1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements an idiom recognizer that transforms simple loops into a 11 // non-loop form. In cases that this kicks in, it can be a significant 12 // performance win. 13 // 14 // If compiling for code size we avoid idiom recognition if the resulting 15 // code could be larger than the code for the original loop. One way this could 16 // happen is if the loop is not removable after idiom recognition due to the 17 // presence of non-idiom instructions. The initial implementation of the 18 // heuristics applies to idioms in multi-block loops. 19 // 20 //===----------------------------------------------------------------------===// 21 // 22 // TODO List: 23 // 24 // Future loop memory idioms to recognize: 25 // memcmp, memmove, strlen, etc. 26 // Future floating point idioms to recognize in -ffast-math mode: 27 // fpowi 28 // Future integer operation idioms to recognize: 29 // ctpop 30 // 31 // Beware that isel's default lowering for ctpop is highly inefficient for 32 // i64 and larger types when i64 is legal and the value has few bits set. It 33 // would be good to enhance isel to emit a loop for ctpop in this case. 34 // 35 // This could recognize common matrix multiplies and dot product idioms and 36 // replace them with calls to BLAS (if linked in??). 37 // 38 //===----------------------------------------------------------------------===// 39 40 #include "llvm/ADT/APInt.h" 41 #include "llvm/ADT/ArrayRef.h" 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/MapVector.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/StringRef.h" 49 #include "llvm/Analysis/AliasAnalysis.h" 50 #include "llvm/Analysis/LoopAccessAnalysis.h" 51 #include "llvm/Analysis/LoopInfo.h" 52 #include "llvm/Analysis/LoopPass.h" 53 #include "llvm/Analysis/MemoryLocation.h" 54 #include "llvm/Analysis/ScalarEvolution.h" 55 #include "llvm/Analysis/ScalarEvolutionExpander.h" 56 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 57 #include "llvm/Analysis/TargetLibraryInfo.h" 58 #include "llvm/Analysis/TargetTransformInfo.h" 59 #include "llvm/Transforms/Utils/Local.h" 60 #include "llvm/Analysis/ValueTracking.h" 61 #include "llvm/IR/Attributes.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugLoc.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/GlobalValue.h" 70 #include "llvm/IR/GlobalVariable.h" 71 #include "llvm/IR/IRBuilder.h" 72 #include "llvm/IR/InstrTypes.h" 73 #include "llvm/IR/Instruction.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/Intrinsics.h" 77 #include "llvm/IR/LLVMContext.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/PassManager.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/User.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/IR/ValueHandle.h" 84 #include "llvm/Pass.h" 85 #include "llvm/Support/Casting.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Scalar.h" 90 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 91 #include "llvm/Transforms/Utils/BuildLibCalls.h" 92 #include "llvm/Transforms/Utils/LoopUtils.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 101 #define DEBUG_TYPE "loop-idiom" 102 103 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 104 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 105 106 static cl::opt<bool> UseLIRCodeSizeHeurs( 107 "use-lir-code-size-heurs", 108 cl::desc("Use loop idiom recognition code size heuristics when compiling" 109 "with -Os/-Oz"), 110 cl::init(true), cl::Hidden); 111 112 namespace { 113 114 class LoopIdiomRecognize { 115 Loop *CurLoop = nullptr; 116 AliasAnalysis *AA; 117 DominatorTree *DT; 118 LoopInfo *LI; 119 ScalarEvolution *SE; 120 TargetLibraryInfo *TLI; 121 const TargetTransformInfo *TTI; 122 const DataLayout *DL; 123 bool ApplyCodeSizeHeuristics; 124 125 public: 126 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 127 LoopInfo *LI, ScalarEvolution *SE, 128 TargetLibraryInfo *TLI, 129 const TargetTransformInfo *TTI, 130 const DataLayout *DL) 131 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL) {} 132 133 bool runOnLoop(Loop *L); 134 135 private: 136 using StoreList = SmallVector<StoreInst *, 8>; 137 using StoreListMap = MapVector<Value *, StoreList>; 138 139 StoreListMap StoreRefsForMemset; 140 StoreListMap StoreRefsForMemsetPattern; 141 StoreList StoreRefsForMemcpy; 142 bool HasMemset; 143 bool HasMemsetPattern; 144 bool HasMemcpy; 145 146 /// Return code for isLegalStore() 147 enum LegalStoreKind { 148 None = 0, 149 Memset, 150 MemsetPattern, 151 Memcpy, 152 UnorderedAtomicMemcpy, 153 DontUse // Dummy retval never to be used. Allows catching errors in retval 154 // handling. 155 }; 156 157 /// \name Countable Loop Idiom Handling 158 /// @{ 159 160 bool runOnCountableLoop(); 161 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 162 SmallVectorImpl<BasicBlock *> &ExitBlocks); 163 164 void collectStores(BasicBlock *BB); 165 LegalStoreKind isLegalStore(StoreInst *SI); 166 enum class ForMemset { No, Yes }; 167 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 168 ForMemset For); 169 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 170 171 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 172 unsigned StoreAlignment, Value *StoredVal, 173 Instruction *TheStore, 174 SmallPtrSetImpl<Instruction *> &Stores, 175 const SCEVAddRecExpr *Ev, const SCEV *BECount, 176 bool NegStride, bool IsLoopMemset = false); 177 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 178 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 179 bool IsLoopMemset = false); 180 181 /// @} 182 /// \name Noncountable Loop Idiom Handling 183 /// @{ 184 185 bool runOnNoncountableLoop(); 186 187 bool recognizePopcount(); 188 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 189 PHINode *CntPhi, Value *Var); 190 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz 191 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, 192 Instruction *CntInst, PHINode *CntPhi, 193 Value *Var, Instruction *DefX, 194 const DebugLoc &DL, bool ZeroCheck, 195 bool IsCntPhiUsedOutsideLoop); 196 197 /// @} 198 }; 199 200 class LoopIdiomRecognizeLegacyPass : public LoopPass { 201 public: 202 static char ID; 203 204 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { 205 initializeLoopIdiomRecognizeLegacyPassPass( 206 *PassRegistry::getPassRegistry()); 207 } 208 209 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 210 if (skipLoop(L)) 211 return false; 212 213 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 214 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 215 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 216 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 217 TargetLibraryInfo *TLI = 218 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 219 const TargetTransformInfo *TTI = 220 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 221 *L->getHeader()->getParent()); 222 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); 223 224 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL); 225 return LIR.runOnLoop(L); 226 } 227 228 /// This transformation requires natural loop information & requires that 229 /// loop preheaders be inserted into the CFG. 230 void getAnalysisUsage(AnalysisUsage &AU) const override { 231 AU.addRequired<TargetLibraryInfoWrapperPass>(); 232 AU.addRequired<TargetTransformInfoWrapperPass>(); 233 getLoopAnalysisUsage(AU); 234 } 235 }; 236 237 } // end anonymous namespace 238 239 char LoopIdiomRecognizeLegacyPass::ID = 0; 240 241 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 242 LoopStandardAnalysisResults &AR, 243 LPMUpdater &) { 244 const auto *DL = &L.getHeader()->getModule()->getDataLayout(); 245 246 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL); 247 if (!LIR.runOnLoop(&L)) 248 return PreservedAnalyses::all(); 249 250 return getLoopPassPreservedAnalyses(); 251 } 252 253 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", 254 "Recognize loop idioms", false, false) 255 INITIALIZE_PASS_DEPENDENCY(LoopPass) 256 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 257 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 258 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", 259 "Recognize loop idioms", false, false) 260 261 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } 262 263 static void deleteDeadInstruction(Instruction *I) { 264 I->replaceAllUsesWith(UndefValue::get(I->getType())); 265 I->eraseFromParent(); 266 } 267 268 //===----------------------------------------------------------------------===// 269 // 270 // Implementation of LoopIdiomRecognize 271 // 272 //===----------------------------------------------------------------------===// 273 274 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 275 CurLoop = L; 276 // If the loop could not be converted to canonical form, it must have an 277 // indirectbr in it, just give up. 278 if (!L->getLoopPreheader()) 279 return false; 280 281 // Disable loop idiom recognition if the function's name is a common idiom. 282 StringRef Name = L->getHeader()->getParent()->getName(); 283 if (Name == "memset" || Name == "memcpy") 284 return false; 285 286 // Determine if code size heuristics need to be applied. 287 ApplyCodeSizeHeuristics = 288 L->getHeader()->getParent()->optForSize() && UseLIRCodeSizeHeurs; 289 290 HasMemset = TLI->has(LibFunc_memset); 291 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 292 HasMemcpy = TLI->has(LibFunc_memcpy); 293 294 if (HasMemset || HasMemsetPattern || HasMemcpy) 295 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 296 return runOnCountableLoop(); 297 298 return runOnNoncountableLoop(); 299 } 300 301 bool LoopIdiomRecognize::runOnCountableLoop() { 302 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 303 assert(!isa<SCEVCouldNotCompute>(BECount) && 304 "runOnCountableLoop() called on a loop without a predictable" 305 "backedge-taken count"); 306 307 // If this loop executes exactly one time, then it should be peeled, not 308 // optimized by this pass. 309 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 310 if (BECst->getAPInt() == 0) 311 return false; 312 313 SmallVector<BasicBlock *, 8> ExitBlocks; 314 CurLoop->getUniqueExitBlocks(ExitBlocks); 315 316 LLVM_DEBUG(dbgs() << "loop-idiom Scanning: F[" 317 << CurLoop->getHeader()->getParent()->getName() 318 << "] Loop %" << CurLoop->getHeader()->getName() << "\n"); 319 320 bool MadeChange = false; 321 322 // The following transforms hoist stores/memsets into the loop pre-header. 323 // Give up if the loop has instructions may throw. 324 SimpleLoopSafetyInfo SafetyInfo; 325 SafetyInfo.computeLoopSafetyInfo(CurLoop); 326 if (SafetyInfo.anyBlockMayThrow()) 327 return MadeChange; 328 329 // Scan all the blocks in the loop that are not in subloops. 330 for (auto *BB : CurLoop->getBlocks()) { 331 // Ignore blocks in subloops. 332 if (LI->getLoopFor(BB) != CurLoop) 333 continue; 334 335 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 336 } 337 return MadeChange; 338 } 339 340 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 341 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 342 return ConstStride->getAPInt(); 343 } 344 345 /// getMemSetPatternValue - If a strided store of the specified value is safe to 346 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 347 /// be passed in. Otherwise, return null. 348 /// 349 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 350 /// just replicate their input array and then pass on to memset_pattern16. 351 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 352 // FIXME: This could check for UndefValue because it can be merged into any 353 // other valid pattern. 354 355 // If the value isn't a constant, we can't promote it to being in a constant 356 // array. We could theoretically do a store to an alloca or something, but 357 // that doesn't seem worthwhile. 358 Constant *C = dyn_cast<Constant>(V); 359 if (!C) 360 return nullptr; 361 362 // Only handle simple values that are a power of two bytes in size. 363 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 364 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 365 return nullptr; 366 367 // Don't care enough about darwin/ppc to implement this. 368 if (DL->isBigEndian()) 369 return nullptr; 370 371 // Convert to size in bytes. 372 Size /= 8; 373 374 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 375 // if the top and bottom are the same (e.g. for vectors and large integers). 376 if (Size > 16) 377 return nullptr; 378 379 // If the constant is exactly 16 bytes, just use it. 380 if (Size == 16) 381 return C; 382 383 // Otherwise, we'll use an array of the constants. 384 unsigned ArraySize = 16 / Size; 385 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 386 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 387 } 388 389 LoopIdiomRecognize::LegalStoreKind 390 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 391 // Don't touch volatile stores. 392 if (SI->isVolatile()) 393 return LegalStoreKind::None; 394 // We only want simple or unordered-atomic stores. 395 if (!SI->isUnordered()) 396 return LegalStoreKind::None; 397 398 // Don't convert stores of non-integral pointer types to memsets (which stores 399 // integers). 400 if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType())) 401 return LegalStoreKind::None; 402 403 // Avoid merging nontemporal stores. 404 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 405 return LegalStoreKind::None; 406 407 Value *StoredVal = SI->getValueOperand(); 408 Value *StorePtr = SI->getPointerOperand(); 409 410 // Reject stores that are so large that they overflow an unsigned. 411 uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 412 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) 413 return LegalStoreKind::None; 414 415 // See if the pointer expression is an AddRec like {base,+,1} on the current 416 // loop, which indicates a strided store. If we have something else, it's a 417 // random store we can't handle. 418 const SCEVAddRecExpr *StoreEv = 419 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 420 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 421 return LegalStoreKind::None; 422 423 // Check to see if we have a constant stride. 424 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 425 return LegalStoreKind::None; 426 427 // See if the store can be turned into a memset. 428 429 // If the stored value is a byte-wise value (like i32 -1), then it may be 430 // turned into a memset of i8 -1, assuming that all the consecutive bytes 431 // are stored. A store of i32 0x01020304 can never be turned into a memset, 432 // but it can be turned into memset_pattern if the target supports it. 433 Value *SplatValue = isBytewiseValue(StoredVal); 434 Constant *PatternValue = nullptr; 435 436 // Note: memset and memset_pattern on unordered-atomic is yet not supported 437 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 438 439 // If we're allowed to form a memset, and the stored value would be 440 // acceptable for memset, use it. 441 if (!UnorderedAtomic && HasMemset && SplatValue && 442 // Verify that the stored value is loop invariant. If not, we can't 443 // promote the memset. 444 CurLoop->isLoopInvariant(SplatValue)) { 445 // It looks like we can use SplatValue. 446 return LegalStoreKind::Memset; 447 } else if (!UnorderedAtomic && HasMemsetPattern && 448 // Don't create memset_pattern16s with address spaces. 449 StorePtr->getType()->getPointerAddressSpace() == 0 && 450 (PatternValue = getMemSetPatternValue(StoredVal, DL))) { 451 // It looks like we can use PatternValue! 452 return LegalStoreKind::MemsetPattern; 453 } 454 455 // Otherwise, see if the store can be turned into a memcpy. 456 if (HasMemcpy) { 457 // Check to see if the stride matches the size of the store. If so, then we 458 // know that every byte is touched in the loop. 459 APInt Stride = getStoreStride(StoreEv); 460 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 461 if (StoreSize != Stride && StoreSize != -Stride) 462 return LegalStoreKind::None; 463 464 // The store must be feeding a non-volatile load. 465 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 466 467 // Only allow non-volatile loads 468 if (!LI || LI->isVolatile()) 469 return LegalStoreKind::None; 470 // Only allow simple or unordered-atomic loads 471 if (!LI->isUnordered()) 472 return LegalStoreKind::None; 473 474 // See if the pointer expression is an AddRec like {base,+,1} on the current 475 // loop, which indicates a strided load. If we have something else, it's a 476 // random load we can't handle. 477 const SCEVAddRecExpr *LoadEv = 478 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 479 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 480 return LegalStoreKind::None; 481 482 // The store and load must share the same stride. 483 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 484 return LegalStoreKind::None; 485 486 // Success. This store can be converted into a memcpy. 487 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 488 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 489 : LegalStoreKind::Memcpy; 490 } 491 // This store can't be transformed into a memset/memcpy. 492 return LegalStoreKind::None; 493 } 494 495 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 496 StoreRefsForMemset.clear(); 497 StoreRefsForMemsetPattern.clear(); 498 StoreRefsForMemcpy.clear(); 499 for (Instruction &I : *BB) { 500 StoreInst *SI = dyn_cast<StoreInst>(&I); 501 if (!SI) 502 continue; 503 504 // Make sure this is a strided store with a constant stride. 505 switch (isLegalStore(SI)) { 506 case LegalStoreKind::None: 507 // Nothing to do 508 break; 509 case LegalStoreKind::Memset: { 510 // Find the base pointer. 511 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); 512 StoreRefsForMemset[Ptr].push_back(SI); 513 } break; 514 case LegalStoreKind::MemsetPattern: { 515 // Find the base pointer. 516 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); 517 StoreRefsForMemsetPattern[Ptr].push_back(SI); 518 } break; 519 case LegalStoreKind::Memcpy: 520 case LegalStoreKind::UnorderedAtomicMemcpy: 521 StoreRefsForMemcpy.push_back(SI); 522 break; 523 default: 524 assert(false && "unhandled return value"); 525 break; 526 } 527 } 528 } 529 530 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 531 /// with the specified backedge count. This block is known to be in the current 532 /// loop and not in any subloops. 533 bool LoopIdiomRecognize::runOnLoopBlock( 534 BasicBlock *BB, const SCEV *BECount, 535 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 536 // We can only promote stores in this block if they are unconditionally 537 // executed in the loop. For a block to be unconditionally executed, it has 538 // to dominate all the exit blocks of the loop. Verify this now. 539 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 540 if (!DT->dominates(BB, ExitBlocks[i])) 541 return false; 542 543 bool MadeChange = false; 544 // Look for store instructions, which may be optimized to memset/memcpy. 545 collectStores(BB); 546 547 // Look for a single store or sets of stores with a common base, which can be 548 // optimized into a memset (memset_pattern). The latter most commonly happens 549 // with structs and handunrolled loops. 550 for (auto &SL : StoreRefsForMemset) 551 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); 552 553 for (auto &SL : StoreRefsForMemsetPattern) 554 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); 555 556 // Optimize the store into a memcpy, if it feeds an similarly strided load. 557 for (auto &SI : StoreRefsForMemcpy) 558 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 559 560 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 561 Instruction *Inst = &*I++; 562 // Look for memset instructions, which may be optimized to a larger memset. 563 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { 564 WeakTrackingVH InstPtr(&*I); 565 if (!processLoopMemSet(MSI, BECount)) 566 continue; 567 MadeChange = true; 568 569 // If processing the memset invalidated our iterator, start over from the 570 // top of the block. 571 if (!InstPtr) 572 I = BB->begin(); 573 continue; 574 } 575 } 576 577 return MadeChange; 578 } 579 580 /// See if this store(s) can be promoted to a memset. 581 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 582 const SCEV *BECount, ForMemset For) { 583 // Try to find consecutive stores that can be transformed into memsets. 584 SetVector<StoreInst *> Heads, Tails; 585 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 586 587 // Do a quadratic search on all of the given stores and find 588 // all of the pairs of stores that follow each other. 589 SmallVector<unsigned, 16> IndexQueue; 590 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 591 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 592 593 Value *FirstStoredVal = SL[i]->getValueOperand(); 594 Value *FirstStorePtr = SL[i]->getPointerOperand(); 595 const SCEVAddRecExpr *FirstStoreEv = 596 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 597 APInt FirstStride = getStoreStride(FirstStoreEv); 598 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 599 600 // See if we can optimize just this store in isolation. 601 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 602 Heads.insert(SL[i]); 603 continue; 604 } 605 606 Value *FirstSplatValue = nullptr; 607 Constant *FirstPatternValue = nullptr; 608 609 if (For == ForMemset::Yes) 610 FirstSplatValue = isBytewiseValue(FirstStoredVal); 611 else 612 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 613 614 assert((FirstSplatValue || FirstPatternValue) && 615 "Expected either splat value or pattern value."); 616 617 IndexQueue.clear(); 618 // If a store has multiple consecutive store candidates, search Stores 619 // array according to the sequence: from i+1 to e, then from i-1 to 0. 620 // This is because usually pairing with immediate succeeding or preceding 621 // candidate create the best chance to find memset opportunity. 622 unsigned j = 0; 623 for (j = i + 1; j < e; ++j) 624 IndexQueue.push_back(j); 625 for (j = i; j > 0; --j) 626 IndexQueue.push_back(j - 1); 627 628 for (auto &k : IndexQueue) { 629 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 630 Value *SecondStorePtr = SL[k]->getPointerOperand(); 631 const SCEVAddRecExpr *SecondStoreEv = 632 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 633 APInt SecondStride = getStoreStride(SecondStoreEv); 634 635 if (FirstStride != SecondStride) 636 continue; 637 638 Value *SecondStoredVal = SL[k]->getValueOperand(); 639 Value *SecondSplatValue = nullptr; 640 Constant *SecondPatternValue = nullptr; 641 642 if (For == ForMemset::Yes) 643 SecondSplatValue = isBytewiseValue(SecondStoredVal); 644 else 645 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 646 647 assert((SecondSplatValue || SecondPatternValue) && 648 "Expected either splat value or pattern value."); 649 650 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 651 if (For == ForMemset::Yes) { 652 if (isa<UndefValue>(FirstSplatValue)) 653 FirstSplatValue = SecondSplatValue; 654 if (FirstSplatValue != SecondSplatValue) 655 continue; 656 } else { 657 if (isa<UndefValue>(FirstPatternValue)) 658 FirstPatternValue = SecondPatternValue; 659 if (FirstPatternValue != SecondPatternValue) 660 continue; 661 } 662 Tails.insert(SL[k]); 663 Heads.insert(SL[i]); 664 ConsecutiveChain[SL[i]] = SL[k]; 665 break; 666 } 667 } 668 } 669 670 // We may run into multiple chains that merge into a single chain. We mark the 671 // stores that we transformed so that we don't visit the same store twice. 672 SmallPtrSet<Value *, 16> TransformedStores; 673 bool Changed = false; 674 675 // For stores that start but don't end a link in the chain: 676 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 677 it != e; ++it) { 678 if (Tails.count(*it)) 679 continue; 680 681 // We found a store instr that starts a chain. Now follow the chain and try 682 // to transform it. 683 SmallPtrSet<Instruction *, 8> AdjacentStores; 684 StoreInst *I = *it; 685 686 StoreInst *HeadStore = I; 687 unsigned StoreSize = 0; 688 689 // Collect the chain into a list. 690 while (Tails.count(I) || Heads.count(I)) { 691 if (TransformedStores.count(I)) 692 break; 693 AdjacentStores.insert(I); 694 695 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 696 // Move to the next value in the chain. 697 I = ConsecutiveChain[I]; 698 } 699 700 Value *StoredVal = HeadStore->getValueOperand(); 701 Value *StorePtr = HeadStore->getPointerOperand(); 702 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 703 APInt Stride = getStoreStride(StoreEv); 704 705 // Check to see if the stride matches the size of the stores. If so, then 706 // we know that every byte is touched in the loop. 707 if (StoreSize != Stride && StoreSize != -Stride) 708 continue; 709 710 bool NegStride = StoreSize == -Stride; 711 712 if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(), 713 StoredVal, HeadStore, AdjacentStores, StoreEv, 714 BECount, NegStride)) { 715 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 716 Changed = true; 717 } 718 } 719 720 return Changed; 721 } 722 723 /// processLoopMemSet - See if this memset can be promoted to a large memset. 724 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 725 const SCEV *BECount) { 726 // We can only handle non-volatile memsets with a constant size. 727 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) 728 return false; 729 730 // If we're not allowed to hack on memset, we fail. 731 if (!HasMemset) 732 return false; 733 734 Value *Pointer = MSI->getDest(); 735 736 // See if the pointer expression is an AddRec like {base,+,1} on the current 737 // loop, which indicates a strided store. If we have something else, it's a 738 // random store we can't handle. 739 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 740 if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) 741 return false; 742 743 // Reject memsets that are so large that they overflow an unsigned. 744 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 745 if ((SizeInBytes >> 32) != 0) 746 return false; 747 748 // Check to see if the stride matches the size of the memset. If so, then we 749 // know that every byte is touched in the loop. 750 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 751 if (!ConstStride) 752 return false; 753 754 APInt Stride = ConstStride->getAPInt(); 755 if (SizeInBytes != Stride && SizeInBytes != -Stride) 756 return false; 757 758 // Verify that the memset value is loop invariant. If not, we can't promote 759 // the memset. 760 Value *SplatValue = MSI->getValue(); 761 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 762 return false; 763 764 SmallPtrSet<Instruction *, 1> MSIs; 765 MSIs.insert(MSI); 766 bool NegStride = SizeInBytes == -Stride; 767 return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, 768 MSI->getDestAlignment(), SplatValue, MSI, MSIs, 769 Ev, BECount, NegStride, /*IsLoopMemset=*/true); 770 } 771 772 /// mayLoopAccessLocation - Return true if the specified loop might access the 773 /// specified pointer location, which is a loop-strided access. The 'Access' 774 /// argument specifies what the verboten forms of access are (read or write). 775 static bool 776 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 777 const SCEV *BECount, unsigned StoreSize, 778 AliasAnalysis &AA, 779 SmallPtrSetImpl<Instruction *> &IgnoredStores) { 780 // Get the location that may be stored across the loop. Since the access is 781 // strided positively through memory, we say that the modified location starts 782 // at the pointer and has infinite size. 783 LocationSize AccessSize = LocationSize::unknown(); 784 785 // If the loop iterates a fixed number of times, we can refine the access size 786 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 787 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 788 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * 789 StoreSize); 790 791 // TODO: For this to be really effective, we have to dive into the pointer 792 // operand in the store. Store to &A[i] of 100 will always return may alias 793 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 794 // which will then no-alias a store to &A[100]. 795 MemoryLocation StoreLoc(Ptr, AccessSize); 796 797 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; 798 ++BI) 799 for (Instruction &I : **BI) 800 if (IgnoredStores.count(&I) == 0 && 801 isModOrRefSet( 802 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) 803 return true; 804 805 return false; 806 } 807 808 // If we have a negative stride, Start refers to the end of the memory location 809 // we're trying to memset. Therefore, we need to recompute the base pointer, 810 // which is just Start - BECount*Size. 811 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 812 Type *IntPtr, unsigned StoreSize, 813 ScalarEvolution *SE) { 814 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 815 if (StoreSize != 1) 816 Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), 817 SCEV::FlagNUW); 818 return SE->getMinusSCEV(Start, Index); 819 } 820 821 /// Compute the number of bytes as a SCEV from the backedge taken count. 822 /// 823 /// This also maps the SCEV into the provided type and tries to handle the 824 /// computation in a way that will fold cleanly. 825 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 826 unsigned StoreSize, Loop *CurLoop, 827 const DataLayout *DL, ScalarEvolution *SE) { 828 const SCEV *NumBytesS; 829 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 830 // pointer size if it isn't already. 831 // 832 // If we're going to need to zero extend the BE count, check if we can add 833 // one to it prior to zero extending without overflow. Provided this is safe, 834 // it allows better simplification of the +1. 835 if (DL->getTypeSizeInBits(BECount->getType()) < 836 DL->getTypeSizeInBits(IntPtr) && 837 SE->isLoopEntryGuardedByCond( 838 CurLoop, ICmpInst::ICMP_NE, BECount, 839 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { 840 NumBytesS = SE->getZeroExtendExpr( 841 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), 842 IntPtr); 843 } else { 844 NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), 845 SE->getOne(IntPtr), SCEV::FlagNUW); 846 } 847 848 // And scale it based on the store size. 849 if (StoreSize != 1) { 850 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), 851 SCEV::FlagNUW); 852 } 853 return NumBytesS; 854 } 855 856 /// processLoopStridedStore - We see a strided store of some value. If we can 857 /// transform this into a memset or memset_pattern in the loop preheader, do so. 858 bool LoopIdiomRecognize::processLoopStridedStore( 859 Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment, 860 Value *StoredVal, Instruction *TheStore, 861 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 862 const SCEV *BECount, bool NegStride, bool IsLoopMemset) { 863 Value *SplatValue = isBytewiseValue(StoredVal); 864 Constant *PatternValue = nullptr; 865 866 if (!SplatValue) 867 PatternValue = getMemSetPatternValue(StoredVal, DL); 868 869 assert((SplatValue || PatternValue) && 870 "Expected either splat value or pattern value."); 871 872 // The trip count of the loop and the base pointer of the addrec SCEV is 873 // guaranteed to be loop invariant, which means that it should dominate the 874 // header. This allows us to insert code for it in the preheader. 875 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 876 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 877 IRBuilder<> Builder(Preheader->getTerminator()); 878 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 879 880 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 881 Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS); 882 883 const SCEV *Start = Ev->getStart(); 884 // Handle negative strided loops. 885 if (NegStride) 886 Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE); 887 888 // TODO: ideally we should still be able to generate memset if SCEV expander 889 // is taught to generate the dependencies at the latest point. 890 if (!isSafeToExpand(Start, *SE)) 891 return false; 892 893 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 894 // this into a memset in the loop preheader now if we want. However, this 895 // would be unsafe to do if there is anything else in the loop that may read 896 // or write to the aliased location. Check for any overlap by generating the 897 // base pointer and checking the region. 898 Value *BasePtr = 899 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 900 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 901 StoreSize, *AA, Stores)) { 902 Expander.clear(); 903 // If we generated new code for the base pointer, clean up. 904 RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI); 905 return false; 906 } 907 908 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 909 return false; 910 911 // Okay, everything looks good, insert the memset. 912 913 const SCEV *NumBytesS = 914 getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE); 915 916 // TODO: ideally we should still be able to generate memset if SCEV expander 917 // is taught to generate the dependencies at the latest point. 918 if (!isSafeToExpand(NumBytesS, *SE)) 919 return false; 920 921 Value *NumBytes = 922 Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); 923 924 CallInst *NewCall; 925 if (SplatValue) { 926 NewCall = 927 Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment); 928 } else { 929 // Everything is emitted in default address space 930 Type *Int8PtrTy = DestInt8PtrTy; 931 932 Module *M = TheStore->getModule(); 933 StringRef FuncName = "memset_pattern16"; 934 Value *MSP = 935 M->getOrInsertFunction(FuncName, Builder.getVoidTy(), 936 Int8PtrTy, Int8PtrTy, IntPtr); 937 inferLibFuncAttributes(M, FuncName, *TLI); 938 939 // Otherwise we should form a memset_pattern16. PatternValue is known to be 940 // an constant array of 16-bytes. Plop the value into a mergable global. 941 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 942 GlobalValue::PrivateLinkage, 943 PatternValue, ".memset_pattern"); 944 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 945 GV->setAlignment(16); 946 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 947 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 948 } 949 950 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 951 << " from store to: " << *Ev << " at: " << *TheStore 952 << "\n"); 953 NewCall->setDebugLoc(TheStore->getDebugLoc()); 954 955 // Okay, the memset has been formed. Zap the original store and anything that 956 // feeds into it. 957 for (auto *I : Stores) 958 deleteDeadInstruction(I); 959 ++NumMemSet; 960 return true; 961 } 962 963 /// If the stored value is a strided load in the same loop with the same stride 964 /// this may be transformable into a memcpy. This kicks in for stuff like 965 /// for (i) A[i] = B[i]; 966 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 967 const SCEV *BECount) { 968 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 969 970 Value *StorePtr = SI->getPointerOperand(); 971 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 972 APInt Stride = getStoreStride(StoreEv); 973 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 974 bool NegStride = StoreSize == -Stride; 975 976 // The store must be feeding a non-volatile load. 977 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 978 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 979 980 // See if the pointer expression is an AddRec like {base,+,1} on the current 981 // loop, which indicates a strided load. If we have something else, it's a 982 // random load we can't handle. 983 const SCEVAddRecExpr *LoadEv = 984 cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 985 986 // The trip count of the loop and the base pointer of the addrec SCEV is 987 // guaranteed to be loop invariant, which means that it should dominate the 988 // header. This allows us to insert code for it in the preheader. 989 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 990 IRBuilder<> Builder(Preheader->getTerminator()); 991 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 992 993 const SCEV *StrStart = StoreEv->getStart(); 994 unsigned StrAS = SI->getPointerAddressSpace(); 995 Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS); 996 997 // Handle negative strided loops. 998 if (NegStride) 999 StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE); 1000 1001 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1002 // this into a memcpy in the loop preheader now if we want. However, this 1003 // would be unsafe to do if there is anything else in the loop that may read 1004 // or write the memory region we're storing to. This includes the load that 1005 // feeds the stores. Check for an alias by generating the base address and 1006 // checking everything. 1007 Value *StoreBasePtr = Expander.expandCodeFor( 1008 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 1009 1010 SmallPtrSet<Instruction *, 1> Stores; 1011 Stores.insert(SI); 1012 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1013 StoreSize, *AA, Stores)) { 1014 Expander.clear(); 1015 // If we generated new code for the base pointer, clean up. 1016 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 1017 return false; 1018 } 1019 1020 const SCEV *LdStart = LoadEv->getStart(); 1021 unsigned LdAS = LI->getPointerAddressSpace(); 1022 1023 // Handle negative strided loops. 1024 if (NegStride) 1025 LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE); 1026 1027 // For a memcpy, we have to make sure that the input array is not being 1028 // mutated by the loop. 1029 Value *LoadBasePtr = Expander.expandCodeFor( 1030 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 1031 1032 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1033 StoreSize, *AA, Stores)) { 1034 Expander.clear(); 1035 // If we generated new code for the base pointer, clean up. 1036 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); 1037 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 1038 return false; 1039 } 1040 1041 if (avoidLIRForMultiBlockLoop()) 1042 return false; 1043 1044 // Okay, everything is safe, we can transform this! 1045 1046 const SCEV *NumBytesS = 1047 getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE); 1048 1049 Value *NumBytes = 1050 Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator()); 1051 1052 CallInst *NewCall = nullptr; 1053 // Check whether to generate an unordered atomic memcpy: 1054 // If the load or store are atomic, then they must necessarily be unordered 1055 // by previous checks. 1056 if (!SI->isAtomic() && !LI->isAtomic()) 1057 NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(), 1058 LoadBasePtr, LI->getAlignment(), NumBytes); 1059 else { 1060 // We cannot allow unaligned ops for unordered load/store, so reject 1061 // anything where the alignment isn't at least the element size. 1062 unsigned Align = std::min(SI->getAlignment(), LI->getAlignment()); 1063 if (Align < StoreSize) 1064 return false; 1065 1066 // If the element.atomic memcpy is not lowered into explicit 1067 // loads/stores later, then it will be lowered into an element-size 1068 // specific lib call. If the lib call doesn't exist for our store size, then 1069 // we shouldn't generate the memcpy. 1070 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1071 return false; 1072 1073 // Create the call. 1074 // Note that unordered atomic loads/stores are *required* by the spec to 1075 // have an alignment but non-atomic loads/stores may not. 1076 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1077 StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(), 1078 NumBytes, StoreSize); 1079 } 1080 NewCall->setDebugLoc(SI->getDebugLoc()); 1081 1082 LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" 1083 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" 1084 << " from store ptr=" << *StoreEv << " at: " << *SI 1085 << "\n"); 1086 1087 // Okay, the memcpy has been formed. Zap the original store and anything that 1088 // feeds into it. 1089 deleteDeadInstruction(SI); 1090 ++NumMemCpy; 1091 return true; 1092 } 1093 1094 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1095 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1096 // 1097 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1098 bool IsLoopMemset) { 1099 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1100 if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) { 1101 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1102 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1103 << " avoided: multi-block top-level loop\n"); 1104 return true; 1105 } 1106 } 1107 1108 return false; 1109 } 1110 1111 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1112 return recognizePopcount() || recognizeAndInsertFFS(); 1113 } 1114 1115 /// Check if the given conditional branch is based on the comparison between 1116 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is 1117 /// true), the control yields to the loop entry. If the branch matches the 1118 /// behavior, the variable involved in the comparison is returned. This function 1119 /// will be called to see if the precondition and postcondition of the loop are 1120 /// in desirable form. 1121 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, 1122 bool JmpOnZero = false) { 1123 if (!BI || !BI->isConditional()) 1124 return nullptr; 1125 1126 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1127 if (!Cond) 1128 return nullptr; 1129 1130 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1131 if (!CmpZero || !CmpZero->isZero()) 1132 return nullptr; 1133 1134 BasicBlock *TrueSucc = BI->getSuccessor(0); 1135 BasicBlock *FalseSucc = BI->getSuccessor(1); 1136 if (JmpOnZero) 1137 std::swap(TrueSucc, FalseSucc); 1138 1139 ICmpInst::Predicate Pred = Cond->getPredicate(); 1140 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || 1141 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) 1142 return Cond->getOperand(0); 1143 1144 return nullptr; 1145 } 1146 1147 // Check if the recurrence variable `VarX` is in the right form to create 1148 // the idiom. Returns the value coerced to a PHINode if so. 1149 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1150 BasicBlock *LoopEntry) { 1151 auto *PhiX = dyn_cast<PHINode>(VarX); 1152 if (PhiX && PhiX->getParent() == LoopEntry && 1153 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1154 return PhiX; 1155 return nullptr; 1156 } 1157 1158 /// Return true iff the idiom is detected in the loop. 1159 /// 1160 /// Additionally: 1161 /// 1) \p CntInst is set to the instruction counting the population bit. 1162 /// 2) \p CntPhi is set to the corresponding phi node. 1163 /// 3) \p Var is set to the value whose population bits are being counted. 1164 /// 1165 /// The core idiom we are trying to detect is: 1166 /// \code 1167 /// if (x0 != 0) 1168 /// goto loop-exit // the precondition of the loop 1169 /// cnt0 = init-val; 1170 /// do { 1171 /// x1 = phi (x0, x2); 1172 /// cnt1 = phi(cnt0, cnt2); 1173 /// 1174 /// cnt2 = cnt1 + 1; 1175 /// ... 1176 /// x2 = x1 & (x1 - 1); 1177 /// ... 1178 /// } while(x != 0); 1179 /// 1180 /// loop-exit: 1181 /// \endcode 1182 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1183 Instruction *&CntInst, PHINode *&CntPhi, 1184 Value *&Var) { 1185 // step 1: Check to see if the look-back branch match this pattern: 1186 // "if (a!=0) goto loop-entry". 1187 BasicBlock *LoopEntry; 1188 Instruction *DefX2, *CountInst; 1189 Value *VarX1, *VarX0; 1190 PHINode *PhiX, *CountPhi; 1191 1192 DefX2 = CountInst = nullptr; 1193 VarX1 = VarX0 = nullptr; 1194 PhiX = CountPhi = nullptr; 1195 LoopEntry = *(CurLoop->block_begin()); 1196 1197 // step 1: Check if the loop-back branch is in desirable form. 1198 { 1199 if (Value *T = matchCondition( 1200 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1201 DefX2 = dyn_cast<Instruction>(T); 1202 else 1203 return false; 1204 } 1205 1206 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1207 { 1208 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1209 return false; 1210 1211 BinaryOperator *SubOneOp; 1212 1213 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1214 VarX1 = DefX2->getOperand(1); 1215 else { 1216 VarX1 = DefX2->getOperand(0); 1217 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1218 } 1219 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) 1220 return false; 1221 1222 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); 1223 if (!Dec || 1224 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || 1225 (SubOneOp->getOpcode() == Instruction::Add && 1226 Dec->isMinusOne()))) { 1227 return false; 1228 } 1229 } 1230 1231 // step 3: Check the recurrence of variable X 1232 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1233 if (!PhiX) 1234 return false; 1235 1236 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1237 { 1238 CountInst = nullptr; 1239 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1240 IterE = LoopEntry->end(); 1241 Iter != IterE; Iter++) { 1242 Instruction *Inst = &*Iter; 1243 if (Inst->getOpcode() != Instruction::Add) 1244 continue; 1245 1246 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1247 if (!Inc || !Inc->isOne()) 1248 continue; 1249 1250 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1251 if (!Phi) 1252 continue; 1253 1254 // Check if the result of the instruction is live of the loop. 1255 bool LiveOutLoop = false; 1256 for (User *U : Inst->users()) { 1257 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1258 LiveOutLoop = true; 1259 break; 1260 } 1261 } 1262 1263 if (LiveOutLoop) { 1264 CountInst = Inst; 1265 CountPhi = Phi; 1266 break; 1267 } 1268 } 1269 1270 if (!CountInst) 1271 return false; 1272 } 1273 1274 // step 5: check if the precondition is in this form: 1275 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1276 { 1277 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1278 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1279 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1280 return false; 1281 1282 CntInst = CountInst; 1283 CntPhi = CountPhi; 1284 Var = T; 1285 } 1286 1287 return true; 1288 } 1289 1290 /// Return true if the idiom is detected in the loop. 1291 /// 1292 /// Additionally: 1293 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1294 /// or nullptr if there is no such. 1295 /// 2) \p CntPhi is set to the corresponding phi node 1296 /// or nullptr if there is no such. 1297 /// 3) \p Var is set to the value whose CTLZ could be used. 1298 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1299 /// 1300 /// The core idiom we are trying to detect is: 1301 /// \code 1302 /// if (x0 == 0) 1303 /// goto loop-exit // the precondition of the loop 1304 /// cnt0 = init-val; 1305 /// do { 1306 /// x = phi (x0, x.next); //PhiX 1307 /// cnt = phi(cnt0, cnt.next); 1308 /// 1309 /// cnt.next = cnt + 1; 1310 /// ... 1311 /// x.next = x >> 1; // DefX 1312 /// ... 1313 /// } while(x.next != 0); 1314 /// 1315 /// loop-exit: 1316 /// \endcode 1317 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, 1318 Intrinsic::ID &IntrinID, Value *&InitX, 1319 Instruction *&CntInst, PHINode *&CntPhi, 1320 Instruction *&DefX) { 1321 BasicBlock *LoopEntry; 1322 Value *VarX = nullptr; 1323 1324 DefX = nullptr; 1325 CntInst = nullptr; 1326 CntPhi = nullptr; 1327 LoopEntry = *(CurLoop->block_begin()); 1328 1329 // step 1: Check if the loop-back branch is in desirable form. 1330 if (Value *T = matchCondition( 1331 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1332 DefX = dyn_cast<Instruction>(T); 1333 else 1334 return false; 1335 1336 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" 1337 if (!DefX || !DefX->isShift()) 1338 return false; 1339 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : 1340 Intrinsic::ctlz; 1341 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1342 if (!Shft || !Shft->isOne()) 1343 return false; 1344 VarX = DefX->getOperand(0); 1345 1346 // step 3: Check the recurrence of variable X 1347 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1348 if (!PhiX) 1349 return false; 1350 1351 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1352 1353 // Make sure the initial value can't be negative otherwise the ashr in the 1354 // loop might never reach zero which would make the loop infinite. 1355 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) 1356 return false; 1357 1358 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1359 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1360 // then all uses of "cnt.next" could be optimized to the trip count 1361 // plus "cnt0". Currently it is not optimized. 1362 // This step could be used to detect POPCNT instruction: 1363 // cnt.next = cnt + (x.next & 1) 1364 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1365 IterE = LoopEntry->end(); 1366 Iter != IterE; Iter++) { 1367 Instruction *Inst = &*Iter; 1368 if (Inst->getOpcode() != Instruction::Add) 1369 continue; 1370 1371 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1372 if (!Inc || !Inc->isOne()) 1373 continue; 1374 1375 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1376 if (!Phi) 1377 continue; 1378 1379 CntInst = Inst; 1380 CntPhi = Phi; 1381 break; 1382 } 1383 if (!CntInst) 1384 return false; 1385 1386 return true; 1387 } 1388 1389 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop 1390 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new 1391 /// trip count returns true; otherwise, returns false. 1392 bool LoopIdiomRecognize::recognizeAndInsertFFS() { 1393 // Give up if the loop has multiple blocks or multiple backedges. 1394 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1395 return false; 1396 1397 Intrinsic::ID IntrinID; 1398 Value *InitX; 1399 Instruction *DefX = nullptr; 1400 PHINode *CntPhi = nullptr; 1401 Instruction *CntInst = nullptr; 1402 // Help decide if transformation is profitable. For ShiftUntilZero idiom, 1403 // this is always 6. 1404 size_t IdiomCanonicalSize = 6; 1405 1406 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, 1407 CntInst, CntPhi, DefX)) 1408 return false; 1409 1410 bool IsCntPhiUsedOutsideLoop = false; 1411 for (User *U : CntPhi->users()) 1412 if (!CurLoop->contains(cast<Instruction>(U))) { 1413 IsCntPhiUsedOutsideLoop = true; 1414 break; 1415 } 1416 bool IsCntInstUsedOutsideLoop = false; 1417 for (User *U : CntInst->users()) 1418 if (!CurLoop->contains(cast<Instruction>(U))) { 1419 IsCntInstUsedOutsideLoop = true; 1420 break; 1421 } 1422 // If both CntInst and CntPhi are used outside the loop the profitability 1423 // is questionable. 1424 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1425 return false; 1426 1427 // For some CPUs result of CTLZ(X) intrinsic is undefined 1428 // when X is 0. If we can not guarantee X != 0, we need to check this 1429 // when expand. 1430 bool ZeroCheck = false; 1431 // It is safe to assume Preheader exist as it was checked in 1432 // parent function RunOnLoop. 1433 BasicBlock *PH = CurLoop->getLoopPreheader(); 1434 1435 // If we are using the count instruction outside the loop, make sure we 1436 // have a zero check as a precondition. Without the check the loop would run 1437 // one iteration for before any check of the input value. This means 0 and 1 1438 // would have identical behavior in the original loop and thus 1439 if (!IsCntPhiUsedOutsideLoop) { 1440 auto *PreCondBB = PH->getSinglePredecessor(); 1441 if (!PreCondBB) 1442 return false; 1443 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1444 if (!PreCondBI) 1445 return false; 1446 if (matchCondition(PreCondBI, PH) != InitX) 1447 return false; 1448 ZeroCheck = true; 1449 } 1450 1451 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always 1452 // profitable if we delete the loop. 1453 1454 // the loop has only 6 instructions: 1455 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1456 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1457 // %shr = ashr %n.addr.0, 1 1458 // %tobool = icmp eq %shr, 0 1459 // %inc = add nsw %i.0, 1 1460 // br i1 %tobool 1461 1462 const Value *Args[] = 1463 {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext()) 1464 : ConstantInt::getFalse(InitX->getContext())}; 1465 if (CurLoop->getHeader()->size() != IdiomCanonicalSize && 1466 TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) > 1467 TargetTransformInfo::TCC_Basic) 1468 return false; 1469 1470 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 1471 DefX->getDebugLoc(), ZeroCheck, 1472 IsCntPhiUsedOutsideLoop); 1473 return true; 1474 } 1475 1476 /// Recognizes a population count idiom in a non-countable loop. 1477 /// 1478 /// If detected, transforms the relevant code to issue the popcount intrinsic 1479 /// function call, and returns true; otherwise, returns false. 1480 bool LoopIdiomRecognize::recognizePopcount() { 1481 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1482 return false; 1483 1484 // Counting population are usually conducted by few arithmetic instructions. 1485 // Such instructions can be easily "absorbed" by vacant slots in a 1486 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1487 // in a compact loop. 1488 1489 // Give up if the loop has multiple blocks or multiple backedges. 1490 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1491 return false; 1492 1493 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1494 if (LoopBody->size() >= 20) { 1495 // The loop is too big, bail out. 1496 return false; 1497 } 1498 1499 // It should have a preheader containing nothing but an unconditional branch. 1500 BasicBlock *PH = CurLoop->getLoopPreheader(); 1501 if (!PH || &PH->front() != PH->getTerminator()) 1502 return false; 1503 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1504 if (!EntryBI || EntryBI->isConditional()) 1505 return false; 1506 1507 // It should have a precondition block where the generated popcount intrinsic 1508 // function can be inserted. 1509 auto *PreCondBB = PH->getSinglePredecessor(); 1510 if (!PreCondBB) 1511 return false; 1512 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1513 if (!PreCondBI || PreCondBI->isUnconditional()) 1514 return false; 1515 1516 Instruction *CntInst; 1517 PHINode *CntPhi; 1518 Value *Val; 1519 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1520 return false; 1521 1522 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1523 return true; 1524 } 1525 1526 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1527 const DebugLoc &DL) { 1528 Value *Ops[] = {Val}; 1529 Type *Tys[] = {Val->getType()}; 1530 1531 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1532 Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1533 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1534 CI->setDebugLoc(DL); 1535 1536 return CI; 1537 } 1538 1539 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1540 const DebugLoc &DL, bool ZeroCheck, 1541 Intrinsic::ID IID) { 1542 Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()}; 1543 Type *Tys[] = {Val->getType()}; 1544 1545 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1546 Value *Func = Intrinsic::getDeclaration(M, IID, Tys); 1547 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1548 CI->setDebugLoc(DL); 1549 1550 return CI; 1551 } 1552 1553 /// Transform the following loop (Using CTLZ, CTTZ is similar): 1554 /// loop: 1555 /// CntPhi = PHI [Cnt0, CntInst] 1556 /// PhiX = PHI [InitX, DefX] 1557 /// CntInst = CntPhi + 1 1558 /// DefX = PhiX >> 1 1559 /// LOOP_BODY 1560 /// Br: loop if (DefX != 0) 1561 /// Use(CntPhi) or Use(CntInst) 1562 /// 1563 /// Into: 1564 /// If CntPhi used outside the loop: 1565 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 1566 /// Count = CountPrev + 1 1567 /// else 1568 /// Count = BitWidth(InitX) - CTLZ(InitX) 1569 /// loop: 1570 /// CntPhi = PHI [Cnt0, CntInst] 1571 /// PhiX = PHI [InitX, DefX] 1572 /// PhiCount = PHI [Count, Dec] 1573 /// CntInst = CntPhi + 1 1574 /// DefX = PhiX >> 1 1575 /// Dec = PhiCount - 1 1576 /// LOOP_BODY 1577 /// Br: loop if (Dec != 0) 1578 /// Use(CountPrev + Cnt0) // Use(CntPhi) 1579 /// or 1580 /// Use(Count + Cnt0) // Use(CntInst) 1581 /// 1582 /// If LOOP_BODY is empty the loop will be deleted. 1583 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 1584 void LoopIdiomRecognize::transformLoopToCountable( 1585 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, 1586 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, 1587 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { 1588 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); 1589 1590 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block 1591 IRBuilder<> Builder(PreheaderBr); 1592 Builder.SetCurrentDebugLocation(DL); 1593 Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext; 1594 1595 // Count = BitWidth - CTLZ(InitX); 1596 // If there are uses of CntPhi create: 1597 // CountPrev = BitWidth - CTLZ(InitX >> 1); 1598 if (IsCntPhiUsedOutsideLoop) { 1599 if (DefX->getOpcode() == Instruction::AShr) 1600 InitXNext = 1601 Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1)); 1602 else if (DefX->getOpcode() == Instruction::LShr) 1603 InitXNext = 1604 Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1)); 1605 else if (DefX->getOpcode() == Instruction::Shl) // cttz 1606 InitXNext = 1607 Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1)); 1608 else 1609 llvm_unreachable("Unexpected opcode!"); 1610 } else 1611 InitXNext = InitX; 1612 FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); 1613 Count = Builder.CreateSub( 1614 ConstantInt::get(FFS->getType(), 1615 FFS->getType()->getIntegerBitWidth()), 1616 FFS); 1617 if (IsCntPhiUsedOutsideLoop) { 1618 CountPrev = Count; 1619 Count = Builder.CreateAdd( 1620 CountPrev, 1621 ConstantInt::get(CountPrev->getType(), 1)); 1622 } 1623 1624 NewCount = Builder.CreateZExtOrTrunc( 1625 IsCntPhiUsedOutsideLoop ? CountPrev : Count, 1626 cast<IntegerType>(CntInst->getType())); 1627 1628 // If the counter's initial value is not zero, insert Add Inst. 1629 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 1630 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1631 if (!InitConst || !InitConst->isZero()) 1632 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1633 1634 // Step 2: Insert new IV and loop condition: 1635 // loop: 1636 // ... 1637 // PhiCount = PHI [Count, Dec] 1638 // ... 1639 // Dec = PhiCount - 1 1640 // ... 1641 // Br: loop if (Dec != 0) 1642 BasicBlock *Body = *(CurLoop->block_begin()); 1643 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 1644 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1645 Type *Ty = Count->getType(); 1646 1647 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1648 1649 Builder.SetInsertPoint(LbCond); 1650 Instruction *TcDec = cast<Instruction>( 1651 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1652 "tcdec", false, true)); 1653 1654 TcPhi->addIncoming(Count, Preheader); 1655 TcPhi->addIncoming(TcDec, Body); 1656 1657 CmpInst::Predicate Pred = 1658 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 1659 LbCond->setPredicate(Pred); 1660 LbCond->setOperand(0, TcDec); 1661 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1662 1663 // Step 3: All the references to the original counter outside 1664 // the loop are replaced with the NewCount 1665 if (IsCntPhiUsedOutsideLoop) 1666 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 1667 else 1668 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1669 1670 // step 4: Forget the "non-computable" trip-count SCEV associated with the 1671 // loop. The loop would otherwise not be deleted even if it becomes empty. 1672 SE->forgetLoop(CurLoop); 1673 } 1674 1675 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 1676 Instruction *CntInst, 1677 PHINode *CntPhi, Value *Var) { 1678 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 1679 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); 1680 const DebugLoc &DL = CntInst->getDebugLoc(); 1681 1682 // Assuming before transformation, the loop is following: 1683 // if (x) // the precondition 1684 // do { cnt++; x &= x - 1; } while(x); 1685 1686 // Step 1: Insert the ctpop instruction at the end of the precondition block 1687 IRBuilder<> Builder(PreCondBr); 1688 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 1689 { 1690 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 1691 NewCount = PopCntZext = 1692 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 1693 1694 if (NewCount != PopCnt) 1695 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1696 1697 // TripCnt is exactly the number of iterations the loop has 1698 TripCnt = NewCount; 1699 1700 // If the population counter's initial value is not zero, insert Add Inst. 1701 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 1702 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1703 if (!InitConst || !InitConst->isZero()) { 1704 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1705 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1706 } 1707 } 1708 1709 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 1710 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 1711 // function would be partial dead code, and downstream passes will drag 1712 // it back from the precondition block to the preheader. 1713 { 1714 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 1715 1716 Value *Opnd0 = PopCntZext; 1717 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 1718 if (PreCond->getOperand(0) != Var) 1719 std::swap(Opnd0, Opnd1); 1720 1721 ICmpInst *NewPreCond = cast<ICmpInst>( 1722 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 1723 PreCondBr->setCondition(NewPreCond); 1724 1725 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 1726 } 1727 1728 // Step 3: Note that the population count is exactly the trip count of the 1729 // loop in question, which enable us to convert the loop from noncountable 1730 // loop into a countable one. The benefit is twofold: 1731 // 1732 // - If the loop only counts population, the entire loop becomes dead after 1733 // the transformation. It is a lot easier to prove a countable loop dead 1734 // than to prove a noncountable one. (In some C dialects, an infinite loop 1735 // isn't dead even if it computes nothing useful. In general, DCE needs 1736 // to prove a noncountable loop finite before safely delete it.) 1737 // 1738 // - If the loop also performs something else, it remains alive. 1739 // Since it is transformed to countable form, it can be aggressively 1740 // optimized by some optimizations which are in general not applicable 1741 // to a noncountable loop. 1742 // 1743 // After this step, this loop (conceptually) would look like following: 1744 // newcnt = __builtin_ctpop(x); 1745 // t = newcnt; 1746 // if (x) 1747 // do { cnt++; x &= x-1; t--) } while (t > 0); 1748 BasicBlock *Body = *(CurLoop->block_begin()); 1749 { 1750 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 1751 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1752 Type *Ty = TripCnt->getType(); 1753 1754 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1755 1756 Builder.SetInsertPoint(LbCond); 1757 Instruction *TcDec = cast<Instruction>( 1758 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1759 "tcdec", false, true)); 1760 1761 TcPhi->addIncoming(TripCnt, PreHead); 1762 TcPhi->addIncoming(TcDec, Body); 1763 1764 CmpInst::Predicate Pred = 1765 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 1766 LbCond->setPredicate(Pred); 1767 LbCond->setOperand(0, TcDec); 1768 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1769 } 1770 1771 // Step 4: All the references to the original population counter outside 1772 // the loop are replaced with the NewCount -- the value returned from 1773 // __builtin_ctpop(). 1774 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1775 1776 // step 5: Forget the "non-computable" trip-count SCEV associated with the 1777 // loop. The loop would otherwise not be deleted even if it becomes empty. 1778 SE->forgetLoop(CurLoop); 1779 } 1780