1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for 11 // basic loop CFG cleanup, primarily to assist other loop passes. If you 12 // encounter a noncanonical CFG construct that causes another loop pass to 13 // perform suboptimally, this is the place to fix it up. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/BasicAliasAnalysis.h" 23 #include "llvm/Analysis/DependenceAnalysis.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/DomTreeUpdater.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/Transforms/Scalar.h" 35 #include "llvm/Transforms/Scalar/LoopPassManager.h" 36 #include "llvm/Transforms/Utils.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 using namespace llvm; 41 42 #define DEBUG_TYPE "loop-simplifycfg" 43 44 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding", 45 cl::init(false)); 46 47 STATISTIC(NumTerminatorsFolded, 48 "Number of terminators folded to unconditional branches"); 49 STATISTIC(NumLoopBlocksDeleted, 50 "Number of loop blocks deleted"); 51 STATISTIC(NumLoopExitsDeleted, 52 "Number of loop exiting edges deleted"); 53 54 /// If \p BB is a switch or a conditional branch, but only one of its successors 55 /// can be reached from this block in runtime, return this successor. Otherwise, 56 /// return nullptr. 57 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) { 58 Instruction *TI = BB->getTerminator(); 59 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 60 if (BI->isUnconditional()) 61 return nullptr; 62 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 63 return BI->getSuccessor(0); 64 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 65 if (!Cond) 66 return nullptr; 67 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0); 68 } 69 70 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 71 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 72 if (!CI) 73 return nullptr; 74 for (auto Case : SI->cases()) 75 if (Case.getCaseValue() == CI) 76 return Case.getCaseSuccessor(); 77 return SI->getDefaultDest(); 78 } 79 80 return nullptr; 81 } 82 83 namespace { 84 /// Helper class that can turn branches and switches with constant conditions 85 /// into unconditional branches. 86 class ConstantTerminatorFoldingImpl { 87 private: 88 Loop &L; 89 LoopInfo &LI; 90 DominatorTree &DT; 91 ScalarEvolution &SE; 92 MemorySSAUpdater *MSSAU; 93 94 // Whether or not the current loop has irreducible CFG. 95 bool HasIrreducibleCFG = false; 96 // Whether or not the current loop will still exist after terminator constant 97 // folding will be done. In theory, there are two ways how it can happen: 98 // 1. Loop's latch(es) become unreachable from loop header; 99 // 2. Loop's header becomes unreachable from method entry. 100 // In practice, the second situation is impossible because we only modify the 101 // current loop and its preheader and do not affect preheader's reachibility 102 // from any other block. So this variable set to true means that loop's latch 103 // has become unreachable from loop header. 104 bool DeleteCurrentLoop = false; 105 106 // The blocks of the original loop that will still be reachable from entry 107 // after the constant folding. 108 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks; 109 // The blocks of the original loop that will become unreachable from entry 110 // after the constant folding. 111 SmallVector<BasicBlock *, 8> DeadLoopBlocks; 112 // The exits of the original loop that will still be reachable from entry 113 // after the constant folding. 114 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks; 115 // The exits of the original loop that will become unreachable from entry 116 // after the constant folding. 117 SmallVector<BasicBlock *, 8> DeadExitBlocks; 118 // The blocks that will still be a part of the current loop after folding. 119 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding; 120 // The blocks that have terminators with constant condition that can be 121 // folded. Note: fold candidates should be in L but not in any of its 122 // subloops to avoid complex LI updates. 123 SmallVector<BasicBlock *, 8> FoldCandidates; 124 125 void dump() const { 126 dbgs() << "Constant terminator folding for loop " << L << "\n"; 127 dbgs() << "After terminator constant-folding, the loop will"; 128 if (!DeleteCurrentLoop) 129 dbgs() << " not"; 130 dbgs() << " be destroyed\n"; 131 auto PrintOutVector = [&](const char *Message, 132 const SmallVectorImpl<BasicBlock *> &S) { 133 dbgs() << Message << "\n"; 134 for (const BasicBlock *BB : S) 135 dbgs() << "\t" << BB->getName() << "\n"; 136 }; 137 auto PrintOutSet = [&](const char *Message, 138 const SmallPtrSetImpl<BasicBlock *> &S) { 139 dbgs() << Message << "\n"; 140 for (const BasicBlock *BB : S) 141 dbgs() << "\t" << BB->getName() << "\n"; 142 }; 143 PrintOutVector("Blocks in which we can constant-fold terminator:", 144 FoldCandidates); 145 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks); 146 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks); 147 PrintOutSet("Live exit blocks:", LiveExitBlocks); 148 PrintOutVector("Dead exit blocks:", DeadExitBlocks); 149 if (!DeleteCurrentLoop) 150 PrintOutSet("The following blocks will still be part of the loop:", 151 BlocksInLoopAfterFolding); 152 } 153 154 /// Whether or not the current loop has irreducible CFG. 155 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) { 156 assert(DFS.isComplete() && "DFS is expected to be finished"); 157 // Index of a basic block in RPO traversal. 158 DenseMap<const BasicBlock *, unsigned> RPO; 159 unsigned Current = 0; 160 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) 161 RPO[*I] = Current++; 162 163 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 164 BasicBlock *BB = *I; 165 for (auto *Succ : successors(BB)) 166 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ]) 167 // If an edge goes from a block with greater order number into a block 168 // with lesses number, and it is not a loop backedge, then it can only 169 // be a part of irreducible non-loop cycle. 170 return true; 171 } 172 return false; 173 } 174 175 /// Fill all information about status of blocks and exits of the current loop 176 /// if constant folding of all branches will be done. 177 void analyze() { 178 LoopBlocksDFS DFS(&L); 179 DFS.perform(&LI); 180 assert(DFS.isComplete() && "DFS is expected to be finished"); 181 182 // TODO: The algorithm below relies on both RPO and Postorder traversals. 183 // When the loop has only reducible CFG inside, then the invariant "all 184 // predecessors of X are processed before X in RPO" is preserved. However 185 // an irreducible loop can break this invariant (e.g. latch does not have to 186 // be the last block in the traversal in this case, and the algorithm relies 187 // on this). We can later decide to support such cases by altering the 188 // algorithms, but so far we just give up analyzing them. 189 if (hasIrreducibleCFG(DFS)) { 190 HasIrreducibleCFG = true; 191 return; 192 } 193 194 // Collect live and dead loop blocks and exits. 195 LiveLoopBlocks.insert(L.getHeader()); 196 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { 197 BasicBlock *BB = *I; 198 199 // If a loop block wasn't marked as live so far, then it's dead. 200 if (!LiveLoopBlocks.count(BB)) { 201 DeadLoopBlocks.push_back(BB); 202 continue; 203 } 204 205 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 206 207 // If a block has only one live successor, it's a candidate on constant 208 // folding. Only handle blocks from current loop: branches in child loops 209 // are skipped because if they can be folded, they should be folded during 210 // the processing of child loops. 211 if (TheOnlySucc && LI.getLoopFor(BB) == &L) 212 FoldCandidates.push_back(BB); 213 214 // Handle successors. 215 for (BasicBlock *Succ : successors(BB)) 216 if (!TheOnlySucc || TheOnlySucc == Succ) { 217 if (L.contains(Succ)) 218 LiveLoopBlocks.insert(Succ); 219 else 220 LiveExitBlocks.insert(Succ); 221 } 222 } 223 224 // Sanity check: amount of dead and live loop blocks should match the total 225 // number of blocks in loop. 226 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() && 227 "Malformed block sets?"); 228 229 // Now, all exit blocks that are not marked as live are dead. 230 SmallVector<BasicBlock *, 8> ExitBlocks; 231 L.getExitBlocks(ExitBlocks); 232 for (auto *ExitBlock : ExitBlocks) 233 if (!LiveExitBlocks.count(ExitBlock)) 234 DeadExitBlocks.push_back(ExitBlock); 235 236 // Whether or not the edge From->To will still be present in graph after the 237 // folding. 238 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) { 239 if (!LiveLoopBlocks.count(From)) 240 return false; 241 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From); 242 return !TheOnlySucc || TheOnlySucc == To; 243 }; 244 245 // The loop will not be destroyed if its latch is live. 246 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader()); 247 248 // If we are going to delete the current loop completely, no extra analysis 249 // is needed. 250 if (DeleteCurrentLoop) 251 return; 252 253 // Otherwise, we should check which blocks will still be a part of the 254 // current loop after the transform. 255 BlocksInLoopAfterFolding.insert(L.getLoopLatch()); 256 // If the loop is live, then we should compute what blocks are still in 257 // loop after all branch folding has been done. A block is in loop if 258 // it has a live edge to another block that is in the loop; by definition, 259 // latch is in the loop. 260 auto BlockIsInLoop = [&](BasicBlock *BB) { 261 return any_of(successors(BB), [&](BasicBlock *Succ) { 262 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ); 263 }); 264 }; 265 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) { 266 BasicBlock *BB = *I; 267 if (BlockIsInLoop(BB)) 268 BlocksInLoopAfterFolding.insert(BB); 269 } 270 271 // Sanity check: header must be in loop. 272 assert(BlocksInLoopAfterFolding.count(L.getHeader()) && 273 "Header not in loop?"); 274 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() && 275 "All blocks that stay in loop should be live!"); 276 } 277 278 /// We need to preserve static reachibility of all loop exit blocks (this is) 279 /// required by loop pass manager. In order to do it, we make the following 280 /// trick: 281 /// 282 /// preheader: 283 /// <preheader code> 284 /// br label %loop_header 285 /// 286 /// loop_header: 287 /// ... 288 /// br i1 false, label %dead_exit, label %loop_block 289 /// ... 290 /// 291 /// We cannot simply remove edge from the loop to dead exit because in this 292 /// case dead_exit (and its successors) may become unreachable. To avoid that, 293 /// we insert the following fictive preheader: 294 /// 295 /// preheader: 296 /// <preheader code> 297 /// switch i32 0, label %preheader-split, 298 /// [i32 1, label %dead_exit_1], 299 /// [i32 2, label %dead_exit_2], 300 /// ... 301 /// [i32 N, label %dead_exit_N], 302 /// 303 /// preheader-split: 304 /// br label %loop_header 305 /// 306 /// loop_header: 307 /// ... 308 /// br i1 false, label %dead_exit_N, label %loop_block 309 /// ... 310 /// 311 /// Doing so, we preserve static reachibility of all dead exits and can later 312 /// remove edges from the loop to these blocks. 313 void handleDeadExits() { 314 // If no dead exits, nothing to do. 315 if (DeadExitBlocks.empty()) 316 return; 317 318 // Construct split preheader and the dummy switch to thread edges from it to 319 // dead exits. 320 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 321 BasicBlock *Preheader = L.getLoopPreheader(); 322 BasicBlock *NewPreheader = Preheader->splitBasicBlock( 323 Preheader->getTerminator(), 324 Twine(Preheader->getName()).concat("-split")); 325 DTU.deleteEdge(Preheader, L.getHeader()); 326 DTU.insertEdge(NewPreheader, L.getHeader()); 327 DTU.insertEdge(Preheader, NewPreheader); 328 IRBuilder<> Builder(Preheader->getTerminator()); 329 SwitchInst *DummySwitch = 330 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader); 331 Preheader->getTerminator()->eraseFromParent(); 332 333 unsigned DummyIdx = 1; 334 for (BasicBlock *BB : DeadExitBlocks) { 335 SmallVector<Instruction *, 4> DeadPhis; 336 for (auto &PN : BB->phis()) 337 DeadPhis.push_back(&PN); 338 339 // Eliminate all Phis from dead exits. 340 for (Instruction *PN : DeadPhis) { 341 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 342 PN->eraseFromParent(); 343 } 344 assert(DummyIdx != 0 && "Too many dead exits!"); 345 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB); 346 DTU.insertEdge(Preheader, BB); 347 ++NumLoopExitsDeleted; 348 } 349 350 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?"); 351 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) { 352 OuterLoop->addBasicBlockToLoop(NewPreheader, LI); 353 354 // When we break dead edges, the outer loop may become unreachable from 355 // the current loop. We need to fix loop info accordingly. For this, we 356 // find the most nested loop that still contains L and remove L from all 357 // loops that are inside of it. 358 Loop *StillReachable = nullptr; 359 for (BasicBlock *BB : LiveExitBlocks) { 360 Loop *BBL = LI.getLoopFor(BB); 361 if (BBL && BBL->contains(L.getHeader())) 362 if (!StillReachable || 363 BBL->getLoopDepth() > StillReachable->getLoopDepth()) 364 StillReachable = BBL; 365 } 366 367 // Okay, our loop is no longer in the outer loop (and maybe not in some of 368 // its parents as well). Make the fixup. 369 if (StillReachable != OuterLoop) { 370 LI.changeLoopFor(NewPreheader, StillReachable); 371 for (Loop *NotContaining = OuterLoop; NotContaining != StillReachable; 372 NotContaining = NotContaining->getParentLoop()) { 373 NotContaining->removeBlockFromLoop(NewPreheader); 374 for (auto *BB : L.blocks()) 375 NotContaining->removeBlockFromLoop(BB); 376 } 377 OuterLoop->removeChildLoop(&L); 378 if (StillReachable) 379 StillReachable->addChildLoop(&L); 380 else 381 LI.addTopLevelLoop(&L); 382 } 383 } 384 } 385 386 /// Delete loop blocks that have become unreachable after folding. Make all 387 /// relevant updates to DT and LI. 388 void deleteDeadLoopBlocks() { 389 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 390 if (MSSAU) { 391 SmallPtrSet<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(), 392 DeadLoopBlocks.end()); 393 MSSAU->removeBlocks(DeadLoopBlocksSet); 394 } 395 for (auto *BB : DeadLoopBlocks) { 396 assert(BB != L.getHeader() && 397 "Header of the current loop cannot be dead!"); 398 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName() 399 << "\n"); 400 if (LI.isLoopHeader(BB)) { 401 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!"); 402 LI.erase(LI.getLoopFor(BB)); 403 } 404 LI.removeBlock(BB); 405 DeleteDeadBlock(BB, &DTU); 406 ++NumLoopBlocksDeleted; 407 } 408 } 409 410 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the 411 /// unconditional branches. 412 void foldTerminators() { 413 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 414 415 for (BasicBlock *BB : FoldCandidates) { 416 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!"); 417 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); 418 assert(TheOnlySucc && "Should have one live successor!"); 419 420 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName() 421 << " with an unconditional branch to the block " 422 << TheOnlySucc->getName() << "\n"); 423 424 SmallPtrSet<BasicBlock *, 2> DeadSuccessors; 425 // Remove all BB's successors except for the live one. 426 unsigned TheOnlySuccDuplicates = 0; 427 for (auto *Succ : successors(BB)) 428 if (Succ != TheOnlySucc) { 429 DeadSuccessors.insert(Succ); 430 // If our successor lies in a different loop, we don't want to remove 431 // the one-input Phi because it is a LCSSA Phi. 432 bool PreserveLCSSAPhi = !L.contains(Succ); 433 Succ->removePredecessor(BB, PreserveLCSSAPhi); 434 if (MSSAU) 435 MSSAU->removeEdge(BB, Succ); 436 } else 437 ++TheOnlySuccDuplicates; 438 439 assert(TheOnlySuccDuplicates > 0 && "Should be!"); 440 // If TheOnlySucc was BB's successor more than once, after transform it 441 // will be its successor only once. Remove redundant inputs from 442 // TheOnlySucc's Phis. 443 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc); 444 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup) 445 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi); 446 if (MSSAU && TheOnlySuccDuplicates > 1) 447 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc); 448 449 IRBuilder<> Builder(BB->getContext()); 450 Instruction *Term = BB->getTerminator(); 451 Builder.SetInsertPoint(Term); 452 Builder.CreateBr(TheOnlySucc); 453 Term->eraseFromParent(); 454 455 for (auto *DeadSucc : DeadSuccessors) 456 DTU.deleteEdge(BB, DeadSucc); 457 458 ++NumTerminatorsFolded; 459 } 460 } 461 462 public: 463 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT, 464 ScalarEvolution &SE, 465 MemorySSAUpdater *MSSAU) 466 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU) {} 467 bool run() { 468 assert(L.getLoopLatch() && "Should be single latch!"); 469 470 // Collect all available information about status of blocks after constant 471 // folding. 472 analyze(); 473 474 LLVM_DEBUG(dbgs() << "In function " << L.getHeader()->getParent()->getName() 475 << ": "); 476 477 if (HasIrreducibleCFG) { 478 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n"); 479 return false; 480 } 481 482 // Nothing to constant-fold. 483 if (FoldCandidates.empty()) { 484 LLVM_DEBUG( 485 dbgs() << "No constant terminator folding candidates found in loop " 486 << L.getHeader()->getName() << "\n"); 487 return false; 488 } 489 490 // TODO: Support deletion of the current loop. 491 if (DeleteCurrentLoop) { 492 LLVM_DEBUG( 493 dbgs() 494 << "Give up constant terminator folding in loop " 495 << L.getHeader()->getName() 496 << ": we don't currently support deletion of the current loop.\n"); 497 return false; 498 } 499 500 // TODO: Support blocks that are not dead, but also not in loop after the 501 // folding. 502 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() != 503 L.getNumBlocks()) { 504 LLVM_DEBUG( 505 dbgs() << "Give up constant terminator folding in loop " 506 << L.getHeader()->getName() 507 << ": we don't currently" 508 " support blocks that are not dead, but will stop " 509 "being a part of the loop after constant-folding.\n"); 510 return false; 511 } 512 513 SE.forgetTopmostLoop(&L); 514 // Dump analysis results. 515 LLVM_DEBUG(dump()); 516 517 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size() 518 << " terminators in loop " << L.getHeader()->getName() 519 << "\n"); 520 521 // Make the actual transforms. 522 handleDeadExits(); 523 foldTerminators(); 524 525 if (!DeadLoopBlocks.empty()) { 526 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size() 527 << " dead blocks in loop " << L.getHeader()->getName() 528 << "\n"); 529 deleteDeadLoopBlocks(); 530 } 531 532 #ifndef NDEBUG 533 // Make sure that we have preserved all data structures after the transform. 534 DT.verify(); 535 assert(DT.isReachableFromEntry(L.getHeader())); 536 LI.verify(DT); 537 #endif 538 539 return true; 540 } 541 }; 542 } // namespace 543 544 /// Turn branches and switches with known constant conditions into unconditional 545 /// branches. 546 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, 547 ScalarEvolution &SE, 548 MemorySSAUpdater *MSSAU) { 549 if (!EnableTermFolding) 550 return false; 551 552 // To keep things simple, only process loops with single latch. We 553 // canonicalize most loops to this form. We can support multi-latch if needed. 554 if (!L.getLoopLatch()) 555 return false; 556 557 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU); 558 return BranchFolder.run(); 559 } 560 561 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, 562 LoopInfo &LI, MemorySSAUpdater *MSSAU) { 563 bool Changed = false; 564 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 565 // Copy blocks into a temporary array to avoid iterator invalidation issues 566 // as we remove them. 567 SmallVector<WeakTrackingVH, 16> Blocks(L.blocks()); 568 569 for (auto &Block : Blocks) { 570 // Attempt to merge blocks in the trivial case. Don't modify blocks which 571 // belong to other loops. 572 BasicBlock *Succ = cast_or_null<BasicBlock>(Block); 573 if (!Succ) 574 continue; 575 576 BasicBlock *Pred = Succ->getSinglePredecessor(); 577 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L) 578 continue; 579 580 // Merge Succ into Pred and delete it. 581 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU); 582 583 Changed = true; 584 } 585 586 return Changed; 587 } 588 589 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, 590 ScalarEvolution &SE, MemorySSAUpdater *MSSAU) { 591 bool Changed = false; 592 593 // Constant-fold terminators with known constant conditions. 594 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU); 595 596 // Eliminate unconditional branches by merging blocks into their predecessors. 597 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU); 598 599 if (Changed) 600 SE.forgetTopmostLoop(&L); 601 602 return Changed; 603 } 604 605 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM, 606 LoopStandardAnalysisResults &AR, 607 LPMUpdater &) { 608 Optional<MemorySSAUpdater> MSSAU; 609 if (EnableMSSALoopDependency && AR.MSSA) 610 MSSAU = MemorySSAUpdater(AR.MSSA); 611 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, 612 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 613 return PreservedAnalyses::all(); 614 615 return getLoopPassPreservedAnalyses(); 616 } 617 618 namespace { 619 class LoopSimplifyCFGLegacyPass : public LoopPass { 620 public: 621 static char ID; // Pass ID, replacement for typeid 622 LoopSimplifyCFGLegacyPass() : LoopPass(ID) { 623 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry()); 624 } 625 626 bool runOnLoop(Loop *L, LPPassManager &) override { 627 if (skipLoop(L)) 628 return false; 629 630 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 631 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 632 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 633 Optional<MemorySSAUpdater> MSSAU; 634 if (EnableMSSALoopDependency) { 635 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 636 MSSAU = MemorySSAUpdater(MSSA); 637 if (VerifyMemorySSA) 638 MSSA->verifyMemorySSA(); 639 } 640 return simplifyLoopCFG(*L, DT, LI, SE, 641 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 642 } 643 644 void getAnalysisUsage(AnalysisUsage &AU) const override { 645 if (EnableMSSALoopDependency) { 646 AU.addRequired<MemorySSAWrapperPass>(); 647 AU.addPreserved<MemorySSAWrapperPass>(); 648 } 649 AU.addPreserved<DependenceAnalysisWrapperPass>(); 650 getLoopAnalysisUsage(AU); 651 } 652 }; 653 } 654 655 char LoopSimplifyCFGLegacyPass::ID = 0; 656 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 657 "Simplify loop CFG", false, false) 658 INITIALIZE_PASS_DEPENDENCY(LoopPass) 659 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 660 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", 661 "Simplify loop CFG", false, false) 662 663 Pass *llvm::createLoopSimplifyCFGPass() { 664 return new LoopSimplifyCFGLegacyPass(); 665 } 666