 // TODO: The non-affine case isn't precisely modeled here. 1185 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1186 if (!Regs.count(AR->getOperand(1))) { 1187 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 1188 if (isLoser()) 1189 return; 1190 } 1191 } 1192 } 1193 ++C.NumRegs; 1194 1195 // Rough heuristic; favor registers which don't require extra setup 1196 // instructions in the preheader. 1197 if (!isa<SCEVUnknown>(Reg) && 1198 !isa<SCEVConstant>(Reg) && 1199 !(isa<SCEVAddRecExpr>(Reg) && 1200 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1201 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1202 ++C.SetupCost; 1203 1204 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1205 SE.hasComputableLoopEvolution(Reg, L); 1206 } 1207 1208 /// Record this register in the set. If we haven't seen it before, rate 1209 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1210 /// one of those regs an instant loser. 1211 void Cost::RatePrimaryRegister(const SCEV *Reg, 1212 SmallPtrSetImpl<const SCEV *> &Regs, 1213 const Loop *L, 1214 ScalarEvolution &SE, DominatorTree &DT, 1215 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1216 if (LoserRegs && LoserRegs->count(Reg)) { 1217 Lose(); 1218 return; 1219 } 1220 if (Regs.insert(Reg).second) { 1221 RateRegister(Reg, Regs, L, SE, DT); 1222 if (LoserRegs && isLoser()) 1223 LoserRegs->insert(Reg); 1224 } 1225 } 1226 1227 void Cost::RateFormula(const TargetTransformInfo &TTI, 1228 const Formula &F, 1229 SmallPtrSetImpl<const SCEV *> &Regs, 1230 const DenseSet<const SCEV *> &VisitedRegs, 1231 const Loop *L, 1232 ScalarEvolution &SE, DominatorTree &DT, 1233 const LSRUse &LU, 1234 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1235 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1236 // Tally up the registers. 1237 unsigned PrevAddRecCost = C.AddRecCost; 1238 unsigned PrevNumRegs = C.NumRegs; 1239 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1240 if (const SCEV *ScaledReg = F.ScaledReg) { 1241 if (VisitedRegs.count(ScaledReg)) { 1242 Lose(); 1243 return; 1244 } 1245 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1246 if (isLoser()) 1247 return; 1248 } 1249 for (const SCEV *BaseReg : F.BaseRegs) { 1250 if (VisitedRegs.count(BaseReg)) { 1251 Lose(); 1252 return; 1253 } 1254 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1255 if (isLoser()) 1256 return; 1257 } 1258 1259 // Determine how many (unfolded) adds we'll need inside the loop. 1260 size_t NumBaseParts = F.getNumRegs(); 1261 if (NumBaseParts > 1) 1262 // Do not count the base and a possible second register if the target 1263 // allows to fold 2 registers. 1264 C.NumBaseAdds += 1265 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1266 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1267 1268 // Accumulate non-free scaling amounts. 1269 C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L); 1270 1271 // Tally up the non-zero immediates. 1272 for (const LSRFixup &Fixup : LU.Fixups) { 1273 int64_t O = Fixup.Offset; 1274 int64_t Offset = (uint64_t)O + F.BaseOffset; 1275 if (F.BaseGV) 1276 C.ImmCost += 64; // Handle symbolic values conservatively. 1277 // TODO: This should probably be the pointer size. 1278 else if (Offset != 0) 1279 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1280 1281 // Check with target if this offset with this instruction is 1282 // specifically not supported. 1283 if ((isa<LoadInst>(Fixup.UserInst) || isa<StoreInst>(Fixup.UserInst)) && 1284 !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset)) 1285 C.NumBaseAdds++; 1286 } 1287 1288 // If we don't count instruction cost exit here. 1289 if (!InsnsCost) { 1290 assert(isValid() && "invalid cost"); 1291 return; 1292 } 1293 1294 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1295 // additional instruction (at least fill). 1296 unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1; 1297 if (C.NumRegs > TTIRegNum) { 1298 // Cost already exceeded TTIRegNum, then only newly added register can add 1299 // new instructions. 1300 if (PrevNumRegs > TTIRegNum) 1301 C.Insns += (C.NumRegs - PrevNumRegs); 1302 else 1303 C.Insns += (C.NumRegs - TTIRegNum); 1304 } 1305 1306 // If ICmpZero formula ends with not 0, it could not be replaced by 1307 // just add or sub. We'll need to compare final result of AddRec. 1308 // That means we'll need an additional instruction. 1309 // For -10 + {0, +, 1}: 1310 // i = i + 1; 1311 // cmp i, 10 1312 // 1313 // For {-10, +, 1}: 1314 // i = i + 1; 1315 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd()) 1316 C.Insns++; 1317 // Each new AddRec adds 1 instruction to calculation. 1318 C.Insns += (C.AddRecCost - PrevAddRecCost); 1319 1320 // BaseAdds adds instructions for unfolded registers. 1321 if (LU.Kind != LSRUse::ICmpZero) 1322 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1323 assert(isValid() && "invalid cost"); 1324 } 1325 1326 /// Set this cost to a losing value. 1327 void Cost::Lose() { 1328 C.Insns = ~0u; 1329 C.NumRegs = ~0u; 1330 C.AddRecCost = ~0u; 1331 C.NumIVMuls = ~0u; 1332 C.NumBaseAdds = ~0u; 1333 C.ImmCost = ~0u; 1334 C.SetupCost = ~0u; 1335 C.ScaleCost = ~0u; 1336 } 1337 1338 /// Choose the lower cost. 1339 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) { 1340 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1341 C.Insns != Other.C.Insns) 1342 return C.Insns < Other.C.Insns; 1343 return TTI.isLSRCostLess(C, Other.C); 1344 } 1345 1346 void Cost::print(raw_ostream &OS) const { 1347 if (InsnsCost) 1348 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1349 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1350 if (C.AddRecCost != 0) 1351 OS << ", with addrec cost " << C.AddRecCost; 1352 if (C.NumIVMuls != 0) 1353 OS << ", plus " << C.NumIVMuls << " IV mul" 1354 << (C.NumIVMuls == 1 ? "" : "s"); 1355 if (C.NumBaseAdds != 0) 1356 OS << ", plus " << C.NumBaseAdds << " base add" 1357 << (C.NumBaseAdds == 1 ? "" : "s"); 1358 if (C.ScaleCost != 0) 1359 OS << ", plus " << C.ScaleCost << " scale cost"; 1360 if (C.ImmCost != 0) 1361 OS << ", plus " << C.ImmCost << " imm cost"; 1362 if (C.SetupCost != 0) 1363 OS << ", plus " << C.SetupCost << " setup cost"; 1364 } 1365 1366 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1367 LLVM_DUMP_METHOD void Cost::dump() const { 1368 print(errs()); errs() << '\n'; 1369 } 1370 #endif 1371 1372 LSRFixup::LSRFixup() 1373 : UserInst(nullptr), OperandValToReplace(nullptr), 1374 Offset(0) {} 1375 1376 /// Test whether this fixup always uses its value outside of the given loop. 1377 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1378 // PHI nodes use their value in their incoming blocks. 1379 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1380 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1381 if (PN->getIncomingValue(i) == OperandValToReplace && 1382 L->contains(PN->getIncomingBlock(i))) 1383 return false; 1384 return true; 1385 } 1386 1387 return !L->contains(UserInst); 1388 } 1389 1390 void LSRFixup::print(raw_ostream &OS) const { 1391 OS << "UserInst="; 1392 // Store is common and interesting enough to be worth special-casing. 1393 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1394 OS << "store "; 1395 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1396 } else if (UserInst->getType()->isVoidTy()) 1397 OS << UserInst->getOpcodeName(); 1398 else 1399 UserInst->printAsOperand(OS, /*PrintType=*/false); 1400 1401 OS << ", OperandValToReplace="; 1402 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1403 1404 for (const Loop *PIL : PostIncLoops) { 1405 OS << ", PostIncLoop="; 1406 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1407 } 1408 1409 if (Offset != 0) 1410 OS << ", Offset=" << Offset; 1411 } 1412 1413 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1414 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1415 print(errs()); errs() << '\n'; 1416 } 1417 #endif 1418 1419 /// Test whether this use as a formula which has the same registers as the given 1420 /// formula. 1421 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1422 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1423 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1424 // Unstable sort by host order ok, because this is only used for uniquifying. 1425 std::sort(Key.begin(), Key.end()); 1426 return Uniquifier.count(Key); 1427 } 1428 1429 /// The function returns a probability of selecting formula without Reg. 1430 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1431 unsigned FNum = 0; 1432 for (const Formula &F : Formulae) 1433 if (F.referencesReg(Reg)) 1434 FNum++; 1435 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1436 } 1437 1438 /// If the given formula has not yet been inserted, add it to the list, and 1439 /// return true. Return false otherwise. The formula must be in canonical form. 1440 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1441 assert(F.isCanonical(L) && "Invalid canonical representation"); 1442 1443 if (!Formulae.empty() && RigidFormula) 1444 return false; 1445 1446 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1447 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1448 // Unstable sort by host order ok, because this is only used for uniquifying. 1449 std::sort(Key.begin(), Key.end()); 1450 1451 if (!Uniquifier.insert(Key).second) 1452 return false; 1453 1454 // Using a register to hold the value of 0 is not profitable. 1455 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1456 "Zero allocated in a scaled register!"); 1457 #ifndef NDEBUG 1458 for (const SCEV *BaseReg : F.BaseRegs) 1459 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1460 #endif 1461 1462 // Add the formula to the list. 1463 Formulae.push_back(F); 1464 1465 // Record registers now being used by this use. 1466 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1467 if (F.ScaledReg) 1468 Regs.insert(F.ScaledReg); 1469 1470 return true; 1471 } 1472 1473 /// Remove the given formula from this use's list. 1474 void LSRUse::DeleteFormula(Formula &F) { 1475 if (&F != &Formulae.back()) 1476 std::swap(F, Formulae.back()); 1477 Formulae.pop_back(); 1478 } 1479 1480 /// Recompute the Regs field, and update RegUses. 1481 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1482 // Now that we've filtered out some formulae, recompute the Regs set. 1483 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1484 Regs.clear(); 1485 for (const Formula &F : Formulae) { 1486 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1487 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1488 } 1489 1490 // Update the RegTracker. 1491 for (const SCEV *S : OldRegs) 1492 if (!Regs.count(S)) 1493 RegUses.dropRegister(S, LUIdx); 1494 } 1495 1496 void LSRUse::print(raw_ostream &OS) const { 1497 OS << "LSR Use: Kind="; 1498 switch (Kind) { 1499 case Basic: OS << "Basic"; break; 1500 case Special: OS << "Special"; break; 1501 case ICmpZero: OS << "ICmpZero"; break; 1502 case Address: 1503 OS << "Address of "; 1504 if (AccessTy.MemTy->isPointerTy()) 1505 OS << "pointer"; // the full pointer type could be really verbose 1506 else { 1507 OS << *AccessTy.MemTy; 1508 } 1509 1510 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1511 } 1512 1513 OS << ", Offsets={"; 1514 bool NeedComma = false; 1515 for (const LSRFixup &Fixup : Fixups) { 1516 if (NeedComma) OS << ','; 1517 OS << Fixup.Offset; 1518 NeedComma = true; 1519 } 1520 OS << '}'; 1521 1522 if (AllFixupsOutsideLoop) 1523 OS << ", all-fixups-outside-loop"; 1524 1525 if (WidestFixupType) 1526 OS << ", widest fixup type: " << *WidestFixupType; 1527 } 1528 1529 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1530 LLVM_DUMP_METHOD void LSRUse::dump() const { 1531 print(errs()); errs() << '\n'; 1532 } 1533 #endif 1534 1535 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1536 LSRUse::KindType Kind, MemAccessTy AccessTy, 1537 GlobalValue *BaseGV, int64_t BaseOffset, 1538 bool HasBaseReg, int64_t Scale) { 1539 switch (Kind) { 1540 case LSRUse::Address: 1541 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1542 HasBaseReg, Scale, AccessTy.AddrSpace); 1543 1544 case LSRUse::ICmpZero: 1545 // There's not even a target hook for querying whether it would be legal to 1546 // fold a GV into an ICmp. 1547 if (BaseGV) 1548 return false; 1549 1550 // ICmp only has two operands; don't allow more than two non-trivial parts. 1551 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1552 return false; 1553 1554 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1555 // putting the scaled register in the other operand of the icmp. 1556 if (Scale != 0 && Scale != -1) 1557 return false; 1558 1559 // If we have low-level target information, ask the target if it can fold an 1560 // integer immediate on an icmp. 1561 if (BaseOffset != 0) { 1562 // We have one of: 1563 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1564 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1565 // Offs is the ICmp immediate. 1566 if (Scale == 0) 1567 // The cast does the right thing with INT64_MIN. 1568 BaseOffset = -(uint64_t)BaseOffset; 1569 return TTI.isLegalICmpImmediate(BaseOffset); 1570 } 1571 1572 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1573 return true; 1574 1575 case LSRUse::Basic: 1576 // Only handle single-register values. 1577 return !BaseGV && Scale == 0 && BaseOffset == 0; 1578 1579 case LSRUse::Special: 1580 // Special case Basic to handle -1 scales. 1581 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1582 } 1583 1584 llvm_unreachable("Invalid LSRUse Kind!"); 1585 } 1586 1587 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1588 int64_t MinOffset, int64_t MaxOffset, 1589 LSRUse::KindType Kind, MemAccessTy AccessTy, 1590 GlobalValue *BaseGV, int64_t BaseOffset, 1591 bool HasBaseReg, int64_t Scale) { 1592 // Check for overflow. 1593 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1594 (MinOffset > 0)) 1595 return false; 1596 MinOffset = (uint64_t)BaseOffset + MinOffset; 1597 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1598 (MaxOffset > 0)) 1599 return false; 1600 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1601 1602 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1603 HasBaseReg, Scale) && 1604 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1605 HasBaseReg, Scale); 1606 } 1607 1608 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1609 int64_t MinOffset, int64_t MaxOffset, 1610 LSRUse::KindType Kind, MemAccessTy AccessTy, 1611 const Formula &F, const Loop &L) { 1612 // For the purpose of isAMCompletelyFolded either having a canonical formula 1613 // or a scale not equal to zero is correct. 1614 // Problems may arise from non canonical formulae having a scale == 0. 1615 // Strictly speaking it would best to just rely on canonical formulae. 1616 // However, when we generate the scaled formulae, we first check that the 1617 // scaling factor is profitable before computing the actual ScaledReg for 1618 // compile time sake. 1619 assert((F.isCanonical(L) || F.Scale != 0)); 1620 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1621 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1622 } 1623 1624 /// Test whether we know how to expand the current formula. 1625 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1626 int64_t MaxOffset, LSRUse::KindType Kind, 1627 MemAccessTy AccessTy, GlobalValue *BaseGV, 1628 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1629 // We know how to expand completely foldable formulae. 1630 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1631 BaseOffset, HasBaseReg, Scale) || 1632 // Or formulae that use a base register produced by a sum of base 1633 // registers. 1634 (Scale == 1 && 1635 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1636 BaseGV, BaseOffset, true, 0)); 1637 } 1638 1639 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1640 int64_t MaxOffset, LSRUse::KindType Kind, 1641 MemAccessTy AccessTy, const Formula &F) { 1642 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1643 F.BaseOffset, F.HasBaseReg, F.Scale); 1644 } 1645 1646 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1647 const LSRUse &LU, const Formula &F) { 1648 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1649 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1650 F.Scale); 1651 } 1652 1653 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1654 const LSRUse &LU, const Formula &F, 1655 const Loop &L) { 1656 if (!F.Scale) 1657 return 0; 1658 1659 // If the use is not completely folded in that instruction, we will have to 1660 // pay an extra cost only for scale != 1. 1661 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1662 LU.AccessTy, F, L)) 1663 return F.Scale != 1; 1664 1665 switch (LU.Kind) { 1666 case LSRUse::Address: { 1667 // Check the scaling factor cost with both the min and max offsets. 1668 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1669 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1670 F.Scale, LU.AccessTy.AddrSpace); 1671 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1672 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1673 F.Scale, LU.AccessTy.AddrSpace); 1674 1675 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1676 "Legal addressing mode has an illegal cost!"); 1677 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1678 } 1679 case LSRUse::ICmpZero: 1680 case LSRUse::Basic: 1681 case LSRUse::Special: 1682 // The use is completely folded, i.e., everything is folded into the 1683 // instruction. 1684 return 0; 1685 } 1686 1687 llvm_unreachable("Invalid LSRUse Kind!"); 1688 } 1689 1690 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1691 LSRUse::KindType Kind, MemAccessTy AccessTy, 1692 GlobalValue *BaseGV, int64_t BaseOffset, 1693 bool HasBaseReg) { 1694 // Fast-path: zero is always foldable. 1695 if (BaseOffset == 0 && !BaseGV) return true; 1696 1697 // Conservatively, create an address with an immediate and a 1698 // base and a scale. 1699 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1700 1701 // Canonicalize a scale of 1 to a base register if the formula doesn't 1702 // already have a base register. 1703 if (!HasBaseReg && Scale == 1) { 1704 Scale = 0; 1705 HasBaseReg = true; 1706 } 1707 1708 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1709 HasBaseReg, Scale); 1710 } 1711 1712 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1713 ScalarEvolution &SE, int64_t MinOffset, 1714 int64_t MaxOffset, LSRUse::KindType Kind, 1715 MemAccessTy AccessTy, const SCEV *S, 1716 bool HasBaseReg) { 1717 // Fast-path: zero is always foldable. 1718 if (S->isZero()) return true; 1719 1720 // Conservatively, create an address with an immediate and a 1721 // base and a scale. 1722 int64_t BaseOffset = ExtractImmediate(S, SE); 1723 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1724 1725 // If there's anything else involved, it's not foldable. 1726 if (!S->isZero()) return false; 1727 1728 // Fast-path: zero is always foldable. 1729 if (BaseOffset == 0 && !BaseGV) return true; 1730 1731 // Conservatively, create an address with an immediate and a 1732 // base and a scale. 1733 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1734 1735 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1736 BaseOffset, HasBaseReg, Scale); 1737 } 1738 1739 namespace { 1740 1741 /// An individual increment in a Chain of IV increments. Relate an IV user to 1742 /// an expression that computes the IV it uses from the IV used by the previous 1743 /// link in the Chain. 1744 /// 1745 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1746 /// original IVOperand. The head of the chain's IVOperand is only valid during 1747 /// chain collection, before LSR replaces IV users. During chain generation, 1748 /// IncExpr can be used to find the new IVOperand that computes the same 1749 /// expression. 1750 struct IVInc { 1751 Instruction *UserInst; 1752 Value* IVOperand; 1753 const SCEV *IncExpr; 1754 1755 IVInc(Instruction *U, Value *O, const SCEV *E): 1756 UserInst(U), IVOperand(O), IncExpr(E) {} 1757 }; 1758 1759 // The list of IV increments in program order. We typically add the head of a 1760 // chain without finding subsequent links. 1761 struct IVChain { 1762 SmallVector<IVInc,1> Incs; 1763 const SCEV *ExprBase; 1764 1765 IVChain() : ExprBase(nullptr) {} 1766 1767 IVChain(const IVInc &Head, const SCEV *Base) 1768 : Incs(1, Head), ExprBase(Base) {} 1769 1770 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1771 1772 // Return the first increment in the chain. 1773 const_iterator begin() const { 1774 assert(!Incs.empty()); 1775 return std::next(Incs.begin()); 1776 } 1777 const_iterator end() const { 1778 return Incs.end(); 1779 } 1780 1781 // Returns true if this chain contains any increments. 1782 bool hasIncs() const { return Incs.size() >= 2; } 1783 1784 // Add an IVInc to the end of this chain. 1785 void add(const IVInc &X) { Incs.push_back(X); } 1786 1787 // Returns the last UserInst in the chain. 1788 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1789 1790 // Returns true if IncExpr can be profitably added to this chain. 1791 bool isProfitableIncrement(const SCEV *OperExpr, 1792 const SCEV *IncExpr, 1793 ScalarEvolution&); 1794 }; 1795 1796 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1797 /// between FarUsers that definitely cross IV increments and NearUsers that may 1798 /// be used between IV increments. 1799 struct ChainUsers { 1800 SmallPtrSet<Instruction*, 4> FarUsers; 1801 SmallPtrSet<Instruction*, 4> NearUsers; 1802 }; 1803 1804 /// This class holds state for the main loop strength reduction logic. 1805 class LSRInstance { 1806 IVUsers &IU; 1807 ScalarEvolution &SE; 1808 DominatorTree &DT; 1809 LoopInfo &LI; 1810 const TargetTransformInfo &TTI; 1811 Loop *const L; 1812 bool Changed; 1813 1814 /// This is the insert position that the current loop's induction variable 1815 /// increment should be placed. In simple loops, this is the latch block's 1816 /// terminator. But in more complicated cases, this is a position which will 1817 /// dominate all the in-loop post-increment users. 1818 Instruction *IVIncInsertPos; 1819 1820 /// Interesting factors between use strides. 1821 /// 1822 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1823 /// default, a SmallDenseSet, because we need to use the full range of 1824 /// int64_ts, and there's currently no good way of doing that with 1825 /// SmallDenseSet. 1826 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1827 1828 /// Interesting use types, to facilitate truncation reuse. 1829 SmallSetVector<Type *, 4> Types; 1830 1831 /// The list of interesting uses. 1832 SmallVector<LSRUse, 16> Uses; 1833 1834 /// Track which uses use which register candidates. 1835 RegUseTracker RegUses; 1836 1837 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1838 // have more than a few IV increment chains in a loop. Missing a Chain falls 1839 // back to normal LSR behavior for those uses. 1840 static const unsigned MaxChains = 8; 1841 1842 /// IV users can form a chain of IV increments. 1843 SmallVector<IVChain, MaxChains> IVChainVec; 1844 1845 /// IV users that belong to profitable IVChains. 1846 SmallPtrSet<Use*, MaxChains> IVIncSet; 1847 1848 void OptimizeShadowIV(); 1849 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1850 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1851 void OptimizeLoopTermCond(); 1852 1853 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1854 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1855 void FinalizeChain(IVChain &Chain); 1856 void CollectChains(); 1857 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1858 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1859 1860 void CollectInterestingTypesAndFactors(); 1861 void CollectFixupsAndInitialFormulae(); 1862 1863 // Support for sharing of LSRUses between LSRFixups. 1864 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1865 UseMapTy UseMap; 1866 1867 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1868 LSRUse::KindType Kind, MemAccessTy AccessTy); 1869 1870 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1871 MemAccessTy AccessTy); 1872 1873 void DeleteUse(LSRUse &LU, size_t LUIdx); 1874 1875 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1876 1877 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1878 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1879 void CountRegisters(const Formula &F, size_t LUIdx); 1880 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1881 1882 void CollectLoopInvariantFixupsAndFormulae(); 1883 1884 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1885 unsigned Depth = 0); 1886 1887 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1888 const Formula &Base, unsigned Depth, 1889 size_t Idx, bool IsScaledReg = false); 1890 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1891 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1892 const Formula &Base, size_t Idx, 1893 bool IsScaledReg = false); 1894 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1895 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1896 const Formula &Base, 1897 const SmallVectorImpl<int64_t> &Worklist, 1898 size_t Idx, bool IsScaledReg = false); 1899 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1900 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1901 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1902 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1903 void GenerateCrossUseConstantOffsets(); 1904 void GenerateAllReuseFormulae(); 1905 1906 void FilterOutUndesirableDedicatedRegisters(); 1907 1908 size_t EstimateSearchSpaceComplexity() const; 1909 void NarrowSearchSpaceByDetectingSupersets(); 1910 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1911 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1912 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 1913 void NarrowSearchSpaceByDeletingCostlyFormulas(); 1914 void NarrowSearchSpaceByPickingWinnerRegs(); 1915 void NarrowSearchSpaceUsingHeuristics(); 1916 1917 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1918 Cost &SolutionCost, 1919 SmallVectorImpl<const Formula *> &Workspace, 1920 const Cost &CurCost, 1921 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1922 DenseSet<const SCEV *> &VisitedRegs) const; 1923 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1924 1925 BasicBlock::iterator 1926 HoistInsertPosition(BasicBlock::iterator IP, 1927 const SmallVectorImpl<Instruction *> &Inputs) const; 1928 BasicBlock::iterator 1929 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1930 const LSRFixup &LF, 1931 const LSRUse &LU, 1932 SCEVExpander &Rewriter) const; 1933 1934 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 1935 BasicBlock::iterator IP, SCEVExpander &Rewriter, 1936 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1937 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 1938 const Formula &F, SCEVExpander &Rewriter, 1939 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1940 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 1941 SCEVExpander &Rewriter, 1942 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1943 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1944 1945 public: 1946 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1947 LoopInfo &LI, const TargetTransformInfo &TTI); 1948 1949 bool getChanged() const { return Changed; } 1950 1951 void print_factors_and_types(raw_ostream &OS) const; 1952 void print_fixups(raw_ostream &OS) const; 1953 void print_uses(raw_ostream &OS) const; 1954 void print(raw_ostream &OS) const; 1955 void dump() const; 1956 }; 1957 1958 } // end anonymous namespace 1959 1960 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1961 /// the cast operation. 1962 void LSRInstance::OptimizeShadowIV() { 1963 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1964 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1965 return; 1966 1967 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1968 UI != E; /* empty */) { 1969 IVUsers::const_iterator CandidateUI = UI; 1970 ++UI; 1971 Instruction *ShadowUse = CandidateUI->getUser(); 1972 Type *DestTy = nullptr; 1973 bool IsSigned = false; 1974 1975 /* If shadow use is a int->float cast then insert a second IV 1976 to eliminate this cast. 1977 1978 for (unsigned i = 0; i < n; ++i) 1979 foo((double)i); 1980 1981 is transformed into 1982 1983 double d = 0.0; 1984 for (unsigned i = 0; i < n; ++i, ++d) 1985 foo(d); 1986 */ 1987 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1988 IsSigned = false; 1989 DestTy = UCast->getDestTy(); 1990 } 1991 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1992 IsSigned = true; 1993 DestTy = SCast->getDestTy(); 1994 } 1995 if (!DestTy) continue; 1996 1997 // If target does not support DestTy natively then do not apply 1998 // this transformation. 1999 if (!TTI.isTypeLegal(DestTy)) continue; 2000 2001 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2002 if (!PH) continue; 2003 if (PH->getNumIncomingValues() != 2) continue; 2004 2005 Type *SrcTy = PH->getType(); 2006 int Mantissa = DestTy->getFPMantissaWidth(); 2007 if (Mantissa == -1) continue; 2008 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2009 continue; 2010 2011 unsigned Entry, Latch; 2012 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2013 Entry = 0; 2014 Latch = 1; 2015 } else { 2016 Entry = 1; 2017 Latch = 0; 2018 } 2019 2020 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2021 if (!Init) continue; 2022 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2023 (double)Init->getSExtValue() : 2024 (double)Init->getZExtValue()); 2025 2026 BinaryOperator *Incr = 2027 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2028 if (!Incr) continue; 2029 if (Incr->getOpcode() != Instruction::Add 2030 && Incr->getOpcode() != Instruction::Sub) 2031 continue; 2032 2033 /* Initialize new IV, double d = 0.0 in above example. */ 2034 ConstantInt *C = nullptr; 2035 if (Incr->getOperand(0) == PH) 2036 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2037 else if (Incr->getOperand(1) == PH) 2038 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2039 else 2040 continue; 2041 2042 if (!C) continue; 2043 2044 // Ignore negative constants, as the code below doesn't handle them 2045 // correctly. TODO: Remove this restriction. 2046 if (!C->getValue().isStrictlyPositive()) continue; 2047 2048 /* Add new PHINode. */ 2049 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2050 2051 /* create new increment. '++d' in above example. */ 2052 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2053 BinaryOperator *NewIncr = 2054 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2055 Instruction::FAdd : Instruction::FSub, 2056 NewPH, CFP, "IV.S.next.", Incr); 2057 2058 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2059 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2060 2061 /* Remove cast operation */ 2062 ShadowUse->replaceAllUsesWith(NewPH); 2063 ShadowUse->eraseFromParent(); 2064 Changed = true; 2065 break; 2066 } 2067 } 2068 2069 /// If Cond has an operand that is an expression of an IV, set the IV user and 2070 /// stride information and return true, otherwise return false. 2071 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2072 for (IVStrideUse &U : IU) 2073 if (U.getUser() == Cond) { 2074 // NOTE: we could handle setcc instructions with multiple uses here, but 2075 // InstCombine does it as well for simple uses, it's not clear that it 2076 // occurs enough in real life to handle. 2077 CondUse = &U; 2078 return true; 2079 } 2080 return false; 2081 } 2082 2083 /// Rewrite the loop's terminating condition if it uses a max computation. 2084 /// 2085 /// This is a narrow solution to a specific, but acute, problem. For loops 2086 /// like this: 2087 /// 2088 /// i = 0; 2089 /// do { 2090 /// p[i] = 0.0; 2091 /// } while (++i < n); 2092 /// 2093 /// the trip count isn't just 'n', because 'n' might not be positive. And 2094 /// unfortunately this can come up even for loops where the user didn't use 2095 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2096 /// will commonly be lowered like this: 2097 // 2098 /// if (n > 0) { 2099 /// i = 0; 2100 /// do { 2101 /// p[i] = 0.0; 2102 /// } while (++i < n); 2103 /// } 2104 /// 2105 /// and then it's possible for subsequent optimization to obscure the if 2106 /// test in such a way that indvars can't find it. 2107 /// 2108 /// When indvars can't find the if test in loops like this, it creates a 2109 /// max expression, which allows it to give the loop a canonical 2110 /// induction variable: 2111 /// 2112 /// i = 0; 2113 /// max = n < 1 ? 1 : n; 2114 /// do { 2115 /// p[i] = 0.0; 2116 /// } while (++i != max); 2117 /// 2118 /// Canonical induction variables are necessary because the loop passes 2119 /// are designed around them. The most obvious example of this is the 2120 /// LoopInfo analysis, which doesn't remember trip count values. It 2121 /// expects to be able to rediscover the trip count each time it is 2122 /// needed, and it does this using a simple analysis that only succeeds if 2123 /// the loop has a canonical induction variable. 2124 /// 2125 /// However, when it comes time to generate code, the maximum operation 2126 /// can be quite costly, especially if it's inside of an outer loop. 2127 /// 2128 /// This function solves this problem by detecting this type of loop and 2129 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2130 /// the instructions for the maximum computation. 2131 /// 2132 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2133 // Check that the loop matches the pattern we're looking for. 2134 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2135 Cond->getPredicate() != CmpInst::ICMP_NE) 2136 return Cond; 2137 2138 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2139 if (!Sel || !Sel->hasOneUse()) return Cond; 2140 2141 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2142 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2143 return Cond; 2144 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2145 2146 // Add one to the backedge-taken count to get the trip count. 2147 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2148 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2149 2150 // Check for a max calculation that matches the pattern. There's no check 2151 // for ICMP_ULE here because the comparison would be with zero, which 2152 // isn't interesting. 2153 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2154 const SCEVNAryExpr *Max = nullptr; 2155 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2156 Pred = ICmpInst::ICMP_SLE; 2157 Max = S; 2158 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2159 Pred = ICmpInst::ICMP_SLT; 2160 Max = S; 2161 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2162 Pred = ICmpInst::ICMP_ULT; 2163 Max = U; 2164 } else { 2165 // No match; bail. 2166 return Cond; 2167 } 2168 2169 // To handle a max with more than two operands, this optimization would 2170 // require additional checking and setup. 2171 if (Max->getNumOperands() != 2) 2172 return Cond; 2173 2174 const SCEV *MaxLHS = Max->getOperand(0); 2175 const SCEV *MaxRHS = Max->getOperand(1); 2176 2177 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2178 // for a comparison with 1. For <= and >=, a comparison with zero. 2179 if (!MaxLHS || 2180 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2181 return Cond; 2182 2183 // Check the relevant induction variable for conformance to 2184 // the pattern. 2185 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2186 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2187 if (!AR || !AR->isAffine() || 2188 AR->getStart() != One || 2189 AR->getStepRecurrence(SE) != One) 2190 return Cond; 2191 2192 assert(AR->getLoop() == L && 2193 "Loop condition operand is an addrec in a different loop!"); 2194 2195 // Check the right operand of the select, and remember it, as it will 2196 // be used in the new comparison instruction. 2197 Value *NewRHS = nullptr; 2198 if (ICmpInst::isTrueWhenEqual(Pred)) { 2199 // Look for n+1, and grab n. 2200 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2201 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2202 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2203 NewRHS = BO->getOperand(0); 2204 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2205 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2206 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2207 NewRHS = BO->getOperand(0); 2208 if (!NewRHS) 2209 return Cond; 2210 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2211 NewRHS = Sel->getOperand(1); 2212 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2213 NewRHS = Sel->getOperand(2); 2214 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2215 NewRHS = SU->getValue(); 2216 else 2217 // Max doesn't match expected pattern. 2218 return Cond; 2219 2220 // Determine the new comparison opcode. It may be signed or unsigned, 2221 // and the original comparison may be either equality or inequality. 2222 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2223 Pred = CmpInst::getInversePredicate(Pred); 2224 2225 // Ok, everything looks ok to change the condition into an SLT or SGE and 2226 // delete the max calculation. 2227 ICmpInst *NewCond = 2228 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2229 2230 // Delete the max calculation instructions. 2231 Cond->replaceAllUsesWith(NewCond); 2232 CondUse->setUser(NewCond); 2233 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2234 Cond->eraseFromParent(); 2235 Sel->eraseFromParent(); 2236 if (Cmp->use_empty()) 2237 Cmp->eraseFromParent(); 2238 return NewCond; 2239 } 2240 2241 /// Change loop terminating condition to use the postinc iv when possible. 2242 void 2243 LSRInstance::OptimizeLoopTermCond() { 2244 SmallPtrSet<Instruction *, 4> PostIncs; 2245 2246 // We need a different set of heuristics for rotated and non-rotated loops. 2247 // If a loop is rotated then the latch is also the backedge, so inserting 2248 // post-inc expressions just before the latch is ideal. To reduce live ranges 2249 // it also makes sense to rewrite terminating conditions to use post-inc 2250 // expressions. 2251 // 2252 // If the loop is not rotated then the latch is not a backedge; the latch 2253 // check is done in the loop head. Adding post-inc expressions before the 2254 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2255 // in the loop body. In this case we do *not* want to use post-inc expressions 2256 // in the latch check, and we want to insert post-inc expressions before 2257 // the backedge. 2258 BasicBlock *LatchBlock = L->getLoopLatch(); 2259 SmallVector<BasicBlock*, 8> ExitingBlocks; 2260 L->getExitingBlocks(ExitingBlocks); 2261 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2262 return LatchBlock != BB; 2263 })) { 2264 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2265 IVIncInsertPos = LatchBlock->getTerminator(); 2266 return; 2267 } 2268 2269 // Otherwise treat this as a rotated loop. 2270 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2271 2272 // Get the terminating condition for the loop if possible. If we 2273 // can, we want to change it to use a post-incremented version of its 2274 // induction variable, to allow coalescing the live ranges for the IV into 2275 // one register value. 2276 2277 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2278 if (!TermBr) 2279 continue; 2280 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2281 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2282 continue; 2283 2284 // Search IVUsesByStride to find Cond's IVUse if there is one. 2285 IVStrideUse *CondUse = nullptr; 2286 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2287 if (!FindIVUserForCond(Cond, CondUse)) 2288 continue; 2289 2290 // If the trip count is computed in terms of a max (due to ScalarEvolution 2291 // being unable to find a sufficient guard, for example), change the loop 2292 // comparison to use SLT or ULT instead of NE. 2293 // One consequence of doing this now is that it disrupts the count-down 2294 // optimization. That's not always a bad thing though, because in such 2295 // cases it may still be worthwhile to avoid a max. 2296 Cond = OptimizeMax(Cond, CondUse); 2297 2298 // If this exiting block dominates the latch block, it may also use 2299 // the post-inc value if it won't be shared with other uses. 2300 // Check for dominance. 2301 if (!DT.dominates(ExitingBlock, LatchBlock)) 2302 continue; 2303 2304 // Conservatively avoid trying to use the post-inc value in non-latch 2305 // exits if there may be pre-inc users in intervening blocks. 2306 if (LatchBlock != ExitingBlock) 2307 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2308 // Test if the use is reachable from the exiting block. This dominator 2309 // query is a conservative approximation of reachability. 2310 if (&*UI != CondUse && 2311 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2312 // Conservatively assume there may be reuse if the quotient of their 2313 // strides could be a legal scale. 2314 const SCEV *A = IU.getStride(*CondUse, L); 2315 const SCEV *B = IU.getStride(*UI, L); 2316 if (!A || !B) continue; 2317 if (SE.getTypeSizeInBits(A->getType()) != 2318 SE.getTypeSizeInBits(B->getType())) { 2319 if (SE.getTypeSizeInBits(A->getType()) > 2320 SE.getTypeSizeInBits(B->getType())) 2321 B = SE.getSignExtendExpr(B, A->getType()); 2322 else 2323 A = SE.getSignExtendExpr(A, B->getType()); 2324 } 2325 if (const SCEVConstant *D = 2326 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2327 const ConstantInt *C = D->getValue(); 2328 // Stride of one or negative one can have reuse with non-addresses. 2329 if (C->isOne() || C->isMinusOne()) 2330 goto decline_post_inc; 2331 // Avoid weird situations. 2332 if (C->getValue().getMinSignedBits() >= 64 || 2333 C->getValue().isMinSignedValue()) 2334 goto decline_post_inc; 2335 // Check for possible scaled-address reuse. 2336 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2337 int64_t Scale = C->getSExtValue(); 2338 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2339 /*BaseOffset=*/0, 2340 /*HasBaseReg=*/false, Scale, 2341 AccessTy.AddrSpace)) 2342 goto decline_post_inc; 2343 Scale = -Scale; 2344 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2345 /*BaseOffset=*/0, 2346 /*HasBaseReg=*/false, Scale, 2347 AccessTy.AddrSpace)) 2348 goto decline_post_inc; 2349 } 2350 } 2351 2352 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2353 << *Cond << '\n'); 2354 2355 // It's possible for the setcc instruction to be anywhere in the loop, and 2356 // possible for it to have multiple users. If it is not immediately before 2357 // the exiting block branch, move it. 2358 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2359 if (Cond->hasOneUse()) { 2360 Cond->moveBefore(TermBr); 2361 } else { 2362 // Clone the terminating condition and insert into the loopend. 2363 ICmpInst *OldCond = Cond; 2364 Cond = cast<ICmpInst>(Cond->clone()); 2365 Cond->setName(L->getHeader()->getName() + ".termcond"); 2366 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2367 2368 // Clone the IVUse, as the old use still exists! 2369 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2370 TermBr->replaceUsesOfWith(OldCond, Cond); 2371 } 2372 } 2373 2374 // If we get to here, we know that we can transform the setcc instruction to 2375 // use the post-incremented version of the IV, allowing us to coalesce the 2376 // live ranges for the IV correctly. 2377 CondUse->transformToPostInc(L); 2378 Changed = true; 2379 2380 PostIncs.insert(Cond); 2381 decline_post_inc:; 2382 } 2383 2384 // Determine an insertion point for the loop induction variable increment. It 2385 // must dominate all the post-inc comparisons we just set up, and it must 2386 // dominate the loop latch edge. 2387 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2388 for (Instruction *Inst : PostIncs) { 2389 BasicBlock *BB = 2390 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2391 Inst->getParent()); 2392 if (BB == Inst->getParent()) 2393 IVIncInsertPos = Inst; 2394 else if (BB != IVIncInsertPos->getParent()) 2395 IVIncInsertPos = BB->getTerminator(); 2396 } 2397 } 2398 2399 /// Determine if the given use can accommodate a fixup at the given offset and 2400 /// other details. If so, update the use and return true. 2401 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2402 bool HasBaseReg, LSRUse::KindType Kind, 2403 MemAccessTy AccessTy) { 2404 int64_t NewMinOffset = LU.MinOffset; 2405 int64_t NewMaxOffset = LU.MaxOffset; 2406 MemAccessTy NewAccessTy = AccessTy; 2407 2408 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2409 // something conservative, however this can pessimize in the case that one of 2410 // the uses will have all its uses outside the loop, for example. 2411 if (LU.Kind != Kind) 2412 return false; 2413 2414 // Check for a mismatched access type, and fall back conservatively as needed. 2415 // TODO: Be less conservative when the type is similar and can use the same 2416 // addressing modes. 2417 if (Kind == LSRUse::Address) { 2418 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2419 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2420 AccessTy.AddrSpace); 2421 } 2422 } 2423 2424 // Conservatively assume HasBaseReg is true for now. 2425 if (NewOffset < LU.MinOffset) { 2426 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2427 LU.MaxOffset - NewOffset, HasBaseReg)) 2428 return false; 2429 NewMinOffset = NewOffset; 2430 } else if (NewOffset > LU.MaxOffset) { 2431 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2432 NewOffset - LU.MinOffset, HasBaseReg)) 2433 return false; 2434 NewMaxOffset = NewOffset; 2435 } 2436 2437 // Update the use. 2438 LU.MinOffset = NewMinOffset; 2439 LU.MaxOffset = NewMaxOffset; 2440 LU.AccessTy = NewAccessTy; 2441 return true; 2442 } 2443 2444 /// Return an LSRUse index and an offset value for a fixup which needs the given 2445 /// expression, with the given kind and optional access type. Either reuse an 2446 /// existing use or create a new one, as needed. 2447 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2448 LSRUse::KindType Kind, 2449 MemAccessTy AccessTy) { 2450 const SCEV *Copy = Expr; 2451 int64_t Offset = ExtractImmediate(Expr, SE); 2452 2453 // Basic uses can't accept any offset, for example. 2454 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2455 Offset, /*HasBaseReg=*/ true)) { 2456 Expr = Copy; 2457 Offset = 0; 2458 } 2459 2460 std::pair<UseMapTy::iterator, bool> P = 2461 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2462 if (!P.second) { 2463 // A use already existed with this base. 2464 size_t LUIdx = P.first->second; 2465 LSRUse &LU = Uses[LUIdx]; 2466 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2467 // Reuse this use. 2468 return std::make_pair(LUIdx, Offset); 2469 } 2470 2471 // Create a new use. 2472 size_t LUIdx = Uses.size(); 2473 P.first->second = LUIdx; 2474 Uses.push_back(LSRUse(Kind, AccessTy)); 2475 LSRUse &LU = Uses[LUIdx]; 2476 2477 LU.MinOffset = Offset; 2478 LU.MaxOffset = Offset; 2479 return std::make_pair(LUIdx, Offset); 2480 } 2481 2482 /// Delete the given use from the Uses list. 2483 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2484 if (&LU != &Uses.back()) 2485 std::swap(LU, Uses.back()); 2486 Uses.pop_back(); 2487 2488 // Update RegUses. 2489 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2490 } 2491 2492 /// Look for a use distinct from OrigLU which is has a formula that has the same 2493 /// registers as the given formula. 2494 LSRUse * 2495 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2496 const LSRUse &OrigLU) { 2497 // Search all uses for the formula. This could be more clever. 2498 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2499 LSRUse &LU = Uses[LUIdx]; 2500 // Check whether this use is close enough to OrigLU, to see whether it's 2501 // worthwhile looking through its formulae. 2502 // Ignore ICmpZero uses because they may contain formulae generated by 2503 // GenerateICmpZeroScales, in which case adding fixup offsets may 2504 // be invalid. 2505 if (&LU != &OrigLU && 2506 LU.Kind != LSRUse::ICmpZero && 2507 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2508 LU.WidestFixupType == OrigLU.WidestFixupType && 2509 LU.HasFormulaWithSameRegs(OrigF)) { 2510 // Scan through this use's formulae. 2511 for (const Formula &F : LU.Formulae) { 2512 // Check to see if this formula has the same registers and symbols 2513 // as OrigF. 2514 if (F.BaseRegs == OrigF.BaseRegs && 2515 F.ScaledReg == OrigF.ScaledReg && 2516 F.BaseGV == OrigF.BaseGV && 2517 F.Scale == OrigF.Scale && 2518 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2519 if (F.BaseOffset == 0) 2520 return &LU; 2521 // This is the formula where all the registers and symbols matched; 2522 // there aren't going to be any others. Since we declined it, we 2523 // can skip the rest of the formulae and proceed to the next LSRUse. 2524 break; 2525 } 2526 } 2527 } 2528 } 2529 2530 // Nothing looked good. 2531 return nullptr; 2532 } 2533 2534 void LSRInstance::CollectInterestingTypesAndFactors() { 2535 SmallSetVector<const SCEV *, 4> Strides; 2536 2537 // Collect interesting types and strides. 2538 SmallVector<const SCEV *, 4> Worklist; 2539 for (const IVStrideUse &U : IU) { 2540 const SCEV *Expr = IU.getExpr(U); 2541 2542 // Collect interesting types. 2543 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2544 2545 // Add strides for mentioned loops. 2546 Worklist.push_back(Expr); 2547 do { 2548 const SCEV *S = Worklist.pop_back_val(); 2549 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2550 if (AR->getLoop() == L) 2551 Strides.insert(AR->getStepRecurrence(SE)); 2552 Worklist.push_back(AR->getStart()); 2553 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2554 Worklist.append(Add->op_begin(), Add->op_end()); 2555 } 2556 } while (!Worklist.empty()); 2557 } 2558 2559 // Compute interesting factors from the set of interesting strides. 2560 for (SmallSetVector<const SCEV *, 4>::const_iterator 2561 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2562 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2563 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2564 const SCEV *OldStride = *I; 2565 const SCEV *NewStride = *NewStrideIter; 2566 2567 if (SE.getTypeSizeInBits(OldStride->getType()) != 2568 SE.getTypeSizeInBits(NewStride->getType())) { 2569 if (SE.getTypeSizeInBits(OldStride->getType()) > 2570 SE.getTypeSizeInBits(NewStride->getType())) 2571 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2572 else 2573 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2574 } 2575 if (const SCEVConstant *Factor = 2576 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2577 SE, true))) { 2578 if (Factor->getAPInt().getMinSignedBits() <= 64) 2579 Factors.insert(Factor->getAPInt().getSExtValue()); 2580 } else if (const SCEVConstant *Factor = 2581 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2582 NewStride, 2583 SE, true))) { 2584 if (Factor->getAPInt().getMinSignedBits() <= 64) 2585 Factors.insert(Factor->getAPInt().getSExtValue()); 2586 } 2587 } 2588 2589 // If all uses use the same type, don't bother looking for truncation-based 2590 // reuse. 2591 if (Types.size() == 1) 2592 Types.clear(); 2593 2594 DEBUG(print_factors_and_types(dbgs())); 2595 } 2596 2597 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2598 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2599 /// IVStrideUses, we could partially skip this. 2600 static User::op_iterator 2601 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2602 Loop *L, ScalarEvolution &SE) { 2603 for(; OI != OE; ++OI) { 2604 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2605 if (!SE.isSCEVable(Oper->getType())) 2606 continue; 2607 2608 if (const SCEVAddRecExpr *AR = 2609 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2610 if (AR->getLoop() == L) 2611 break; 2612 } 2613 } 2614 } 2615 return OI; 2616 } 2617 2618 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2619 /// a convenient helper. 2620 static Value *getWideOperand(Value *Oper) { 2621 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2622 return Trunc->getOperand(0); 2623 return Oper; 2624 } 2625 2626 /// Return true if we allow an IV chain to include both types. 2627 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2628 Type *LType = LVal->getType(); 2629 Type *RType = RVal->getType(); 2630 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2631 // Different address spaces means (possibly) 2632 // different types of the pointer implementation, 2633 // e.g. i16 vs i32 so disallow that. 2634 (LType->getPointerAddressSpace() == 2635 RType->getPointerAddressSpace())); 2636 } 2637 2638 /// Return an approximation of this SCEV expression's "base", or NULL for any 2639 /// constant. Returning the expression itself is conservative. Returning a 2640 /// deeper subexpression is more precise and valid as long as it isn't less 2641 /// complex than another subexpression. For expressions involving multiple 2642 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2643 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2644 /// IVInc==b-a. 2645 /// 2646 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2647 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2648 static const SCEV *getExprBase(const SCEV *S) { 2649 switch (S->getSCEVType()) { 2650 default: // uncluding scUnknown. 2651 return S; 2652 case scConstant: 2653 return nullptr; 2654 case scTruncate: 2655 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2656 case scZeroExtend: 2657 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2658 case scSignExtend: 2659 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2660 case scAddExpr: { 2661 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2662 // there's nothing more complex. 2663 // FIXME: not sure if we want to recognize negation. 2664 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2665 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2666 E(Add->op_begin()); I != E; ++I) { 2667 const SCEV *SubExpr = *I; 2668 if (SubExpr->getSCEVType() == scAddExpr) 2669 return getExprBase(SubExpr); 2670 2671 if (SubExpr->getSCEVType() != scMulExpr) 2672 return SubExpr; 2673 } 2674 return S; // all operands are scaled, be conservative. 2675 } 2676 case scAddRecExpr: 2677 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2678 } 2679 } 2680 2681 /// Return true if the chain increment is profitable to expand into a loop 2682 /// invariant value, which may require its own register. A profitable chain 2683 /// increment will be an offset relative to the same base. We allow such offsets 2684 /// to potentially be used as chain increment as long as it's not obviously 2685 /// expensive to expand using real instructions. 2686 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2687 const SCEV *IncExpr, 2688 ScalarEvolution &SE) { 2689 // Aggressively form chains when -stress-ivchain. 2690 if (StressIVChain) 2691 return true; 2692 2693 // Do not replace a constant offset from IV head with a nonconstant IV 2694 // increment. 2695 if (!isa<SCEVConstant>(IncExpr)) { 2696 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2697 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2698 return false; 2699 } 2700 2701 SmallPtrSet<const SCEV*, 8> Processed; 2702 return !isHighCostExpansion(IncExpr, Processed, SE); 2703 } 2704 2705 /// Return true if the number of registers needed for the chain is estimated to 2706 /// be less than the number required for the individual IV users. First prohibit 2707 /// any IV users that keep the IV live across increments (the Users set should 2708 /// be empty). Next count the number and type of increments in the chain. 2709 /// 2710 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2711 /// effectively use postinc addressing modes. Only consider it profitable it the 2712 /// increments can be computed in fewer registers when chained. 2713 /// 2714 /// TODO: Consider IVInc free if it's already used in another chains. 2715 static bool 2716 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2717 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2718 if (StressIVChain) 2719 return true; 2720 2721 if (!Chain.hasIncs()) 2722 return false; 2723 2724 if (!Users.empty()) { 2725 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2726 for (Instruction *Inst : Users) { 2727 dbgs() << " " << *Inst << "\n"; 2728 }); 2729 return false; 2730 } 2731 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2732 2733 // The chain itself may require a register, so intialize cost to 1. 2734 int cost = 1; 2735 2736 // A complete chain likely eliminates the need for keeping the original IV in 2737 // a register. LSR does not currently know how to form a complete chain unless 2738 // the header phi already exists. 2739 if (isa<PHINode>(Chain.tailUserInst()) 2740 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2741 --cost; 2742 } 2743 const SCEV *LastIncExpr = nullptr; 2744 unsigned NumConstIncrements = 0; 2745 unsigned NumVarIncrements = 0; 2746 unsigned NumReusedIncrements = 0; 2747 for (const IVInc &Inc : Chain) { 2748 if (Inc.IncExpr->isZero()) 2749 continue; 2750 2751 // Incrementing by zero or some constant is neutral. We assume constants can 2752 // be folded into an addressing mode or an add's immediate operand. 2753 if (isa<SCEVConstant>(Inc.IncExpr)) { 2754 ++NumConstIncrements; 2755 continue; 2756 } 2757 2758 if (Inc.IncExpr == LastIncExpr) 2759 ++NumReusedIncrements; 2760 else 2761 ++NumVarIncrements; 2762 2763 LastIncExpr = Inc.IncExpr; 2764 } 2765 // An IV chain with a single increment is handled by LSR's postinc 2766 // uses. However, a chain with multiple increments requires keeping the IV's 2767 // value live longer than it needs to be if chained. 2768 if (NumConstIncrements > 1) 2769 --cost; 2770 2771 // Materializing increment expressions in the preheader that didn't exist in 2772 // the original code may cost a register. For example, sign-extended array 2773 // indices can produce ridiculous increments like this: 2774 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2775 cost += NumVarIncrements; 2776 2777 // Reusing variable increments likely saves a register to hold the multiple of 2778 // the stride. 2779 cost -= NumReusedIncrements; 2780 2781 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2782 << "\n"); 2783 2784 return cost < 0; 2785 } 2786 2787 /// Add this IV user to an existing chain or make it the head of a new chain. 2788 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2789 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2790 // When IVs are used as types of varying widths, they are generally converted 2791 // to a wider type with some uses remaining narrow under a (free) trunc. 2792 Value *const NextIV = getWideOperand(IVOper); 2793 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2794 const SCEV *const OperExprBase = getExprBase(OperExpr); 2795 2796 // Visit all existing chains. Check if its IVOper can be computed as a 2797 // profitable loop invariant increment from the last link in the Chain. 2798 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2799 const SCEV *LastIncExpr = nullptr; 2800 for (; ChainIdx < NChains; ++ChainIdx) { 2801 IVChain &Chain = IVChainVec[ChainIdx]; 2802 2803 // Prune the solution space aggressively by checking that both IV operands 2804 // are expressions that operate on the same unscaled SCEVUnknown. This 2805 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2806 // first avoids creating extra SCEV expressions. 2807 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2808 continue; 2809 2810 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2811 if (!isCompatibleIVType(PrevIV, NextIV)) 2812 continue; 2813 2814 // A phi node terminates a chain. 2815 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2816 continue; 2817 2818 // The increment must be loop-invariant so it can be kept in a register. 2819 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2820 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2821 if (!SE.isLoopInvariant(IncExpr, L)) 2822 continue; 2823 2824 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2825 LastIncExpr = IncExpr; 2826 break; 2827 } 2828 } 2829 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2830 // bother for phi nodes, because they must be last in the chain. 2831 if (ChainIdx == NChains) { 2832 if (isa<PHINode>(UserInst)) 2833 return; 2834 if (NChains >= MaxChains && !StressIVChain) { 2835 DEBUG(dbgs() << "IV Chain Limit\n"); 2836 return; 2837 } 2838 LastIncExpr = OperExpr; 2839 // IVUsers may have skipped over sign/zero extensions. We don't currently 2840 // attempt to form chains involving extensions unless they can be hoisted 2841 // into this loop's AddRec. 2842 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2843 return; 2844 ++NChains; 2845 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2846 OperExprBase)); 2847 ChainUsersVec.resize(NChains); 2848 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2849 << ") IV=" << *LastIncExpr << "\n"); 2850 } else { 2851 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2852 << ") IV+" << *LastIncExpr << "\n"); 2853 // Add this IV user to the end of the chain. 2854 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2855 } 2856 IVChain &Chain = IVChainVec[ChainIdx]; 2857 2858 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2859 // This chain's NearUsers become FarUsers. 2860 if (!LastIncExpr->isZero()) { 2861 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2862 NearUsers.end()); 2863 NearUsers.clear(); 2864 } 2865 2866 // All other uses of IVOperand become near uses of the chain. 2867 // We currently ignore intermediate values within SCEV expressions, assuming 2868 // they will eventually be used be the current chain, or can be computed 2869 // from one of the chain increments. To be more precise we could 2870 // transitively follow its user and only add leaf IV users to the set. 2871 for (User *U : IVOper->users()) { 2872 Instruction *OtherUse = dyn_cast<Instruction>(U); 2873 if (!OtherUse) 2874 continue; 2875 // Uses in the chain will no longer be uses if the chain is formed. 2876 // Include the head of the chain in this iteration (not Chain.begin()). 2877 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2878 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2879 for( ; IncIter != IncEnd; ++IncIter) { 2880 if (IncIter->UserInst == OtherUse) 2881 break; 2882 } 2883 if (IncIter != IncEnd) 2884 continue; 2885 2886 if (SE.isSCEVable(OtherUse->getType()) 2887 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2888 && IU.isIVUserOrOperand(OtherUse)) { 2889 continue; 2890 } 2891 NearUsers.insert(OtherUse); 2892 } 2893 2894 // Since this user is part of the chain, it's no longer considered a use 2895 // of the chain. 2896 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2897 } 2898 2899 /// Populate the vector of Chains. 2900 /// 2901 /// This decreases ILP at the architecture level. Targets with ample registers, 2902 /// multiple memory ports, and no register renaming probably don't want 2903 /// this. However, such targets should probably disable LSR altogether. 2904 /// 2905 /// The job of LSR is to make a reasonable choice of induction variables across 2906 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2907 /// ILP *within the loop* if the target wants it. 2908 /// 2909 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2910 /// will not reorder memory operations, it will recognize this as a chain, but 2911 /// will generate redundant IV increments. Ideally this would be corrected later 2912 /// by a smart scheduler: 2913 /// = A[i] 2914 /// = A[i+x] 2915 /// A[i] = 2916 /// A[i+x] = 2917 /// 2918 /// TODO: Walk the entire domtree within this loop, not just the path to the 2919 /// loop latch. This will discover chains on side paths, but requires 2920 /// maintaining multiple copies of the Chains state. 2921 void LSRInstance::CollectChains() { 2922 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2923 SmallVector<ChainUsers, 8> ChainUsersVec; 2924 2925 SmallVector<BasicBlock *,8> LatchPath; 2926 BasicBlock *LoopHeader = L->getHeader(); 2927 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2928 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2929 LatchPath.push_back(Rung->getBlock()); 2930 } 2931 LatchPath.push_back(LoopHeader); 2932 2933 // Walk the instruction stream from the loop header to the loop latch. 2934 for (BasicBlock *BB : reverse(LatchPath)) { 2935 for (Instruction &I : *BB) { 2936 // Skip instructions that weren't seen by IVUsers analysis. 2937 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2938 continue; 2939 2940 // Ignore users that are part of a SCEV expression. This way we only 2941 // consider leaf IV Users. This effectively rediscovers a portion of 2942 // IVUsers analysis but in program order this time. 2943 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2944 continue; 2945 2946 // Remove this instruction from any NearUsers set it may be in. 2947 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2948 ChainIdx < NChains; ++ChainIdx) { 2949 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 2950 } 2951 // Search for operands that can be chained. 2952 SmallPtrSet<Instruction*, 4> UniqueOperands; 2953 User::op_iterator IVOpEnd = I.op_end(); 2954 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 2955 while (IVOpIter != IVOpEnd) { 2956 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2957 if (UniqueOperands.insert(IVOpInst).second) 2958 ChainInstruction(&I, IVOpInst, ChainUsersVec); 2959 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2960 } 2961 } // Continue walking down the instructions. 2962 } // Continue walking down the domtree. 2963 // Visit phi backedges to determine if the chain can generate the IV postinc. 2964 for (BasicBlock::iterator I = L->getHeader()->begin(); 2965 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2966 if (!SE.isSCEVable(PN->getType())) 2967 continue; 2968 2969 Instruction *IncV = 2970 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2971 if (IncV) 2972 ChainInstruction(PN, IncV, ChainUsersVec); 2973 } 2974 // Remove any unprofitable chains. 2975 unsigned ChainIdx = 0; 2976 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2977 UsersIdx < NChains; ++UsersIdx) { 2978 if (!isProfitableChain(IVChainVec[UsersIdx], 2979 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2980 continue; 2981 // Preserve the chain at UsesIdx. 2982 if (ChainIdx != UsersIdx) 2983 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2984 FinalizeChain(IVChainVec[ChainIdx]); 2985 ++ChainIdx; 2986 } 2987 IVChainVec.resize(ChainIdx); 2988 } 2989 2990 void LSRInstance::FinalizeChain(IVChain &Chain) { 2991 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2992 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2993 2994 for (const IVInc &Inc : Chain) { 2995 DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 2996 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 2997 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 2998 IVIncSet.insert(UseI); 2999 } 3000 } 3001 3002 /// Return true if the IVInc can be folded into an addressing mode. 3003 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3004 Value *Operand, const TargetTransformInfo &TTI) { 3005 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3006 if (!IncConst || !isAddressUse(UserInst, Operand)) 3007 return false; 3008 3009 if (IncConst->getAPInt().getMinSignedBits() > 64) 3010 return false; 3011 3012 MemAccessTy AccessTy = getAccessType(UserInst); 3013 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3014 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3015 IncOffset, /*HaseBaseReg=*/false)) 3016 return false; 3017 3018 return true; 3019 } 3020 3021 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3022 /// user's operand from the previous IV user's operand. 3023 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3024 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3025 // Find the new IVOperand for the head of the chain. It may have been replaced 3026 // by LSR. 3027 const IVInc &Head = Chain.Incs[0]; 3028 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3029 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3030 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3031 IVOpEnd, L, SE); 3032 Value *IVSrc = nullptr; 3033 while (IVOpIter != IVOpEnd) { 3034 IVSrc = getWideOperand(*IVOpIter); 3035 3036 // If this operand computes the expression that the chain needs, we may use 3037 // it. (Check this after setting IVSrc which is used below.) 3038 // 3039 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3040 // narrow for the chain, so we can no longer use it. We do allow using a 3041 // wider phi, assuming the LSR checked for free truncation. In that case we 3042 // should already have a truncate on this operand such that 3043 // getSCEV(IVSrc) == IncExpr. 3044 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3045 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3046 break; 3047 } 3048 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3049 } 3050 if (IVOpIter == IVOpEnd) { 3051 // Gracefully give up on this chain. 3052 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3053 return; 3054 } 3055 3056 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3057 Type *IVTy = IVSrc->getType(); 3058 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3059 const SCEV *LeftOverExpr = nullptr; 3060 for (const IVInc &Inc : Chain) { 3061 Instruction *InsertPt = Inc.UserInst; 3062 if (isa<PHINode>(InsertPt)) 3063 InsertPt = L->getLoopLatch()->getTerminator(); 3064 3065 // IVOper will replace the current IV User's operand. IVSrc is the IV 3066 // value currently held in a register. 3067 Value *IVOper = IVSrc; 3068 if (!Inc.IncExpr->isZero()) { 3069 // IncExpr was the result of subtraction of two narrow values, so must 3070 // be signed. 3071 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3072 LeftOverExpr = LeftOverExpr ? 3073 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3074 } 3075 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3076 // Expand the IV increment. 3077 Rewriter.clearPostInc(); 3078 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3079 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3080 SE.getUnknown(IncV)); 3081 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3082 3083 // If an IV increment can't be folded, use it as the next IV value. 3084 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3085 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3086 IVSrc = IVOper; 3087 LeftOverExpr = nullptr; 3088 } 3089 } 3090 Type *OperTy = Inc.IVOperand->getType(); 3091 if (IVTy != OperTy) { 3092 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3093 "cannot extend a chained IV"); 3094 IRBuilder<> Builder(InsertPt); 3095 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3096 } 3097 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3098 DeadInsts.emplace_back(Inc.IVOperand); 3099 } 3100 // If LSR created a new, wider phi, we may also replace its postinc. We only 3101 // do this if we also found a wide value for the head of the chain. 3102 if (isa<PHINode>(Chain.tailUserInst())) { 3103 for (BasicBlock::iterator I = L->getHeader()->begin(); 3104 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 3105 if (!isCompatibleIVType(Phi, IVSrc)) 3106 continue; 3107 Instruction *PostIncV = dyn_cast<Instruction>( 3108 Phi->getIncomingValueForBlock(L->getLoopLatch())); 3109 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3110 continue; 3111 Value *IVOper = IVSrc; 3112 Type *PostIncTy = PostIncV->getType(); 3113 if (IVTy != PostIncTy) { 3114 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3115 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3116 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3117 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3118 } 3119 Phi->replaceUsesOfWith(PostIncV, IVOper); 3120 DeadInsts.emplace_back(PostIncV); 3121 } 3122 } 3123 } 3124 3125 void LSRInstance::CollectFixupsAndInitialFormulae() { 3126 for (const IVStrideUse &U : IU) { 3127 Instruction *UserInst = U.getUser(); 3128 // Skip IV users that are part of profitable IV Chains. 3129 User::op_iterator UseI = 3130 find(UserInst->operands(), U.getOperandValToReplace()); 3131 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3132 if (IVIncSet.count(UseI)) { 3133 DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3134 continue; 3135 } 3136 3137 LSRUse::KindType Kind = LSRUse::Basic; 3138 MemAccessTy AccessTy; 3139 if (isAddressUse(UserInst, U.getOperandValToReplace())) { 3140 Kind = LSRUse::Address; 3141 AccessTy = getAccessType(UserInst); 3142 } 3143 3144 const SCEV *S = IU.getExpr(U); 3145 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3146 3147 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3148 // (N - i == 0), and this allows (N - i) to be the expression that we work 3149 // with rather than just N or i, so we can consider the register 3150 // requirements for both N and i at the same time. Limiting this code to 3151 // equality icmps is not a problem because all interesting loops use 3152 // equality icmps, thanks to IndVarSimplify. 3153 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3154 if (CI->isEquality()) { 3155 // Swap the operands if needed to put the OperandValToReplace on the 3156 // left, for consistency. 3157 Value *NV = CI->getOperand(1); 3158 if (NV == U.getOperandValToReplace()) { 3159 CI->setOperand(1, CI->getOperand(0)); 3160 CI->setOperand(0, NV); 3161 NV = CI->getOperand(1); 3162 Changed = true; 3163 } 3164 3165 // x == y --> x - y == 0 3166 const SCEV *N = SE.getSCEV(NV); 3167 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3168 // S is normalized, so normalize N before folding it into S 3169 // to keep the result normalized. 3170 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3171 Kind = LSRUse::ICmpZero; 3172 S = SE.getMinusSCEV(N, S); 3173 } 3174 3175 // -1 and the negations of all interesting strides (except the negation 3176 // of -1) are now also interesting. 3177 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3178 if (Factors[i] != -1) 3179 Factors.insert(-(uint64_t)Factors[i]); 3180 Factors.insert(-1); 3181 } 3182 3183 // Get or create an LSRUse. 3184 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3185 size_t LUIdx = P.first; 3186 int64_t Offset = P.second; 3187 LSRUse &LU = Uses[LUIdx]; 3188 3189 // Record the fixup. 3190 LSRFixup &LF = LU.getNewFixup(); 3191 LF.UserInst = UserInst; 3192 LF.OperandValToReplace = U.getOperandValToReplace(); 3193 LF.PostIncLoops = TmpPostIncLoops; 3194 LF.Offset = Offset; 3195 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3196 3197 if (!LU.WidestFixupType || 3198 SE.getTypeSizeInBits(LU.WidestFixupType) < 3199 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3200 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3201 3202 // If this is the first use of this LSRUse, give it a formula. 3203 if (LU.Formulae.empty()) { 3204 InsertInitialFormula(S, LU, LUIdx); 3205 CountRegisters(LU.Formulae.back(), LUIdx); 3206 } 3207 } 3208 3209 DEBUG(print_fixups(dbgs())); 3210 } 3211 3212 /// Insert a formula for the given expression into the given use, separating out 3213 /// loop-variant portions from loop-invariant and loop-computable portions. 3214 void 3215 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3216 // Mark uses whose expressions cannot be expanded. 3217 if (!isSafeToExpand(S, SE)) 3218 LU.RigidFormula = true; 3219 3220 Formula F; 3221 F.initialMatch(S, L, SE); 3222 bool Inserted = InsertFormula(LU, LUIdx, F); 3223 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3224 } 3225 3226 /// Insert a simple single-register formula for the given expression into the 3227 /// given use. 3228 void 3229 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3230 LSRUse &LU, size_t LUIdx) { 3231 Formula F; 3232 F.BaseRegs.push_back(S); 3233 F.HasBaseReg = true; 3234 bool Inserted = InsertFormula(LU, LUIdx, F); 3235 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3236 } 3237 3238 /// Note which registers are used by the given formula, updating RegUses. 3239 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3240 if (F.ScaledReg) 3241 RegUses.countRegister(F.ScaledReg, LUIdx); 3242 for (const SCEV *BaseReg : F.BaseRegs) 3243 RegUses.countRegister(BaseReg, LUIdx); 3244 } 3245 3246 /// If the given formula has not yet been inserted, add it to the list, and 3247 /// return true. Return false otherwise. 3248 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3249 // Do not insert formula that we will not be able to expand. 3250 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3251 "Formula is illegal"); 3252 3253 if (!LU.InsertFormula(F, *L)) 3254 return false; 3255 3256 CountRegisters(F, LUIdx); 3257 return true; 3258 } 3259 3260 /// Check for other uses of loop-invariant values which we're tracking. These 3261 /// other uses will pin these values in registers, making them less profitable 3262 /// for elimination. 3263 /// TODO: This currently misses non-constant addrec step registers. 3264 /// TODO: Should this give more weight to users inside the loop? 3265 void 3266 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3267 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3268 SmallPtrSet<const SCEV *, 32> Visited; 3269 3270 while (!Worklist.empty()) { 3271 const SCEV *S = Worklist.pop_back_val(); 3272 3273 // Don't process the same SCEV twice 3274 if (!Visited.insert(S).second) 3275 continue; 3276 3277 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3278 Worklist.append(N->op_begin(), N->op_end()); 3279 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3280 Worklist.push_back(C->getOperand()); 3281 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3282 Worklist.push_back(D->getLHS()); 3283 Worklist.push_back(D->getRHS()); 3284 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3285 const Value *V = US->getValue(); 3286 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3287 // Look for instructions defined outside the loop. 3288 if (L->contains(Inst)) continue; 3289 } else if (isa<UndefValue>(V)) 3290 // Undef doesn't have a live range, so it doesn't matter. 3291 continue; 3292 for (const Use &U : V->uses()) { 3293 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3294 // Ignore non-instructions. 3295 if (!UserInst) 3296 continue; 3297 // Ignore instructions in other functions (as can happen with 3298 // Constants). 3299 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3300 continue; 3301 // Ignore instructions not dominated by the loop. 3302 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3303 UserInst->getParent() : 3304 cast<PHINode>(UserInst)->getIncomingBlock( 3305 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3306 if (!DT.dominates(L->getHeader(), UseBB)) 3307 continue; 3308 // Don't bother if the instruction is in a BB which ends in an EHPad. 3309 if (UseBB->getTerminator()->isEHPad()) 3310 continue; 3311 // Don't bother rewriting PHIs in catchswitch blocks. 3312 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3313 continue; 3314 // Ignore uses which are part of other SCEV expressions, to avoid 3315 // analyzing them multiple times. 3316 if (SE.isSCEVable(UserInst->getType())) { 3317 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3318 // If the user is a no-op, look through to its uses. 3319 if (!isa<SCEVUnknown>(UserS)) 3320 continue; 3321 if (UserS == US) { 3322 Worklist.push_back( 3323 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3324 continue; 3325 } 3326 } 3327 // Ignore icmp instructions which are already being analyzed. 3328 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3329 unsigned OtherIdx = !U.getOperandNo(); 3330 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3331 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3332 continue; 3333 } 3334 3335 std::pair<size_t, int64_t> P = getUse( 3336 S, LSRUse::Basic, MemAccessTy()); 3337 size_t LUIdx = P.first; 3338 int64_t Offset = P.second; 3339 LSRUse &LU = Uses[LUIdx]; 3340 LSRFixup &LF = LU.getNewFixup(); 3341 LF.UserInst = const_cast<Instruction *>(UserInst); 3342 LF.OperandValToReplace = U; 3343 LF.Offset = Offset; 3344 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3345 if (!LU.WidestFixupType || 3346 SE.getTypeSizeInBits(LU.WidestFixupType) < 3347 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3348 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3349 InsertSupplementalFormula(US, LU, LUIdx); 3350 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3351 break; 3352 } 3353 } 3354 } 3355 } 3356 3357 /// Split S into subexpressions which can be pulled out into separate 3358 /// registers. If C is non-null, multiply each subexpression by C. 3359 /// 3360 /// Return remainder expression after factoring the subexpressions captured by 3361 /// Ops. If Ops is complete, return NULL. 3362 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3363 SmallVectorImpl<const SCEV *> &Ops, 3364 const Loop *L, 3365 ScalarEvolution &SE, 3366 unsigned Depth = 0) { 3367 // Arbitrarily cap recursion to protect compile time. 3368 if (Depth >= 3) 3369 return S; 3370 3371 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3372 // Break out add operands. 3373 for (const SCEV *S : Add->operands()) { 3374 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3375 if (Remainder) 3376 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3377 } 3378 return nullptr; 3379 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3380 // Split a non-zero base out of an addrec. 3381 if (AR->getStart()->isZero() || !AR->isAffine()) 3382 return S; 3383 3384 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3385 C, Ops, L, SE, Depth+1); 3386 // Split the non-zero AddRec unless it is part of a nested recurrence that 3387 // does not pertain to this loop. 3388 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3389 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3390 Remainder = nullptr; 3391 } 3392 if (Remainder != AR->getStart()) { 3393 if (!Remainder) 3394 Remainder = SE.getConstant(AR->getType(), 0); 3395 return SE.getAddRecExpr(Remainder, 3396 AR->getStepRecurrence(SE), 3397 AR->getLoop(), 3398 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3399 SCEV::FlagAnyWrap); 3400 } 3401 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3402 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3403 if (Mul->getNumOperands() != 2) 3404 return S; 3405 if (const SCEVConstant *Op0 = 3406 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3407 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3408 const SCEV *Remainder = 3409 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3410 if (Remainder) 3411 Ops.push_back(SE.getMulExpr(C, Remainder)); 3412 return nullptr; 3413 } 3414 } 3415 return S; 3416 } 3417 3418 /// \brief Helper function for LSRInstance::GenerateReassociations. 3419 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3420 const Formula &Base, 3421 unsigned Depth, size_t Idx, 3422 bool IsScaledReg) { 3423 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3424 SmallVector<const SCEV *, 8> AddOps; 3425 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3426 if (Remainder) 3427 AddOps.push_back(Remainder); 3428 3429 if (AddOps.size() == 1) 3430 return; 3431 3432 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3433 JE = AddOps.end(); 3434 J != JE; ++J) { 3435 3436 // Loop-variant "unknown" values are uninteresting; we won't be able to 3437 // do anything meaningful with them. 3438 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3439 continue; 3440 3441 // Don't pull a constant into a register if the constant could be folded 3442 // into an immediate field. 3443 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3444 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3445 continue; 3446 3447 // Collect all operands except *J. 3448 SmallVector<const SCEV *, 8> InnerAddOps( 3449 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3450 InnerAddOps.append(std::next(J), 3451 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3452 3453 // Don't leave just a constant behind in a register if the constant could 3454 // be folded into an immediate field. 3455 if (InnerAddOps.size() == 1 && 3456 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3457 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3458 continue; 3459 3460 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3461 if (InnerSum->isZero()) 3462 continue; 3463 Formula F = Base; 3464 3465 // Add the remaining pieces of the add back into the new formula. 3466 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3467 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3468 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3469 InnerSumSC->getValue()->getZExtValue())) { 3470 F.UnfoldedOffset = 3471 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3472 if (IsScaledReg) 3473 F.ScaledReg = nullptr; 3474 else 3475 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3476 } else if (IsScaledReg) 3477 F.ScaledReg = InnerSum; 3478 else 3479 F.BaseRegs[Idx] = InnerSum; 3480 3481 // Add J as its own register, or an unfolded immediate. 3482 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3483 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3484 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3485 SC->getValue()->getZExtValue())) 3486 F.UnfoldedOffset = 3487 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3488 else 3489 F.BaseRegs.push_back(*J); 3490 // We may have changed the number of register in base regs, adjust the 3491 // formula accordingly. 3492 F.canonicalize(*L); 3493 3494 if (InsertFormula(LU, LUIdx, F)) 3495 // If that formula hadn't been seen before, recurse to find more like 3496 // it. 3497 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3498 } 3499 } 3500 3501 /// Split out subexpressions from adds and the bases of addrecs. 3502 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3503 Formula Base, unsigned Depth) { 3504 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3505 // Arbitrarily cap recursion to protect compile time. 3506 if (Depth >= 3) 3507 return; 3508 3509 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3510 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3511 3512 if (Base.Scale == 1) 3513 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3514 /* Idx */ -1, /* IsScaledReg */ true); 3515 } 3516 3517 /// Generate a formula consisting of all of the loop-dominating registers added 3518 /// into a single register. 3519 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3520 Formula Base) { 3521 // This method is only interesting on a plurality of registers. 3522 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3523 return; 3524 3525 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3526 // processing the formula. 3527 Base.unscale(); 3528 Formula F = Base; 3529 F.BaseRegs.clear(); 3530 SmallVector<const SCEV *, 4> Ops; 3531 for (const SCEV *BaseReg : Base.BaseRegs) { 3532 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3533 !SE.hasComputableLoopEvolution(BaseReg, L)) 3534 Ops.push_back(BaseReg); 3535 else 3536 F.BaseRegs.push_back(BaseReg); 3537 } 3538 if (Ops.size() > 1) { 3539 const SCEV *Sum = SE.getAddExpr(Ops); 3540 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3541 // opportunity to fold something. For now, just ignore such cases 3542 // rather than proceed with zero in a register. 3543 if (!Sum->isZero()) { 3544 F.BaseRegs.push_back(Sum); 3545 F.canonicalize(*L); 3546 (void)InsertFormula(LU, LUIdx, F); 3547 } 3548 } 3549 } 3550 3551 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3552 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3553 const Formula &Base, size_t Idx, 3554 bool IsScaledReg) { 3555 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3556 GlobalValue *GV = ExtractSymbol(G, SE); 3557 if (G->isZero() || !GV) 3558 return; 3559 Formula F = Base; 3560 F.BaseGV = GV; 3561 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3562 return; 3563 if (IsScaledReg) 3564 F.ScaledReg = G; 3565 else 3566 F.BaseRegs[Idx] = G; 3567 (void)InsertFormula(LU, LUIdx, F); 3568 } 3569 3570 /// Generate reuse formulae using symbolic offsets. 3571 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3572 Formula Base) { 3573 // We can't add a symbolic offset if the address already contains one. 3574 if (Base.BaseGV) return; 3575 3576 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3577 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3578 if (Base.Scale == 1) 3579 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3580 /* IsScaledReg */ true); 3581 } 3582 3583 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3584 void LSRInstance::GenerateConstantOffsetsImpl( 3585 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3586 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3587 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3588 for (int64_t Offset : Worklist) { 3589 Formula F = Base; 3590 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3591 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3592 LU.AccessTy, F)) { 3593 // Add the offset to the base register. 3594 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3595 // If it cancelled out, drop the base register, otherwise update it. 3596 if (NewG->isZero()) { 3597 if (IsScaledReg) { 3598 F.Scale = 0; 3599 F.ScaledReg = nullptr; 3600 } else 3601 F.deleteBaseReg(F.BaseRegs[Idx]); 3602 F.canonicalize(*L); 3603 } else if (IsScaledReg) 3604 F.ScaledReg = NewG; 3605 else 3606 F.BaseRegs[Idx] = NewG; 3607 3608 (void)InsertFormula(LU, LUIdx, F); 3609 } 3610 } 3611 3612 int64_t Imm = ExtractImmediate(G, SE); 3613 if (G->isZero() || Imm == 0) 3614 return; 3615 Formula F = Base; 3616 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3617 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3618 return; 3619 if (IsScaledReg) 3620 F.ScaledReg = G; 3621 else 3622 F.BaseRegs[Idx] = G; 3623 (void)InsertFormula(LU, LUIdx, F); 3624 } 3625 3626 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3627 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3628 Formula Base) { 3629 // TODO: For now, just add the min and max offset, because it usually isn't 3630 // worthwhile looking at everything inbetween. 3631 SmallVector<int64_t, 2> Worklist; 3632 Worklist.push_back(LU.MinOffset); 3633 if (LU.MaxOffset != LU.MinOffset) 3634 Worklist.push_back(LU.MaxOffset); 3635 3636 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3637 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3638 if (Base.Scale == 1) 3639 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3640 /* IsScaledReg */ true); 3641 } 3642 3643 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3644 /// == y -> x*c == y*c. 3645 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3646 Formula Base) { 3647 if (LU.Kind != LSRUse::ICmpZero) return; 3648 3649 // Determine the integer type for the base formula. 3650 Type *IntTy = Base.getType(); 3651 if (!IntTy) return; 3652 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3653 3654 // Don't do this if there is more than one offset. 3655 if (LU.MinOffset != LU.MaxOffset) return; 3656 3657 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3658 3659 // Check each interesting stride. 3660 for (int64_t Factor : Factors) { 3661 // Check that the multiplication doesn't overflow. 3662 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3663 continue; 3664 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3665 if (NewBaseOffset / Factor != Base.BaseOffset) 3666 continue; 3667 // If the offset will be truncated at this use, check that it is in bounds. 3668 if (!IntTy->isPointerTy() && 3669 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3670 continue; 3671 3672 // Check that multiplying with the use offset doesn't overflow. 3673 int64_t Offset = LU.MinOffset; 3674 if (Offset == INT64_MIN && Factor == -1) 3675 continue; 3676 Offset = (uint64_t)Offset * Factor; 3677 if (Offset / Factor != LU.MinOffset) 3678 continue; 3679 // If the offset will be truncated at this use, check that it is in bounds. 3680 if (!IntTy->isPointerTy() && 3681 !ConstantInt::isValueValidForType(IntTy, Offset)) 3682 continue; 3683 3684 Formula F = Base; 3685 F.BaseOffset = NewBaseOffset; 3686 3687 // Check that this scale is legal. 3688 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3689 continue; 3690 3691 // Compensate for the use having MinOffset built into it. 3692 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3693 3694 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3695 3696 // Check that multiplying with each base register doesn't overflow. 3697 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3698 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3699 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3700 goto next; 3701 } 3702 3703 // Check that multiplying with the scaled register doesn't overflow. 3704 if (F.ScaledReg) { 3705 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3706 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3707 continue; 3708 } 3709 3710 // Check that multiplying with the unfolded offset doesn't overflow. 3711 if (F.UnfoldedOffset != 0) { 3712 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3713 continue; 3714 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3715 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3716 continue; 3717 // If the offset will be truncated, check that it is in bounds. 3718 if (!IntTy->isPointerTy() && 3719 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3720 continue; 3721 } 3722 3723 // If we make it here and it's legal, add it. 3724 (void)InsertFormula(LU, LUIdx, F); 3725 next:; 3726 } 3727 } 3728 3729 /// Generate stride factor reuse formulae by making use of scaled-offset address 3730 /// modes, for example. 3731 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3732 // Determine the integer type for the base formula. 3733 Type *IntTy = Base.getType(); 3734 if (!IntTy) return; 3735 3736 // If this Formula already has a scaled register, we can't add another one. 3737 // Try to unscale the formula to generate a better scale. 3738 if (Base.Scale != 0 && !Base.unscale()) 3739 return; 3740 3741 assert(Base.Scale == 0 && "unscale did not did its job!"); 3742 3743 // Check each interesting stride. 3744 for (int64_t Factor : Factors) { 3745 Base.Scale = Factor; 3746 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3747 // Check whether this scale is going to be legal. 3748 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3749 Base)) { 3750 // As a special-case, handle special out-of-loop Basic users specially. 3751 // TODO: Reconsider this special case. 3752 if (LU.Kind == LSRUse::Basic && 3753 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3754 LU.AccessTy, Base) && 3755 LU.AllFixupsOutsideLoop) 3756 LU.Kind = LSRUse::Special; 3757 else 3758 continue; 3759 } 3760 // For an ICmpZero, negating a solitary base register won't lead to 3761 // new solutions. 3762 if (LU.Kind == LSRUse::ICmpZero && 3763 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3764 continue; 3765 // For each addrec base reg, if its loop is current loop, apply the scale. 3766 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3767 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3768 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3769 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3770 if (FactorS->isZero()) 3771 continue; 3772 // Divide out the factor, ignoring high bits, since we'll be 3773 // scaling the value back up in the end. 3774 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3775 // TODO: This could be optimized to avoid all the copying. 3776 Formula F = Base; 3777 F.ScaledReg = Quotient; 3778 F.deleteBaseReg(F.BaseRegs[i]); 3779 // The canonical representation of 1*reg is reg, which is already in 3780 // Base. In that case, do not try to insert the formula, it will be 3781 // rejected anyway. 3782 if (F.Scale == 1 && (F.BaseRegs.empty() || 3783 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 3784 continue; 3785 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 3786 // non canonical Formula with ScaledReg's loop not being L. 3787 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 3788 F.canonicalize(*L); 3789 (void)InsertFormula(LU, LUIdx, F); 3790 } 3791 } 3792 } 3793 } 3794 } 3795 3796 /// Generate reuse formulae from different IV types. 3797 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3798 // Don't bother truncating symbolic values. 3799 if (Base.BaseGV) return; 3800 3801 // Determine the integer type for the base formula. 3802 Type *DstTy = Base.getType(); 3803 if (!DstTy) return; 3804 DstTy = SE.getEffectiveSCEVType(DstTy); 3805 3806 for (Type *SrcTy : Types) { 3807 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3808 Formula F = Base; 3809 3810 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3811 for (const SCEV *&BaseReg : F.BaseRegs) 3812 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3813 3814 // TODO: This assumes we've done basic processing on all uses and 3815 // have an idea what the register usage is. 3816 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3817 continue; 3818 3819 F.canonicalize(*L); 3820 (void)InsertFormula(LU, LUIdx, F); 3821 } 3822 } 3823 } 3824 3825 namespace { 3826 3827 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3828 /// modifications so that the search phase doesn't have to worry about the data 3829 /// structures moving underneath it. 3830 struct WorkItem { 3831 size_t LUIdx; 3832 int64_t Imm; 3833 const SCEV *OrigReg; 3834 3835 WorkItem(size_t LI, int64_t I, const SCEV *R) 3836 : LUIdx(LI), Imm(I), OrigReg(R) {} 3837 3838 void print(raw_ostream &OS) const; 3839 void dump() const; 3840 }; 3841 3842 } // end anonymous namespace 3843 3844 void WorkItem::print(raw_ostream &OS) const { 3845 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3846 << " , add offset " << Imm; 3847 } 3848 3849 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3850 LLVM_DUMP_METHOD void WorkItem::dump() const { 3851 print(errs()); errs() << '\n'; 3852 } 3853 #endif 3854 3855 /// Look for registers which are a constant distance apart and try to form reuse 3856 /// opportunities between them. 3857 void LSRInstance::GenerateCrossUseConstantOffsets() { 3858 // Group the registers by their value without any added constant offset. 3859 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3860 DenseMap<const SCEV *, ImmMapTy> Map; 3861 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3862 SmallVector<const SCEV *, 8> Sequence; 3863 for (const SCEV *Use : RegUses) { 3864 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3865 int64_t Imm = ExtractImmediate(Reg, SE); 3866 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3867 if (Pair.second) 3868 Sequence.push_back(Reg); 3869 Pair.first->second.insert(std::make_pair(Imm, Use)); 3870 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3871 } 3872 3873 // Now examine each set of registers with the same base value. Build up 3874 // a list of work to do and do the work in a separate step so that we're 3875 // not adding formulae and register counts while we're searching. 3876 SmallVector<WorkItem, 32> WorkItems; 3877 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3878 for (const SCEV *Reg : Sequence) { 3879 const ImmMapTy &Imms = Map.find(Reg)->second; 3880 3881 // It's not worthwhile looking for reuse if there's only one offset. 3882 if (Imms.size() == 1) 3883 continue; 3884 3885 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3886 for (const auto &Entry : Imms) 3887 dbgs() << ' ' << Entry.first; 3888 dbgs() << '\n'); 3889 3890 // Examine each offset. 3891 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3892 J != JE; ++J) { 3893 const SCEV *OrigReg = J->second; 3894 3895 int64_t JImm = J->first; 3896 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3897 3898 if (!isa<SCEVConstant>(OrigReg) && 3899 UsedByIndicesMap[Reg].count() == 1) { 3900 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3901 continue; 3902 } 3903 3904 // Conservatively examine offsets between this orig reg a few selected 3905 // other orig regs. 3906 ImmMapTy::const_iterator OtherImms[] = { 3907 Imms.begin(), std::prev(Imms.end()), 3908 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3909 2) 3910 }; 3911 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3912 ImmMapTy::const_iterator M = OtherImms[i]; 3913 if (M == J || M == JE) continue; 3914 3915 // Compute the difference between the two. 3916 int64_t Imm = (uint64_t)JImm - M->first; 3917 for (unsigned LUIdx : UsedByIndices.set_bits()) 3918 // Make a memo of this use, offset, and register tuple. 3919 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3920 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3921 } 3922 } 3923 } 3924 3925 Map.clear(); 3926 Sequence.clear(); 3927 UsedByIndicesMap.clear(); 3928 UniqueItems.clear(); 3929 3930 // Now iterate through the worklist and add new formulae. 3931 for (const WorkItem &WI : WorkItems) { 3932 size_t LUIdx = WI.LUIdx; 3933 LSRUse &LU = Uses[LUIdx]; 3934 int64_t Imm = WI.Imm; 3935 const SCEV *OrigReg = WI.OrigReg; 3936 3937 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3938 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3939 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3940 3941 // TODO: Use a more targeted data structure. 3942 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3943 Formula F = LU.Formulae[L]; 3944 // FIXME: The code for the scaled and unscaled registers looks 3945 // very similar but slightly different. Investigate if they 3946 // could be merged. That way, we would not have to unscale the 3947 // Formula. 3948 F.unscale(); 3949 // Use the immediate in the scaled register. 3950 if (F.ScaledReg == OrigReg) { 3951 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3952 // Don't create 50 + reg(-50). 3953 if (F.referencesReg(SE.getSCEV( 3954 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3955 continue; 3956 Formula NewF = F; 3957 NewF.BaseOffset = Offset; 3958 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3959 NewF)) 3960 continue; 3961 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3962 3963 // If the new scale is a constant in a register, and adding the constant 3964 // value to the immediate would produce a value closer to zero than the 3965 // immediate itself, then the formula isn't worthwhile. 3966 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3967 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 3968 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 3969 .ule(std::abs(NewF.BaseOffset))) 3970 continue; 3971 3972 // OK, looks good. 3973 NewF.canonicalize(*this->L); 3974 (void)InsertFormula(LU, LUIdx, NewF); 3975 } else { 3976 // Use the immediate in a base register. 3977 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3978 const SCEV *BaseReg = F.BaseRegs[N]; 3979 if (BaseReg != OrigReg) 3980 continue; 3981 Formula NewF = F; 3982 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3983 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3984 LU.Kind, LU.AccessTy, NewF)) { 3985 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3986 continue; 3987 NewF = F; 3988 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3989 } 3990 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3991 3992 // If the new formula has a constant in a register, and adding the 3993 // constant value to the immediate would produce a value closer to 3994 // zero than the immediate itself, then the formula isn't worthwhile. 3995 for (const SCEV *NewReg : NewF.BaseRegs) 3996 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 3997 if ((C->getAPInt() + NewF.BaseOffset) 3998 .abs() 3999 .slt(std::abs(NewF.BaseOffset)) && 4000 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4001 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4002 goto skip_formula; 4003 4004 // Ok, looks good. 4005 NewF.canonicalize(*this->L); 4006 (void)InsertFormula(LU, LUIdx, NewF); 4007 break; 4008 skip_formula:; 4009 } 4010 } 4011 } 4012 } 4013 } 4014 4015 /// Generate formulae for each use. 4016 void 4017 LSRInstance::GenerateAllReuseFormulae() { 4018 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4019 // queries are more precise. 4020 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4021 LSRUse &LU = Uses[LUIdx]; 4022 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4023 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4024 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4025 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4026 } 4027 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4028 LSRUse &LU = Uses[LUIdx]; 4029 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4030 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4031 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4032 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4033 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4034 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4035 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4036 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4037 } 4038 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4039 LSRUse &LU = Uses[LUIdx]; 4040 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4041 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4042 } 4043 4044 GenerateCrossUseConstantOffsets(); 4045 4046 DEBUG(dbgs() << "\n" 4047 "After generating reuse formulae:\n"; 4048 print_uses(dbgs())); 4049 } 4050 4051 /// If there are multiple formulae with the same set of registers used 4052 /// by other uses, pick the best one and delete the others. 4053 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4054 DenseSet<const SCEV *> VisitedRegs; 4055 SmallPtrSet<const SCEV *, 16> Regs; 4056 SmallPtrSet<const SCEV *, 16> LoserRegs; 4057 #ifndef NDEBUG 4058 bool ChangedFormulae = false; 4059 #endif 4060 4061 // Collect the best formula for each unique set of shared registers. This 4062 // is reset for each use. 4063 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 4064 BestFormulaeTy; 4065 BestFormulaeTy BestFormulae; 4066 4067 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4068 LSRUse &LU = Uses[LUIdx]; 4069 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4070 4071 bool Any = false; 4072 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4073 FIdx != NumForms; ++FIdx) { 4074 Formula &F = LU.Formulae[FIdx]; 4075 4076 // Some formulas are instant losers. For example, they may depend on 4077 // nonexistent AddRecs from other loops. These need to be filtered 4078 // immediately, otherwise heuristics could choose them over others leading 4079 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4080 // avoids the need to recompute this information across formulae using the 4081 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4082 // the corresponding bad register from the Regs set. 4083 Cost CostF; 4084 Regs.clear(); 4085 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 4086 if (CostF.isLoser()) { 4087 // During initial formula generation, undesirable formulae are generated 4088 // by uses within other loops that have some non-trivial address mode or 4089 // use the postinc form of the IV. LSR needs to provide these formulae 4090 // as the basis of rediscovering the desired formula that uses an AddRec 4091 // corresponding to the existing phi. Once all formulae have been 4092 // generated, these initial losers may be pruned. 4093 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4094 dbgs() << "\n"); 4095 } 4096 else { 4097 SmallVector<const SCEV *, 4> Key; 4098 for (const SCEV *Reg : F.BaseRegs) { 4099 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4100 Key.push_back(Reg); 4101 } 4102 if (F.ScaledReg && 4103 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4104 Key.push_back(F.ScaledReg); 4105 // Unstable sort by host order ok, because this is only used for 4106 // uniquifying. 4107 std::sort(Key.begin(), Key.end()); 4108 4109 std::pair<BestFormulaeTy::const_iterator, bool> P = 4110 BestFormulae.insert(std::make_pair(Key, FIdx)); 4111 if (P.second) 4112 continue; 4113 4114 Formula &Best = LU.Formulae[P.first->second]; 4115 4116 Cost CostBest; 4117 Regs.clear(); 4118 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 4119 if (CostF.isLess(CostBest, TTI)) 4120 std::swap(F, Best); 4121 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4122 dbgs() << "\n" 4123 " in favor of formula "; Best.print(dbgs()); 4124 dbgs() << '\n'); 4125 } 4126 #ifndef NDEBUG 4127 ChangedFormulae = true; 4128 #endif 4129 LU.DeleteFormula(F); 4130 --FIdx; 4131 --NumForms; 4132 Any = true; 4133 } 4134 4135 // Now that we've filtered out some formulae, recompute the Regs set. 4136 if (Any) 4137 LU.RecomputeRegs(LUIdx, RegUses); 4138 4139 // Reset this to prepare for the next use. 4140 BestFormulae.clear(); 4141 } 4142 4143 DEBUG(if (ChangedFormulae) { 4144 dbgs() << "\n" 4145 "After filtering out undesirable candidates:\n"; 4146 print_uses(dbgs()); 4147 }); 4148 } 4149 4150 // This is a rough guess that seems to work fairly well. 4151 static const size_t ComplexityLimit = UINT16_MAX; 4152 4153 /// Estimate the worst-case number of solutions the solver might have to 4154 /// consider. It almost never considers this many solutions because it prune the 4155 /// search space, but the pruning isn't always sufficient. 4156 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4157 size_t Power = 1; 4158 for (const LSRUse &LU : Uses) { 4159 size_t FSize = LU.Formulae.size(); 4160 if (FSize >= ComplexityLimit) { 4161 Power = ComplexityLimit; 4162 break; 4163 } 4164 Power *= FSize; 4165 if (Power >= ComplexityLimit) 4166 break; 4167 } 4168 return Power; 4169 } 4170 4171 /// When one formula uses a superset of the registers of another formula, it 4172 /// won't help reduce register pressure (though it may not necessarily hurt 4173 /// register pressure); remove it to simplify the system. 4174 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4175 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4176 DEBUG(dbgs() << "The search space is too complex.\n"); 4177 4178 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4179 "which use a superset of registers used by other " 4180 "formulae.\n"); 4181 4182 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4183 LSRUse &LU = Uses[LUIdx]; 4184 bool Any = false; 4185 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4186 Formula &F = LU.Formulae[i]; 4187 // Look for a formula with a constant or GV in a register. If the use 4188 // also has a formula with that same value in an immediate field, 4189 // delete the one that uses a register. 4190 for (SmallVectorImpl<const SCEV *>::const_iterator 4191 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4192 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4193 Formula NewF = F; 4194 NewF.BaseOffset += C->getValue()->getSExtValue(); 4195 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4196 (I - F.BaseRegs.begin())); 4197 if (LU.HasFormulaWithSameRegs(NewF)) { 4198 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4199 LU.DeleteFormula(F); 4200 --i; 4201 --e; 4202 Any = true; 4203 break; 4204 } 4205 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4206 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4207 if (!F.BaseGV) { 4208 Formula NewF = F; 4209 NewF.BaseGV = GV; 4210 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4211 (I - F.BaseRegs.begin())); 4212 if (LU.HasFormulaWithSameRegs(NewF)) { 4213 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4214 dbgs() << '\n'); 4215 LU.DeleteFormula(F); 4216 --i; 4217 --e; 4218 Any = true; 4219 break; 4220 } 4221 } 4222 } 4223 } 4224 } 4225 if (Any) 4226 LU.RecomputeRegs(LUIdx, RegUses); 4227 } 4228 4229 DEBUG(dbgs() << "After pre-selection:\n"; 4230 print_uses(dbgs())); 4231 } 4232 } 4233 4234 /// When there are many registers for expressions like A, A+1, A+2, etc., 4235 /// allocate a single register for them. 4236 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4237 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4238 return; 4239 4240 DEBUG(dbgs() << "The search space is too complex.\n" 4241 "Narrowing the search space by assuming that uses separated " 4242 "by a constant offset will use the same registers.\n"); 4243 4244 // This is especially useful for unrolled loops. 4245 4246 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4247 LSRUse &LU = Uses[LUIdx]; 4248 for (const Formula &F : LU.Formulae) { 4249 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4250 continue; 4251 4252 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4253 if (!LUThatHas) 4254 continue; 4255 4256 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4257 LU.Kind, LU.AccessTy)) 4258 continue; 4259 4260 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4261 4262 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4263 4264 // Transfer the fixups of LU to LUThatHas. 4265 for (LSRFixup &Fixup : LU.Fixups) { 4266 Fixup.Offset += F.BaseOffset; 4267 LUThatHas->pushFixup(Fixup); 4268 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4269 } 4270 4271 // Delete formulae from the new use which are no longer legal. 4272 bool Any = false; 4273 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4274 Formula &F = LUThatHas->Formulae[i]; 4275 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4276 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4277 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4278 dbgs() << '\n'); 4279 LUThatHas->DeleteFormula(F); 4280 --i; 4281 --e; 4282 Any = true; 4283 } 4284 } 4285 4286 if (Any) 4287 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4288 4289 // Delete the old use. 4290 DeleteUse(LU, LUIdx); 4291 --LUIdx; 4292 --NumUses; 4293 break; 4294 } 4295 } 4296 4297 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4298 } 4299 4300 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4301 /// we've done more filtering, as it may be able to find more formulae to 4302 /// eliminate. 4303 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4304 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4305 DEBUG(dbgs() << "The search space is too complex.\n"); 4306 4307 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4308 "undesirable dedicated registers.\n"); 4309 4310 FilterOutUndesirableDedicatedRegisters(); 4311 4312 DEBUG(dbgs() << "After pre-selection:\n"; 4313 print_uses(dbgs())); 4314 } 4315 } 4316 4317 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4318 /// Pick the best one and delete the others. 4319 /// This narrowing heuristic is to keep as many formulae with different 4320 /// Scale and ScaledReg pair as possible while narrowing the search space. 4321 /// The benefit is that it is more likely to find out a better solution 4322 /// from a formulae set with more Scale and ScaledReg variations than 4323 /// a formulae set with the same Scale and ScaledReg. The picking winner 4324 /// reg heurstic will often keep the formulae with the same Scale and 4325 /// ScaledReg and filter others, and we want to avoid that if possible. 4326 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4327 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4328 return; 4329 4330 DEBUG(dbgs() << "The search space is too complex.\n" 4331 "Narrowing the search space by choosing the best Formula " 4332 "from the Formulae with the same Scale and ScaledReg.\n"); 4333 4334 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4335 typedef DenseMap<std::pair<const SCEV *, int64_t>, size_t> BestFormulaeTy; 4336 BestFormulaeTy BestFormulae; 4337 #ifndef NDEBUG 4338 bool ChangedFormulae = false; 4339 #endif 4340 DenseSet<const SCEV *> VisitedRegs; 4341 SmallPtrSet<const SCEV *, 16> Regs; 4342 4343 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4344 LSRUse &LU = Uses[LUIdx]; 4345 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4346 4347 // Return true if Formula FA is better than Formula FB. 4348 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4349 // First we will try to choose the Formula with fewer new registers. 4350 // For a register used by current Formula, the more the register is 4351 // shared among LSRUses, the less we increase the register number 4352 // counter of the formula. 4353 size_t FARegNum = 0; 4354 for (const SCEV *Reg : FA.BaseRegs) { 4355 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4356 FARegNum += (NumUses - UsedByIndices.count() + 1); 4357 } 4358 size_t FBRegNum = 0; 4359 for (const SCEV *Reg : FB.BaseRegs) { 4360 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4361 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4362 } 4363 if (FARegNum != FBRegNum) 4364 return FARegNum < FBRegNum; 4365 4366 // If the new register numbers are the same, choose the Formula with 4367 // less Cost. 4368 Cost CostFA, CostFB; 4369 Regs.clear(); 4370 CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU); 4371 Regs.clear(); 4372 CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU); 4373 return CostFA.isLess(CostFB, TTI); 4374 }; 4375 4376 bool Any = false; 4377 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4378 ++FIdx) { 4379 Formula &F = LU.Formulae[FIdx]; 4380 if (!F.ScaledReg) 4381 continue; 4382 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4383 if (P.second) 4384 continue; 4385 4386 Formula &Best = LU.Formulae[P.first->second]; 4387 if (IsBetterThan(F, Best)) 4388 std::swap(F, Best); 4389 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4390 dbgs() << "\n" 4391 " in favor of formula "; 4392 Best.print(dbgs()); dbgs() << '\n'); 4393 #ifndef NDEBUG 4394 ChangedFormulae = true; 4395 #endif 4396 LU.DeleteFormula(F); 4397 --FIdx; 4398 --NumForms; 4399 Any = true; 4400 } 4401 if (Any) 4402 LU.RecomputeRegs(LUIdx, RegUses); 4403 4404 // Reset this to prepare for the next use. 4405 BestFormulae.clear(); 4406 } 4407 4408 DEBUG(if (ChangedFormulae) { 4409 dbgs() << "\n" 4410 "After filtering out undesirable candidates:\n"; 4411 print_uses(dbgs()); 4412 }); 4413 } 4414 4415 /// The function delete formulas with high registers number expectation. 4416 /// Assuming we don't know the value of each formula (already delete 4417 /// all inefficient), generate probability of not selecting for each 4418 /// register. 4419 /// For example, 4420 /// Use1: 4421 /// reg(a) + reg({0,+,1}) 4422 /// reg(a) + reg({-1,+,1}) + 1 4423 /// reg({a,+,1}) 4424 /// Use2: 4425 /// reg(b) + reg({0,+,1}) 4426 /// reg(b) + reg({-1,+,1}) + 1 4427 /// reg({b,+,1}) 4428 /// Use3: 4429 /// reg(c) + reg(b) + reg({0,+,1}) 4430 /// reg(c) + reg({b,+,1}) 4431 /// 4432 /// Probability of not selecting 4433 /// Use1 Use2 Use3 4434 /// reg(a) (1/3) * 1 * 1 4435 /// reg(b) 1 * (1/3) * (1/2) 4436 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4437 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4438 /// reg({a,+,1}) (2/3) * 1 * 1 4439 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4440 /// reg(c) 1 * 1 * 0 4441 /// 4442 /// Now count registers number mathematical expectation for each formula: 4443 /// Note that for each use we exclude probability if not selecting for the use. 4444 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4445 /// probabilty 1/3 of not selecting for Use1). 4446 /// Use1: 4447 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4448 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4449 /// reg({a,+,1}) 1 4450 /// Use2: 4451 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4452 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4453 /// reg({b,+,1}) 2/3 4454 /// Use3: 4455 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4456 /// reg(c) + reg({b,+,1}) 1 + 2/3 4457 4458 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4459 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4460 return; 4461 // Ok, we have too many of formulae on our hands to conveniently handle. 4462 // Use a rough heuristic to thin out the list. 4463 4464 // Set of Regs wich will be 100% used in final solution. 4465 // Used in each formula of a solution (in example above this is reg(c)). 4466 // We can skip them in calculations. 4467 SmallPtrSet<const SCEV *, 4> UniqRegs; 4468 DEBUG(dbgs() << "The search space is too complex.\n"); 4469 4470 // Map each register to probability of not selecting 4471 DenseMap <const SCEV *, float> RegNumMap; 4472 for (const SCEV *Reg : RegUses) { 4473 if (UniqRegs.count(Reg)) 4474 continue; 4475 float PNotSel = 1; 4476 for (const LSRUse &LU : Uses) { 4477 if (!LU.Regs.count(Reg)) 4478 continue; 4479 float P = LU.getNotSelectedProbability(Reg); 4480 if (P != 0.0) 4481 PNotSel *= P; 4482 else 4483 UniqRegs.insert(Reg); 4484 } 4485 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4486 } 4487 4488 DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4489 4490 // Delete formulas where registers number expectation is high. 4491 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4492 LSRUse &LU = Uses[LUIdx]; 4493 // If nothing to delete - continue. 4494 if (LU.Formulae.size() < 2) 4495 continue; 4496 // This is temporary solution to test performance. Float should be 4497 // replaced with round independent type (based on integers) to avoid 4498 // different results for different target builds. 4499 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4500 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4501 size_t MinIdx = 0; 4502 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4503 Formula &F = LU.Formulae[i]; 4504 float FRegNum = 0; 4505 float FARegNum = 0; 4506 for (const SCEV *BaseReg : F.BaseRegs) { 4507 if (UniqRegs.count(BaseReg)) 4508 continue; 4509 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4510 if (isa<SCEVAddRecExpr>(BaseReg)) 4511 FARegNum += 4512 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4513 } 4514 if (const SCEV *ScaledReg = F.ScaledReg) { 4515 if (!UniqRegs.count(ScaledReg)) { 4516 FRegNum += 4517 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4518 if (isa<SCEVAddRecExpr>(ScaledReg)) 4519 FARegNum += 4520 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4521 } 4522 } 4523 if (FMinRegNum > FRegNum || 4524 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4525 FMinRegNum = FRegNum; 4526 FMinARegNum = FARegNum; 4527 MinIdx = i; 4528 } 4529 } 4530 DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4531 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4532 if (MinIdx != 0) 4533 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4534 while (LU.Formulae.size() != 1) { 4535 DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4536 dbgs() << '\n'); 4537 LU.Formulae.pop_back(); 4538 } 4539 LU.RecomputeRegs(LUIdx, RegUses); 4540 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4541 Formula &F = LU.Formulae[0]; 4542 DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4543 // When we choose the formula, the regs become unique. 4544 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4545 if (F.ScaledReg) 4546 UniqRegs.insert(F.ScaledReg); 4547 } 4548 DEBUG(dbgs() << "After pre-selection:\n"; 4549 print_uses(dbgs())); 4550 } 4551 4552 4553 /// Pick a register which seems likely to be profitable, and then in any use 4554 /// which has any reference to that register, delete all formulae which do not 4555 /// reference that register. 4556 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4557 // With all other options exhausted, loop until the system is simple 4558 // enough to handle. 4559 SmallPtrSet<const SCEV *, 4> Taken; 4560 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4561 // Ok, we have too many of formulae on our hands to conveniently handle. 4562 // Use a rough heuristic to thin out the list. 4563 DEBUG(dbgs() << "The search space is too complex.\n"); 4564 4565 // Pick the register which is used by the most LSRUses, which is likely 4566 // to be a good reuse register candidate. 4567 const SCEV *Best = nullptr; 4568 unsigned BestNum = 0; 4569 for (const SCEV *Reg : RegUses) { 4570 if (Taken.count(Reg)) 4571 continue; 4572 if (!Best) { 4573 Best = Reg; 4574 BestNum = RegUses.getUsedByIndices(Reg).count(); 4575 } else { 4576 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4577 if (Count > BestNum) { 4578 Best = Reg; 4579 BestNum = Count; 4580 } 4581 } 4582 } 4583 4584 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4585 << " will yield profitable reuse.\n"); 4586 Taken.insert(Best); 4587 4588 // In any use with formulae which references this register, delete formulae 4589 // which don't reference it. 4590 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4591 LSRUse &LU = Uses[LUIdx]; 4592 if (!LU.Regs.count(Best)) continue; 4593 4594 bool Any = false; 4595 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4596 Formula &F = LU.Formulae[i]; 4597 if (!F.referencesReg(Best)) { 4598 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4599 LU.DeleteFormula(F); 4600 --e; 4601 --i; 4602 Any = true; 4603 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4604 continue; 4605 } 4606 } 4607 4608 if (Any) 4609 LU.RecomputeRegs(LUIdx, RegUses); 4610 } 4611 4612 DEBUG(dbgs() << "After pre-selection:\n"; 4613 print_uses(dbgs())); 4614 } 4615 } 4616 4617 /// If there are an extraordinary number of formulae to choose from, use some 4618 /// rough heuristics to prune down the number of formulae. This keeps the main 4619 /// solver from taking an extraordinary amount of time in some worst-case 4620 /// scenarios. 4621 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4622 NarrowSearchSpaceByDetectingSupersets(); 4623 NarrowSearchSpaceByCollapsingUnrolledCode(); 4624 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4625 if (FilterSameScaledReg) 4626 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4627 if (LSRExpNarrow) 4628 NarrowSearchSpaceByDeletingCostlyFormulas(); 4629 else 4630 NarrowSearchSpaceByPickingWinnerRegs(); 4631 } 4632 4633 /// This is the recursive solver. 4634 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4635 Cost &SolutionCost, 4636 SmallVectorImpl<const Formula *> &Workspace, 4637 const Cost &CurCost, 4638 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4639 DenseSet<const SCEV *> &VisitedRegs) const { 4640 // Some ideas: 4641 // - prune more: 4642 // - use more aggressive filtering 4643 // - sort the formula so that the most profitable solutions are found first 4644 // - sort the uses too 4645 // - search faster: 4646 // - don't compute a cost, and then compare. compare while computing a cost 4647 // and bail early. 4648 // - track register sets with SmallBitVector 4649 4650 const LSRUse &LU = Uses[Workspace.size()]; 4651 4652 // If this use references any register that's already a part of the 4653 // in-progress solution, consider it a requirement that a formula must 4654 // reference that register in order to be considered. This prunes out 4655 // unprofitable searching. 4656 SmallSetVector<const SCEV *, 4> ReqRegs; 4657 for (const SCEV *S : CurRegs) 4658 if (LU.Regs.count(S)) 4659 ReqRegs.insert(S); 4660 4661 SmallPtrSet<const SCEV *, 16> NewRegs; 4662 Cost NewCost; 4663 for (const Formula &F : LU.Formulae) { 4664 // Ignore formulae which may not be ideal in terms of register reuse of 4665 // ReqRegs. The formula should use all required registers before 4666 // introducing new ones. 4667 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4668 for (const SCEV *Reg : ReqRegs) { 4669 if ((F.ScaledReg && F.ScaledReg == Reg) || 4670 is_contained(F.BaseRegs, Reg)) { 4671 --NumReqRegsToFind; 4672 if (NumReqRegsToFind == 0) 4673 break; 4674 } 4675 } 4676 if (NumReqRegsToFind != 0) { 4677 // If none of the formulae satisfied the required registers, then we could 4678 // clear ReqRegs and try again. Currently, we simply give up in this case. 4679 continue; 4680 } 4681 4682 // Evaluate the cost of the current formula. If it's already worse than 4683 // the current best, prune the search at that point. 4684 NewCost = CurCost; 4685 NewRegs = CurRegs; 4686 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4687 if (NewCost.isLess(SolutionCost, TTI)) { 4688 Workspace.push_back(&F); 4689 if (Workspace.size() != Uses.size()) { 4690 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4691 NewRegs, VisitedRegs); 4692 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4693 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4694 } else { 4695 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4696 dbgs() << ".\n Regs:"; 4697 for (const SCEV *S : NewRegs) 4698 dbgs() << ' ' << *S; 4699 dbgs() << '\n'); 4700 4701 SolutionCost = NewCost; 4702 Solution = Workspace; 4703 } 4704 Workspace.pop_back(); 4705 } 4706 } 4707 } 4708 4709 /// Choose one formula from each use. Return the results in the given Solution 4710 /// vector. 4711 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4712 SmallVector<const Formula *, 8> Workspace; 4713 Cost SolutionCost; 4714 SolutionCost.Lose(); 4715 Cost CurCost; 4716 SmallPtrSet<const SCEV *, 16> CurRegs; 4717 DenseSet<const SCEV *> VisitedRegs; 4718 Workspace.reserve(Uses.size()); 4719 4720 // SolveRecurse does all the work. 4721 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4722 CurRegs, VisitedRegs); 4723 if (Solution.empty()) { 4724 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4725 return; 4726 } 4727 4728 // Ok, we've now made all our decisions. 4729 DEBUG(dbgs() << "\n" 4730 "The chosen solution requires "; SolutionCost.print(dbgs()); 4731 dbgs() << ":\n"; 4732 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4733 dbgs() << " "; 4734 Uses[i].print(dbgs()); 4735 dbgs() << "\n" 4736 " "; 4737 Solution[i]->print(dbgs()); 4738 dbgs() << '\n'; 4739 }); 4740 4741 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4742 } 4743 4744 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4745 /// we can go while still being dominated by the input positions. This helps 4746 /// canonicalize the insert position, which encourages sharing. 4747 BasicBlock::iterator 4748 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4749 const SmallVectorImpl<Instruction *> &Inputs) 4750 const { 4751 Instruction *Tentative = &*IP; 4752 while (true) { 4753 bool AllDominate = true; 4754 Instruction *BetterPos = nullptr; 4755 // Don't bother attempting to insert before a catchswitch, their basic block 4756 // cannot have other non-PHI instructions. 4757 if (isa<CatchSwitchInst>(Tentative)) 4758 return IP; 4759 4760 for (Instruction *Inst : Inputs) { 4761 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4762 AllDominate = false; 4763 break; 4764 } 4765 // Attempt to find an insert position in the middle of the block, 4766 // instead of at the end, so that it can be used for other expansions. 4767 if (Tentative->getParent() == Inst->getParent() && 4768 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4769 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4770 } 4771 if (!AllDominate) 4772 break; 4773 if (BetterPos) 4774 IP = BetterPos->getIterator(); 4775 else 4776 IP = Tentative->getIterator(); 4777 4778 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4779 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4780 4781 BasicBlock *IDom; 4782 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4783 if (!Rung) return IP; 4784 Rung = Rung->getIDom(); 4785 if (!Rung) return IP; 4786 IDom = Rung->getBlock(); 4787 4788 // Don't climb into a loop though. 4789 const Loop *IDomLoop = LI.getLoopFor(IDom); 4790 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4791 if (IDomDepth <= IPLoopDepth && 4792 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4793 break; 4794 } 4795 4796 Tentative = IDom->getTerminator(); 4797 } 4798 4799 return IP; 4800 } 4801 4802 /// Determine an input position which will be dominated by the operands and 4803 /// which will dominate the result. 4804 BasicBlock::iterator 4805 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4806 const LSRFixup &LF, 4807 const LSRUse &LU, 4808 SCEVExpander &Rewriter) const { 4809 // Collect some instructions which must be dominated by the 4810 // expanding replacement. These must be dominated by any operands that 4811 // will be required in the expansion. 4812 SmallVector<Instruction *, 4> Inputs; 4813 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4814 Inputs.push_back(I); 4815 if (LU.Kind == LSRUse::ICmpZero) 4816 if (Instruction *I = 4817 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4818 Inputs.push_back(I); 4819 if (LF.PostIncLoops.count(L)) { 4820 if (LF.isUseFullyOutsideLoop(L)) 4821 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4822 else 4823 Inputs.push_back(IVIncInsertPos); 4824 } 4825 // The expansion must also be dominated by the increment positions of any 4826 // loops it for which it is using post-inc mode. 4827 for (const Loop *PIL : LF.PostIncLoops) { 4828 if (PIL == L) continue; 4829 4830 // Be dominated by the loop exit. 4831 SmallVector<BasicBlock *, 4> ExitingBlocks; 4832 PIL->getExitingBlocks(ExitingBlocks); 4833 if (!ExitingBlocks.empty()) { 4834 BasicBlock *BB = ExitingBlocks[0]; 4835 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4836 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4837 Inputs.push_back(BB->getTerminator()); 4838 } 4839 } 4840 4841 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4842 && !isa<DbgInfoIntrinsic>(LowestIP) && 4843 "Insertion point must be a normal instruction"); 4844 4845 // Then, climb up the immediate dominator tree as far as we can go while 4846 // still being dominated by the input positions. 4847 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4848 4849 // Don't insert instructions before PHI nodes. 4850 while (isa<PHINode>(IP)) ++IP; 4851 4852 // Ignore landingpad instructions. 4853 while (IP->isEHPad()) ++IP; 4854 4855 // Ignore debug intrinsics. 4856 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4857 4858 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4859 // IP consistent across expansions and allows the previously inserted 4860 // instructions to be reused by subsequent expansion. 4861 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4862 ++IP; 4863 4864 return IP; 4865 } 4866 4867 /// Emit instructions for the leading candidate expression for this LSRUse (this 4868 /// is called "expanding"). 4869 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 4870 const Formula &F, BasicBlock::iterator IP, 4871 SCEVExpander &Rewriter, 4872 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 4873 if (LU.RigidFormula) 4874 return LF.OperandValToReplace; 4875 4876 // Determine an input position which will be dominated by the operands and 4877 // which will dominate the result. 4878 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4879 Rewriter.setInsertPoint(&*IP); 4880 4881 // Inform the Rewriter if we have a post-increment use, so that it can 4882 // perform an advantageous expansion. 4883 Rewriter.setPostInc(LF.PostIncLoops); 4884 4885 // This is the type that the user actually needs. 4886 Type *OpTy = LF.OperandValToReplace->getType(); 4887 // This will be the type that we'll initially expand to. 4888 Type *Ty = F.getType(); 4889 if (!Ty) 4890 // No type known; just expand directly to the ultimate type. 4891 Ty = OpTy; 4892 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4893 // Expand directly to the ultimate type if it's the right size. 4894 Ty = OpTy; 4895 // This is the type to do integer arithmetic in. 4896 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4897 4898 // Build up a list of operands to add together to form the full base. 4899 SmallVector<const SCEV *, 8> Ops; 4900 4901 // Expand the BaseRegs portion. 4902 for (const SCEV *Reg : F.BaseRegs) { 4903 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4904 4905 // If we're expanding for a post-inc user, make the post-inc adjustment. 4906 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 4907 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 4908 } 4909 4910 // Expand the ScaledReg portion. 4911 Value *ICmpScaledV = nullptr; 4912 if (F.Scale != 0) { 4913 const SCEV *ScaledS = F.ScaledReg; 4914 4915 // If we're expanding for a post-inc user, make the post-inc adjustment. 4916 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4917 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 4918 4919 if (LU.Kind == LSRUse::ICmpZero) { 4920 // Expand ScaleReg as if it was part of the base regs. 4921 if (F.Scale == 1) 4922 Ops.push_back( 4923 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 4924 else { 4925 // An interesting way of "folding" with an icmp is to use a negated 4926 // scale, which we'll implement by inserting it into the other operand 4927 // of the icmp. 4928 assert(F.Scale == -1 && 4929 "The only scale supported by ICmpZero uses is -1!"); 4930 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 4931 } 4932 } else { 4933 // Otherwise just expand the scaled register and an explicit scale, 4934 // which is expected to be matched as part of the address. 4935 4936 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4937 // Unless the addressing mode will not be folded. 4938 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4939 isAMCompletelyFolded(TTI, LU, F)) { 4940 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4941 Ops.clear(); 4942 Ops.push_back(SE.getUnknown(FullV)); 4943 } 4944 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 4945 if (F.Scale != 1) 4946 ScaledS = 4947 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4948 Ops.push_back(ScaledS); 4949 } 4950 } 4951 4952 // Expand the GV portion. 4953 if (F.BaseGV) { 4954 // Flush the operand list to suppress SCEVExpander hoisting. 4955 if (!Ops.empty()) { 4956 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4957 Ops.clear(); 4958 Ops.push_back(SE.getUnknown(FullV)); 4959 } 4960 Ops.push_back(SE.getUnknown(F.BaseGV)); 4961 } 4962 4963 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4964 // unfolded offsets. LSR assumes they both live next to their uses. 4965 if (!Ops.empty()) { 4966 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4967 Ops.clear(); 4968 Ops.push_back(SE.getUnknown(FullV)); 4969 } 4970 4971 // Expand the immediate portion. 4972 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4973 if (Offset != 0) { 4974 if (LU.Kind == LSRUse::ICmpZero) { 4975 // The other interesting way of "folding" with an ICmpZero is to use a 4976 // negated immediate. 4977 if (!ICmpScaledV) 4978 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4979 else { 4980 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4981 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4982 } 4983 } else { 4984 // Just add the immediate values. These again are expected to be matched 4985 // as part of the address. 4986 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4987 } 4988 } 4989 4990 // Expand the unfolded offset portion. 4991 int64_t UnfoldedOffset = F.UnfoldedOffset; 4992 if (UnfoldedOffset != 0) { 4993 // Just add the immediate values. 4994 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4995 UnfoldedOffset))); 4996 } 4997 4998 // Emit instructions summing all the operands. 4999 const SCEV *FullS = Ops.empty() ? 5000 SE.getConstant(IntTy, 0) : 5001 SE.getAddExpr(Ops); 5002 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5003 5004 // We're done expanding now, so reset the rewriter. 5005 Rewriter.clearPostInc(); 5006 5007 // An ICmpZero Formula represents an ICmp which we're handling as a 5008 // comparison against zero. Now that we've expanded an expression for that 5009 // form, update the ICmp's other operand. 5010 if (LU.Kind == LSRUse::ICmpZero) { 5011 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5012 DeadInsts.emplace_back(CI->getOperand(1)); 5013 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5014 "a scale at the same time!"); 5015 if (F.Scale == -1) { 5016 if (ICmpScaledV->getType() != OpTy) { 5017 Instruction *Cast = 5018 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5019 OpTy, false), 5020 ICmpScaledV, OpTy, "tmp", CI); 5021 ICmpScaledV = Cast; 5022 } 5023 CI->setOperand(1, ICmpScaledV); 5024 } else { 5025 // A scale of 1 means that the scale has been expanded as part of the 5026 // base regs. 5027 assert((F.Scale == 0 || F.Scale == 1) && 5028 "ICmp does not support folding a global value and " 5029 "a scale at the same time!"); 5030 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5031 -(uint64_t)Offset); 5032 if (C->getType() != OpTy) 5033 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5034 OpTy, false), 5035 C, OpTy); 5036 5037 CI->setOperand(1, C); 5038 } 5039 } 5040 5041 return FullV; 5042 } 5043 5044 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5045 /// effectively happens in their predecessor blocks, so the expression may need 5046 /// to be expanded in multiple places. 5047 void LSRInstance::RewriteForPHI( 5048 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5049 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5050 DenseMap<BasicBlock *, Value *> Inserted; 5051 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5052 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5053 BasicBlock *BB = PN->getIncomingBlock(i); 5054 5055 // If this is a critical edge, split the edge so that we do not insert 5056 // the code on all predecessor/successor paths. We do this unless this 5057 // is the canonical backedge for this loop, which complicates post-inc 5058 // users. 5059 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5060 !isa<IndirectBrInst>(BB->getTerminator()) && 5061 !isa<CatchSwitchInst>(BB->getTerminator())) { 5062 BasicBlock *Parent = PN->getParent(); 5063 Loop *PNLoop = LI.getLoopFor(Parent); 5064 if (!PNLoop || Parent != PNLoop->getHeader()) { 5065 // Split the critical edge. 5066 BasicBlock *NewBB = nullptr; 5067 if (!Parent->isLandingPad()) { 5068 NewBB = SplitCriticalEdge(BB, Parent, 5069 CriticalEdgeSplittingOptions(&DT, &LI) 5070 .setMergeIdenticalEdges() 5071 .setDontDeleteUselessPHIs()); 5072 } else { 5073 SmallVector<BasicBlock*, 2> NewBBs; 5074 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5075 NewBB = NewBBs[0]; 5076 } 5077 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5078 // phi predecessors are identical. The simple thing to do is skip 5079 // splitting in this case rather than complicate the API. 5080 if (NewBB) { 5081 // If PN is outside of the loop and BB is in the loop, we want to 5082 // move the block to be immediately before the PHI block, not 5083 // immediately after BB. 5084 if (L->contains(BB) && !L->contains(PN)) 5085 NewBB->moveBefore(PN->getParent()); 5086 5087 // Splitting the edge can reduce the number of PHI entries we have. 5088 e = PN->getNumIncomingValues(); 5089 BB = NewBB; 5090 i = PN->getBasicBlockIndex(BB); 5091 } 5092 } 5093 } 5094 5095 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5096 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5097 if (!Pair.second) 5098 PN->setIncomingValue(i, Pair.first->second); 5099 else { 5100 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5101 Rewriter, DeadInsts); 5102 5103 // If this is reuse-by-noop-cast, insert the noop cast. 5104 Type *OpTy = LF.OperandValToReplace->getType(); 5105 if (FullV->getType() != OpTy) 5106 FullV = 5107 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5108 OpTy, false), 5109 FullV, LF.OperandValToReplace->getType(), 5110 "tmp", BB->getTerminator()); 5111 5112 PN->setIncomingValue(i, FullV); 5113 Pair.first->second = FullV; 5114 } 5115 } 5116 } 5117 5118 /// Emit instructions for the leading candidate expression for this LSRUse (this 5119 /// is called "expanding"), and update the UserInst to reference the newly 5120 /// expanded value. 5121 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5122 const Formula &F, SCEVExpander &Rewriter, 5123 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5124 // First, find an insertion point that dominates UserInst. For PHI nodes, 5125 // find the nearest block which dominates all the relevant uses. 5126 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5127 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5128 } else { 5129 Value *FullV = 5130 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5131 5132 // If this is reuse-by-noop-cast, insert the noop cast. 5133 Type *OpTy = LF.OperandValToReplace->getType(); 5134 if (FullV->getType() != OpTy) { 5135 Instruction *Cast = 5136 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5137 FullV, OpTy, "tmp", LF.UserInst); 5138 FullV = Cast; 5139 } 5140 5141 // Update the user. ICmpZero is handled specially here (for now) because 5142 // Expand may have updated one of the operands of the icmp already, and 5143 // its new value may happen to be equal to LF.OperandValToReplace, in 5144 // which case doing replaceUsesOfWith leads to replacing both operands 5145 // with the same value. TODO: Reorganize this. 5146 if (LU.Kind == LSRUse::ICmpZero) 5147 LF.UserInst->setOperand(0, FullV); 5148 else 5149 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5150 } 5151 5152 DeadInsts.emplace_back(LF.OperandValToReplace); 5153 } 5154 5155 /// Rewrite all the fixup locations with new values, following the chosen 5156 /// solution. 5157 void LSRInstance::ImplementSolution( 5158 const SmallVectorImpl<const Formula *> &Solution) { 5159 // Keep track of instructions we may have made dead, so that 5160 // we can remove them after we are done working. 5161 SmallVector<WeakTrackingVH, 16> DeadInsts; 5162 5163 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5164 "lsr"); 5165 #ifndef NDEBUG 5166 Rewriter.setDebugType(DEBUG_TYPE); 5167 #endif 5168 Rewriter.disableCanonicalMode(); 5169 Rewriter.enableLSRMode(); 5170 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5171 5172 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5173 for (const IVChain &Chain : IVChainVec) { 5174 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5175 Rewriter.setChainedPhi(PN); 5176 } 5177 5178 // Expand the new value definitions and update the users. 5179 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5180 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5181 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5182 Changed = true; 5183 } 5184 5185 for (const IVChain &Chain : IVChainVec) { 5186 GenerateIVChain(Chain, Rewriter, DeadInsts); 5187 Changed = true; 5188 } 5189 // Clean up after ourselves. This must be done before deleting any 5190 // instructions. 5191 Rewriter.clear(); 5192 5193 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5194 } 5195 5196 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5197 DominatorTree &DT, LoopInfo &LI, 5198 const TargetTransformInfo &TTI) 5199 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false), 5200 IVIncInsertPos(nullptr) { 5201 // If LoopSimplify form is not available, stay out of trouble. 5202 if (!L->isLoopSimplifyForm()) 5203 return; 5204 5205 // If there's no interesting work to be done, bail early. 5206 if (IU.empty()) return; 5207 5208 // If there's too much analysis to be done, bail early. We won't be able to 5209 // model the problem anyway. 5210 unsigned NumUsers = 0; 5211 for (const IVStrideUse &U : IU) { 5212 if (++NumUsers > MaxIVUsers) { 5213 (void)U; 5214 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 5215 return; 5216 } 5217 // Bail out if we have a PHI on an EHPad that gets a value from a 5218 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5219 // no good place to stick any instructions. 5220 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5221 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5222 if (isa<FuncletPadInst>(FirstNonPHI) || 5223 isa<CatchSwitchInst>(FirstNonPHI)) 5224 for (BasicBlock *PredBB : PN->blocks()) 5225 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5226 return; 5227 } 5228 } 5229 5230 #ifndef NDEBUG 5231 // All dominating loops must have preheaders, or SCEVExpander may not be able 5232 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5233 // 5234 // IVUsers analysis should only create users that are dominated by simple loop 5235 // headers. Since this loop should dominate all of its users, its user list 5236 // should be empty if this loop itself is not within a simple loop nest. 5237 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5238 Rung; Rung = Rung->getIDom()) { 5239 BasicBlock *BB = Rung->getBlock(); 5240 const Loop *DomLoop = LI.getLoopFor(BB); 5241 if (DomLoop && DomLoop->getHeader() == BB) { 5242 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5243 } 5244 } 5245 #endif // DEBUG 5246 5247 DEBUG(dbgs() << "\nLSR on loop "; 5248 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5249 dbgs() << ":\n"); 5250 5251 // First, perform some low-level loop optimizations. 5252 OptimizeShadowIV(); 5253 OptimizeLoopTermCond(); 5254 5255 // If loop preparation eliminates all interesting IV users, bail. 5256 if (IU.empty()) return; 5257 5258 // Skip nested loops until we can model them better with formulae. 5259 if (!L->empty()) { 5260 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5261 return; 5262 } 5263 5264 // Start collecting data and preparing for the solver. 5265 CollectChains(); 5266 CollectInterestingTypesAndFactors(); 5267 CollectFixupsAndInitialFormulae(); 5268 CollectLoopInvariantFixupsAndFormulae(); 5269 5270 assert(!Uses.empty() && "IVUsers reported at least one use"); 5271 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5272 print_uses(dbgs())); 5273 5274 // Now use the reuse data to generate a bunch of interesting ways 5275 // to formulate the values needed for the uses. 5276 GenerateAllReuseFormulae(); 5277 5278 FilterOutUndesirableDedicatedRegisters(); 5279 NarrowSearchSpaceUsingHeuristics(); 5280 5281 SmallVector<const Formula *, 8> Solution; 5282 Solve(Solution); 5283 5284 // Release memory that is no longer needed. 5285 Factors.clear(); 5286 Types.clear(); 5287 RegUses.clear(); 5288 5289 if (Solution.empty()) 5290 return; 5291 5292 #ifndef NDEBUG 5293 // Formulae should be legal. 5294 for (const LSRUse &LU : Uses) { 5295 for (const Formula &F : LU.Formulae) 5296 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5297 F) && "Illegal formula generated!"); 5298 }; 5299 #endif 5300 5301 // Now that we've decided what we want, make it so. 5302 ImplementSolution(Solution); 5303 } 5304 5305 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5306 if (Factors.empty() && Types.empty()) return; 5307 5308 OS << "LSR has identified the following interesting factors and types: "; 5309 bool First = true; 5310 5311 for (int64_t Factor : Factors) { 5312 if (!First) OS << ", "; 5313 First = false; 5314 OS << '*' << Factor; 5315 } 5316 5317 for (Type *Ty : Types) { 5318 if (!First) OS << ", "; 5319 First = false; 5320 OS << '(' << *Ty << ')'; 5321 } 5322 OS << '\n'; 5323 } 5324 5325 void LSRInstance::print_fixups(raw_ostream &OS) const { 5326 OS << "LSR is examining the following fixup sites:\n"; 5327 for (const LSRUse &LU : Uses) 5328 for (const LSRFixup &LF : LU.Fixups) { 5329 dbgs() << " "; 5330 LF.print(OS); 5331 OS << '\n'; 5332 } 5333 } 5334 5335 void LSRInstance::print_uses(raw_ostream &OS) const { 5336 OS << "LSR is examining the following uses:\n"; 5337 for (const LSRUse &LU : Uses) { 5338 dbgs() << " "; 5339 LU.print(OS); 5340 OS << '\n'; 5341 for (const Formula &F : LU.Formulae) { 5342 OS << " "; 5343 F.print(OS); 5344 OS << '\n'; 5345 } 5346 } 5347 } 5348 5349 void LSRInstance::print(raw_ostream &OS) const { 5350 print_factors_and_types(OS); 5351 print_fixups(OS); 5352 print_uses(OS); 5353 } 5354 5355 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5356 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5357 print(errs()); errs() << '\n'; 5358 } 5359 #endif 5360 5361 namespace { 5362 5363 class LoopStrengthReduce : public LoopPass { 5364 public: 5365 static char ID; // Pass ID, replacement for typeid 5366 5367 LoopStrengthReduce(); 5368 5369 private: 5370 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5371 void getAnalysisUsage(AnalysisUsage &AU) const override; 5372 }; 5373 5374 } // end anonymous namespace 5375 5376 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5377 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5378 } 5379 5380 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5381 // We split critical edges, so we change the CFG. However, we do update 5382 // many analyses if they are around. 5383 AU.addPreservedID(LoopSimplifyID); 5384 5385 AU.addRequired<LoopInfoWrapperPass>(); 5386 AU.addPreserved<LoopInfoWrapperPass>(); 5387 AU.addRequiredID(LoopSimplifyID); 5388 AU.addRequired<DominatorTreeWrapperPass>(); 5389 AU.addPreserved<DominatorTreeWrapperPass>(); 5390 AU.addRequired<ScalarEvolutionWrapperPass>(); 5391 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5392 // Requiring LoopSimplify a second time here prevents IVUsers from running 5393 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5394 AU.addRequiredID(LoopSimplifyID); 5395 AU.addRequired<IVUsersWrapperPass>(); 5396 AU.addPreserved<IVUsersWrapperPass>(); 5397 AU.addRequired<TargetTransformInfoWrapperPass>(); 5398 } 5399 5400 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5401 DominatorTree &DT, LoopInfo &LI, 5402 const TargetTransformInfo &TTI) { 5403 bool Changed = false; 5404 5405 // Run the main LSR transformation. 5406 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5407 5408 // Remove any extra phis created by processing inner loops. 5409 Changed |= DeleteDeadPHIs(L->getHeader()); 5410 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5411 SmallVector<WeakTrackingVH, 16> DeadInsts; 5412 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5413 SCEVExpander Rewriter(SE, DL, "lsr"); 5414 #ifndef NDEBUG 5415 Rewriter.setDebugType(DEBUG_TYPE); 5416 #endif 5417 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5418 if (numFolded) { 5419 Changed = true; 5420 DeleteTriviallyDeadInstructions(DeadInsts); 5421 DeleteDeadPHIs(L->getHeader()); 5422 } 5423 } 5424 return Changed; 5425 } 5426 5427 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5428 if (skipLoop(L)) 5429 return false; 5430 5431 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5432 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5433 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5434 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5435 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5436 *L->getHeader()->getParent()); 5437 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5438 } 5439 5440 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5441 LoopStandardAnalysisResults &AR, 5442 LPMUpdater &) { 5443 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5444 AR.DT, AR.LI, AR.TTI)) 5445 return PreservedAnalyses::all(); 5446 5447 return getLoopPassPreservedAnalyses(); 5448 } 5449 5450 char LoopStrengthReduce::ID = 0; 5451 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5452 "Loop Strength Reduction", false, false) 5453 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5454 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5455 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5456 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5457 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5458 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5459 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5460 "Loop Strength Reduction", false, false) 5461 5462 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5463