1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/PassManager.h"
52 #include "llvm/IR/PatternMatch.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/BlockFrequency.h"
59 #include "llvm/Support/BranchProbability.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/SSAUpdater.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <iterator>
75 #include <memory>
76 #include <utility>
77 
78 using namespace llvm;
79 using namespace jumpthreading;
80 
81 #define DEBUG_TYPE "jump-threading"
82 
83 STATISTIC(NumThreads, "Number of jumps threaded");
84 STATISTIC(NumFolds,   "Number of terminators folded");
85 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
86 
87 static cl::opt<unsigned>
88 BBDuplicateThreshold("jump-threading-threshold",
89           cl::desc("Max block size to duplicate for jump threading"),
90           cl::init(6), cl::Hidden);
91 
92 static cl::opt<unsigned>
93 ImplicationSearchThreshold(
94   "jump-threading-implication-search-threshold",
95   cl::desc("The number of predecessors to search for a stronger "
96            "condition to use to thread over a weaker condition"),
97   cl::init(3), cl::Hidden);
98 
99 static cl::opt<bool> PrintLVIAfterJumpThreading(
100     "print-lvi-after-jump-threading",
101     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
102     cl::Hidden);
103 
104 namespace {
105 
106   /// This pass performs 'jump threading', which looks at blocks that have
107   /// multiple predecessors and multiple successors.  If one or more of the
108   /// predecessors of the block can be proven to always jump to one of the
109   /// successors, we forward the edge from the predecessor to the successor by
110   /// duplicating the contents of this block.
111   ///
112   /// An example of when this can occur is code like this:
113   ///
114   ///   if () { ...
115   ///     X = 4;
116   ///   }
117   ///   if (X < 3) {
118   ///
119   /// In this case, the unconditional branch at the end of the first if can be
120   /// revectored to the false side of the second if.
121   class JumpThreading : public FunctionPass {
122     JumpThreadingPass Impl;
123 
124   public:
125     static char ID; // Pass identification
126 
127     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
128       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
129     }
130 
131     bool runOnFunction(Function &F) override;
132 
133     void getAnalysisUsage(AnalysisUsage &AU) const override {
134       if (PrintLVIAfterJumpThreading)
135         AU.addRequired<DominatorTreeWrapperPass>();
136       AU.addRequired<AAResultsWrapperPass>();
137       AU.addRequired<LazyValueInfoWrapperPass>();
138       AU.addPreserved<GlobalsAAWrapperPass>();
139       AU.addRequired<TargetLibraryInfoWrapperPass>();
140     }
141 
142     void releaseMemory() override { Impl.releaseMemory(); }
143   };
144 
145 } // end anonymous namespace
146 
147 char JumpThreading::ID = 0;
148 
149 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
150                 "Jump Threading", false, false)
151 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
152 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
153 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
154 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
155                 "Jump Threading", false, false)
156 
157 // Public interface to the Jump Threading pass
158 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
159   return new JumpThreading(Threshold);
160 }
161 
162 JumpThreadingPass::JumpThreadingPass(int T) {
163   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
164 }
165 
166 // Update branch probability information according to conditional
167 // branch probablity. This is usually made possible for cloned branches
168 // in inline instances by the context specific profile in the caller.
169 // For instance,
170 //
171 //  [Block PredBB]
172 //  [Branch PredBr]
173 //  if (t) {
174 //     Block A;
175 //  } else {
176 //     Block B;
177 //  }
178 //
179 //  [Block BB]
180 //  cond = PN([true, %A], [..., %B]); // PHI node
181 //  [Branch CondBr]
182 //  if (cond) {
183 //    ...  // P(cond == true) = 1%
184 //  }
185 //
186 //  Here we know that when block A is taken, cond must be true, which means
187 //      P(cond == true | A) = 1
188 //
189 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
190 //                               P(cond == true | B) * P(B)
191 //  we get:
192 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
193 //
194 //  which gives us:
195 //     P(A) is less than P(cond == true), i.e.
196 //     P(t == true) <= P(cond == true)
197 //
198 //  In other words, if we know P(cond == true) is unlikely, we know
199 //  that P(t == true) is also unlikely.
200 //
201 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
202   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
203   if (!CondBr)
204     return;
205 
206   BranchProbability BP;
207   uint64_t TrueWeight, FalseWeight;
208   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
209     return;
210 
211   // Returns the outgoing edge of the dominating predecessor block
212   // that leads to the PhiNode's incoming block:
213   auto GetPredOutEdge =
214       [](BasicBlock *IncomingBB,
215          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
216     auto *PredBB = IncomingBB;
217     auto *SuccBB = PhiBB;
218     while (true) {
219       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
220       if (PredBr && PredBr->isConditional())
221         return {PredBB, SuccBB};
222       auto *SinglePredBB = PredBB->getSinglePredecessor();
223       if (!SinglePredBB)
224         return {nullptr, nullptr};
225       SuccBB = PredBB;
226       PredBB = SinglePredBB;
227     }
228   };
229 
230   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
231     Value *PhiOpnd = PN->getIncomingValue(i);
232     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
233 
234     if (!CI || !CI->getType()->isIntegerTy(1))
235       continue;
236 
237     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
238                             TrueWeight, TrueWeight + FalseWeight)
239                       : BranchProbability::getBranchProbability(
240                             FalseWeight, TrueWeight + FalseWeight));
241 
242     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
243     if (!PredOutEdge.first)
244       return;
245 
246     BasicBlock *PredBB = PredOutEdge.first;
247     BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
248 
249     uint64_t PredTrueWeight, PredFalseWeight;
250     // FIXME: We currently only set the profile data when it is missing.
251     // With PGO, this can be used to refine even existing profile data with
252     // context information. This needs to be done after more performance
253     // testing.
254     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
255       continue;
256 
257     // We can not infer anything useful when BP >= 50%, because BP is the
258     // upper bound probability value.
259     if (BP >= BranchProbability(50, 100))
260       continue;
261 
262     SmallVector<uint32_t, 2> Weights;
263     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
264       Weights.push_back(BP.getNumerator());
265       Weights.push_back(BP.getCompl().getNumerator());
266     } else {
267       Weights.push_back(BP.getCompl().getNumerator());
268       Weights.push_back(BP.getNumerator());
269     }
270     PredBr->setMetadata(LLVMContext::MD_prof,
271                         MDBuilder(PredBr->getParent()->getContext())
272                             .createBranchWeights(Weights));
273   }
274 }
275 
276 /// runOnFunction - Toplevel algorithm.
277 bool JumpThreading::runOnFunction(Function &F) {
278   if (skipFunction(F))
279     return false;
280   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
281   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
282   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
283   std::unique_ptr<BlockFrequencyInfo> BFI;
284   std::unique_ptr<BranchProbabilityInfo> BPI;
285   bool HasProfileData = F.hasProfileData();
286   if (HasProfileData) {
287     LoopInfo LI{DominatorTree(F)};
288     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
289     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
290   }
291 
292   bool Changed = Impl.runImpl(F, TLI, LVI, AA, HasProfileData, std::move(BFI),
293                               std::move(BPI));
294   if (PrintLVIAfterJumpThreading) {
295     dbgs() << "LVI for function '" << F.getName() << "':\n";
296     LVI->printLVI(F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
297                   dbgs());
298   }
299   return Changed;
300 }
301 
302 PreservedAnalyses JumpThreadingPass::run(Function &F,
303                                          FunctionAnalysisManager &AM) {
304   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
305   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
306   auto &AA = AM.getResult<AAManager>(F);
307 
308   std::unique_ptr<BlockFrequencyInfo> BFI;
309   std::unique_ptr<BranchProbabilityInfo> BPI;
310   if (F.hasProfileData()) {
311     LoopInfo LI{DominatorTree(F)};
312     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
313     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
314   }
315 
316   bool Changed = runImpl(F, &TLI, &LVI, &AA, HasProfileData, std::move(BFI),
317                          std::move(BPI));
318 
319   if (!Changed)
320     return PreservedAnalyses::all();
321   PreservedAnalyses PA;
322   PA.preserve<GlobalsAA>();
323   return PA;
324 }
325 
326 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
327                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
328                                 bool HasProfileData_,
329                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
330                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
331   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
332   TLI = TLI_;
333   LVI = LVI_;
334   AA = AA_;
335   BFI.reset();
336   BPI.reset();
337   // When profile data is available, we need to update edge weights after
338   // successful jump threading, which requires both BPI and BFI being available.
339   HasProfileData = HasProfileData_;
340   auto *GuardDecl = F.getParent()->getFunction(
341       Intrinsic::getName(Intrinsic::experimental_guard));
342   HasGuards = GuardDecl && !GuardDecl->use_empty();
343   if (HasProfileData) {
344     BPI = std::move(BPI_);
345     BFI = std::move(BFI_);
346   }
347 
348   // Remove unreachable blocks from function as they may result in infinite
349   // loop. We do threading if we found something profitable. Jump threading a
350   // branch can create other opportunities. If these opportunities form a cycle
351   // i.e. if any jump threading is undoing previous threading in the path, then
352   // we will loop forever. We take care of this issue by not jump threading for
353   // back edges. This works for normal cases but not for unreachable blocks as
354   // they may have cycle with no back edge.
355   bool EverChanged = false;
356   EverChanged |= removeUnreachableBlocks(F, LVI);
357 
358   FindLoopHeaders(F);
359 
360   bool Changed;
361   do {
362     Changed = false;
363     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
364       BasicBlock *BB = &*I;
365       // Thread all of the branches we can over this block.
366       while (ProcessBlock(BB))
367         Changed = true;
368 
369       ++I;
370 
371       // If the block is trivially dead, zap it.  This eliminates the successor
372       // edges which simplifies the CFG.
373       if (pred_empty(BB) &&
374           BB != &BB->getParent()->getEntryBlock()) {
375         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
376               << "' with terminator: " << *BB->getTerminator() << '\n');
377         LoopHeaders.erase(BB);
378         LVI->eraseBlock(BB);
379         DeleteDeadBlock(BB);
380         Changed = true;
381         continue;
382       }
383 
384       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
385 
386       // Can't thread an unconditional jump, but if the block is "almost
387       // empty", we can replace uses of it with uses of the successor and make
388       // this dead.
389       // We should not eliminate the loop header or latch either, because
390       // eliminating a loop header or latch might later prevent LoopSimplify
391       // from transforming nested loops into simplified form. We will rely on
392       // later passes in backend to clean up empty blocks.
393       if (BI && BI->isUnconditional() &&
394           BB != &BB->getParent()->getEntryBlock() &&
395           // If the terminator is the only non-phi instruction, try to nuke it.
396           BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB) &&
397           !LoopHeaders.count(BI->getSuccessor(0))) {
398         // FIXME: It is always conservatively correct to drop the info
399         // for a block even if it doesn't get erased.  This isn't totally
400         // awesome, but it allows us to use AssertingVH to prevent nasty
401         // dangling pointer issues within LazyValueInfo.
402         LVI->eraseBlock(BB);
403         if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
404           Changed = true;
405       }
406     }
407     EverChanged |= Changed;
408   } while (Changed);
409 
410   LoopHeaders.clear();
411   return EverChanged;
412 }
413 
414 // Replace uses of Cond with ToVal when safe to do so. If all uses are
415 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
416 // because we may incorrectly replace uses when guards/assumes are uses of
417 // of `Cond` and we used the guards/assume to reason about the `Cond` value
418 // at the end of block. RAUW unconditionally replaces all uses
419 // including the guards/assumes themselves and the uses before the
420 // guard/assume.
421 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
422   assert(Cond->getType() == ToVal->getType());
423   auto *BB = Cond->getParent();
424   // We can unconditionally replace all uses in non-local blocks (i.e. uses
425   // strictly dominated by BB), since LVI information is true from the
426   // terminator of BB.
427   replaceNonLocalUsesWith(Cond, ToVal);
428   for (Instruction &I : reverse(*BB)) {
429     // Reached the Cond whose uses we are trying to replace, so there are no
430     // more uses.
431     if (&I == Cond)
432       break;
433     // We only replace uses in instructions that are guaranteed to reach the end
434     // of BB, where we know Cond is ToVal.
435     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
436       break;
437     I.replaceUsesOfWith(Cond, ToVal);
438   }
439   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
440     Cond->eraseFromParent();
441 }
442 
443 /// Return the cost of duplicating a piece of this block from first non-phi
444 /// and before StopAt instruction to thread across it. Stop scanning the block
445 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
446 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
447                                              Instruction *StopAt,
448                                              unsigned Threshold) {
449   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
450   /// Ignore PHI nodes, these will be flattened when duplication happens.
451   BasicBlock::const_iterator I(BB->getFirstNonPHI());
452 
453   // FIXME: THREADING will delete values that are just used to compute the
454   // branch, so they shouldn't count against the duplication cost.
455 
456   unsigned Bonus = 0;
457   if (BB->getTerminator() == StopAt) {
458     // Threading through a switch statement is particularly profitable.  If this
459     // block ends in a switch, decrease its cost to make it more likely to
460     // happen.
461     if (isa<SwitchInst>(StopAt))
462       Bonus = 6;
463 
464     // The same holds for indirect branches, but slightly more so.
465     if (isa<IndirectBrInst>(StopAt))
466       Bonus = 8;
467   }
468 
469   // Bump the threshold up so the early exit from the loop doesn't skip the
470   // terminator-based Size adjustment at the end.
471   Threshold += Bonus;
472 
473   // Sum up the cost of each instruction until we get to the terminator.  Don't
474   // include the terminator because the copy won't include it.
475   unsigned Size = 0;
476   for (; &*I != StopAt; ++I) {
477 
478     // Stop scanning the block if we've reached the threshold.
479     if (Size > Threshold)
480       return Size;
481 
482     // Debugger intrinsics don't incur code size.
483     if (isa<DbgInfoIntrinsic>(I)) continue;
484 
485     // If this is a pointer->pointer bitcast, it is free.
486     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
487       continue;
488 
489     // Bail out if this instruction gives back a token type, it is not possible
490     // to duplicate it if it is used outside this BB.
491     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
492       return ~0U;
493 
494     // All other instructions count for at least one unit.
495     ++Size;
496 
497     // Calls are more expensive.  If they are non-intrinsic calls, we model them
498     // as having cost of 4.  If they are a non-vector intrinsic, we model them
499     // as having cost of 2 total, and if they are a vector intrinsic, we model
500     // them as having cost 1.
501     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
502       if (CI->cannotDuplicate() || CI->isConvergent())
503         // Blocks with NoDuplicate are modelled as having infinite cost, so they
504         // are never duplicated.
505         return ~0U;
506       else if (!isa<IntrinsicInst>(CI))
507         Size += 3;
508       else if (!CI->getType()->isVectorTy())
509         Size += 1;
510     }
511   }
512 
513   return Size > Bonus ? Size - Bonus : 0;
514 }
515 
516 /// FindLoopHeaders - We do not want jump threading to turn proper loop
517 /// structures into irreducible loops.  Doing this breaks up the loop nesting
518 /// hierarchy and pessimizes later transformations.  To prevent this from
519 /// happening, we first have to find the loop headers.  Here we approximate this
520 /// by finding targets of backedges in the CFG.
521 ///
522 /// Note that there definitely are cases when we want to allow threading of
523 /// edges across a loop header.  For example, threading a jump from outside the
524 /// loop (the preheader) to an exit block of the loop is definitely profitable.
525 /// It is also almost always profitable to thread backedges from within the loop
526 /// to exit blocks, and is often profitable to thread backedges to other blocks
527 /// within the loop (forming a nested loop).  This simple analysis is not rich
528 /// enough to track all of these properties and keep it up-to-date as the CFG
529 /// mutates, so we don't allow any of these transformations.
530 void JumpThreadingPass::FindLoopHeaders(Function &F) {
531   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
532   FindFunctionBackedges(F, Edges);
533 
534   for (const auto &Edge : Edges)
535     LoopHeaders.insert(Edge.second);
536 }
537 
538 /// getKnownConstant - Helper method to determine if we can thread over a
539 /// terminator with the given value as its condition, and if so what value to
540 /// use for that. What kind of value this is depends on whether we want an
541 /// integer or a block address, but an undef is always accepted.
542 /// Returns null if Val is null or not an appropriate constant.
543 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
544   if (!Val)
545     return nullptr;
546 
547   // Undef is "known" enough.
548   if (UndefValue *U = dyn_cast<UndefValue>(Val))
549     return U;
550 
551   if (Preference == WantBlockAddress)
552     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
553 
554   return dyn_cast<ConstantInt>(Val);
555 }
556 
557 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
558 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
559 /// in any of our predecessors.  If so, return the known list of value and pred
560 /// BB in the result vector.
561 ///
562 /// This returns true if there were any known values.
563 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
564     Value *V, BasicBlock *BB, PredValueInfo &Result,
565     ConstantPreference Preference, Instruction *CxtI) {
566   // This method walks up use-def chains recursively.  Because of this, we could
567   // get into an infinite loop going around loops in the use-def chain.  To
568   // prevent this, keep track of what (value, block) pairs we've already visited
569   // and terminate the search if we loop back to them
570   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
571     return false;
572 
573   // An RAII help to remove this pair from the recursion set once the recursion
574   // stack pops back out again.
575   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
576 
577   // If V is a constant, then it is known in all predecessors.
578   if (Constant *KC = getKnownConstant(V, Preference)) {
579     for (BasicBlock *Pred : predecessors(BB))
580       Result.push_back(std::make_pair(KC, Pred));
581 
582     return !Result.empty();
583   }
584 
585   // If V is a non-instruction value, or an instruction in a different block,
586   // then it can't be derived from a PHI.
587   Instruction *I = dyn_cast<Instruction>(V);
588   if (!I || I->getParent() != BB) {
589 
590     // Okay, if this is a live-in value, see if it has a known value at the end
591     // of any of our predecessors.
592     //
593     // FIXME: This should be an edge property, not a block end property.
594     /// TODO: Per PR2563, we could infer value range information about a
595     /// predecessor based on its terminator.
596     //
597     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
598     // "I" is a non-local compare-with-a-constant instruction.  This would be
599     // able to handle value inequalities better, for example if the compare is
600     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
601     // Perhaps getConstantOnEdge should be smart enough to do this?
602 
603     for (BasicBlock *P : predecessors(BB)) {
604       // If the value is known by LazyValueInfo to be a constant in a
605       // predecessor, use that information to try to thread this block.
606       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
607       if (Constant *KC = getKnownConstant(PredCst, Preference))
608         Result.push_back(std::make_pair(KC, P));
609     }
610 
611     return !Result.empty();
612   }
613 
614   /// If I is a PHI node, then we know the incoming values for any constants.
615   if (PHINode *PN = dyn_cast<PHINode>(I)) {
616     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
617       Value *InVal = PN->getIncomingValue(i);
618       if (Constant *KC = getKnownConstant(InVal, Preference)) {
619         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
620       } else {
621         Constant *CI = LVI->getConstantOnEdge(InVal,
622                                               PN->getIncomingBlock(i),
623                                               BB, CxtI);
624         if (Constant *KC = getKnownConstant(CI, Preference))
625           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
626       }
627     }
628 
629     return !Result.empty();
630   }
631 
632   // Handle Cast instructions.  Only see through Cast when the source operand is
633   // PHI or Cmp and the source type is i1 to save the compilation time.
634   if (CastInst *CI = dyn_cast<CastInst>(I)) {
635     Value *Source = CI->getOperand(0);
636     if (!Source->getType()->isIntegerTy(1))
637       return false;
638     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
639       return false;
640     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
641     if (Result.empty())
642       return false;
643 
644     // Convert the known values.
645     for (auto &R : Result)
646       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
647 
648     return true;
649   }
650 
651   // Handle some boolean conditions.
652   if (I->getType()->getPrimitiveSizeInBits() == 1) {
653     assert(Preference == WantInteger && "One-bit non-integer type?");
654     // X | true -> true
655     // X & false -> false
656     if (I->getOpcode() == Instruction::Or ||
657         I->getOpcode() == Instruction::And) {
658       PredValueInfoTy LHSVals, RHSVals;
659 
660       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
661                                       WantInteger, CxtI);
662       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
663                                       WantInteger, CxtI);
664 
665       if (LHSVals.empty() && RHSVals.empty())
666         return false;
667 
668       ConstantInt *InterestingVal;
669       if (I->getOpcode() == Instruction::Or)
670         InterestingVal = ConstantInt::getTrue(I->getContext());
671       else
672         InterestingVal = ConstantInt::getFalse(I->getContext());
673 
674       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
675 
676       // Scan for the sentinel.  If we find an undef, force it to the
677       // interesting value: x|undef -> true and x&undef -> false.
678       for (const auto &LHSVal : LHSVals)
679         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
680           Result.emplace_back(InterestingVal, LHSVal.second);
681           LHSKnownBBs.insert(LHSVal.second);
682         }
683       for (const auto &RHSVal : RHSVals)
684         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
685           // If we already inferred a value for this block on the LHS, don't
686           // re-add it.
687           if (!LHSKnownBBs.count(RHSVal.second))
688             Result.emplace_back(InterestingVal, RHSVal.second);
689         }
690 
691       return !Result.empty();
692     }
693 
694     // Handle the NOT form of XOR.
695     if (I->getOpcode() == Instruction::Xor &&
696         isa<ConstantInt>(I->getOperand(1)) &&
697         cast<ConstantInt>(I->getOperand(1))->isOne()) {
698       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
699                                       WantInteger, CxtI);
700       if (Result.empty())
701         return false;
702 
703       // Invert the known values.
704       for (auto &R : Result)
705         R.first = ConstantExpr::getNot(R.first);
706 
707       return true;
708     }
709 
710   // Try to simplify some other binary operator values.
711   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
712     assert(Preference != WantBlockAddress
713             && "A binary operator creating a block address?");
714     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
715       PredValueInfoTy LHSVals;
716       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
717                                       WantInteger, CxtI);
718 
719       // Try to use constant folding to simplify the binary operator.
720       for (const auto &LHSVal : LHSVals) {
721         Constant *V = LHSVal.first;
722         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
723 
724         if (Constant *KC = getKnownConstant(Folded, WantInteger))
725           Result.push_back(std::make_pair(KC, LHSVal.second));
726       }
727     }
728 
729     return !Result.empty();
730   }
731 
732   // Handle compare with phi operand, where the PHI is defined in this block.
733   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
734     assert(Preference == WantInteger && "Compares only produce integers");
735     Type *CmpType = Cmp->getType();
736     Value *CmpLHS = Cmp->getOperand(0);
737     Value *CmpRHS = Cmp->getOperand(1);
738     CmpInst::Predicate Pred = Cmp->getPredicate();
739 
740     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
741     if (PN && PN->getParent() == BB) {
742       const DataLayout &DL = PN->getModule()->getDataLayout();
743       // We can do this simplification if any comparisons fold to true or false.
744       // See if any do.
745       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
746         BasicBlock *PredBB = PN->getIncomingBlock(i);
747         Value *LHS = PN->getIncomingValue(i);
748         Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB);
749 
750         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
751         if (!Res) {
752           if (!isa<Constant>(RHS))
753             continue;
754 
755           LazyValueInfo::Tristate
756             ResT = LVI->getPredicateOnEdge(Pred, LHS,
757                                            cast<Constant>(RHS), PredBB, BB,
758                                            CxtI ? CxtI : Cmp);
759           if (ResT == LazyValueInfo::Unknown)
760             continue;
761           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
762         }
763 
764         if (Constant *KC = getKnownConstant(Res, WantInteger))
765           Result.push_back(std::make_pair(KC, PredBB));
766       }
767 
768       return !Result.empty();
769     }
770 
771     // If comparing a live-in value against a constant, see if we know the
772     // live-in value on any predecessors.
773     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
774       Constant *CmpConst = cast<Constant>(CmpRHS);
775 
776       if (!isa<Instruction>(CmpLHS) ||
777           cast<Instruction>(CmpLHS)->getParent() != BB) {
778         for (BasicBlock *P : predecessors(BB)) {
779           // If the value is known by LazyValueInfo to be a constant in a
780           // predecessor, use that information to try to thread this block.
781           LazyValueInfo::Tristate Res =
782             LVI->getPredicateOnEdge(Pred, CmpLHS,
783                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
784           if (Res == LazyValueInfo::Unknown)
785             continue;
786 
787           Constant *ResC = ConstantInt::get(CmpType, Res);
788           Result.push_back(std::make_pair(ResC, P));
789         }
790 
791         return !Result.empty();
792       }
793 
794       // InstCombine can fold some forms of constant range checks into
795       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
796       // x as a live-in.
797       {
798         using namespace PatternMatch;
799 
800         Value *AddLHS;
801         ConstantInt *AddConst;
802         if (isa<ConstantInt>(CmpConst) &&
803             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
804           if (!isa<Instruction>(AddLHS) ||
805               cast<Instruction>(AddLHS)->getParent() != BB) {
806             for (BasicBlock *P : predecessors(BB)) {
807               // If the value is known by LazyValueInfo to be a ConstantRange in
808               // a predecessor, use that information to try to thread this
809               // block.
810               ConstantRange CR = LVI->getConstantRangeOnEdge(
811                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
812               // Propagate the range through the addition.
813               CR = CR.add(AddConst->getValue());
814 
815               // Get the range where the compare returns true.
816               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
817                   Pred, cast<ConstantInt>(CmpConst)->getValue());
818 
819               Constant *ResC;
820               if (CmpRange.contains(CR))
821                 ResC = ConstantInt::getTrue(CmpType);
822               else if (CmpRange.inverse().contains(CR))
823                 ResC = ConstantInt::getFalse(CmpType);
824               else
825                 continue;
826 
827               Result.push_back(std::make_pair(ResC, P));
828             }
829 
830             return !Result.empty();
831           }
832         }
833       }
834 
835       // Try to find a constant value for the LHS of a comparison,
836       // and evaluate it statically if we can.
837       PredValueInfoTy LHSVals;
838       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
839                                       WantInteger, CxtI);
840 
841       for (const auto &LHSVal : LHSVals) {
842         Constant *V = LHSVal.first;
843         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
844         if (Constant *KC = getKnownConstant(Folded, WantInteger))
845           Result.push_back(std::make_pair(KC, LHSVal.second));
846       }
847 
848       return !Result.empty();
849     }
850   }
851 
852   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
853     // Handle select instructions where at least one operand is a known constant
854     // and we can figure out the condition value for any predecessor block.
855     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
856     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
857     PredValueInfoTy Conds;
858     if ((TrueVal || FalseVal) &&
859         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
860                                         WantInteger, CxtI)) {
861       for (auto &C : Conds) {
862         Constant *Cond = C.first;
863 
864         // Figure out what value to use for the condition.
865         bool KnownCond;
866         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
867           // A known boolean.
868           KnownCond = CI->isOne();
869         } else {
870           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
871           // Either operand will do, so be sure to pick the one that's a known
872           // constant.
873           // FIXME: Do this more cleverly if both values are known constants?
874           KnownCond = (TrueVal != nullptr);
875         }
876 
877         // See if the select has a known constant value for this predecessor.
878         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
879           Result.push_back(std::make_pair(Val, C.second));
880       }
881 
882       return !Result.empty();
883     }
884   }
885 
886   // If all else fails, see if LVI can figure out a constant value for us.
887   Constant *CI = LVI->getConstant(V, BB, CxtI);
888   if (Constant *KC = getKnownConstant(CI, Preference)) {
889     for (BasicBlock *Pred : predecessors(BB))
890       Result.push_back(std::make_pair(KC, Pred));
891   }
892 
893   return !Result.empty();
894 }
895 
896 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
897 /// in an undefined jump, decide which block is best to revector to.
898 ///
899 /// Since we can pick an arbitrary destination, we pick the successor with the
900 /// fewest predecessors.  This should reduce the in-degree of the others.
901 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
902   TerminatorInst *BBTerm = BB->getTerminator();
903   unsigned MinSucc = 0;
904   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
905   // Compute the successor with the minimum number of predecessors.
906   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
907   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
908     TestBB = BBTerm->getSuccessor(i);
909     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
910     if (NumPreds < MinNumPreds) {
911       MinSucc = i;
912       MinNumPreds = NumPreds;
913     }
914   }
915 
916   return MinSucc;
917 }
918 
919 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
920   if (!BB->hasAddressTaken()) return false;
921 
922   // If the block has its address taken, it may be a tree of dead constants
923   // hanging off of it.  These shouldn't keep the block alive.
924   BlockAddress *BA = BlockAddress::get(BB);
925   BA->removeDeadConstantUsers();
926   return !BA->use_empty();
927 }
928 
929 /// ProcessBlock - If there are any predecessors whose control can be threaded
930 /// through to a successor, transform them now.
931 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
932   // If the block is trivially dead, just return and let the caller nuke it.
933   // This simplifies other transformations.
934   if (pred_empty(BB) &&
935       BB != &BB->getParent()->getEntryBlock())
936     return false;
937 
938   // If this block has a single predecessor, and if that pred has a single
939   // successor, merge the blocks.  This encourages recursive jump threading
940   // because now the condition in this block can be threaded through
941   // predecessors of our predecessor block.
942   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
943     const TerminatorInst *TI = SinglePred->getTerminator();
944     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
945         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
946       // If SinglePred was a loop header, BB becomes one.
947       if (LoopHeaders.erase(SinglePred))
948         LoopHeaders.insert(BB);
949 
950       LVI->eraseBlock(SinglePred);
951       MergeBasicBlockIntoOnlyPred(BB);
952 
953       // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
954       // BB code within one basic block `BB`), we need to invalidate the LVI
955       // information associated with BB, because the LVI information need not be
956       // true for all of BB after the merge. For example,
957       // Before the merge, LVI info and code is as follows:
958       // SinglePred: <LVI info1 for %p val>
959       // %y = use of %p
960       // call @exit() // need not transfer execution to successor.
961       // assume(%p) // from this point on %p is true
962       // br label %BB
963       // BB: <LVI info2 for %p val, i.e. %p is true>
964       // %x = use of %p
965       // br label exit
966       //
967       // Note that this LVI info for blocks BB and SinglPred is correct for %p
968       // (info2 and info1 respectively). After the merge and the deletion of the
969       // LVI info1 for SinglePred. We have the following code:
970       // BB: <LVI info2 for %p val>
971       // %y = use of %p
972       // call @exit()
973       // assume(%p)
974       // %x = use of %p <-- LVI info2 is correct from here onwards.
975       // br label exit
976       // LVI info2 for BB is incorrect at the beginning of BB.
977 
978       // Invalidate LVI information for BB if the LVI is not provably true for
979       // all of BB.
980       if (any_of(*BB, [](Instruction &I) {
981             return !isGuaranteedToTransferExecutionToSuccessor(&I);
982           }))
983         LVI->eraseBlock(BB);
984       return true;
985     }
986   }
987 
988   if (TryToUnfoldSelectInCurrBB(BB))
989     return true;
990 
991   // Look if we can propagate guards to predecessors.
992   if (HasGuards && ProcessGuards(BB))
993     return true;
994 
995   // What kind of constant we're looking for.
996   ConstantPreference Preference = WantInteger;
997 
998   // Look to see if the terminator is a conditional branch, switch or indirect
999   // branch, if not we can't thread it.
1000   Value *Condition;
1001   Instruction *Terminator = BB->getTerminator();
1002   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1003     // Can't thread an unconditional jump.
1004     if (BI->isUnconditional()) return false;
1005     Condition = BI->getCondition();
1006   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1007     Condition = SI->getCondition();
1008   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1009     // Can't thread indirect branch with no successors.
1010     if (IB->getNumSuccessors() == 0) return false;
1011     Condition = IB->getAddress()->stripPointerCasts();
1012     Preference = WantBlockAddress;
1013   } else {
1014     return false; // Must be an invoke.
1015   }
1016 
1017   // Run constant folding to see if we can reduce the condition to a simple
1018   // constant.
1019   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1020     Value *SimpleVal =
1021         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1022     if (SimpleVal) {
1023       I->replaceAllUsesWith(SimpleVal);
1024       if (isInstructionTriviallyDead(I, TLI))
1025         I->eraseFromParent();
1026       Condition = SimpleVal;
1027     }
1028   }
1029 
1030   // If the terminator is branching on an undef, we can pick any of the
1031   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1032   if (isa<UndefValue>(Condition)) {
1033     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1034 
1035     // Fold the branch/switch.
1036     TerminatorInst *BBTerm = BB->getTerminator();
1037     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1038       if (i == BestSucc) continue;
1039       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
1040     }
1041 
1042     DEBUG(dbgs() << "  In block '" << BB->getName()
1043           << "' folding undef terminator: " << *BBTerm << '\n');
1044     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1045     BBTerm->eraseFromParent();
1046     return true;
1047   }
1048 
1049   // If the terminator of this block is branching on a constant, simplify the
1050   // terminator to an unconditional branch.  This can occur due to threading in
1051   // other blocks.
1052   if (getKnownConstant(Condition, Preference)) {
1053     DEBUG(dbgs() << "  In block '" << BB->getName()
1054           << "' folding terminator: " << *BB->getTerminator() << '\n');
1055     ++NumFolds;
1056     ConstantFoldTerminator(BB, true);
1057     return true;
1058   }
1059 
1060   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1061 
1062   // All the rest of our checks depend on the condition being an instruction.
1063   if (!CondInst) {
1064     // FIXME: Unify this with code below.
1065     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1066       return true;
1067     return false;
1068   }
1069 
1070   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1071     // If we're branching on a conditional, LVI might be able to determine
1072     // it's value at the branch instruction.  We only handle comparisons
1073     // against a constant at this time.
1074     // TODO: This should be extended to handle switches as well.
1075     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1076     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1077     if (CondBr && CondConst) {
1078       // We should have returned as soon as we turn a conditional branch to
1079       // unconditional. Because its no longer interesting as far as jump
1080       // threading is concerned.
1081       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1082 
1083       LazyValueInfo::Tristate Ret =
1084         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1085                             CondConst, CondBr);
1086       if (Ret != LazyValueInfo::Unknown) {
1087         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1088         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1089         CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
1090         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1091         CondBr->eraseFromParent();
1092         if (CondCmp->use_empty())
1093           CondCmp->eraseFromParent();
1094         // We can safely replace *some* uses of the CondInst if it has
1095         // exactly one value as returned by LVI. RAUW is incorrect in the
1096         // presence of guards and assumes, that have the `Cond` as the use. This
1097         // is because we use the guards/assume to reason about the `Cond` value
1098         // at the end of block, but RAUW unconditionally replaces all uses
1099         // including the guards/assumes themselves and the uses before the
1100         // guard/assume.
1101         else if (CondCmp->getParent() == BB) {
1102           auto *CI = Ret == LazyValueInfo::True ?
1103             ConstantInt::getTrue(CondCmp->getType()) :
1104             ConstantInt::getFalse(CondCmp->getType());
1105           ReplaceFoldableUses(CondCmp, CI);
1106         }
1107         return true;
1108       }
1109 
1110       // We did not manage to simplify this branch, try to see whether
1111       // CondCmp depends on a known phi-select pattern.
1112       if (TryToUnfoldSelect(CondCmp, BB))
1113         return true;
1114     }
1115   }
1116 
1117   // Check for some cases that are worth simplifying.  Right now we want to look
1118   // for loads that are used by a switch or by the condition for the branch.  If
1119   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1120   // which can then be used to thread the values.
1121   Value *SimplifyValue = CondInst;
1122   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1123     if (isa<Constant>(CondCmp->getOperand(1)))
1124       SimplifyValue = CondCmp->getOperand(0);
1125 
1126   // TODO: There are other places where load PRE would be profitable, such as
1127   // more complex comparisons.
1128   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
1129     if (SimplifyPartiallyRedundantLoad(LI))
1130       return true;
1131 
1132   // Before threading, try to propagate profile data backwards:
1133   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1134     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1135       updatePredecessorProfileMetadata(PN, BB);
1136 
1137   // Handle a variety of cases where we are branching on something derived from
1138   // a PHI node in the current block.  If we can prove that any predecessors
1139   // compute a predictable value based on a PHI node, thread those predecessors.
1140   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1141     return true;
1142 
1143   // If this is an otherwise-unfoldable branch on a phi node in the current
1144   // block, see if we can simplify.
1145   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1146     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1147       return ProcessBranchOnPHI(PN);
1148 
1149   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1150   if (CondInst->getOpcode() == Instruction::Xor &&
1151       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1152     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1153 
1154   // Search for a stronger dominating condition that can be used to simplify a
1155   // conditional branch leaving BB.
1156   if (ProcessImpliedCondition(BB))
1157     return true;
1158 
1159   return false;
1160 }
1161 
1162 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1163   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1164   if (!BI || !BI->isConditional())
1165     return false;
1166 
1167   Value *Cond = BI->getCondition();
1168   BasicBlock *CurrentBB = BB;
1169   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1170   unsigned Iter = 0;
1171 
1172   auto &DL = BB->getModule()->getDataLayout();
1173 
1174   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1175     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1176     if (!PBI || !PBI->isConditional())
1177       return false;
1178     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1179       return false;
1180 
1181     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1182     Optional<bool> Implication =
1183         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1184     if (Implication) {
1185       BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB);
1186       BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI);
1187       BI->eraseFromParent();
1188       return true;
1189     }
1190     CurrentBB = CurrentPred;
1191     CurrentPred = CurrentBB->getSinglePredecessor();
1192   }
1193 
1194   return false;
1195 }
1196 
1197 /// Return true if Op is an instruction defined in the given block.
1198 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1199   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1200     if (OpInst->getParent() == BB)
1201       return true;
1202   return false;
1203 }
1204 
1205 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
1206 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
1207 /// important optimization that encourages jump threading, and needs to be run
1208 /// interlaced with other jump threading tasks.
1209 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
1210   // Don't hack volatile and ordered loads.
1211   if (!LI->isUnordered()) return false;
1212 
1213   // If the load is defined in a block with exactly one predecessor, it can't be
1214   // partially redundant.
1215   BasicBlock *LoadBB = LI->getParent();
1216   if (LoadBB->getSinglePredecessor())
1217     return false;
1218 
1219   // If the load is defined in an EH pad, it can't be partially redundant,
1220   // because the edges between the invoke and the EH pad cannot have other
1221   // instructions between them.
1222   if (LoadBB->isEHPad())
1223     return false;
1224 
1225   Value *LoadedPtr = LI->getOperand(0);
1226 
1227   // If the loaded operand is defined in the LoadBB and its not a phi,
1228   // it can't be available in predecessors.
1229   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1230     return false;
1231 
1232   // Scan a few instructions up from the load, to see if it is obviously live at
1233   // the entry to its block.
1234   BasicBlock::iterator BBIt(LI);
1235   bool IsLoadCSE;
1236   if (Value *AvailableVal = FindAvailableLoadedValue(
1237           LI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1238     // If the value of the load is locally available within the block, just use
1239     // it.  This frequently occurs for reg2mem'd allocas.
1240 
1241     if (IsLoadCSE) {
1242       LoadInst *NLI = cast<LoadInst>(AvailableVal);
1243       combineMetadataForCSE(NLI, LI);
1244     };
1245 
1246     // If the returned value is the load itself, replace with an undef. This can
1247     // only happen in dead loops.
1248     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
1249     if (AvailableVal->getType() != LI->getType())
1250       AvailableVal =
1251           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
1252     LI->replaceAllUsesWith(AvailableVal);
1253     LI->eraseFromParent();
1254     return true;
1255   }
1256 
1257   // Otherwise, if we scanned the whole block and got to the top of the block,
1258   // we know the block is locally transparent to the load.  If not, something
1259   // might clobber its value.
1260   if (BBIt != LoadBB->begin())
1261     return false;
1262 
1263   // If all of the loads and stores that feed the value have the same AA tags,
1264   // then we can propagate them onto any newly inserted loads.
1265   AAMDNodes AATags;
1266   LI->getAAMetadata(AATags);
1267 
1268   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1269 
1270   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1271 
1272   AvailablePredsTy AvailablePreds;
1273   BasicBlock *OneUnavailablePred = nullptr;
1274   SmallVector<LoadInst*, 8> CSELoads;
1275 
1276   // If we got here, the loaded value is transparent through to the start of the
1277   // block.  Check to see if it is available in any of the predecessor blocks.
1278   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1279     // If we already scanned this predecessor, skip it.
1280     if (!PredsScanned.insert(PredBB).second)
1281       continue;
1282 
1283     BBIt = PredBB->end();
1284     unsigned NumScanedInst = 0;
1285     Value *PredAvailable = nullptr;
1286     // NOTE: We don't CSE load that is volatile or anything stronger than
1287     // unordered, that should have been checked when we entered the function.
1288     assert(LI->isUnordered() && "Attempting to CSE volatile or atomic loads");
1289     // If this is a load on a phi pointer, phi-translate it and search
1290     // for available load/store to the pointer in predecessors.
1291     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1292     PredAvailable = FindAvailablePtrLoadStore(
1293         Ptr, LI->getType(), LI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan,
1294         AA, &IsLoadCSE, &NumScanedInst);
1295 
1296     // If PredBB has a single predecessor, continue scanning through the
1297     // single precessor.
1298     BasicBlock *SinglePredBB = PredBB;
1299     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1300            NumScanedInst < DefMaxInstsToScan) {
1301       SinglePredBB = SinglePredBB->getSinglePredecessor();
1302       if (SinglePredBB) {
1303         BBIt = SinglePredBB->end();
1304         PredAvailable = FindAvailablePtrLoadStore(
1305             Ptr, LI->getType(), LI->isAtomic(), SinglePredBB, BBIt,
1306             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1307             &NumScanedInst);
1308       }
1309     }
1310 
1311     if (!PredAvailable) {
1312       OneUnavailablePred = PredBB;
1313       continue;
1314     }
1315 
1316     if (IsLoadCSE)
1317       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1318 
1319     // If so, this load is partially redundant.  Remember this info so that we
1320     // can create a PHI node.
1321     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1322   }
1323 
1324   // If the loaded value isn't available in any predecessor, it isn't partially
1325   // redundant.
1326   if (AvailablePreds.empty()) return false;
1327 
1328   // Okay, the loaded value is available in at least one (and maybe all!)
1329   // predecessors.  If the value is unavailable in more than one unique
1330   // predecessor, we want to insert a merge block for those common predecessors.
1331   // This ensures that we only have to insert one reload, thus not increasing
1332   // code size.
1333   BasicBlock *UnavailablePred = nullptr;
1334 
1335   // If the value is unavailable in one of predecessors, we will end up
1336   // inserting a new instruction into them. It is only valid if all the
1337   // instructions before LI are guaranteed to pass execution to its successor,
1338   // or if LI is safe to speculate.
1339   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1340   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1341   // It requires domination tree analysis, so for this simple case it is an
1342   // overkill.
1343   if (PredsScanned.size() != AvailablePreds.size() &&
1344       !isSafeToSpeculativelyExecute(LI))
1345     for (auto I = LoadBB->begin(); &*I != LI; ++I)
1346       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1347         return false;
1348 
1349   // If there is exactly one predecessor where the value is unavailable, the
1350   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1351   // unconditional branch, we know that it isn't a critical edge.
1352   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1353       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1354     UnavailablePred = OneUnavailablePred;
1355   } else if (PredsScanned.size() != AvailablePreds.size()) {
1356     // Otherwise, we had multiple unavailable predecessors or we had a critical
1357     // edge from the one.
1358     SmallVector<BasicBlock*, 8> PredsToSplit;
1359     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1360 
1361     for (const auto &AvailablePred : AvailablePreds)
1362       AvailablePredSet.insert(AvailablePred.first);
1363 
1364     // Add all the unavailable predecessors to the PredsToSplit list.
1365     for (BasicBlock *P : predecessors(LoadBB)) {
1366       // If the predecessor is an indirect goto, we can't split the edge.
1367       if (isa<IndirectBrInst>(P->getTerminator()))
1368         return false;
1369 
1370       if (!AvailablePredSet.count(P))
1371         PredsToSplit.push_back(P);
1372     }
1373 
1374     // Split them out to their own block.
1375     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1376   }
1377 
1378   // If the value isn't available in all predecessors, then there will be
1379   // exactly one where it isn't available.  Insert a load on that edge and add
1380   // it to the AvailablePreds list.
1381   if (UnavailablePred) {
1382     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1383            "Can't handle critical edge here!");
1384     LoadInst *NewVal = new LoadInst(
1385         LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1386         LI->getName() + ".pr", false, LI->getAlignment(), LI->getOrdering(),
1387         LI->getSyncScopeID(), UnavailablePred->getTerminator());
1388     NewVal->setDebugLoc(LI->getDebugLoc());
1389     if (AATags)
1390       NewVal->setAAMetadata(AATags);
1391 
1392     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1393   }
1394 
1395   // Now we know that each predecessor of this block has a value in
1396   // AvailablePreds, sort them for efficient access as we're walking the preds.
1397   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1398 
1399   // Create a PHI node at the start of the block for the PRE'd load value.
1400   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1401   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1402                                 &LoadBB->front());
1403   PN->takeName(LI);
1404   PN->setDebugLoc(LI->getDebugLoc());
1405 
1406   // Insert new entries into the PHI for each predecessor.  A single block may
1407   // have multiple entries here.
1408   for (pred_iterator PI = PB; PI != PE; ++PI) {
1409     BasicBlock *P = *PI;
1410     AvailablePredsTy::iterator I =
1411       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1412                        std::make_pair(P, (Value*)nullptr));
1413 
1414     assert(I != AvailablePreds.end() && I->first == P &&
1415            "Didn't find entry for predecessor!");
1416 
1417     // If we have an available predecessor but it requires casting, insert the
1418     // cast in the predecessor and use the cast. Note that we have to update the
1419     // AvailablePreds vector as we go so that all of the PHI entries for this
1420     // predecessor use the same bitcast.
1421     Value *&PredV = I->second;
1422     if (PredV->getType() != LI->getType())
1423       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1424                                                P->getTerminator());
1425 
1426     PN->addIncoming(PredV, I->first);
1427   }
1428 
1429   for (LoadInst *PredLI : CSELoads) {
1430     combineMetadataForCSE(PredLI, LI);
1431   }
1432 
1433   LI->replaceAllUsesWith(PN);
1434   LI->eraseFromParent();
1435 
1436   return true;
1437 }
1438 
1439 /// FindMostPopularDest - The specified list contains multiple possible
1440 /// threadable destinations.  Pick the one that occurs the most frequently in
1441 /// the list.
1442 static BasicBlock *
1443 FindMostPopularDest(BasicBlock *BB,
1444                     const SmallVectorImpl<std::pair<BasicBlock *,
1445                                           BasicBlock *>> &PredToDestList) {
1446   assert(!PredToDestList.empty());
1447 
1448   // Determine popularity.  If there are multiple possible destinations, we
1449   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1450   // blocks with known and real destinations to threading undef.  We'll handle
1451   // them later if interesting.
1452   DenseMap<BasicBlock*, unsigned> DestPopularity;
1453   for (const auto &PredToDest : PredToDestList)
1454     if (PredToDest.second)
1455       DestPopularity[PredToDest.second]++;
1456 
1457   if (DestPopularity.empty())
1458     return nullptr;
1459 
1460   // Find the most popular dest.
1461   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1462   BasicBlock *MostPopularDest = DPI->first;
1463   unsigned Popularity = DPI->second;
1464   SmallVector<BasicBlock*, 4> SamePopularity;
1465 
1466   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1467     // If the popularity of this entry isn't higher than the popularity we've
1468     // seen so far, ignore it.
1469     if (DPI->second < Popularity)
1470       ; // ignore.
1471     else if (DPI->second == Popularity) {
1472       // If it is the same as what we've seen so far, keep track of it.
1473       SamePopularity.push_back(DPI->first);
1474     } else {
1475       // If it is more popular, remember it.
1476       SamePopularity.clear();
1477       MostPopularDest = DPI->first;
1478       Popularity = DPI->second;
1479     }
1480   }
1481 
1482   // Okay, now we know the most popular destination.  If there is more than one
1483   // destination, we need to determine one.  This is arbitrary, but we need
1484   // to make a deterministic decision.  Pick the first one that appears in the
1485   // successor list.
1486   if (!SamePopularity.empty()) {
1487     SamePopularity.push_back(MostPopularDest);
1488     TerminatorInst *TI = BB->getTerminator();
1489     for (unsigned i = 0; ; ++i) {
1490       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1491 
1492       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1493         continue;
1494 
1495       MostPopularDest = TI->getSuccessor(i);
1496       break;
1497     }
1498   }
1499 
1500   // Okay, we have finally picked the most popular destination.
1501   return MostPopularDest;
1502 }
1503 
1504 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1505                                                ConstantPreference Preference,
1506                                                Instruction *CxtI) {
1507   // If threading this would thread across a loop header, don't even try to
1508   // thread the edge.
1509   if (LoopHeaders.count(BB))
1510     return false;
1511 
1512   PredValueInfoTy PredValues;
1513   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1514     return false;
1515 
1516   assert(!PredValues.empty() &&
1517          "ComputeValueKnownInPredecessors returned true with no values");
1518 
1519   DEBUG(dbgs() << "IN BB: " << *BB;
1520         for (const auto &PredValue : PredValues) {
1521           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1522             << *PredValue.first
1523             << " for pred '" << PredValue.second->getName() << "'.\n";
1524         });
1525 
1526   // Decide what we want to thread through.  Convert our list of known values to
1527   // a list of known destinations for each pred.  This also discards duplicate
1528   // predecessors and keeps track of the undefined inputs (which are represented
1529   // as a null dest in the PredToDestList).
1530   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1531   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1532 
1533   BasicBlock *OnlyDest = nullptr;
1534   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1535   Constant *OnlyVal = nullptr;
1536   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1537 
1538   unsigned PredWithKnownDest = 0;
1539   for (const auto &PredValue : PredValues) {
1540     BasicBlock *Pred = PredValue.second;
1541     if (!SeenPreds.insert(Pred).second)
1542       continue;  // Duplicate predecessor entry.
1543 
1544     Constant *Val = PredValue.first;
1545 
1546     BasicBlock *DestBB;
1547     if (isa<UndefValue>(Val))
1548       DestBB = nullptr;
1549     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1550       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1551       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1552     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1553       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1554       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1555     } else {
1556       assert(isa<IndirectBrInst>(BB->getTerminator())
1557               && "Unexpected terminator");
1558       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1559       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1560     }
1561 
1562     // If we have exactly one destination, remember it for efficiency below.
1563     if (PredToDestList.empty()) {
1564       OnlyDest = DestBB;
1565       OnlyVal = Val;
1566     } else {
1567       if (OnlyDest != DestBB)
1568         OnlyDest = MultipleDestSentinel;
1569       // It possible we have same destination, but different value, e.g. default
1570       // case in switchinst.
1571       if (Val != OnlyVal)
1572         OnlyVal = MultipleVal;
1573     }
1574 
1575     // We know where this predecessor is going.
1576     ++PredWithKnownDest;
1577 
1578     // If the predecessor ends with an indirect goto, we can't change its
1579     // destination.
1580     if (isa<IndirectBrInst>(Pred->getTerminator()))
1581       continue;
1582 
1583     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1584   }
1585 
1586   // If all edges were unthreadable, we fail.
1587   if (PredToDestList.empty())
1588     return false;
1589 
1590   // If all the predecessors go to a single known successor, we want to fold,
1591   // not thread. By doing so, we do not need to duplicate the current block and
1592   // also miss potential opportunities in case we dont/cant duplicate.
1593   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1594     if (PredWithKnownDest ==
1595         (size_t)std::distance(pred_begin(BB), pred_end(BB))) {
1596       bool SeenFirstBranchToOnlyDest = false;
1597       for (BasicBlock *SuccBB : successors(BB)) {
1598         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest)
1599           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1600         else
1601           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1602       }
1603 
1604       // Finally update the terminator.
1605       TerminatorInst *Term = BB->getTerminator();
1606       BranchInst::Create(OnlyDest, Term);
1607       Term->eraseFromParent();
1608 
1609       // If the condition is now dead due to the removal of the old terminator,
1610       // erase it.
1611       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1612         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1613           CondInst->eraseFromParent();
1614         // We can safely replace *some* uses of the CondInst if it has
1615         // exactly one value as returned by LVI. RAUW is incorrect in the
1616         // presence of guards and assumes, that have the `Cond` as the use. This
1617         // is because we use the guards/assume to reason about the `Cond` value
1618         // at the end of block, but RAUW unconditionally replaces all uses
1619         // including the guards/assumes themselves and the uses before the
1620         // guard/assume.
1621         else if (OnlyVal && OnlyVal != MultipleVal &&
1622                  CondInst->getParent() == BB)
1623           ReplaceFoldableUses(CondInst, OnlyVal);
1624       }
1625       return true;
1626     }
1627   }
1628 
1629   // Determine which is the most common successor.  If we have many inputs and
1630   // this block is a switch, we want to start by threading the batch that goes
1631   // to the most popular destination first.  If we only know about one
1632   // threadable destination (the common case) we can avoid this.
1633   BasicBlock *MostPopularDest = OnlyDest;
1634 
1635   if (MostPopularDest == MultipleDestSentinel) {
1636     // Remove any loop headers from the Dest list, ThreadEdge conservatively
1637     // won't process them, but we might have other destination that are eligible
1638     // and we still want to process.
1639     erase_if(PredToDestList,
1640              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1641                return LoopHeaders.count(PredToDest.second) != 0;
1642              });
1643 
1644     if (PredToDestList.empty())
1645       return false;
1646 
1647     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1648   }
1649 
1650   // Now that we know what the most popular destination is, factor all
1651   // predecessors that will jump to it into a single predecessor.
1652   SmallVector<BasicBlock*, 16> PredsToFactor;
1653   for (const auto &PredToDest : PredToDestList)
1654     if (PredToDest.second == MostPopularDest) {
1655       BasicBlock *Pred = PredToDest.first;
1656 
1657       // This predecessor may be a switch or something else that has multiple
1658       // edges to the block.  Factor each of these edges by listing them
1659       // according to # occurrences in PredsToFactor.
1660       for (BasicBlock *Succ : successors(Pred))
1661         if (Succ == BB)
1662           PredsToFactor.push_back(Pred);
1663     }
1664 
1665   // If the threadable edges are branching on an undefined value, we get to pick
1666   // the destination that these predecessors should get to.
1667   if (!MostPopularDest)
1668     MostPopularDest = BB->getTerminator()->
1669                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1670 
1671   // Ok, try to thread it!
1672   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1673 }
1674 
1675 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1676 /// a PHI node in the current block.  See if there are any simplifications we
1677 /// can do based on inputs to the phi node.
1678 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1679   BasicBlock *BB = PN->getParent();
1680 
1681   // TODO: We could make use of this to do it once for blocks with common PHI
1682   // values.
1683   SmallVector<BasicBlock*, 1> PredBBs;
1684   PredBBs.resize(1);
1685 
1686   // If any of the predecessor blocks end in an unconditional branch, we can
1687   // *duplicate* the conditional branch into that block in order to further
1688   // encourage jump threading and to eliminate cases where we have branch on a
1689   // phi of an icmp (branch on icmp is much better).
1690   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1691     BasicBlock *PredBB = PN->getIncomingBlock(i);
1692     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1693       if (PredBr->isUnconditional()) {
1694         PredBBs[0] = PredBB;
1695         // Try to duplicate BB into PredBB.
1696         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1697           return true;
1698       }
1699   }
1700 
1701   return false;
1702 }
1703 
1704 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1705 /// a xor instruction in the current block.  See if there are any
1706 /// simplifications we can do based on inputs to the xor.
1707 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1708   BasicBlock *BB = BO->getParent();
1709 
1710   // If either the LHS or RHS of the xor is a constant, don't do this
1711   // optimization.
1712   if (isa<ConstantInt>(BO->getOperand(0)) ||
1713       isa<ConstantInt>(BO->getOperand(1)))
1714     return false;
1715 
1716   // If the first instruction in BB isn't a phi, we won't be able to infer
1717   // anything special about any particular predecessor.
1718   if (!isa<PHINode>(BB->front()))
1719     return false;
1720 
1721   // If this BB is a landing pad, we won't be able to split the edge into it.
1722   if (BB->isEHPad())
1723     return false;
1724 
1725   // If we have a xor as the branch input to this block, and we know that the
1726   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1727   // the condition into the predecessor and fix that value to true, saving some
1728   // logical ops on that path and encouraging other paths to simplify.
1729   //
1730   // This copies something like this:
1731   //
1732   //  BB:
1733   //    %X = phi i1 [1],  [%X']
1734   //    %Y = icmp eq i32 %A, %B
1735   //    %Z = xor i1 %X, %Y
1736   //    br i1 %Z, ...
1737   //
1738   // Into:
1739   //  BB':
1740   //    %Y = icmp ne i32 %A, %B
1741   //    br i1 %Y, ...
1742 
1743   PredValueInfoTy XorOpValues;
1744   bool isLHS = true;
1745   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1746                                        WantInteger, BO)) {
1747     assert(XorOpValues.empty());
1748     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1749                                          WantInteger, BO))
1750       return false;
1751     isLHS = false;
1752   }
1753 
1754   assert(!XorOpValues.empty() &&
1755          "ComputeValueKnownInPredecessors returned true with no values");
1756 
1757   // Scan the information to see which is most popular: true or false.  The
1758   // predecessors can be of the set true, false, or undef.
1759   unsigned NumTrue = 0, NumFalse = 0;
1760   for (const auto &XorOpValue : XorOpValues) {
1761     if (isa<UndefValue>(XorOpValue.first))
1762       // Ignore undefs for the count.
1763       continue;
1764     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1765       ++NumFalse;
1766     else
1767       ++NumTrue;
1768   }
1769 
1770   // Determine which value to split on, true, false, or undef if neither.
1771   ConstantInt *SplitVal = nullptr;
1772   if (NumTrue > NumFalse)
1773     SplitVal = ConstantInt::getTrue(BB->getContext());
1774   else if (NumTrue != 0 || NumFalse != 0)
1775     SplitVal = ConstantInt::getFalse(BB->getContext());
1776 
1777   // Collect all of the blocks that this can be folded into so that we can
1778   // factor this once and clone it once.
1779   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1780   for (const auto &XorOpValue : XorOpValues) {
1781     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1782       continue;
1783 
1784     BlocksToFoldInto.push_back(XorOpValue.second);
1785   }
1786 
1787   // If we inferred a value for all of the predecessors, then duplication won't
1788   // help us.  However, we can just replace the LHS or RHS with the constant.
1789   if (BlocksToFoldInto.size() ==
1790       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1791     if (!SplitVal) {
1792       // If all preds provide undef, just nuke the xor, because it is undef too.
1793       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1794       BO->eraseFromParent();
1795     } else if (SplitVal->isZero()) {
1796       // If all preds provide 0, replace the xor with the other input.
1797       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1798       BO->eraseFromParent();
1799     } else {
1800       // If all preds provide 1, set the computed value to 1.
1801       BO->setOperand(!isLHS, SplitVal);
1802     }
1803 
1804     return true;
1805   }
1806 
1807   // Try to duplicate BB into PredBB.
1808   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1809 }
1810 
1811 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1812 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1813 /// NewPred using the entries from OldPred (suitably mapped).
1814 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1815                                             BasicBlock *OldPred,
1816                                             BasicBlock *NewPred,
1817                                      DenseMap<Instruction*, Value*> &ValueMap) {
1818   for (PHINode &PN : PHIBB->phis()) {
1819     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1820     // DestBlock.
1821     Value *IV = PN.getIncomingValueForBlock(OldPred);
1822 
1823     // Remap the value if necessary.
1824     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1825       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1826       if (I != ValueMap.end())
1827         IV = I->second;
1828     }
1829 
1830     PN.addIncoming(IV, NewPred);
1831   }
1832 }
1833 
1834 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1835 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1836 /// across BB.  Transform the IR to reflect this change.
1837 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1838                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1839                                    BasicBlock *SuccBB) {
1840   // If threading to the same block as we come from, we would infinite loop.
1841   if (SuccBB == BB) {
1842     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1843           << "' - would thread to self!\n");
1844     return false;
1845   }
1846 
1847   // If threading this would thread across a loop header, don't thread the edge.
1848   // See the comments above FindLoopHeaders for justifications and caveats.
1849   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1850     DEBUG({
1851       bool BBIsHeader = LoopHeaders.count(BB);
1852       bool SuccIsHeader = LoopHeaders.count(SuccBB);
1853       dbgs() << "  Not threading across "
1854           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1855           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1856           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1857     });
1858     return false;
1859   }
1860 
1861   unsigned JumpThreadCost =
1862       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1863   if (JumpThreadCost > BBDupThreshold) {
1864     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1865           << "' - Cost is too high: " << JumpThreadCost << "\n");
1866     return false;
1867   }
1868 
1869   // And finally, do it!  Start by factoring the predecessors if needed.
1870   BasicBlock *PredBB;
1871   if (PredBBs.size() == 1)
1872     PredBB = PredBBs[0];
1873   else {
1874     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1875           << " common predecessors.\n");
1876     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1877   }
1878 
1879   // And finally, do it!
1880   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1881         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1882         << ", across block:\n    "
1883         << *BB << "\n");
1884 
1885   LVI->threadEdge(PredBB, BB, SuccBB);
1886 
1887   // We are going to have to map operands from the original BB block to the new
1888   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1889   // account for entry from PredBB.
1890   DenseMap<Instruction*, Value*> ValueMapping;
1891 
1892   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1893                                          BB->getName()+".thread",
1894                                          BB->getParent(), BB);
1895   NewBB->moveAfter(PredBB);
1896 
1897   // Set the block frequency of NewBB.
1898   if (HasProfileData) {
1899     auto NewBBFreq =
1900         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1901     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1902   }
1903 
1904   BasicBlock::iterator BI = BB->begin();
1905   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1906     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1907 
1908   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1909   // mapping and using it to remap operands in the cloned instructions.
1910   for (; !isa<TerminatorInst>(BI); ++BI) {
1911     Instruction *New = BI->clone();
1912     New->setName(BI->getName());
1913     NewBB->getInstList().push_back(New);
1914     ValueMapping[&*BI] = New;
1915 
1916     // Remap operands to patch up intra-block references.
1917     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1918       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1919         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1920         if (I != ValueMapping.end())
1921           New->setOperand(i, I->second);
1922       }
1923   }
1924 
1925   // We didn't copy the terminator from BB over to NewBB, because there is now
1926   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1927   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1928   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1929 
1930   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1931   // PHI nodes for NewBB now.
1932   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1933 
1934   // If there were values defined in BB that are used outside the block, then we
1935   // now have to update all uses of the value to use either the original value,
1936   // the cloned value, or some PHI derived value.  This can require arbitrary
1937   // PHI insertion, of which we are prepared to do, clean these up now.
1938   SSAUpdater SSAUpdate;
1939   SmallVector<Use*, 16> UsesToRename;
1940   for (Instruction &I : *BB) {
1941     // Scan all uses of this instruction to see if it is used outside of its
1942     // block, and if so, record them in UsesToRename.
1943     for (Use &U : I.uses()) {
1944       Instruction *User = cast<Instruction>(U.getUser());
1945       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1946         if (UserPN->getIncomingBlock(U) == BB)
1947           continue;
1948       } else if (User->getParent() == BB)
1949         continue;
1950 
1951       UsesToRename.push_back(&U);
1952     }
1953 
1954     // If there are no uses outside the block, we're done with this instruction.
1955     if (UsesToRename.empty())
1956       continue;
1957 
1958     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1959 
1960     // We found a use of I outside of BB.  Rename all uses of I that are outside
1961     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1962     // with the two values we know.
1963     SSAUpdate.Initialize(I.getType(), I.getName());
1964     SSAUpdate.AddAvailableValue(BB, &I);
1965     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1966 
1967     while (!UsesToRename.empty())
1968       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1969     DEBUG(dbgs() << "\n");
1970   }
1971 
1972   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1973   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1974   // us to simplify any PHI nodes in BB.
1975   TerminatorInst *PredTerm = PredBB->getTerminator();
1976   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1977     if (PredTerm->getSuccessor(i) == BB) {
1978       BB->removePredecessor(PredBB, true);
1979       PredTerm->setSuccessor(i, NewBB);
1980     }
1981 
1982   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1983   // over the new instructions and zap any that are constants or dead.  This
1984   // frequently happens because of phi translation.
1985   SimplifyInstructionsInBlock(NewBB, TLI);
1986 
1987   // Update the edge weight from BB to SuccBB, which should be less than before.
1988   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1989 
1990   // Threaded an edge!
1991   ++NumThreads;
1992   return true;
1993 }
1994 
1995 /// Create a new basic block that will be the predecessor of BB and successor of
1996 /// all blocks in Preds. When profile data is available, update the frequency of
1997 /// this new block.
1998 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
1999                                                ArrayRef<BasicBlock *> Preds,
2000                                                const char *Suffix) {
2001   // Collect the frequencies of all predecessors of BB, which will be used to
2002   // update the edge weight on BB->SuccBB.
2003   BlockFrequency PredBBFreq(0);
2004   if (HasProfileData)
2005     for (auto Pred : Preds)
2006       PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
2007 
2008   BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
2009 
2010   // Set the block frequency of the newly created PredBB, which is the sum of
2011   // frequencies of Preds.
2012   if (HasProfileData)
2013     BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
2014   return PredBB;
2015 }
2016 
2017 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2018   const TerminatorInst *TI = BB->getTerminator();
2019   assert(TI->getNumSuccessors() > 1 && "not a split");
2020 
2021   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2022   if (!WeightsNode)
2023     return false;
2024 
2025   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2026   if (MDName->getString() != "branch_weights")
2027     return false;
2028 
2029   // Ensure there are weights for all of the successors. Note that the first
2030   // operand to the metadata node is a name, not a weight.
2031   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2032 }
2033 
2034 /// Update the block frequency of BB and branch weight and the metadata on the
2035 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2036 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2037 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2038                                                      BasicBlock *BB,
2039                                                      BasicBlock *NewBB,
2040                                                      BasicBlock *SuccBB) {
2041   if (!HasProfileData)
2042     return;
2043 
2044   assert(BFI && BPI && "BFI & BPI should have been created here");
2045 
2046   // As the edge from PredBB to BB is deleted, we have to update the block
2047   // frequency of BB.
2048   auto BBOrigFreq = BFI->getBlockFreq(BB);
2049   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2050   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2051   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2052   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2053 
2054   // Collect updated outgoing edges' frequencies from BB and use them to update
2055   // edge probabilities.
2056   SmallVector<uint64_t, 4> BBSuccFreq;
2057   for (BasicBlock *Succ : successors(BB)) {
2058     auto SuccFreq = (Succ == SuccBB)
2059                         ? BB2SuccBBFreq - NewBBFreq
2060                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2061     BBSuccFreq.push_back(SuccFreq.getFrequency());
2062   }
2063 
2064   uint64_t MaxBBSuccFreq =
2065       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2066 
2067   SmallVector<BranchProbability, 4> BBSuccProbs;
2068   if (MaxBBSuccFreq == 0)
2069     BBSuccProbs.assign(BBSuccFreq.size(),
2070                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2071   else {
2072     for (uint64_t Freq : BBSuccFreq)
2073       BBSuccProbs.push_back(
2074           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2075     // Normalize edge probabilities so that they sum up to one.
2076     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2077                                               BBSuccProbs.end());
2078   }
2079 
2080   // Update edge probabilities in BPI.
2081   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2082     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2083 
2084   // Update the profile metadata as well.
2085   //
2086   // Don't do this if the profile of the transformed blocks was statically
2087   // estimated.  (This could occur despite the function having an entry
2088   // frequency in completely cold parts of the CFG.)
2089   //
2090   // In this case we don't want to suggest to subsequent passes that the
2091   // calculated weights are fully consistent.  Consider this graph:
2092   //
2093   //                 check_1
2094   //             50% /  |
2095   //             eq_1   | 50%
2096   //                 \  |
2097   //                 check_2
2098   //             50% /  |
2099   //             eq_2   | 50%
2100   //                 \  |
2101   //                 check_3
2102   //             50% /  |
2103   //             eq_3   | 50%
2104   //                 \  |
2105   //
2106   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2107   // the overall probabilities are inconsistent; the total probability that the
2108   // value is either 1, 2 or 3 is 150%.
2109   //
2110   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2111   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2112   // the loop exit edge.  Then based solely on static estimation we would assume
2113   // the loop was extremely hot.
2114   //
2115   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2116   // shouldn't make edges extremely likely or unlikely based solely on static
2117   // estimation.
2118   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2119     SmallVector<uint32_t, 4> Weights;
2120     for (auto Prob : BBSuccProbs)
2121       Weights.push_back(Prob.getNumerator());
2122 
2123     auto TI = BB->getTerminator();
2124     TI->setMetadata(
2125         LLVMContext::MD_prof,
2126         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2127   }
2128 }
2129 
2130 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2131 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2132 /// If we can duplicate the contents of BB up into PredBB do so now, this
2133 /// improves the odds that the branch will be on an analyzable instruction like
2134 /// a compare.
2135 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2136     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2137   assert(!PredBBs.empty() && "Can't handle an empty set");
2138 
2139   // If BB is a loop header, then duplicating this block outside the loop would
2140   // cause us to transform this into an irreducible loop, don't do this.
2141   // See the comments above FindLoopHeaders for justifications and caveats.
2142   if (LoopHeaders.count(BB)) {
2143     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2144           << "' into predecessor block '" << PredBBs[0]->getName()
2145           << "' - it might create an irreducible loop!\n");
2146     return false;
2147   }
2148 
2149   unsigned DuplicationCost =
2150       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2151   if (DuplicationCost > BBDupThreshold) {
2152     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2153           << "' - Cost is too high: " << DuplicationCost << "\n");
2154     return false;
2155   }
2156 
2157   // And finally, do it!  Start by factoring the predecessors if needed.
2158   BasicBlock *PredBB;
2159   if (PredBBs.size() == 1)
2160     PredBB = PredBBs[0];
2161   else {
2162     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2163           << " common predecessors.\n");
2164     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2165   }
2166 
2167   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2168   // of PredBB.
2169   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
2170         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
2171         << DuplicationCost << " block is:" << *BB << "\n");
2172 
2173   // Unless PredBB ends with an unconditional branch, split the edge so that we
2174   // can just clone the bits from BB into the end of the new PredBB.
2175   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2176 
2177   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2178     PredBB = SplitEdge(PredBB, BB);
2179     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2180   }
2181 
2182   // We are going to have to map operands from the original BB block into the
2183   // PredBB block.  Evaluate PHI nodes in BB.
2184   DenseMap<Instruction*, Value*> ValueMapping;
2185 
2186   BasicBlock::iterator BI = BB->begin();
2187   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2188     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2189   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2190   // mapping and using it to remap operands in the cloned instructions.
2191   for (; BI != BB->end(); ++BI) {
2192     Instruction *New = BI->clone();
2193 
2194     // Remap operands to patch up intra-block references.
2195     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2196       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2197         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2198         if (I != ValueMapping.end())
2199           New->setOperand(i, I->second);
2200       }
2201 
2202     // If this instruction can be simplified after the operands are updated,
2203     // just use the simplified value instead.  This frequently happens due to
2204     // phi translation.
2205     if (Value *IV = SimplifyInstruction(
2206             New,
2207             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2208       ValueMapping[&*BI] = IV;
2209       if (!New->mayHaveSideEffects()) {
2210         New->deleteValue();
2211         New = nullptr;
2212       }
2213     } else {
2214       ValueMapping[&*BI] = New;
2215     }
2216     if (New) {
2217       // Otherwise, insert the new instruction into the block.
2218       New->setName(BI->getName());
2219       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2220     }
2221   }
2222 
2223   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2224   // add entries to the PHI nodes for branch from PredBB now.
2225   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2226   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2227                                   ValueMapping);
2228   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2229                                   ValueMapping);
2230 
2231   // If there were values defined in BB that are used outside the block, then we
2232   // now have to update all uses of the value to use either the original value,
2233   // the cloned value, or some PHI derived value.  This can require arbitrary
2234   // PHI insertion, of which we are prepared to do, clean these up now.
2235   SSAUpdater SSAUpdate;
2236   SmallVector<Use*, 16> UsesToRename;
2237   for (Instruction &I : *BB) {
2238     // Scan all uses of this instruction to see if it is used outside of its
2239     // block, and if so, record them in UsesToRename.
2240     for (Use &U : I.uses()) {
2241       Instruction *User = cast<Instruction>(U.getUser());
2242       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2243         if (UserPN->getIncomingBlock(U) == BB)
2244           continue;
2245       } else if (User->getParent() == BB)
2246         continue;
2247 
2248       UsesToRename.push_back(&U);
2249     }
2250 
2251     // If there are no uses outside the block, we're done with this instruction.
2252     if (UsesToRename.empty())
2253       continue;
2254 
2255     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2256 
2257     // We found a use of I outside of BB.  Rename all uses of I that are outside
2258     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2259     // with the two values we know.
2260     SSAUpdate.Initialize(I.getType(), I.getName());
2261     SSAUpdate.AddAvailableValue(BB, &I);
2262     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2263 
2264     while (!UsesToRename.empty())
2265       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2266     DEBUG(dbgs() << "\n");
2267   }
2268 
2269   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2270   // that we nuked.
2271   BB->removePredecessor(PredBB, true);
2272 
2273   // Remove the unconditional branch at the end of the PredBB block.
2274   OldPredBranch->eraseFromParent();
2275 
2276   ++NumDupes;
2277   return true;
2278 }
2279 
2280 /// TryToUnfoldSelect - Look for blocks of the form
2281 /// bb1:
2282 ///   %a = select
2283 ///   br bb2
2284 ///
2285 /// bb2:
2286 ///   %p = phi [%a, %bb1] ...
2287 ///   %c = icmp %p
2288 ///   br i1 %c
2289 ///
2290 /// And expand the select into a branch structure if one of its arms allows %c
2291 /// to be folded. This later enables threading from bb1 over bb2.
2292 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2293   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2294   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2295   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2296 
2297   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2298       CondLHS->getParent() != BB)
2299     return false;
2300 
2301   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2302     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2303     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2304 
2305     // Look if one of the incoming values is a select in the corresponding
2306     // predecessor.
2307     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2308       continue;
2309 
2310     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2311     if (!PredTerm || !PredTerm->isUnconditional())
2312       continue;
2313 
2314     // Now check if one of the select values would allow us to constant fold the
2315     // terminator in BB. We don't do the transform if both sides fold, those
2316     // cases will be threaded in any case.
2317     LazyValueInfo::Tristate LHSFolds =
2318         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2319                                 CondRHS, Pred, BB, CondCmp);
2320     LazyValueInfo::Tristate RHSFolds =
2321         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2322                                 CondRHS, Pred, BB, CondCmp);
2323     if ((LHSFolds != LazyValueInfo::Unknown ||
2324          RHSFolds != LazyValueInfo::Unknown) &&
2325         LHSFolds != RHSFolds) {
2326       // Expand the select.
2327       //
2328       // Pred --
2329       //  |    v
2330       //  |  NewBB
2331       //  |    |
2332       //  |-----
2333       //  v
2334       // BB
2335       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2336                                              BB->getParent(), BB);
2337       // Move the unconditional branch to NewBB.
2338       PredTerm->removeFromParent();
2339       NewBB->getInstList().insert(NewBB->end(), PredTerm);
2340       // Create a conditional branch and update PHI nodes.
2341       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2342       CondLHS->setIncomingValue(I, SI->getFalseValue());
2343       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
2344       // The select is now dead.
2345       SI->eraseFromParent();
2346 
2347       // Update any other PHI nodes in BB.
2348       for (BasicBlock::iterator BI = BB->begin();
2349            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2350         if (Phi != CondLHS)
2351           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2352       return true;
2353     }
2354   }
2355   return false;
2356 }
2357 
2358 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2359 /// same BB in the form
2360 /// bb:
2361 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2362 ///   %s = select %p, trueval, falseval
2363 ///
2364 /// or
2365 ///
2366 /// bb:
2367 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2368 ///   %c = cmp %p, 0
2369 ///   %s = select %c, trueval, falseval
2370 ///
2371 /// And expand the select into a branch structure. This later enables
2372 /// jump-threading over bb in this pass.
2373 ///
2374 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2375 /// select if the associated PHI has at least one constant.  If the unfolded
2376 /// select is not jump-threaded, it will be folded again in the later
2377 /// optimizations.
2378 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2379   // If threading this would thread across a loop header, don't thread the edge.
2380   // See the comments above FindLoopHeaders for justifications and caveats.
2381   if (LoopHeaders.count(BB))
2382     return false;
2383 
2384   for (BasicBlock::iterator BI = BB->begin();
2385        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2386     // Look for a Phi having at least one constant incoming value.
2387     if (llvm::all_of(PN->incoming_values(),
2388                      [](Value *V) { return !isa<ConstantInt>(V); }))
2389       continue;
2390 
2391     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2392       // Check if SI is in BB and use V as condition.
2393       if (SI->getParent() != BB)
2394         return false;
2395       Value *Cond = SI->getCondition();
2396       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2397     };
2398 
2399     SelectInst *SI = nullptr;
2400     for (Use &U : PN->uses()) {
2401       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2402         // Look for a ICmp in BB that compares PN with a constant and is the
2403         // condition of a Select.
2404         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2405             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2406           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2407             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2408               SI = SelectI;
2409               break;
2410             }
2411       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2412         // Look for a Select in BB that uses PN as condtion.
2413         if (isUnfoldCandidate(SelectI, U.get())) {
2414           SI = SelectI;
2415           break;
2416         }
2417       }
2418     }
2419 
2420     if (!SI)
2421       continue;
2422     // Expand the select.
2423     TerminatorInst *Term =
2424         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2425     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2426     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2427     NewPN->addIncoming(SI->getFalseValue(), BB);
2428     SI->replaceAllUsesWith(NewPN);
2429     SI->eraseFromParent();
2430     return true;
2431   }
2432   return false;
2433 }
2434 
2435 /// Try to propagate a guard from the current BB into one of its predecessors
2436 /// in case if another branch of execution implies that the condition of this
2437 /// guard is always true. Currently we only process the simplest case that
2438 /// looks like:
2439 ///
2440 /// Start:
2441 ///   %cond = ...
2442 ///   br i1 %cond, label %T1, label %F1
2443 /// T1:
2444 ///   br label %Merge
2445 /// F1:
2446 ///   br label %Merge
2447 /// Merge:
2448 ///   %condGuard = ...
2449 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2450 ///
2451 /// And cond either implies condGuard or !condGuard. In this case all the
2452 /// instructions before the guard can be duplicated in both branches, and the
2453 /// guard is then threaded to one of them.
2454 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2455   using namespace PatternMatch;
2456 
2457   // We only want to deal with two predecessors.
2458   BasicBlock *Pred1, *Pred2;
2459   auto PI = pred_begin(BB), PE = pred_end(BB);
2460   if (PI == PE)
2461     return false;
2462   Pred1 = *PI++;
2463   if (PI == PE)
2464     return false;
2465   Pred2 = *PI++;
2466   if (PI != PE)
2467     return false;
2468   if (Pred1 == Pred2)
2469     return false;
2470 
2471   // Try to thread one of the guards of the block.
2472   // TODO: Look up deeper than to immediate predecessor?
2473   auto *Parent = Pred1->getSinglePredecessor();
2474   if (!Parent || Parent != Pred2->getSinglePredecessor())
2475     return false;
2476 
2477   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2478     for (auto &I : *BB)
2479       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
2480         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2481           return true;
2482 
2483   return false;
2484 }
2485 
2486 /// Try to propagate the guard from BB which is the lower block of a diamond
2487 /// to one of its branches, in case if diamond's condition implies guard's
2488 /// condition.
2489 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2490                                     BranchInst *BI) {
2491   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2492   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2493   Value *GuardCond = Guard->getArgOperand(0);
2494   Value *BranchCond = BI->getCondition();
2495   BasicBlock *TrueDest = BI->getSuccessor(0);
2496   BasicBlock *FalseDest = BI->getSuccessor(1);
2497 
2498   auto &DL = BB->getModule()->getDataLayout();
2499   bool TrueDestIsSafe = false;
2500   bool FalseDestIsSafe = false;
2501 
2502   // True dest is safe if BranchCond => GuardCond.
2503   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2504   if (Impl && *Impl)
2505     TrueDestIsSafe = true;
2506   else {
2507     // False dest is safe if !BranchCond => GuardCond.
2508     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2509     if (Impl && *Impl)
2510       FalseDestIsSafe = true;
2511   }
2512 
2513   if (!TrueDestIsSafe && !FalseDestIsSafe)
2514     return false;
2515 
2516   BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2517   BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2518 
2519   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2520   Instruction *AfterGuard = Guard->getNextNode();
2521   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2522   if (Cost > BBDupThreshold)
2523     return false;
2524   // Duplicate all instructions before the guard and the guard itself to the
2525   // branch where implication is not proved.
2526   GuardedBlock = DuplicateInstructionsInSplitBetween(
2527       BB, GuardedBlock, AfterGuard, GuardedMapping);
2528   assert(GuardedBlock && "Could not create the guarded block?");
2529   // Duplicate all instructions before the guard in the unguarded branch.
2530   // Since we have successfully duplicated the guarded block and this block
2531   // has fewer instructions, we expect it to succeed.
2532   UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock,
2533                                                        Guard, UnguardedMapping);
2534   assert(UnguardedBlock && "Could not create the unguarded block?");
2535   DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2536                << GuardedBlock->getName() << "\n");
2537 
2538   // Some instructions before the guard may still have uses. For them, we need
2539   // to create Phi nodes merging their copies in both guarded and unguarded
2540   // branches. Those instructions that have no uses can be just removed.
2541   SmallVector<Instruction *, 4> ToRemove;
2542   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2543     if (!isa<PHINode>(&*BI))
2544       ToRemove.push_back(&*BI);
2545 
2546   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2547   assert(InsertionPoint && "Empty block?");
2548   // Substitute with Phis & remove.
2549   for (auto *Inst : reverse(ToRemove)) {
2550     if (!Inst->use_empty()) {
2551       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2552       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2553       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2554       NewPN->insertBefore(InsertionPoint);
2555       Inst->replaceAllUsesWith(NewPN);
2556     }
2557     Inst->eraseFromParent();
2558   }
2559   return true;
2560 }
2561