1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/LazyValueInfo.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DomTreeUpdater.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/PassManager.h" 54 #include "llvm/IR/PatternMatch.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Use.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Pass.h" 60 #include "llvm/Support/BlockFrequency.h" 61 #include "llvm/Support/BranchProbability.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Cloning.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/SSAUpdater.h" 71 #include "llvm/Transforms/Utils/ValueMapper.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <memory> 78 #include <utility> 79 80 using namespace llvm; 81 using namespace jumpthreading; 82 83 #define DEBUG_TYPE "jump-threading" 84 85 STATISTIC(NumThreads, "Number of jumps threaded"); 86 STATISTIC(NumFolds, "Number of terminators folded"); 87 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 88 89 static cl::opt<unsigned> 90 BBDuplicateThreshold("jump-threading-threshold", 91 cl::desc("Max block size to duplicate for jump threading"), 92 cl::init(6), cl::Hidden); 93 94 static cl::opt<unsigned> 95 ImplicationSearchThreshold( 96 "jump-threading-implication-search-threshold", 97 cl::desc("The number of predecessors to search for a stronger " 98 "condition to use to thread over a weaker condition"), 99 cl::init(3), cl::Hidden); 100 101 static cl::opt<bool> PrintLVIAfterJumpThreading( 102 "print-lvi-after-jump-threading", 103 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 104 cl::Hidden); 105 106 namespace { 107 108 /// This pass performs 'jump threading', which looks at blocks that have 109 /// multiple predecessors and multiple successors. If one or more of the 110 /// predecessors of the block can be proven to always jump to one of the 111 /// successors, we forward the edge from the predecessor to the successor by 112 /// duplicating the contents of this block. 113 /// 114 /// An example of when this can occur is code like this: 115 /// 116 /// if () { ... 117 /// X = 4; 118 /// } 119 /// if (X < 3) { 120 /// 121 /// In this case, the unconditional branch at the end of the first if can be 122 /// revectored to the false side of the second if. 123 class JumpThreading : public FunctionPass { 124 JumpThreadingPass Impl; 125 126 public: 127 static char ID; // Pass identification 128 129 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 130 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 131 } 132 133 bool runOnFunction(Function &F) override; 134 135 void getAnalysisUsage(AnalysisUsage &AU) const override { 136 AU.addRequired<DominatorTreeWrapperPass>(); 137 AU.addPreserved<DominatorTreeWrapperPass>(); 138 AU.addRequired<AAResultsWrapperPass>(); 139 AU.addRequired<LazyValueInfoWrapperPass>(); 140 AU.addPreserved<LazyValueInfoWrapperPass>(); 141 AU.addPreserved<GlobalsAAWrapperPass>(); 142 AU.addRequired<TargetLibraryInfoWrapperPass>(); 143 } 144 145 void releaseMemory() override { Impl.releaseMemory(); } 146 }; 147 148 } // end anonymous namespace 149 150 char JumpThreading::ID = 0; 151 152 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 153 "Jump Threading", false, false) 154 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 156 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 157 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 158 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 159 "Jump Threading", false, false) 160 161 // Public interface to the Jump Threading pass 162 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 163 return new JumpThreading(Threshold); 164 } 165 166 JumpThreadingPass::JumpThreadingPass(int T) { 167 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 168 } 169 170 // Update branch probability information according to conditional 171 // branch probability. This is usually made possible for cloned branches 172 // in inline instances by the context specific profile in the caller. 173 // For instance, 174 // 175 // [Block PredBB] 176 // [Branch PredBr] 177 // if (t) { 178 // Block A; 179 // } else { 180 // Block B; 181 // } 182 // 183 // [Block BB] 184 // cond = PN([true, %A], [..., %B]); // PHI node 185 // [Branch CondBr] 186 // if (cond) { 187 // ... // P(cond == true) = 1% 188 // } 189 // 190 // Here we know that when block A is taken, cond must be true, which means 191 // P(cond == true | A) = 1 192 // 193 // Given that P(cond == true) = P(cond == true | A) * P(A) + 194 // P(cond == true | B) * P(B) 195 // we get: 196 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 197 // 198 // which gives us: 199 // P(A) is less than P(cond == true), i.e. 200 // P(t == true) <= P(cond == true) 201 // 202 // In other words, if we know P(cond == true) is unlikely, we know 203 // that P(t == true) is also unlikely. 204 // 205 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 206 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 207 if (!CondBr) 208 return; 209 210 BranchProbability BP; 211 uint64_t TrueWeight, FalseWeight; 212 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 213 return; 214 215 // Returns the outgoing edge of the dominating predecessor block 216 // that leads to the PhiNode's incoming block: 217 auto GetPredOutEdge = 218 [](BasicBlock *IncomingBB, 219 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 220 auto *PredBB = IncomingBB; 221 auto *SuccBB = PhiBB; 222 while (true) { 223 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 224 if (PredBr && PredBr->isConditional()) 225 return {PredBB, SuccBB}; 226 auto *SinglePredBB = PredBB->getSinglePredecessor(); 227 if (!SinglePredBB) 228 return {nullptr, nullptr}; 229 SuccBB = PredBB; 230 PredBB = SinglePredBB; 231 } 232 }; 233 234 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 235 Value *PhiOpnd = PN->getIncomingValue(i); 236 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 237 238 if (!CI || !CI->getType()->isIntegerTy(1)) 239 continue; 240 241 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 242 TrueWeight, TrueWeight + FalseWeight) 243 : BranchProbability::getBranchProbability( 244 FalseWeight, TrueWeight + FalseWeight)); 245 246 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 247 if (!PredOutEdge.first) 248 return; 249 250 BasicBlock *PredBB = PredOutEdge.first; 251 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator()); 252 253 uint64_t PredTrueWeight, PredFalseWeight; 254 // FIXME: We currently only set the profile data when it is missing. 255 // With PGO, this can be used to refine even existing profile data with 256 // context information. This needs to be done after more performance 257 // testing. 258 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 259 continue; 260 261 // We can not infer anything useful when BP >= 50%, because BP is the 262 // upper bound probability value. 263 if (BP >= BranchProbability(50, 100)) 264 continue; 265 266 SmallVector<uint32_t, 2> Weights; 267 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 268 Weights.push_back(BP.getNumerator()); 269 Weights.push_back(BP.getCompl().getNumerator()); 270 } else { 271 Weights.push_back(BP.getCompl().getNumerator()); 272 Weights.push_back(BP.getNumerator()); 273 } 274 PredBr->setMetadata(LLVMContext::MD_prof, 275 MDBuilder(PredBr->getParent()->getContext()) 276 .createBranchWeights(Weights)); 277 } 278 } 279 280 /// runOnFunction - Toplevel algorithm. 281 bool JumpThreading::runOnFunction(Function &F) { 282 if (skipFunction(F)) 283 return false; 284 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 285 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 286 // DT if it's available. 287 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 288 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 289 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 290 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 291 std::unique_ptr<BlockFrequencyInfo> BFI; 292 std::unique_ptr<BranchProbabilityInfo> BPI; 293 bool HasProfileData = F.hasProfileData(); 294 if (HasProfileData) { 295 LoopInfo LI{DominatorTree(F)}; 296 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 297 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 298 } 299 300 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, HasProfileData, 301 std::move(BFI), std::move(BPI)); 302 if (PrintLVIAfterJumpThreading) { 303 dbgs() << "LVI for function '" << F.getName() << "':\n"; 304 LVI->printLVI(F, *DT, dbgs()); 305 } 306 return Changed; 307 } 308 309 PreservedAnalyses JumpThreadingPass::run(Function &F, 310 FunctionAnalysisManager &AM) { 311 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 312 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 313 // DT if it's available. 314 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 315 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 316 auto &AA = AM.getResult<AAManager>(F); 317 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 318 319 std::unique_ptr<BlockFrequencyInfo> BFI; 320 std::unique_ptr<BranchProbabilityInfo> BPI; 321 if (F.hasProfileData()) { 322 LoopInfo LI{DominatorTree(F)}; 323 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 324 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 325 } 326 327 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, HasProfileData, 328 std::move(BFI), std::move(BPI)); 329 330 if (!Changed) 331 return PreservedAnalyses::all(); 332 PreservedAnalyses PA; 333 PA.preserve<GlobalsAA>(); 334 PA.preserve<DominatorTreeAnalysis>(); 335 PA.preserve<LazyValueAnalysis>(); 336 return PA; 337 } 338 339 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 340 LazyValueInfo *LVI_, AliasAnalysis *AA_, 341 DomTreeUpdater *DTU_, bool HasProfileData_, 342 std::unique_ptr<BlockFrequencyInfo> BFI_, 343 std::unique_ptr<BranchProbabilityInfo> BPI_) { 344 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 345 TLI = TLI_; 346 LVI = LVI_; 347 AA = AA_; 348 DTU = DTU_; 349 BFI.reset(); 350 BPI.reset(); 351 // When profile data is available, we need to update edge weights after 352 // successful jump threading, which requires both BPI and BFI being available. 353 HasProfileData = HasProfileData_; 354 auto *GuardDecl = F.getParent()->getFunction( 355 Intrinsic::getName(Intrinsic::experimental_guard)); 356 HasGuards = GuardDecl && !GuardDecl->use_empty(); 357 if (HasProfileData) { 358 BPI = std::move(BPI_); 359 BFI = std::move(BFI_); 360 } 361 362 // JumpThreading must not processes blocks unreachable from entry. It's a 363 // waste of compute time and can potentially lead to hangs. 364 SmallPtrSet<BasicBlock *, 16> Unreachable; 365 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 366 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 367 DominatorTree &DT = DTU->getDomTree(); 368 for (auto &BB : F) 369 if (!DT.isReachableFromEntry(&BB)) 370 Unreachable.insert(&BB); 371 372 FindLoopHeaders(F); 373 374 bool EverChanged = false; 375 bool Changed; 376 do { 377 Changed = false; 378 for (auto &BB : F) { 379 if (Unreachable.count(&BB)) 380 continue; 381 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. 382 Changed = true; 383 // Stop processing BB if it's the entry or is now deleted. The following 384 // routines attempt to eliminate BB and locating a suitable replacement 385 // for the entry is non-trivial. 386 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 387 continue; 388 389 if (pred_empty(&BB)) { 390 // When ProcessBlock makes BB unreachable it doesn't bother to fix up 391 // the instructions in it. We must remove BB to prevent invalid IR. 392 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 393 << "' with terminator: " << *BB.getTerminator() 394 << '\n'); 395 LoopHeaders.erase(&BB); 396 LVI->eraseBlock(&BB); 397 DeleteDeadBlock(&BB, DTU); 398 Changed = true; 399 continue; 400 } 401 402 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB 403 // is "almost empty", we attempt to merge BB with its sole successor. 404 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 405 if (BI && BI->isUnconditional() && 406 // The terminator must be the only non-phi instruction in BB. 407 BB.getFirstNonPHIOrDbg()->isTerminator() && 408 // Don't alter Loop headers and latches to ensure another pass can 409 // detect and transform nested loops later. 410 !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) && 411 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 412 // BB is valid for cleanup here because we passed in DTU. F remains 413 // BB's parent until a DTU->getDomTree() event. 414 LVI->eraseBlock(&BB); 415 Changed = true; 416 } 417 } 418 EverChanged |= Changed; 419 } while (Changed); 420 421 LoopHeaders.clear(); 422 // Flush only the Dominator Tree. 423 DTU->getDomTree(); 424 LVI->enableDT(); 425 return EverChanged; 426 } 427 428 // Replace uses of Cond with ToVal when safe to do so. If all uses are 429 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 430 // because we may incorrectly replace uses when guards/assumes are uses of 431 // of `Cond` and we used the guards/assume to reason about the `Cond` value 432 // at the end of block. RAUW unconditionally replaces all uses 433 // including the guards/assumes themselves and the uses before the 434 // guard/assume. 435 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 436 assert(Cond->getType() == ToVal->getType()); 437 auto *BB = Cond->getParent(); 438 // We can unconditionally replace all uses in non-local blocks (i.e. uses 439 // strictly dominated by BB), since LVI information is true from the 440 // terminator of BB. 441 replaceNonLocalUsesWith(Cond, ToVal); 442 for (Instruction &I : reverse(*BB)) { 443 // Reached the Cond whose uses we are trying to replace, so there are no 444 // more uses. 445 if (&I == Cond) 446 break; 447 // We only replace uses in instructions that are guaranteed to reach the end 448 // of BB, where we know Cond is ToVal. 449 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 450 break; 451 I.replaceUsesOfWith(Cond, ToVal); 452 } 453 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 454 Cond->eraseFromParent(); 455 } 456 457 /// Return the cost of duplicating a piece of this block from first non-phi 458 /// and before StopAt instruction to thread across it. Stop scanning the block 459 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 460 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 461 Instruction *StopAt, 462 unsigned Threshold) { 463 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 464 /// Ignore PHI nodes, these will be flattened when duplication happens. 465 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 466 467 // FIXME: THREADING will delete values that are just used to compute the 468 // branch, so they shouldn't count against the duplication cost. 469 470 unsigned Bonus = 0; 471 if (BB->getTerminator() == StopAt) { 472 // Threading through a switch statement is particularly profitable. If this 473 // block ends in a switch, decrease its cost to make it more likely to 474 // happen. 475 if (isa<SwitchInst>(StopAt)) 476 Bonus = 6; 477 478 // The same holds for indirect branches, but slightly more so. 479 if (isa<IndirectBrInst>(StopAt)) 480 Bonus = 8; 481 } 482 483 // Bump the threshold up so the early exit from the loop doesn't skip the 484 // terminator-based Size adjustment at the end. 485 Threshold += Bonus; 486 487 // Sum up the cost of each instruction until we get to the terminator. Don't 488 // include the terminator because the copy won't include it. 489 unsigned Size = 0; 490 for (; &*I != StopAt; ++I) { 491 492 // Stop scanning the block if we've reached the threshold. 493 if (Size > Threshold) 494 return Size; 495 496 // Debugger intrinsics don't incur code size. 497 if (isa<DbgInfoIntrinsic>(I)) continue; 498 499 // If this is a pointer->pointer bitcast, it is free. 500 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 501 continue; 502 503 // Bail out if this instruction gives back a token type, it is not possible 504 // to duplicate it if it is used outside this BB. 505 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 506 return ~0U; 507 508 // All other instructions count for at least one unit. 509 ++Size; 510 511 // Calls are more expensive. If they are non-intrinsic calls, we model them 512 // as having cost of 4. If they are a non-vector intrinsic, we model them 513 // as having cost of 2 total, and if they are a vector intrinsic, we model 514 // them as having cost 1. 515 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 516 if (CI->cannotDuplicate() || CI->isConvergent()) 517 // Blocks with NoDuplicate are modelled as having infinite cost, so they 518 // are never duplicated. 519 return ~0U; 520 else if (!isa<IntrinsicInst>(CI)) 521 Size += 3; 522 else if (!CI->getType()->isVectorTy()) 523 Size += 1; 524 } 525 } 526 527 return Size > Bonus ? Size - Bonus : 0; 528 } 529 530 /// FindLoopHeaders - We do not want jump threading to turn proper loop 531 /// structures into irreducible loops. Doing this breaks up the loop nesting 532 /// hierarchy and pessimizes later transformations. To prevent this from 533 /// happening, we first have to find the loop headers. Here we approximate this 534 /// by finding targets of backedges in the CFG. 535 /// 536 /// Note that there definitely are cases when we want to allow threading of 537 /// edges across a loop header. For example, threading a jump from outside the 538 /// loop (the preheader) to an exit block of the loop is definitely profitable. 539 /// It is also almost always profitable to thread backedges from within the loop 540 /// to exit blocks, and is often profitable to thread backedges to other blocks 541 /// within the loop (forming a nested loop). This simple analysis is not rich 542 /// enough to track all of these properties and keep it up-to-date as the CFG 543 /// mutates, so we don't allow any of these transformations. 544 void JumpThreadingPass::FindLoopHeaders(Function &F) { 545 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 546 FindFunctionBackedges(F, Edges); 547 548 for (const auto &Edge : Edges) 549 LoopHeaders.insert(Edge.second); 550 } 551 552 /// getKnownConstant - Helper method to determine if we can thread over a 553 /// terminator with the given value as its condition, and if so what value to 554 /// use for that. What kind of value this is depends on whether we want an 555 /// integer or a block address, but an undef is always accepted. 556 /// Returns null if Val is null or not an appropriate constant. 557 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 558 if (!Val) 559 return nullptr; 560 561 // Undef is "known" enough. 562 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 563 return U; 564 565 if (Preference == WantBlockAddress) 566 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 567 568 return dyn_cast<ConstantInt>(Val); 569 } 570 571 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 572 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 573 /// in any of our predecessors. If so, return the known list of value and pred 574 /// BB in the result vector. 575 /// 576 /// This returns true if there were any known values. 577 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl( 578 Value *V, BasicBlock *BB, PredValueInfo &Result, 579 ConstantPreference Preference, 580 DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet, 581 Instruction *CxtI) { 582 // This method walks up use-def chains recursively. Because of this, we could 583 // get into an infinite loop going around loops in the use-def chain. To 584 // prevent this, keep track of what (value, block) pairs we've already visited 585 // and terminate the search if we loop back to them 586 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 587 return false; 588 589 // If V is a constant, then it is known in all predecessors. 590 if (Constant *KC = getKnownConstant(V, Preference)) { 591 for (BasicBlock *Pred : predecessors(BB)) 592 Result.push_back(std::make_pair(KC, Pred)); 593 594 return !Result.empty(); 595 } 596 597 // If V is a non-instruction value, or an instruction in a different block, 598 // then it can't be derived from a PHI. 599 Instruction *I = dyn_cast<Instruction>(V); 600 if (!I || I->getParent() != BB) { 601 602 // Okay, if this is a live-in value, see if it has a known value at the end 603 // of any of our predecessors. 604 // 605 // FIXME: This should be an edge property, not a block end property. 606 /// TODO: Per PR2563, we could infer value range information about a 607 /// predecessor based on its terminator. 608 // 609 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 610 // "I" is a non-local compare-with-a-constant instruction. This would be 611 // able to handle value inequalities better, for example if the compare is 612 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 613 // Perhaps getConstantOnEdge should be smart enough to do this? 614 615 if (DTU->hasPendingDomTreeUpdates()) 616 LVI->disableDT(); 617 else 618 LVI->enableDT(); 619 for (BasicBlock *P : predecessors(BB)) { 620 // If the value is known by LazyValueInfo to be a constant in a 621 // predecessor, use that information to try to thread this block. 622 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 623 if (Constant *KC = getKnownConstant(PredCst, Preference)) 624 Result.push_back(std::make_pair(KC, P)); 625 } 626 627 return !Result.empty(); 628 } 629 630 /// If I is a PHI node, then we know the incoming values for any constants. 631 if (PHINode *PN = dyn_cast<PHINode>(I)) { 632 if (DTU->hasPendingDomTreeUpdates()) 633 LVI->disableDT(); 634 else 635 LVI->enableDT(); 636 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 637 Value *InVal = PN->getIncomingValue(i); 638 if (Constant *KC = getKnownConstant(InVal, Preference)) { 639 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 640 } else { 641 Constant *CI = LVI->getConstantOnEdge(InVal, 642 PN->getIncomingBlock(i), 643 BB, CxtI); 644 if (Constant *KC = getKnownConstant(CI, Preference)) 645 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 646 } 647 } 648 649 return !Result.empty(); 650 } 651 652 // Handle Cast instructions. Only see through Cast when the source operand is 653 // PHI or Cmp to save the compilation time. 654 if (CastInst *CI = dyn_cast<CastInst>(I)) { 655 Value *Source = CI->getOperand(0); 656 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 657 return false; 658 ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 659 RecursionSet, CxtI); 660 if (Result.empty()) 661 return false; 662 663 // Convert the known values. 664 for (auto &R : Result) 665 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 666 667 return true; 668 } 669 670 // Handle some boolean conditions. 671 if (I->getType()->getPrimitiveSizeInBits() == 1) { 672 assert(Preference == WantInteger && "One-bit non-integer type?"); 673 // X | true -> true 674 // X & false -> false 675 if (I->getOpcode() == Instruction::Or || 676 I->getOpcode() == Instruction::And) { 677 PredValueInfoTy LHSVals, RHSVals; 678 679 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 680 WantInteger, RecursionSet, CxtI); 681 ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals, 682 WantInteger, RecursionSet, CxtI); 683 684 if (LHSVals.empty() && RHSVals.empty()) 685 return false; 686 687 ConstantInt *InterestingVal; 688 if (I->getOpcode() == Instruction::Or) 689 InterestingVal = ConstantInt::getTrue(I->getContext()); 690 else 691 InterestingVal = ConstantInt::getFalse(I->getContext()); 692 693 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 694 695 // Scan for the sentinel. If we find an undef, force it to the 696 // interesting value: x|undef -> true and x&undef -> false. 697 for (const auto &LHSVal : LHSVals) 698 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 699 Result.emplace_back(InterestingVal, LHSVal.second); 700 LHSKnownBBs.insert(LHSVal.second); 701 } 702 for (const auto &RHSVal : RHSVals) 703 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 704 // If we already inferred a value for this block on the LHS, don't 705 // re-add it. 706 if (!LHSKnownBBs.count(RHSVal.second)) 707 Result.emplace_back(InterestingVal, RHSVal.second); 708 } 709 710 return !Result.empty(); 711 } 712 713 // Handle the NOT form of XOR. 714 if (I->getOpcode() == Instruction::Xor && 715 isa<ConstantInt>(I->getOperand(1)) && 716 cast<ConstantInt>(I->getOperand(1))->isOne()) { 717 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 718 WantInteger, RecursionSet, CxtI); 719 if (Result.empty()) 720 return false; 721 722 // Invert the known values. 723 for (auto &R : Result) 724 R.first = ConstantExpr::getNot(R.first); 725 726 return true; 727 } 728 729 // Try to simplify some other binary operator values. 730 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 731 assert(Preference != WantBlockAddress 732 && "A binary operator creating a block address?"); 733 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 734 PredValueInfoTy LHSVals; 735 ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 736 WantInteger, RecursionSet, CxtI); 737 738 // Try to use constant folding to simplify the binary operator. 739 for (const auto &LHSVal : LHSVals) { 740 Constant *V = LHSVal.first; 741 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 742 743 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 744 Result.push_back(std::make_pair(KC, LHSVal.second)); 745 } 746 } 747 748 return !Result.empty(); 749 } 750 751 // Handle compare with phi operand, where the PHI is defined in this block. 752 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 753 assert(Preference == WantInteger && "Compares only produce integers"); 754 Type *CmpType = Cmp->getType(); 755 Value *CmpLHS = Cmp->getOperand(0); 756 Value *CmpRHS = Cmp->getOperand(1); 757 CmpInst::Predicate Pred = Cmp->getPredicate(); 758 759 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 760 if (!PN) 761 PN = dyn_cast<PHINode>(CmpRHS); 762 if (PN && PN->getParent() == BB) { 763 const DataLayout &DL = PN->getModule()->getDataLayout(); 764 // We can do this simplification if any comparisons fold to true or false. 765 // See if any do. 766 if (DTU->hasPendingDomTreeUpdates()) 767 LVI->disableDT(); 768 else 769 LVI->enableDT(); 770 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 771 BasicBlock *PredBB = PN->getIncomingBlock(i); 772 Value *LHS, *RHS; 773 if (PN == CmpLHS) { 774 LHS = PN->getIncomingValue(i); 775 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 776 } else { 777 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 778 RHS = PN->getIncomingValue(i); 779 } 780 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 781 if (!Res) { 782 if (!isa<Constant>(RHS)) 783 continue; 784 785 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 786 auto LHSInst = dyn_cast<Instruction>(LHS); 787 if (LHSInst && LHSInst->getParent() == BB) 788 continue; 789 790 LazyValueInfo::Tristate 791 ResT = LVI->getPredicateOnEdge(Pred, LHS, 792 cast<Constant>(RHS), PredBB, BB, 793 CxtI ? CxtI : Cmp); 794 if (ResT == LazyValueInfo::Unknown) 795 continue; 796 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 797 } 798 799 if (Constant *KC = getKnownConstant(Res, WantInteger)) 800 Result.push_back(std::make_pair(KC, PredBB)); 801 } 802 803 return !Result.empty(); 804 } 805 806 // If comparing a live-in value against a constant, see if we know the 807 // live-in value on any predecessors. 808 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 809 Constant *CmpConst = cast<Constant>(CmpRHS); 810 811 if (!isa<Instruction>(CmpLHS) || 812 cast<Instruction>(CmpLHS)->getParent() != BB) { 813 if (DTU->hasPendingDomTreeUpdates()) 814 LVI->disableDT(); 815 else 816 LVI->enableDT(); 817 for (BasicBlock *P : predecessors(BB)) { 818 // If the value is known by LazyValueInfo to be a constant in a 819 // predecessor, use that information to try to thread this block. 820 LazyValueInfo::Tristate Res = 821 LVI->getPredicateOnEdge(Pred, CmpLHS, 822 CmpConst, P, BB, CxtI ? CxtI : Cmp); 823 if (Res == LazyValueInfo::Unknown) 824 continue; 825 826 Constant *ResC = ConstantInt::get(CmpType, Res); 827 Result.push_back(std::make_pair(ResC, P)); 828 } 829 830 return !Result.empty(); 831 } 832 833 // InstCombine can fold some forms of constant range checks into 834 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 835 // x as a live-in. 836 { 837 using namespace PatternMatch; 838 839 Value *AddLHS; 840 ConstantInt *AddConst; 841 if (isa<ConstantInt>(CmpConst) && 842 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 843 if (!isa<Instruction>(AddLHS) || 844 cast<Instruction>(AddLHS)->getParent() != BB) { 845 if (DTU->hasPendingDomTreeUpdates()) 846 LVI->disableDT(); 847 else 848 LVI->enableDT(); 849 for (BasicBlock *P : predecessors(BB)) { 850 // If the value is known by LazyValueInfo to be a ConstantRange in 851 // a predecessor, use that information to try to thread this 852 // block. 853 ConstantRange CR = LVI->getConstantRangeOnEdge( 854 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 855 // Propagate the range through the addition. 856 CR = CR.add(AddConst->getValue()); 857 858 // Get the range where the compare returns true. 859 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 860 Pred, cast<ConstantInt>(CmpConst)->getValue()); 861 862 Constant *ResC; 863 if (CmpRange.contains(CR)) 864 ResC = ConstantInt::getTrue(CmpType); 865 else if (CmpRange.inverse().contains(CR)) 866 ResC = ConstantInt::getFalse(CmpType); 867 else 868 continue; 869 870 Result.push_back(std::make_pair(ResC, P)); 871 } 872 873 return !Result.empty(); 874 } 875 } 876 } 877 878 // Try to find a constant value for the LHS of a comparison, 879 // and evaluate it statically if we can. 880 PredValueInfoTy LHSVals; 881 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 882 WantInteger, RecursionSet, CxtI); 883 884 for (const auto &LHSVal : LHSVals) { 885 Constant *V = LHSVal.first; 886 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 887 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 888 Result.push_back(std::make_pair(KC, LHSVal.second)); 889 } 890 891 return !Result.empty(); 892 } 893 } 894 895 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 896 // Handle select instructions where at least one operand is a known constant 897 // and we can figure out the condition value for any predecessor block. 898 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 899 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 900 PredValueInfoTy Conds; 901 if ((TrueVal || FalseVal) && 902 ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 903 WantInteger, RecursionSet, CxtI)) { 904 for (auto &C : Conds) { 905 Constant *Cond = C.first; 906 907 // Figure out what value to use for the condition. 908 bool KnownCond; 909 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 910 // A known boolean. 911 KnownCond = CI->isOne(); 912 } else { 913 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 914 // Either operand will do, so be sure to pick the one that's a known 915 // constant. 916 // FIXME: Do this more cleverly if both values are known constants? 917 KnownCond = (TrueVal != nullptr); 918 } 919 920 // See if the select has a known constant value for this predecessor. 921 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 922 Result.push_back(std::make_pair(Val, C.second)); 923 } 924 925 return !Result.empty(); 926 } 927 } 928 929 // If all else fails, see if LVI can figure out a constant value for us. 930 if (DTU->hasPendingDomTreeUpdates()) 931 LVI->disableDT(); 932 else 933 LVI->enableDT(); 934 Constant *CI = LVI->getConstant(V, BB, CxtI); 935 if (Constant *KC = getKnownConstant(CI, Preference)) { 936 for (BasicBlock *Pred : predecessors(BB)) 937 Result.push_back(std::make_pair(KC, Pred)); 938 } 939 940 return !Result.empty(); 941 } 942 943 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 944 /// in an undefined jump, decide which block is best to revector to. 945 /// 946 /// Since we can pick an arbitrary destination, we pick the successor with the 947 /// fewest predecessors. This should reduce the in-degree of the others. 948 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 949 Instruction *BBTerm = BB->getTerminator(); 950 unsigned MinSucc = 0; 951 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 952 // Compute the successor with the minimum number of predecessors. 953 unsigned MinNumPreds = pred_size(TestBB); 954 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 955 TestBB = BBTerm->getSuccessor(i); 956 unsigned NumPreds = pred_size(TestBB); 957 if (NumPreds < MinNumPreds) { 958 MinSucc = i; 959 MinNumPreds = NumPreds; 960 } 961 } 962 963 return MinSucc; 964 } 965 966 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 967 if (!BB->hasAddressTaken()) return false; 968 969 // If the block has its address taken, it may be a tree of dead constants 970 // hanging off of it. These shouldn't keep the block alive. 971 BlockAddress *BA = BlockAddress::get(BB); 972 BA->removeDeadConstantUsers(); 973 return !BA->use_empty(); 974 } 975 976 /// ProcessBlock - If there are any predecessors whose control can be threaded 977 /// through to a successor, transform them now. 978 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 979 // If the block is trivially dead, just return and let the caller nuke it. 980 // This simplifies other transformations. 981 if (DTU->isBBPendingDeletion(BB) || 982 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 983 return false; 984 985 // If this block has a single predecessor, and if that pred has a single 986 // successor, merge the blocks. This encourages recursive jump threading 987 // because now the condition in this block can be threaded through 988 // predecessors of our predecessor block. 989 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 990 const Instruction *TI = SinglePred->getTerminator(); 991 if (!TI->isExceptionalTerminator() && TI->getNumSuccessors() == 1 && 992 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 993 // If SinglePred was a loop header, BB becomes one. 994 if (LoopHeaders.erase(SinglePred)) 995 LoopHeaders.insert(BB); 996 997 LVI->eraseBlock(SinglePred); 998 MergeBasicBlockIntoOnlyPred(BB, DTU); 999 1000 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 1001 // BB code within one basic block `BB`), we need to invalidate the LVI 1002 // information associated with BB, because the LVI information need not be 1003 // true for all of BB after the merge. For example, 1004 // Before the merge, LVI info and code is as follows: 1005 // SinglePred: <LVI info1 for %p val> 1006 // %y = use of %p 1007 // call @exit() // need not transfer execution to successor. 1008 // assume(%p) // from this point on %p is true 1009 // br label %BB 1010 // BB: <LVI info2 for %p val, i.e. %p is true> 1011 // %x = use of %p 1012 // br label exit 1013 // 1014 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1015 // (info2 and info1 respectively). After the merge and the deletion of the 1016 // LVI info1 for SinglePred. We have the following code: 1017 // BB: <LVI info2 for %p val> 1018 // %y = use of %p 1019 // call @exit() 1020 // assume(%p) 1021 // %x = use of %p <-- LVI info2 is correct from here onwards. 1022 // br label exit 1023 // LVI info2 for BB is incorrect at the beginning of BB. 1024 1025 // Invalidate LVI information for BB if the LVI is not provably true for 1026 // all of BB. 1027 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1028 LVI->eraseBlock(BB); 1029 return true; 1030 } 1031 } 1032 1033 if (TryToUnfoldSelectInCurrBB(BB)) 1034 return true; 1035 1036 // Look if we can propagate guards to predecessors. 1037 if (HasGuards && ProcessGuards(BB)) 1038 return true; 1039 1040 // What kind of constant we're looking for. 1041 ConstantPreference Preference = WantInteger; 1042 1043 // Look to see if the terminator is a conditional branch, switch or indirect 1044 // branch, if not we can't thread it. 1045 Value *Condition; 1046 Instruction *Terminator = BB->getTerminator(); 1047 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1048 // Can't thread an unconditional jump. 1049 if (BI->isUnconditional()) return false; 1050 Condition = BI->getCondition(); 1051 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1052 Condition = SI->getCondition(); 1053 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1054 // Can't thread indirect branch with no successors. 1055 if (IB->getNumSuccessors() == 0) return false; 1056 Condition = IB->getAddress()->stripPointerCasts(); 1057 Preference = WantBlockAddress; 1058 } else { 1059 return false; // Must be an invoke. 1060 } 1061 1062 // Run constant folding to see if we can reduce the condition to a simple 1063 // constant. 1064 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1065 Value *SimpleVal = 1066 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1067 if (SimpleVal) { 1068 I->replaceAllUsesWith(SimpleVal); 1069 if (isInstructionTriviallyDead(I, TLI)) 1070 I->eraseFromParent(); 1071 Condition = SimpleVal; 1072 } 1073 } 1074 1075 // If the terminator is branching on an undef, we can pick any of the 1076 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1077 if (isa<UndefValue>(Condition)) { 1078 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1079 std::vector<DominatorTree::UpdateType> Updates; 1080 1081 // Fold the branch/switch. 1082 Instruction *BBTerm = BB->getTerminator(); 1083 Updates.reserve(BBTerm->getNumSuccessors()); 1084 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1085 if (i == BestSucc) continue; 1086 BasicBlock *Succ = BBTerm->getSuccessor(i); 1087 Succ->removePredecessor(BB, true); 1088 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1089 } 1090 1091 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1092 << "' folding undef terminator: " << *BBTerm << '\n'); 1093 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1094 BBTerm->eraseFromParent(); 1095 DTU->applyUpdates(Updates); 1096 return true; 1097 } 1098 1099 // If the terminator of this block is branching on a constant, simplify the 1100 // terminator to an unconditional branch. This can occur due to threading in 1101 // other blocks. 1102 if (getKnownConstant(Condition, Preference)) { 1103 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1104 << "' folding terminator: " << *BB->getTerminator() 1105 << '\n'); 1106 ++NumFolds; 1107 ConstantFoldTerminator(BB, true, nullptr, DTU); 1108 return true; 1109 } 1110 1111 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1112 1113 // All the rest of our checks depend on the condition being an instruction. 1114 if (!CondInst) { 1115 // FIXME: Unify this with code below. 1116 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1117 return true; 1118 return false; 1119 } 1120 1121 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1122 // If we're branching on a conditional, LVI might be able to determine 1123 // it's value at the branch instruction. We only handle comparisons 1124 // against a constant at this time. 1125 // TODO: This should be extended to handle switches as well. 1126 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1127 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1128 if (CondBr && CondConst) { 1129 // We should have returned as soon as we turn a conditional branch to 1130 // unconditional. Because its no longer interesting as far as jump 1131 // threading is concerned. 1132 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1133 1134 if (DTU->hasPendingDomTreeUpdates()) 1135 LVI->disableDT(); 1136 else 1137 LVI->enableDT(); 1138 LazyValueInfo::Tristate Ret = 1139 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1140 CondConst, CondBr); 1141 if (Ret != LazyValueInfo::Unknown) { 1142 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1143 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1144 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1145 ToRemoveSucc->removePredecessor(BB, true); 1146 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1147 CondBr->eraseFromParent(); 1148 if (CondCmp->use_empty()) 1149 CondCmp->eraseFromParent(); 1150 // We can safely replace *some* uses of the CondInst if it has 1151 // exactly one value as returned by LVI. RAUW is incorrect in the 1152 // presence of guards and assumes, that have the `Cond` as the use. This 1153 // is because we use the guards/assume to reason about the `Cond` value 1154 // at the end of block, but RAUW unconditionally replaces all uses 1155 // including the guards/assumes themselves and the uses before the 1156 // guard/assume. 1157 else if (CondCmp->getParent() == BB) { 1158 auto *CI = Ret == LazyValueInfo::True ? 1159 ConstantInt::getTrue(CondCmp->getType()) : 1160 ConstantInt::getFalse(CondCmp->getType()); 1161 ReplaceFoldableUses(CondCmp, CI); 1162 } 1163 DTU->deleteEdgeRelaxed(BB, ToRemoveSucc); 1164 return true; 1165 } 1166 1167 // We did not manage to simplify this branch, try to see whether 1168 // CondCmp depends on a known phi-select pattern. 1169 if (TryToUnfoldSelect(CondCmp, BB)) 1170 return true; 1171 } 1172 } 1173 1174 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1175 TryToUnfoldSelect(SI, BB); 1176 1177 // Check for some cases that are worth simplifying. Right now we want to look 1178 // for loads that are used by a switch or by the condition for the branch. If 1179 // we see one, check to see if it's partially redundant. If so, insert a PHI 1180 // which can then be used to thread the values. 1181 Value *SimplifyValue = CondInst; 1182 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1183 if (isa<Constant>(CondCmp->getOperand(1))) 1184 SimplifyValue = CondCmp->getOperand(0); 1185 1186 // TODO: There are other places where load PRE would be profitable, such as 1187 // more complex comparisons. 1188 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1189 if (SimplifyPartiallyRedundantLoad(LoadI)) 1190 return true; 1191 1192 // Before threading, try to propagate profile data backwards: 1193 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1194 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1195 updatePredecessorProfileMetadata(PN, BB); 1196 1197 // Handle a variety of cases where we are branching on something derived from 1198 // a PHI node in the current block. If we can prove that any predecessors 1199 // compute a predictable value based on a PHI node, thread those predecessors. 1200 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1201 return true; 1202 1203 // If this is an otherwise-unfoldable branch on a phi node in the current 1204 // block, see if we can simplify. 1205 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1206 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1207 return ProcessBranchOnPHI(PN); 1208 1209 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1210 if (CondInst->getOpcode() == Instruction::Xor && 1211 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1212 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1213 1214 // Search for a stronger dominating condition that can be used to simplify a 1215 // conditional branch leaving BB. 1216 if (ProcessImpliedCondition(BB)) 1217 return true; 1218 1219 return false; 1220 } 1221 1222 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1223 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1224 if (!BI || !BI->isConditional()) 1225 return false; 1226 1227 Value *Cond = BI->getCondition(); 1228 BasicBlock *CurrentBB = BB; 1229 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1230 unsigned Iter = 0; 1231 1232 auto &DL = BB->getModule()->getDataLayout(); 1233 1234 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1235 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1236 if (!PBI || !PBI->isConditional()) 1237 return false; 1238 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1239 return false; 1240 1241 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1242 Optional<bool> Implication = 1243 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1244 if (Implication) { 1245 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1246 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1247 RemoveSucc->removePredecessor(BB); 1248 BranchInst::Create(KeepSucc, BI); 1249 BI->eraseFromParent(); 1250 DTU->deleteEdgeRelaxed(BB, RemoveSucc); 1251 return true; 1252 } 1253 CurrentBB = CurrentPred; 1254 CurrentPred = CurrentBB->getSinglePredecessor(); 1255 } 1256 1257 return false; 1258 } 1259 1260 /// Return true if Op is an instruction defined in the given block. 1261 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1262 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1263 if (OpInst->getParent() == BB) 1264 return true; 1265 return false; 1266 } 1267 1268 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1269 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1270 /// This is an important optimization that encourages jump threading, and needs 1271 /// to be run interlaced with other jump threading tasks. 1272 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1273 // Don't hack volatile and ordered loads. 1274 if (!LoadI->isUnordered()) return false; 1275 1276 // If the load is defined in a block with exactly one predecessor, it can't be 1277 // partially redundant. 1278 BasicBlock *LoadBB = LoadI->getParent(); 1279 if (LoadBB->getSinglePredecessor()) 1280 return false; 1281 1282 // If the load is defined in an EH pad, it can't be partially redundant, 1283 // because the edges between the invoke and the EH pad cannot have other 1284 // instructions between them. 1285 if (LoadBB->isEHPad()) 1286 return false; 1287 1288 Value *LoadedPtr = LoadI->getOperand(0); 1289 1290 // If the loaded operand is defined in the LoadBB and its not a phi, 1291 // it can't be available in predecessors. 1292 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1293 return false; 1294 1295 // Scan a few instructions up from the load, to see if it is obviously live at 1296 // the entry to its block. 1297 BasicBlock::iterator BBIt(LoadI); 1298 bool IsLoadCSE; 1299 if (Value *AvailableVal = FindAvailableLoadedValue( 1300 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1301 // If the value of the load is locally available within the block, just use 1302 // it. This frequently occurs for reg2mem'd allocas. 1303 1304 if (IsLoadCSE) { 1305 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1306 combineMetadataForCSE(NLoadI, LoadI, false); 1307 }; 1308 1309 // If the returned value is the load itself, replace with an undef. This can 1310 // only happen in dead loops. 1311 if (AvailableVal == LoadI) 1312 AvailableVal = UndefValue::get(LoadI->getType()); 1313 if (AvailableVal->getType() != LoadI->getType()) 1314 AvailableVal = CastInst::CreateBitOrPointerCast( 1315 AvailableVal, LoadI->getType(), "", LoadI); 1316 LoadI->replaceAllUsesWith(AvailableVal); 1317 LoadI->eraseFromParent(); 1318 return true; 1319 } 1320 1321 // Otherwise, if we scanned the whole block and got to the top of the block, 1322 // we know the block is locally transparent to the load. If not, something 1323 // might clobber its value. 1324 if (BBIt != LoadBB->begin()) 1325 return false; 1326 1327 // If all of the loads and stores that feed the value have the same AA tags, 1328 // then we can propagate them onto any newly inserted loads. 1329 AAMDNodes AATags; 1330 LoadI->getAAMetadata(AATags); 1331 1332 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1333 1334 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1335 1336 AvailablePredsTy AvailablePreds; 1337 BasicBlock *OneUnavailablePred = nullptr; 1338 SmallVector<LoadInst*, 8> CSELoads; 1339 1340 // If we got here, the loaded value is transparent through to the start of the 1341 // block. Check to see if it is available in any of the predecessor blocks. 1342 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1343 // If we already scanned this predecessor, skip it. 1344 if (!PredsScanned.insert(PredBB).second) 1345 continue; 1346 1347 BBIt = PredBB->end(); 1348 unsigned NumScanedInst = 0; 1349 Value *PredAvailable = nullptr; 1350 // NOTE: We don't CSE load that is volatile or anything stronger than 1351 // unordered, that should have been checked when we entered the function. 1352 assert(LoadI->isUnordered() && 1353 "Attempting to CSE volatile or atomic loads"); 1354 // If this is a load on a phi pointer, phi-translate it and search 1355 // for available load/store to the pointer in predecessors. 1356 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1357 PredAvailable = FindAvailablePtrLoadStore( 1358 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1359 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1360 1361 // If PredBB has a single predecessor, continue scanning through the 1362 // single predecessor. 1363 BasicBlock *SinglePredBB = PredBB; 1364 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1365 NumScanedInst < DefMaxInstsToScan) { 1366 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1367 if (SinglePredBB) { 1368 BBIt = SinglePredBB->end(); 1369 PredAvailable = FindAvailablePtrLoadStore( 1370 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1371 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1372 &NumScanedInst); 1373 } 1374 } 1375 1376 if (!PredAvailable) { 1377 OneUnavailablePred = PredBB; 1378 continue; 1379 } 1380 1381 if (IsLoadCSE) 1382 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1383 1384 // If so, this load is partially redundant. Remember this info so that we 1385 // can create a PHI node. 1386 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1387 } 1388 1389 // If the loaded value isn't available in any predecessor, it isn't partially 1390 // redundant. 1391 if (AvailablePreds.empty()) return false; 1392 1393 // Okay, the loaded value is available in at least one (and maybe all!) 1394 // predecessors. If the value is unavailable in more than one unique 1395 // predecessor, we want to insert a merge block for those common predecessors. 1396 // This ensures that we only have to insert one reload, thus not increasing 1397 // code size. 1398 BasicBlock *UnavailablePred = nullptr; 1399 1400 // If the value is unavailable in one of predecessors, we will end up 1401 // inserting a new instruction into them. It is only valid if all the 1402 // instructions before LoadI are guaranteed to pass execution to its 1403 // successor, or if LoadI is safe to speculate. 1404 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1405 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1406 // It requires domination tree analysis, so for this simple case it is an 1407 // overkill. 1408 if (PredsScanned.size() != AvailablePreds.size() && 1409 !isSafeToSpeculativelyExecute(LoadI)) 1410 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1411 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1412 return false; 1413 1414 // If there is exactly one predecessor where the value is unavailable, the 1415 // already computed 'OneUnavailablePred' block is it. If it ends in an 1416 // unconditional branch, we know that it isn't a critical edge. 1417 if (PredsScanned.size() == AvailablePreds.size()+1 && 1418 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1419 UnavailablePred = OneUnavailablePred; 1420 } else if (PredsScanned.size() != AvailablePreds.size()) { 1421 // Otherwise, we had multiple unavailable predecessors or we had a critical 1422 // edge from the one. 1423 SmallVector<BasicBlock*, 8> PredsToSplit; 1424 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1425 1426 for (const auto &AvailablePred : AvailablePreds) 1427 AvailablePredSet.insert(AvailablePred.first); 1428 1429 // Add all the unavailable predecessors to the PredsToSplit list. 1430 for (BasicBlock *P : predecessors(LoadBB)) { 1431 // If the predecessor is an indirect goto, we can't split the edge. 1432 if (isa<IndirectBrInst>(P->getTerminator())) 1433 return false; 1434 1435 if (!AvailablePredSet.count(P)) 1436 PredsToSplit.push_back(P); 1437 } 1438 1439 // Split them out to their own block. 1440 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1441 } 1442 1443 // If the value isn't available in all predecessors, then there will be 1444 // exactly one where it isn't available. Insert a load on that edge and add 1445 // it to the AvailablePreds list. 1446 if (UnavailablePred) { 1447 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1448 "Can't handle critical edge here!"); 1449 LoadInst *NewVal = 1450 new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1451 LoadI->getName() + ".pr", false, LoadI->getAlignment(), 1452 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1453 UnavailablePred->getTerminator()); 1454 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1455 if (AATags) 1456 NewVal->setAAMetadata(AATags); 1457 1458 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1459 } 1460 1461 // Now we know that each predecessor of this block has a value in 1462 // AvailablePreds, sort them for efficient access as we're walking the preds. 1463 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1464 1465 // Create a PHI node at the start of the block for the PRE'd load value. 1466 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1467 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1468 &LoadBB->front()); 1469 PN->takeName(LoadI); 1470 PN->setDebugLoc(LoadI->getDebugLoc()); 1471 1472 // Insert new entries into the PHI for each predecessor. A single block may 1473 // have multiple entries here. 1474 for (pred_iterator PI = PB; PI != PE; ++PI) { 1475 BasicBlock *P = *PI; 1476 AvailablePredsTy::iterator I = 1477 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1478 std::make_pair(P, (Value*)nullptr)); 1479 1480 assert(I != AvailablePreds.end() && I->first == P && 1481 "Didn't find entry for predecessor!"); 1482 1483 // If we have an available predecessor but it requires casting, insert the 1484 // cast in the predecessor and use the cast. Note that we have to update the 1485 // AvailablePreds vector as we go so that all of the PHI entries for this 1486 // predecessor use the same bitcast. 1487 Value *&PredV = I->second; 1488 if (PredV->getType() != LoadI->getType()) 1489 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1490 P->getTerminator()); 1491 1492 PN->addIncoming(PredV, I->first); 1493 } 1494 1495 for (LoadInst *PredLoadI : CSELoads) { 1496 combineMetadataForCSE(PredLoadI, LoadI, true); 1497 } 1498 1499 LoadI->replaceAllUsesWith(PN); 1500 LoadI->eraseFromParent(); 1501 1502 return true; 1503 } 1504 1505 /// FindMostPopularDest - The specified list contains multiple possible 1506 /// threadable destinations. Pick the one that occurs the most frequently in 1507 /// the list. 1508 static BasicBlock * 1509 FindMostPopularDest(BasicBlock *BB, 1510 const SmallVectorImpl<std::pair<BasicBlock *, 1511 BasicBlock *>> &PredToDestList) { 1512 assert(!PredToDestList.empty()); 1513 1514 // Determine popularity. If there are multiple possible destinations, we 1515 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1516 // blocks with known and real destinations to threading undef. We'll handle 1517 // them later if interesting. 1518 DenseMap<BasicBlock*, unsigned> DestPopularity; 1519 for (const auto &PredToDest : PredToDestList) 1520 if (PredToDest.second) 1521 DestPopularity[PredToDest.second]++; 1522 1523 if (DestPopularity.empty()) 1524 return nullptr; 1525 1526 // Find the most popular dest. 1527 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1528 BasicBlock *MostPopularDest = DPI->first; 1529 unsigned Popularity = DPI->second; 1530 SmallVector<BasicBlock*, 4> SamePopularity; 1531 1532 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1533 // If the popularity of this entry isn't higher than the popularity we've 1534 // seen so far, ignore it. 1535 if (DPI->second < Popularity) 1536 ; // ignore. 1537 else if (DPI->second == Popularity) { 1538 // If it is the same as what we've seen so far, keep track of it. 1539 SamePopularity.push_back(DPI->first); 1540 } else { 1541 // If it is more popular, remember it. 1542 SamePopularity.clear(); 1543 MostPopularDest = DPI->first; 1544 Popularity = DPI->second; 1545 } 1546 } 1547 1548 // Okay, now we know the most popular destination. If there is more than one 1549 // destination, we need to determine one. This is arbitrary, but we need 1550 // to make a deterministic decision. Pick the first one that appears in the 1551 // successor list. 1552 if (!SamePopularity.empty()) { 1553 SamePopularity.push_back(MostPopularDest); 1554 Instruction *TI = BB->getTerminator(); 1555 for (unsigned i = 0; ; ++i) { 1556 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1557 1558 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1559 continue; 1560 1561 MostPopularDest = TI->getSuccessor(i); 1562 break; 1563 } 1564 } 1565 1566 // Okay, we have finally picked the most popular destination. 1567 return MostPopularDest; 1568 } 1569 1570 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1571 ConstantPreference Preference, 1572 Instruction *CxtI) { 1573 // If threading this would thread across a loop header, don't even try to 1574 // thread the edge. 1575 if (LoopHeaders.count(BB)) 1576 return false; 1577 1578 PredValueInfoTy PredValues; 1579 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1580 return false; 1581 1582 assert(!PredValues.empty() && 1583 "ComputeValueKnownInPredecessors returned true with no values"); 1584 1585 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1586 for (const auto &PredValue : PredValues) { 1587 dbgs() << " BB '" << BB->getName() 1588 << "': FOUND condition = " << *PredValue.first 1589 << " for pred '" << PredValue.second->getName() << "'.\n"; 1590 }); 1591 1592 // Decide what we want to thread through. Convert our list of known values to 1593 // a list of known destinations for each pred. This also discards duplicate 1594 // predecessors and keeps track of the undefined inputs (which are represented 1595 // as a null dest in the PredToDestList). 1596 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1597 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1598 1599 BasicBlock *OnlyDest = nullptr; 1600 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1601 Constant *OnlyVal = nullptr; 1602 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1603 1604 unsigned PredWithKnownDest = 0; 1605 for (const auto &PredValue : PredValues) { 1606 BasicBlock *Pred = PredValue.second; 1607 if (!SeenPreds.insert(Pred).second) 1608 continue; // Duplicate predecessor entry. 1609 1610 Constant *Val = PredValue.first; 1611 1612 BasicBlock *DestBB; 1613 if (isa<UndefValue>(Val)) 1614 DestBB = nullptr; 1615 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1616 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1617 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1618 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1619 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1620 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1621 } else { 1622 assert(isa<IndirectBrInst>(BB->getTerminator()) 1623 && "Unexpected terminator"); 1624 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1625 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1626 } 1627 1628 // If we have exactly one destination, remember it for efficiency below. 1629 if (PredToDestList.empty()) { 1630 OnlyDest = DestBB; 1631 OnlyVal = Val; 1632 } else { 1633 if (OnlyDest != DestBB) 1634 OnlyDest = MultipleDestSentinel; 1635 // It possible we have same destination, but different value, e.g. default 1636 // case in switchinst. 1637 if (Val != OnlyVal) 1638 OnlyVal = MultipleVal; 1639 } 1640 1641 // We know where this predecessor is going. 1642 ++PredWithKnownDest; 1643 1644 // If the predecessor ends with an indirect goto, we can't change its 1645 // destination. 1646 if (isa<IndirectBrInst>(Pred->getTerminator())) 1647 continue; 1648 1649 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1650 } 1651 1652 // If all edges were unthreadable, we fail. 1653 if (PredToDestList.empty()) 1654 return false; 1655 1656 // If all the predecessors go to a single known successor, we want to fold, 1657 // not thread. By doing so, we do not need to duplicate the current block and 1658 // also miss potential opportunities in case we dont/cant duplicate. 1659 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1660 if (PredWithKnownDest == (size_t)pred_size(BB)) { 1661 bool SeenFirstBranchToOnlyDest = false; 1662 std::vector <DominatorTree::UpdateType> Updates; 1663 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1664 for (BasicBlock *SuccBB : successors(BB)) { 1665 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1666 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1667 } else { 1668 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1669 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1670 } 1671 } 1672 1673 // Finally update the terminator. 1674 Instruction *Term = BB->getTerminator(); 1675 BranchInst::Create(OnlyDest, Term); 1676 Term->eraseFromParent(); 1677 DTU->applyUpdates(Updates); 1678 1679 // If the condition is now dead due to the removal of the old terminator, 1680 // erase it. 1681 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1682 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1683 CondInst->eraseFromParent(); 1684 // We can safely replace *some* uses of the CondInst if it has 1685 // exactly one value as returned by LVI. RAUW is incorrect in the 1686 // presence of guards and assumes, that have the `Cond` as the use. This 1687 // is because we use the guards/assume to reason about the `Cond` value 1688 // at the end of block, but RAUW unconditionally replaces all uses 1689 // including the guards/assumes themselves and the uses before the 1690 // guard/assume. 1691 else if (OnlyVal && OnlyVal != MultipleVal && 1692 CondInst->getParent() == BB) 1693 ReplaceFoldableUses(CondInst, OnlyVal); 1694 } 1695 return true; 1696 } 1697 } 1698 1699 // Determine which is the most common successor. If we have many inputs and 1700 // this block is a switch, we want to start by threading the batch that goes 1701 // to the most popular destination first. If we only know about one 1702 // threadable destination (the common case) we can avoid this. 1703 BasicBlock *MostPopularDest = OnlyDest; 1704 1705 if (MostPopularDest == MultipleDestSentinel) { 1706 // Remove any loop headers from the Dest list, ThreadEdge conservatively 1707 // won't process them, but we might have other destination that are eligible 1708 // and we still want to process. 1709 erase_if(PredToDestList, 1710 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1711 return LoopHeaders.count(PredToDest.second) != 0; 1712 }); 1713 1714 if (PredToDestList.empty()) 1715 return false; 1716 1717 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1718 } 1719 1720 // Now that we know what the most popular destination is, factor all 1721 // predecessors that will jump to it into a single predecessor. 1722 SmallVector<BasicBlock*, 16> PredsToFactor; 1723 for (const auto &PredToDest : PredToDestList) 1724 if (PredToDest.second == MostPopularDest) { 1725 BasicBlock *Pred = PredToDest.first; 1726 1727 // This predecessor may be a switch or something else that has multiple 1728 // edges to the block. Factor each of these edges by listing them 1729 // according to # occurrences in PredsToFactor. 1730 for (BasicBlock *Succ : successors(Pred)) 1731 if (Succ == BB) 1732 PredsToFactor.push_back(Pred); 1733 } 1734 1735 // If the threadable edges are branching on an undefined value, we get to pick 1736 // the destination that these predecessors should get to. 1737 if (!MostPopularDest) 1738 MostPopularDest = BB->getTerminator()-> 1739 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1740 1741 // Ok, try to thread it! 1742 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1743 } 1744 1745 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1746 /// a PHI node in the current block. See if there are any simplifications we 1747 /// can do based on inputs to the phi node. 1748 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1749 BasicBlock *BB = PN->getParent(); 1750 1751 // TODO: We could make use of this to do it once for blocks with common PHI 1752 // values. 1753 SmallVector<BasicBlock*, 1> PredBBs; 1754 PredBBs.resize(1); 1755 1756 // If any of the predecessor blocks end in an unconditional branch, we can 1757 // *duplicate* the conditional branch into that block in order to further 1758 // encourage jump threading and to eliminate cases where we have branch on a 1759 // phi of an icmp (branch on icmp is much better). 1760 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1761 BasicBlock *PredBB = PN->getIncomingBlock(i); 1762 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1763 if (PredBr->isUnconditional()) { 1764 PredBBs[0] = PredBB; 1765 // Try to duplicate BB into PredBB. 1766 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1767 return true; 1768 } 1769 } 1770 1771 return false; 1772 } 1773 1774 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1775 /// a xor instruction in the current block. See if there are any 1776 /// simplifications we can do based on inputs to the xor. 1777 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1778 BasicBlock *BB = BO->getParent(); 1779 1780 // If either the LHS or RHS of the xor is a constant, don't do this 1781 // optimization. 1782 if (isa<ConstantInt>(BO->getOperand(0)) || 1783 isa<ConstantInt>(BO->getOperand(1))) 1784 return false; 1785 1786 // If the first instruction in BB isn't a phi, we won't be able to infer 1787 // anything special about any particular predecessor. 1788 if (!isa<PHINode>(BB->front())) 1789 return false; 1790 1791 // If this BB is a landing pad, we won't be able to split the edge into it. 1792 if (BB->isEHPad()) 1793 return false; 1794 1795 // If we have a xor as the branch input to this block, and we know that the 1796 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1797 // the condition into the predecessor and fix that value to true, saving some 1798 // logical ops on that path and encouraging other paths to simplify. 1799 // 1800 // This copies something like this: 1801 // 1802 // BB: 1803 // %X = phi i1 [1], [%X'] 1804 // %Y = icmp eq i32 %A, %B 1805 // %Z = xor i1 %X, %Y 1806 // br i1 %Z, ... 1807 // 1808 // Into: 1809 // BB': 1810 // %Y = icmp ne i32 %A, %B 1811 // br i1 %Y, ... 1812 1813 PredValueInfoTy XorOpValues; 1814 bool isLHS = true; 1815 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1816 WantInteger, BO)) { 1817 assert(XorOpValues.empty()); 1818 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1819 WantInteger, BO)) 1820 return false; 1821 isLHS = false; 1822 } 1823 1824 assert(!XorOpValues.empty() && 1825 "ComputeValueKnownInPredecessors returned true with no values"); 1826 1827 // Scan the information to see which is most popular: true or false. The 1828 // predecessors can be of the set true, false, or undef. 1829 unsigned NumTrue = 0, NumFalse = 0; 1830 for (const auto &XorOpValue : XorOpValues) { 1831 if (isa<UndefValue>(XorOpValue.first)) 1832 // Ignore undefs for the count. 1833 continue; 1834 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1835 ++NumFalse; 1836 else 1837 ++NumTrue; 1838 } 1839 1840 // Determine which value to split on, true, false, or undef if neither. 1841 ConstantInt *SplitVal = nullptr; 1842 if (NumTrue > NumFalse) 1843 SplitVal = ConstantInt::getTrue(BB->getContext()); 1844 else if (NumTrue != 0 || NumFalse != 0) 1845 SplitVal = ConstantInt::getFalse(BB->getContext()); 1846 1847 // Collect all of the blocks that this can be folded into so that we can 1848 // factor this once and clone it once. 1849 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1850 for (const auto &XorOpValue : XorOpValues) { 1851 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1852 continue; 1853 1854 BlocksToFoldInto.push_back(XorOpValue.second); 1855 } 1856 1857 // If we inferred a value for all of the predecessors, then duplication won't 1858 // help us. However, we can just replace the LHS or RHS with the constant. 1859 if (BlocksToFoldInto.size() == 1860 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1861 if (!SplitVal) { 1862 // If all preds provide undef, just nuke the xor, because it is undef too. 1863 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1864 BO->eraseFromParent(); 1865 } else if (SplitVal->isZero()) { 1866 // If all preds provide 0, replace the xor with the other input. 1867 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1868 BO->eraseFromParent(); 1869 } else { 1870 // If all preds provide 1, set the computed value to 1. 1871 BO->setOperand(!isLHS, SplitVal); 1872 } 1873 1874 return true; 1875 } 1876 1877 // Try to duplicate BB into PredBB. 1878 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1879 } 1880 1881 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1882 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1883 /// NewPred using the entries from OldPred (suitably mapped). 1884 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1885 BasicBlock *OldPred, 1886 BasicBlock *NewPred, 1887 DenseMap<Instruction*, Value*> &ValueMap) { 1888 for (PHINode &PN : PHIBB->phis()) { 1889 // Ok, we have a PHI node. Figure out what the incoming value was for the 1890 // DestBlock. 1891 Value *IV = PN.getIncomingValueForBlock(OldPred); 1892 1893 // Remap the value if necessary. 1894 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1895 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1896 if (I != ValueMap.end()) 1897 IV = I->second; 1898 } 1899 1900 PN.addIncoming(IV, NewPred); 1901 } 1902 } 1903 1904 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1905 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1906 /// across BB. Transform the IR to reflect this change. 1907 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1908 const SmallVectorImpl<BasicBlock *> &PredBBs, 1909 BasicBlock *SuccBB) { 1910 // If threading to the same block as we come from, we would infinite loop. 1911 if (SuccBB == BB) { 1912 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1913 << "' - would thread to self!\n"); 1914 return false; 1915 } 1916 1917 // If threading this would thread across a loop header, don't thread the edge. 1918 // See the comments above FindLoopHeaders for justifications and caveats. 1919 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 1920 LLVM_DEBUG({ 1921 bool BBIsHeader = LoopHeaders.count(BB); 1922 bool SuccIsHeader = LoopHeaders.count(SuccBB); 1923 dbgs() << " Not threading across " 1924 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 1925 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 1926 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 1927 }); 1928 return false; 1929 } 1930 1931 unsigned JumpThreadCost = 1932 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1933 if (JumpThreadCost > BBDupThreshold) { 1934 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1935 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1936 return false; 1937 } 1938 1939 // And finally, do it! Start by factoring the predecessors if needed. 1940 BasicBlock *PredBB; 1941 if (PredBBs.size() == 1) 1942 PredBB = PredBBs[0]; 1943 else { 1944 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1945 << " common predecessors.\n"); 1946 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1947 } 1948 1949 // And finally, do it! 1950 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 1951 << "' to '" << SuccBB->getName() 1952 << "' with cost: " << JumpThreadCost 1953 << ", across block:\n " << *BB << "\n"); 1954 1955 if (DTU->hasPendingDomTreeUpdates()) 1956 LVI->disableDT(); 1957 else 1958 LVI->enableDT(); 1959 LVI->threadEdge(PredBB, BB, SuccBB); 1960 1961 // We are going to have to map operands from the original BB block to the new 1962 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1963 // account for entry from PredBB. 1964 DenseMap<Instruction*, Value*> ValueMapping; 1965 1966 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1967 BB->getName()+".thread", 1968 BB->getParent(), BB); 1969 NewBB->moveAfter(PredBB); 1970 1971 // Set the block frequency of NewBB. 1972 if (HasProfileData) { 1973 auto NewBBFreq = 1974 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1975 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1976 } 1977 1978 BasicBlock::iterator BI = BB->begin(); 1979 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1980 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1981 1982 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1983 // mapping and using it to remap operands in the cloned instructions. 1984 for (; !BI->isTerminator(); ++BI) { 1985 Instruction *New = BI->clone(); 1986 New->setName(BI->getName()); 1987 NewBB->getInstList().push_back(New); 1988 ValueMapping[&*BI] = New; 1989 1990 // Remap operands to patch up intra-block references. 1991 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1992 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1993 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1994 if (I != ValueMapping.end()) 1995 New->setOperand(i, I->second); 1996 } 1997 } 1998 1999 // We didn't copy the terminator from BB over to NewBB, because there is now 2000 // an unconditional jump to SuccBB. Insert the unconditional jump. 2001 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2002 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2003 2004 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2005 // PHI nodes for NewBB now. 2006 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2007 2008 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2009 // eliminates predecessors from BB, which requires us to simplify any PHI 2010 // nodes in BB. 2011 Instruction *PredTerm = PredBB->getTerminator(); 2012 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2013 if (PredTerm->getSuccessor(i) == BB) { 2014 BB->removePredecessor(PredBB, true); 2015 PredTerm->setSuccessor(i, NewBB); 2016 } 2017 2018 // Enqueue required DT updates. 2019 DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}, 2020 {DominatorTree::Insert, PredBB, NewBB}, 2021 {DominatorTree::Delete, PredBB, BB}}); 2022 2023 // If there were values defined in BB that are used outside the block, then we 2024 // now have to update all uses of the value to use either the original value, 2025 // the cloned value, or some PHI derived value. This can require arbitrary 2026 // PHI insertion, of which we are prepared to do, clean these up now. 2027 SSAUpdater SSAUpdate; 2028 SmallVector<Use*, 16> UsesToRename; 2029 2030 for (Instruction &I : *BB) { 2031 // Scan all uses of this instruction to see if their uses are no longer 2032 // dominated by the previous def and if so, record them in UsesToRename. 2033 // Also, skip phi operands from PredBB - we'll remove them anyway. 2034 for (Use &U : I.uses()) { 2035 Instruction *User = cast<Instruction>(U.getUser()); 2036 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2037 if (UserPN->getIncomingBlock(U) == BB) 2038 continue; 2039 } else if (User->getParent() == BB) 2040 continue; 2041 2042 UsesToRename.push_back(&U); 2043 } 2044 2045 // If there are no uses outside the block, we're done with this instruction. 2046 if (UsesToRename.empty()) 2047 continue; 2048 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2049 2050 // We found a use of I outside of BB. Rename all uses of I that are outside 2051 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2052 // with the two values we know. 2053 SSAUpdate.Initialize(I.getType(), I.getName()); 2054 SSAUpdate.AddAvailableValue(BB, &I); 2055 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2056 2057 while (!UsesToRename.empty()) 2058 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2059 LLVM_DEBUG(dbgs() << "\n"); 2060 } 2061 2062 // At this point, the IR is fully up to date and consistent. Do a quick scan 2063 // over the new instructions and zap any that are constants or dead. This 2064 // frequently happens because of phi translation. 2065 SimplifyInstructionsInBlock(NewBB, TLI); 2066 2067 // Update the edge weight from BB to SuccBB, which should be less than before. 2068 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2069 2070 // Threaded an edge! 2071 ++NumThreads; 2072 return true; 2073 } 2074 2075 /// Create a new basic block that will be the predecessor of BB and successor of 2076 /// all blocks in Preds. When profile data is available, update the frequency of 2077 /// this new block. 2078 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2079 ArrayRef<BasicBlock *> Preds, 2080 const char *Suffix) { 2081 SmallVector<BasicBlock *, 2> NewBBs; 2082 2083 // Collect the frequencies of all predecessors of BB, which will be used to 2084 // update the edge weight of the result of splitting predecessors. 2085 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2086 if (HasProfileData) 2087 for (auto Pred : Preds) 2088 FreqMap.insert(std::make_pair( 2089 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2090 2091 // In the case when BB is a LandingPad block we create 2 new predecessors 2092 // instead of just one. 2093 if (BB->isLandingPad()) { 2094 std::string NewName = std::string(Suffix) + ".split-lp"; 2095 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2096 } else { 2097 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2098 } 2099 2100 std::vector<DominatorTree::UpdateType> Updates; 2101 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2102 for (auto NewBB : NewBBs) { 2103 BlockFrequency NewBBFreq(0); 2104 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2105 for (auto Pred : predecessors(NewBB)) { 2106 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2107 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2108 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2109 NewBBFreq += FreqMap.lookup(Pred); 2110 } 2111 if (HasProfileData) // Apply the summed frequency to NewBB. 2112 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2113 } 2114 2115 DTU->applyUpdates(Updates); 2116 return NewBBs[0]; 2117 } 2118 2119 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2120 const Instruction *TI = BB->getTerminator(); 2121 assert(TI->getNumSuccessors() > 1 && "not a split"); 2122 2123 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2124 if (!WeightsNode) 2125 return false; 2126 2127 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2128 if (MDName->getString() != "branch_weights") 2129 return false; 2130 2131 // Ensure there are weights for all of the successors. Note that the first 2132 // operand to the metadata node is a name, not a weight. 2133 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2134 } 2135 2136 /// Update the block frequency of BB and branch weight and the metadata on the 2137 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2138 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2139 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2140 BasicBlock *BB, 2141 BasicBlock *NewBB, 2142 BasicBlock *SuccBB) { 2143 if (!HasProfileData) 2144 return; 2145 2146 assert(BFI && BPI && "BFI & BPI should have been created here"); 2147 2148 // As the edge from PredBB to BB is deleted, we have to update the block 2149 // frequency of BB. 2150 auto BBOrigFreq = BFI->getBlockFreq(BB); 2151 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2152 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2153 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2154 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2155 2156 // Collect updated outgoing edges' frequencies from BB and use them to update 2157 // edge probabilities. 2158 SmallVector<uint64_t, 4> BBSuccFreq; 2159 for (BasicBlock *Succ : successors(BB)) { 2160 auto SuccFreq = (Succ == SuccBB) 2161 ? BB2SuccBBFreq - NewBBFreq 2162 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2163 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2164 } 2165 2166 uint64_t MaxBBSuccFreq = 2167 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2168 2169 SmallVector<BranchProbability, 4> BBSuccProbs; 2170 if (MaxBBSuccFreq == 0) 2171 BBSuccProbs.assign(BBSuccFreq.size(), 2172 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2173 else { 2174 for (uint64_t Freq : BBSuccFreq) 2175 BBSuccProbs.push_back( 2176 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2177 // Normalize edge probabilities so that they sum up to one. 2178 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2179 BBSuccProbs.end()); 2180 } 2181 2182 // Update edge probabilities in BPI. 2183 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2184 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2185 2186 // Update the profile metadata as well. 2187 // 2188 // Don't do this if the profile of the transformed blocks was statically 2189 // estimated. (This could occur despite the function having an entry 2190 // frequency in completely cold parts of the CFG.) 2191 // 2192 // In this case we don't want to suggest to subsequent passes that the 2193 // calculated weights are fully consistent. Consider this graph: 2194 // 2195 // check_1 2196 // 50% / | 2197 // eq_1 | 50% 2198 // \ | 2199 // check_2 2200 // 50% / | 2201 // eq_2 | 50% 2202 // \ | 2203 // check_3 2204 // 50% / | 2205 // eq_3 | 50% 2206 // \ | 2207 // 2208 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2209 // the overall probabilities are inconsistent; the total probability that the 2210 // value is either 1, 2 or 3 is 150%. 2211 // 2212 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2213 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2214 // the loop exit edge. Then based solely on static estimation we would assume 2215 // the loop was extremely hot. 2216 // 2217 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2218 // shouldn't make edges extremely likely or unlikely based solely on static 2219 // estimation. 2220 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2221 SmallVector<uint32_t, 4> Weights; 2222 for (auto Prob : BBSuccProbs) 2223 Weights.push_back(Prob.getNumerator()); 2224 2225 auto TI = BB->getTerminator(); 2226 TI->setMetadata( 2227 LLVMContext::MD_prof, 2228 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2229 } 2230 } 2231 2232 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2233 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2234 /// If we can duplicate the contents of BB up into PredBB do so now, this 2235 /// improves the odds that the branch will be on an analyzable instruction like 2236 /// a compare. 2237 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2238 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2239 assert(!PredBBs.empty() && "Can't handle an empty set"); 2240 2241 // If BB is a loop header, then duplicating this block outside the loop would 2242 // cause us to transform this into an irreducible loop, don't do this. 2243 // See the comments above FindLoopHeaders for justifications and caveats. 2244 if (LoopHeaders.count(BB)) { 2245 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2246 << "' into predecessor block '" << PredBBs[0]->getName() 2247 << "' - it might create an irreducible loop!\n"); 2248 return false; 2249 } 2250 2251 unsigned DuplicationCost = 2252 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2253 if (DuplicationCost > BBDupThreshold) { 2254 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2255 << "' - Cost is too high: " << DuplicationCost << "\n"); 2256 return false; 2257 } 2258 2259 // And finally, do it! Start by factoring the predecessors if needed. 2260 std::vector<DominatorTree::UpdateType> Updates; 2261 BasicBlock *PredBB; 2262 if (PredBBs.size() == 1) 2263 PredBB = PredBBs[0]; 2264 else { 2265 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2266 << " common predecessors.\n"); 2267 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2268 } 2269 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2270 2271 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2272 // of PredBB. 2273 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2274 << "' into end of '" << PredBB->getName() 2275 << "' to eliminate branch on phi. Cost: " 2276 << DuplicationCost << " block is:" << *BB << "\n"); 2277 2278 // Unless PredBB ends with an unconditional branch, split the edge so that we 2279 // can just clone the bits from BB into the end of the new PredBB. 2280 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2281 2282 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2283 BasicBlock *OldPredBB = PredBB; 2284 PredBB = SplitEdge(OldPredBB, BB); 2285 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2286 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2287 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2288 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2289 } 2290 2291 // We are going to have to map operands from the original BB block into the 2292 // PredBB block. Evaluate PHI nodes in BB. 2293 DenseMap<Instruction*, Value*> ValueMapping; 2294 2295 BasicBlock::iterator BI = BB->begin(); 2296 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2297 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2298 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2299 // mapping and using it to remap operands in the cloned instructions. 2300 for (; BI != BB->end(); ++BI) { 2301 Instruction *New = BI->clone(); 2302 2303 // Remap operands to patch up intra-block references. 2304 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2305 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2306 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2307 if (I != ValueMapping.end()) 2308 New->setOperand(i, I->second); 2309 } 2310 2311 // If this instruction can be simplified after the operands are updated, 2312 // just use the simplified value instead. This frequently happens due to 2313 // phi translation. 2314 if (Value *IV = SimplifyInstruction( 2315 New, 2316 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2317 ValueMapping[&*BI] = IV; 2318 if (!New->mayHaveSideEffects()) { 2319 New->deleteValue(); 2320 New = nullptr; 2321 } 2322 } else { 2323 ValueMapping[&*BI] = New; 2324 } 2325 if (New) { 2326 // Otherwise, insert the new instruction into the block. 2327 New->setName(BI->getName()); 2328 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2329 // Update Dominance from simplified New instruction operands. 2330 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2331 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2332 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2333 } 2334 } 2335 2336 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2337 // add entries to the PHI nodes for branch from PredBB now. 2338 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2339 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2340 ValueMapping); 2341 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2342 ValueMapping); 2343 2344 // If there were values defined in BB that are used outside the block, then we 2345 // now have to update all uses of the value to use either the original value, 2346 // the cloned value, or some PHI derived value. This can require arbitrary 2347 // PHI insertion, of which we are prepared to do, clean these up now. 2348 SSAUpdater SSAUpdate; 2349 SmallVector<Use*, 16> UsesToRename; 2350 for (Instruction &I : *BB) { 2351 // Scan all uses of this instruction to see if it is used outside of its 2352 // block, and if so, record them in UsesToRename. 2353 for (Use &U : I.uses()) { 2354 Instruction *User = cast<Instruction>(U.getUser()); 2355 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2356 if (UserPN->getIncomingBlock(U) == BB) 2357 continue; 2358 } else if (User->getParent() == BB) 2359 continue; 2360 2361 UsesToRename.push_back(&U); 2362 } 2363 2364 // If there are no uses outside the block, we're done with this instruction. 2365 if (UsesToRename.empty()) 2366 continue; 2367 2368 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2369 2370 // We found a use of I outside of BB. Rename all uses of I that are outside 2371 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2372 // with the two values we know. 2373 SSAUpdate.Initialize(I.getType(), I.getName()); 2374 SSAUpdate.AddAvailableValue(BB, &I); 2375 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2376 2377 while (!UsesToRename.empty()) 2378 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2379 LLVM_DEBUG(dbgs() << "\n"); 2380 } 2381 2382 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2383 // that we nuked. 2384 BB->removePredecessor(PredBB, true); 2385 2386 // Remove the unconditional branch at the end of the PredBB block. 2387 OldPredBranch->eraseFromParent(); 2388 DTU->applyUpdates(Updates); 2389 2390 ++NumDupes; 2391 return true; 2392 } 2393 2394 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2395 // a Select instruction in Pred. BB has other predecessors and SI is used in 2396 // a PHI node in BB. SI has no other use. 2397 // A new basic block, NewBB, is created and SI is converted to compare and 2398 // conditional branch. SI is erased from parent. 2399 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2400 SelectInst *SI, PHINode *SIUse, 2401 unsigned Idx) { 2402 // Expand the select. 2403 // 2404 // Pred -- 2405 // | v 2406 // | NewBB 2407 // | | 2408 // |----- 2409 // v 2410 // BB 2411 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2412 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2413 BB->getParent(), BB); 2414 // Move the unconditional branch to NewBB. 2415 PredTerm->removeFromParent(); 2416 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2417 // Create a conditional branch and update PHI nodes. 2418 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2419 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2420 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2421 2422 // The select is now dead. 2423 SI->eraseFromParent(); 2424 DTU->applyUpdates({{DominatorTree::Insert, NewBB, BB}, 2425 {DominatorTree::Insert, Pred, NewBB}}); 2426 2427 // Update any other PHI nodes in BB. 2428 for (BasicBlock::iterator BI = BB->begin(); 2429 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2430 if (Phi != SIUse) 2431 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2432 } 2433 2434 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2435 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2436 2437 if (!CondPHI || CondPHI->getParent() != BB) 2438 return false; 2439 2440 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2441 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2442 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2443 2444 // The second and third condition can be potentially relaxed. Currently 2445 // the conditions help to simplify the code and allow us to reuse existing 2446 // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *) 2447 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2448 continue; 2449 2450 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2451 if (!PredTerm || !PredTerm->isUnconditional()) 2452 continue; 2453 2454 UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2455 return true; 2456 } 2457 return false; 2458 } 2459 2460 /// TryToUnfoldSelect - Look for blocks of the form 2461 /// bb1: 2462 /// %a = select 2463 /// br bb2 2464 /// 2465 /// bb2: 2466 /// %p = phi [%a, %bb1] ... 2467 /// %c = icmp %p 2468 /// br i1 %c 2469 /// 2470 /// And expand the select into a branch structure if one of its arms allows %c 2471 /// to be folded. This later enables threading from bb1 over bb2. 2472 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2473 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2474 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2475 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2476 2477 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2478 CondLHS->getParent() != BB) 2479 return false; 2480 2481 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2482 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2483 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2484 2485 // Look if one of the incoming values is a select in the corresponding 2486 // predecessor. 2487 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2488 continue; 2489 2490 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2491 if (!PredTerm || !PredTerm->isUnconditional()) 2492 continue; 2493 2494 // Now check if one of the select values would allow us to constant fold the 2495 // terminator in BB. We don't do the transform if both sides fold, those 2496 // cases will be threaded in any case. 2497 if (DTU->hasPendingDomTreeUpdates()) 2498 LVI->disableDT(); 2499 else 2500 LVI->enableDT(); 2501 LazyValueInfo::Tristate LHSFolds = 2502 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2503 CondRHS, Pred, BB, CondCmp); 2504 LazyValueInfo::Tristate RHSFolds = 2505 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2506 CondRHS, Pred, BB, CondCmp); 2507 if ((LHSFolds != LazyValueInfo::Unknown || 2508 RHSFolds != LazyValueInfo::Unknown) && 2509 LHSFolds != RHSFolds) { 2510 UnfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2511 return true; 2512 } 2513 } 2514 return false; 2515 } 2516 2517 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2518 /// same BB in the form 2519 /// bb: 2520 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2521 /// %s = select %p, trueval, falseval 2522 /// 2523 /// or 2524 /// 2525 /// bb: 2526 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2527 /// %c = cmp %p, 0 2528 /// %s = select %c, trueval, falseval 2529 /// 2530 /// And expand the select into a branch structure. This later enables 2531 /// jump-threading over bb in this pass. 2532 /// 2533 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2534 /// select if the associated PHI has at least one constant. If the unfolded 2535 /// select is not jump-threaded, it will be folded again in the later 2536 /// optimizations. 2537 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2538 // If threading this would thread across a loop header, don't thread the edge. 2539 // See the comments above FindLoopHeaders for justifications and caveats. 2540 if (LoopHeaders.count(BB)) 2541 return false; 2542 2543 for (BasicBlock::iterator BI = BB->begin(); 2544 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2545 // Look for a Phi having at least one constant incoming value. 2546 if (llvm::all_of(PN->incoming_values(), 2547 [](Value *V) { return !isa<ConstantInt>(V); })) 2548 continue; 2549 2550 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2551 // Check if SI is in BB and use V as condition. 2552 if (SI->getParent() != BB) 2553 return false; 2554 Value *Cond = SI->getCondition(); 2555 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2556 }; 2557 2558 SelectInst *SI = nullptr; 2559 for (Use &U : PN->uses()) { 2560 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2561 // Look for a ICmp in BB that compares PN with a constant and is the 2562 // condition of a Select. 2563 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2564 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2565 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2566 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2567 SI = SelectI; 2568 break; 2569 } 2570 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2571 // Look for a Select in BB that uses PN as condition. 2572 if (isUnfoldCandidate(SelectI, U.get())) { 2573 SI = SelectI; 2574 break; 2575 } 2576 } 2577 } 2578 2579 if (!SI) 2580 continue; 2581 // Expand the select. 2582 Instruction *Term = 2583 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2584 BasicBlock *SplitBB = SI->getParent(); 2585 BasicBlock *NewBB = Term->getParent(); 2586 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2587 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2588 NewPN->addIncoming(SI->getFalseValue(), BB); 2589 SI->replaceAllUsesWith(NewPN); 2590 SI->eraseFromParent(); 2591 // NewBB and SplitBB are newly created blocks which require insertion. 2592 std::vector<DominatorTree::UpdateType> Updates; 2593 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2594 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2595 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2596 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2597 // BB's successors were moved to SplitBB, update DTU accordingly. 2598 for (auto *Succ : successors(SplitBB)) { 2599 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2600 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2601 } 2602 DTU->applyUpdates(Updates); 2603 return true; 2604 } 2605 return false; 2606 } 2607 2608 /// Try to propagate a guard from the current BB into one of its predecessors 2609 /// in case if another branch of execution implies that the condition of this 2610 /// guard is always true. Currently we only process the simplest case that 2611 /// looks like: 2612 /// 2613 /// Start: 2614 /// %cond = ... 2615 /// br i1 %cond, label %T1, label %F1 2616 /// T1: 2617 /// br label %Merge 2618 /// F1: 2619 /// br label %Merge 2620 /// Merge: 2621 /// %condGuard = ... 2622 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2623 /// 2624 /// And cond either implies condGuard or !condGuard. In this case all the 2625 /// instructions before the guard can be duplicated in both branches, and the 2626 /// guard is then threaded to one of them. 2627 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2628 using namespace PatternMatch; 2629 2630 // We only want to deal with two predecessors. 2631 BasicBlock *Pred1, *Pred2; 2632 auto PI = pred_begin(BB), PE = pred_end(BB); 2633 if (PI == PE) 2634 return false; 2635 Pred1 = *PI++; 2636 if (PI == PE) 2637 return false; 2638 Pred2 = *PI++; 2639 if (PI != PE) 2640 return false; 2641 if (Pred1 == Pred2) 2642 return false; 2643 2644 // Try to thread one of the guards of the block. 2645 // TODO: Look up deeper than to immediate predecessor? 2646 auto *Parent = Pred1->getSinglePredecessor(); 2647 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2648 return false; 2649 2650 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2651 for (auto &I : *BB) 2652 if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2653 return true; 2654 2655 return false; 2656 } 2657 2658 /// Try to propagate the guard from BB which is the lower block of a diamond 2659 /// to one of its branches, in case if diamond's condition implies guard's 2660 /// condition. 2661 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2662 BranchInst *BI) { 2663 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2664 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2665 Value *GuardCond = Guard->getArgOperand(0); 2666 Value *BranchCond = BI->getCondition(); 2667 BasicBlock *TrueDest = BI->getSuccessor(0); 2668 BasicBlock *FalseDest = BI->getSuccessor(1); 2669 2670 auto &DL = BB->getModule()->getDataLayout(); 2671 bool TrueDestIsSafe = false; 2672 bool FalseDestIsSafe = false; 2673 2674 // True dest is safe if BranchCond => GuardCond. 2675 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2676 if (Impl && *Impl) 2677 TrueDestIsSafe = true; 2678 else { 2679 // False dest is safe if !BranchCond => GuardCond. 2680 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2681 if (Impl && *Impl) 2682 FalseDestIsSafe = true; 2683 } 2684 2685 if (!TrueDestIsSafe && !FalseDestIsSafe) 2686 return false; 2687 2688 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2689 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2690 2691 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2692 Instruction *AfterGuard = Guard->getNextNode(); 2693 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2694 if (Cost > BBDupThreshold) 2695 return false; 2696 // Duplicate all instructions before the guard and the guard itself to the 2697 // branch where implication is not proved. 2698 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2699 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 2700 assert(GuardedBlock && "Could not create the guarded block?"); 2701 // Duplicate all instructions before the guard in the unguarded branch. 2702 // Since we have successfully duplicated the guarded block and this block 2703 // has fewer instructions, we expect it to succeed. 2704 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2705 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 2706 assert(UnguardedBlock && "Could not create the unguarded block?"); 2707 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2708 << GuardedBlock->getName() << "\n"); 2709 // Some instructions before the guard may still have uses. For them, we need 2710 // to create Phi nodes merging their copies in both guarded and unguarded 2711 // branches. Those instructions that have no uses can be just removed. 2712 SmallVector<Instruction *, 4> ToRemove; 2713 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2714 if (!isa<PHINode>(&*BI)) 2715 ToRemove.push_back(&*BI); 2716 2717 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2718 assert(InsertionPoint && "Empty block?"); 2719 // Substitute with Phis & remove. 2720 for (auto *Inst : reverse(ToRemove)) { 2721 if (!Inst->use_empty()) { 2722 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2723 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2724 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2725 NewPN->insertBefore(InsertionPoint); 2726 Inst->replaceAllUsesWith(NewPN); 2727 } 2728 Inst->eraseFromParent(); 2729 } 2730 return true; 2731 } 2732