1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LazyValueInfo.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/PatternMatch.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Use.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/BlockFrequency.h" 59 #include "llvm/Support/BranchProbability.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Cloning.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/SSAUpdater.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <iterator> 75 #include <memory> 76 #include <utility> 77 78 using namespace llvm; 79 using namespace jumpthreading; 80 81 #define DEBUG_TYPE "jump-threading" 82 83 STATISTIC(NumThreads, "Number of jumps threaded"); 84 STATISTIC(NumFolds, "Number of terminators folded"); 85 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 86 87 static cl::opt<unsigned> 88 BBDuplicateThreshold("jump-threading-threshold", 89 cl::desc("Max block size to duplicate for jump threading"), 90 cl::init(6), cl::Hidden); 91 92 static cl::opt<unsigned> 93 ImplicationSearchThreshold( 94 "jump-threading-implication-search-threshold", 95 cl::desc("The number of predecessors to search for a stronger " 96 "condition to use to thread over a weaker condition"), 97 cl::init(3), cl::Hidden); 98 99 static cl::opt<bool> PrintLVIAfterJumpThreading( 100 "print-lvi-after-jump-threading", 101 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 102 cl::Hidden); 103 104 namespace { 105 106 /// This pass performs 'jump threading', which looks at blocks that have 107 /// multiple predecessors and multiple successors. If one or more of the 108 /// predecessors of the block can be proven to always jump to one of the 109 /// successors, we forward the edge from the predecessor to the successor by 110 /// duplicating the contents of this block. 111 /// 112 /// An example of when this can occur is code like this: 113 /// 114 /// if () { ... 115 /// X = 4; 116 /// } 117 /// if (X < 3) { 118 /// 119 /// In this case, the unconditional branch at the end of the first if can be 120 /// revectored to the false side of the second if. 121 class JumpThreading : public FunctionPass { 122 JumpThreadingPass Impl; 123 124 public: 125 static char ID; // Pass identification 126 127 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 128 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 void getAnalysisUsage(AnalysisUsage &AU) const override { 134 if (PrintLVIAfterJumpThreading) 135 AU.addRequired<DominatorTreeWrapperPass>(); 136 AU.addRequired<AAResultsWrapperPass>(); 137 AU.addRequired<LazyValueInfoWrapperPass>(); 138 AU.addPreserved<GlobalsAAWrapperPass>(); 139 AU.addRequired<TargetLibraryInfoWrapperPass>(); 140 } 141 142 void releaseMemory() override { Impl.releaseMemory(); } 143 }; 144 145 } // end anonymous namespace 146 147 char JumpThreading::ID = 0; 148 149 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 150 "Jump Threading", false, false) 151 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 152 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 153 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 154 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 155 "Jump Threading", false, false) 156 157 // Public interface to the Jump Threading pass 158 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 159 return new JumpThreading(Threshold); 160 } 161 162 JumpThreadingPass::JumpThreadingPass(int T) { 163 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 164 } 165 166 // Update branch probability information according to conditional 167 // branch probablity. This is usually made possible for cloned branches 168 // in inline instances by the context specific profile in the caller. 169 // For instance, 170 // 171 // [Block PredBB] 172 // [Branch PredBr] 173 // if (t) { 174 // Block A; 175 // } else { 176 // Block B; 177 // } 178 // 179 // [Block BB] 180 // cond = PN([true, %A], [..., %B]); // PHI node 181 // [Branch CondBr] 182 // if (cond) { 183 // ... // P(cond == true) = 1% 184 // } 185 // 186 // Here we know that when block A is taken, cond must be true, which means 187 // P(cond == true | A) = 1 188 // 189 // Given that P(cond == true) = P(cond == true | A) * P(A) + 190 // P(cond == true | B) * P(B) 191 // we get: 192 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 193 // 194 // which gives us: 195 // P(A) is less than P(cond == true), i.e. 196 // P(t == true) <= P(cond == true) 197 // 198 // In other words, if we know P(cond == true) is unlikely, we know 199 // that P(t == true) is also unlikely. 200 // 201 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 202 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 203 if (!CondBr) 204 return; 205 206 BranchProbability BP; 207 uint64_t TrueWeight, FalseWeight; 208 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 209 return; 210 211 // Returns the outgoing edge of the dominating predecessor block 212 // that leads to the PhiNode's incoming block: 213 auto GetPredOutEdge = 214 [](BasicBlock *IncomingBB, 215 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 216 auto *PredBB = IncomingBB; 217 auto *SuccBB = PhiBB; 218 while (true) { 219 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 220 if (PredBr && PredBr->isConditional()) 221 return {PredBB, SuccBB}; 222 auto *SinglePredBB = PredBB->getSinglePredecessor(); 223 if (!SinglePredBB) 224 return {nullptr, nullptr}; 225 SuccBB = PredBB; 226 PredBB = SinglePredBB; 227 } 228 }; 229 230 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 231 Value *PhiOpnd = PN->getIncomingValue(i); 232 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 233 234 if (!CI || !CI->getType()->isIntegerTy(1)) 235 continue; 236 237 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 238 TrueWeight, TrueWeight + FalseWeight) 239 : BranchProbability::getBranchProbability( 240 FalseWeight, TrueWeight + FalseWeight)); 241 242 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 243 if (!PredOutEdge.first) 244 return; 245 246 BasicBlock *PredBB = PredOutEdge.first; 247 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator()); 248 249 uint64_t PredTrueWeight, PredFalseWeight; 250 // FIXME: We currently only set the profile data when it is missing. 251 // With PGO, this can be used to refine even existing profile data with 252 // context information. This needs to be done after more performance 253 // testing. 254 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 255 continue; 256 257 // We can not infer anything useful when BP >= 50%, because BP is the 258 // upper bound probability value. 259 if (BP >= BranchProbability(50, 100)) 260 continue; 261 262 SmallVector<uint32_t, 2> Weights; 263 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 264 Weights.push_back(BP.getNumerator()); 265 Weights.push_back(BP.getCompl().getNumerator()); 266 } else { 267 Weights.push_back(BP.getCompl().getNumerator()); 268 Weights.push_back(BP.getNumerator()); 269 } 270 PredBr->setMetadata(LLVMContext::MD_prof, 271 MDBuilder(PredBr->getParent()->getContext()) 272 .createBranchWeights(Weights)); 273 } 274 } 275 276 /// runOnFunction - Toplevel algorithm. 277 bool JumpThreading::runOnFunction(Function &F) { 278 if (skipFunction(F)) 279 return false; 280 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 281 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 282 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 283 std::unique_ptr<BlockFrequencyInfo> BFI; 284 std::unique_ptr<BranchProbabilityInfo> BPI; 285 bool HasProfileData = F.hasProfileData(); 286 if (HasProfileData) { 287 LoopInfo LI{DominatorTree(F)}; 288 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 289 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 290 } 291 292 bool Changed = Impl.runImpl(F, TLI, LVI, AA, HasProfileData, std::move(BFI), 293 std::move(BPI)); 294 if (PrintLVIAfterJumpThreading) { 295 dbgs() << "LVI for function '" << F.getName() << "':\n"; 296 LVI->printLVI(F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 297 dbgs()); 298 } 299 return Changed; 300 } 301 302 PreservedAnalyses JumpThreadingPass::run(Function &F, 303 FunctionAnalysisManager &AM) { 304 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 305 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 306 auto &AA = AM.getResult<AAManager>(F); 307 308 std::unique_ptr<BlockFrequencyInfo> BFI; 309 std::unique_ptr<BranchProbabilityInfo> BPI; 310 if (F.hasProfileData()) { 311 LoopInfo LI{DominatorTree(F)}; 312 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 313 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 314 } 315 316 bool Changed = runImpl(F, &TLI, &LVI, &AA, HasProfileData, std::move(BFI), 317 std::move(BPI)); 318 319 if (!Changed) 320 return PreservedAnalyses::all(); 321 PreservedAnalyses PA; 322 PA.preserve<GlobalsAA>(); 323 return PA; 324 } 325 326 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 327 LazyValueInfo *LVI_, AliasAnalysis *AA_, 328 bool HasProfileData_, 329 std::unique_ptr<BlockFrequencyInfo> BFI_, 330 std::unique_ptr<BranchProbabilityInfo> BPI_) { 331 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 332 TLI = TLI_; 333 LVI = LVI_; 334 AA = AA_; 335 BFI.reset(); 336 BPI.reset(); 337 // When profile data is available, we need to update edge weights after 338 // successful jump threading, which requires both BPI and BFI being available. 339 HasProfileData = HasProfileData_; 340 auto *GuardDecl = F.getParent()->getFunction( 341 Intrinsic::getName(Intrinsic::experimental_guard)); 342 HasGuards = GuardDecl && !GuardDecl->use_empty(); 343 if (HasProfileData) { 344 BPI = std::move(BPI_); 345 BFI = std::move(BFI_); 346 } 347 348 // Remove unreachable blocks from function as they may result in infinite 349 // loop. We do threading if we found something profitable. Jump threading a 350 // branch can create other opportunities. If these opportunities form a cycle 351 // i.e. if any jump threading is undoing previous threading in the path, then 352 // we will loop forever. We take care of this issue by not jump threading for 353 // back edges. This works for normal cases but not for unreachable blocks as 354 // they may have cycle with no back edge. 355 bool EverChanged = false; 356 EverChanged |= removeUnreachableBlocks(F, LVI); 357 358 FindLoopHeaders(F); 359 360 bool Changed; 361 do { 362 Changed = false; 363 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 364 BasicBlock *BB = &*I; 365 // Thread all of the branches we can over this block. 366 while (ProcessBlock(BB)) 367 Changed = true; 368 369 ++I; 370 371 // If the block is trivially dead, zap it. This eliminates the successor 372 // edges which simplifies the CFG. 373 if (pred_empty(BB) && 374 BB != &BB->getParent()->getEntryBlock()) { 375 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 376 << "' with terminator: " << *BB->getTerminator() << '\n'); 377 LoopHeaders.erase(BB); 378 LVI->eraseBlock(BB); 379 DeleteDeadBlock(BB); 380 Changed = true; 381 continue; 382 } 383 384 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 385 386 // Can't thread an unconditional jump, but if the block is "almost 387 // empty", we can replace uses of it with uses of the successor and make 388 // this dead. 389 // We should not eliminate the loop header or latch either, because 390 // eliminating a loop header or latch might later prevent LoopSimplify 391 // from transforming nested loops into simplified form. We will rely on 392 // later passes in backend to clean up empty blocks. 393 if (BI && BI->isUnconditional() && 394 BB != &BB->getParent()->getEntryBlock() && 395 // If the terminator is the only non-phi instruction, try to nuke it. 396 BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB) && 397 !LoopHeaders.count(BI->getSuccessor(0))) { 398 // FIXME: It is always conservatively correct to drop the info 399 // for a block even if it doesn't get erased. This isn't totally 400 // awesome, but it allows us to use AssertingVH to prevent nasty 401 // dangling pointer issues within LazyValueInfo. 402 LVI->eraseBlock(BB); 403 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) 404 Changed = true; 405 } 406 } 407 EverChanged |= Changed; 408 } while (Changed); 409 410 LoopHeaders.clear(); 411 return EverChanged; 412 } 413 414 // Replace uses of Cond with ToVal when safe to do so. If all uses are 415 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 416 // because we may incorrectly replace uses when guards/assumes are uses of 417 // of `Cond` and we used the guards/assume to reason about the `Cond` value 418 // at the end of block. RAUW unconditionally replaces all uses 419 // including the guards/assumes themselves and the uses before the 420 // guard/assume. 421 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 422 assert(Cond->getType() == ToVal->getType()); 423 auto *BB = Cond->getParent(); 424 // We can unconditionally replace all uses in non-local blocks (i.e. uses 425 // strictly dominated by BB), since LVI information is true from the 426 // terminator of BB. 427 replaceNonLocalUsesWith(Cond, ToVal); 428 for (Instruction &I : reverse(*BB)) { 429 // Reached the Cond whose uses we are trying to replace, so there are no 430 // more uses. 431 if (&I == Cond) 432 break; 433 // We only replace uses in instructions that are guaranteed to reach the end 434 // of BB, where we know Cond is ToVal. 435 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 436 break; 437 I.replaceUsesOfWith(Cond, ToVal); 438 } 439 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 440 Cond->eraseFromParent(); 441 } 442 443 /// Return the cost of duplicating a piece of this block from first non-phi 444 /// and before StopAt instruction to thread across it. Stop scanning the block 445 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 446 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 447 Instruction *StopAt, 448 unsigned Threshold) { 449 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 450 /// Ignore PHI nodes, these will be flattened when duplication happens. 451 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 452 453 // FIXME: THREADING will delete values that are just used to compute the 454 // branch, so they shouldn't count against the duplication cost. 455 456 unsigned Bonus = 0; 457 if (BB->getTerminator() == StopAt) { 458 // Threading through a switch statement is particularly profitable. If this 459 // block ends in a switch, decrease its cost to make it more likely to 460 // happen. 461 if (isa<SwitchInst>(StopAt)) 462 Bonus = 6; 463 464 // The same holds for indirect branches, but slightly more so. 465 if (isa<IndirectBrInst>(StopAt)) 466 Bonus = 8; 467 } 468 469 // Bump the threshold up so the early exit from the loop doesn't skip the 470 // terminator-based Size adjustment at the end. 471 Threshold += Bonus; 472 473 // Sum up the cost of each instruction until we get to the terminator. Don't 474 // include the terminator because the copy won't include it. 475 unsigned Size = 0; 476 for (; &*I != StopAt; ++I) { 477 478 // Stop scanning the block if we've reached the threshold. 479 if (Size > Threshold) 480 return Size; 481 482 // Debugger intrinsics don't incur code size. 483 if (isa<DbgInfoIntrinsic>(I)) continue; 484 485 // If this is a pointer->pointer bitcast, it is free. 486 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 487 continue; 488 489 // Bail out if this instruction gives back a token type, it is not possible 490 // to duplicate it if it is used outside this BB. 491 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 492 return ~0U; 493 494 // All other instructions count for at least one unit. 495 ++Size; 496 497 // Calls are more expensive. If they are non-intrinsic calls, we model them 498 // as having cost of 4. If they are a non-vector intrinsic, we model them 499 // as having cost of 2 total, and if they are a vector intrinsic, we model 500 // them as having cost 1. 501 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 502 if (CI->cannotDuplicate() || CI->isConvergent()) 503 // Blocks with NoDuplicate are modelled as having infinite cost, so they 504 // are never duplicated. 505 return ~0U; 506 else if (!isa<IntrinsicInst>(CI)) 507 Size += 3; 508 else if (!CI->getType()->isVectorTy()) 509 Size += 1; 510 } 511 } 512 513 return Size > Bonus ? Size - Bonus : 0; 514 } 515 516 /// FindLoopHeaders - We do not want jump threading to turn proper loop 517 /// structures into irreducible loops. Doing this breaks up the loop nesting 518 /// hierarchy and pessimizes later transformations. To prevent this from 519 /// happening, we first have to find the loop headers. Here we approximate this 520 /// by finding targets of backedges in the CFG. 521 /// 522 /// Note that there definitely are cases when we want to allow threading of 523 /// edges across a loop header. For example, threading a jump from outside the 524 /// loop (the preheader) to an exit block of the loop is definitely profitable. 525 /// It is also almost always profitable to thread backedges from within the loop 526 /// to exit blocks, and is often profitable to thread backedges to other blocks 527 /// within the loop (forming a nested loop). This simple analysis is not rich 528 /// enough to track all of these properties and keep it up-to-date as the CFG 529 /// mutates, so we don't allow any of these transformations. 530 void JumpThreadingPass::FindLoopHeaders(Function &F) { 531 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 532 FindFunctionBackedges(F, Edges); 533 534 for (const auto &Edge : Edges) 535 LoopHeaders.insert(Edge.second); 536 } 537 538 /// getKnownConstant - Helper method to determine if we can thread over a 539 /// terminator with the given value as its condition, and if so what value to 540 /// use for that. What kind of value this is depends on whether we want an 541 /// integer or a block address, but an undef is always accepted. 542 /// Returns null if Val is null or not an appropriate constant. 543 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 544 if (!Val) 545 return nullptr; 546 547 // Undef is "known" enough. 548 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 549 return U; 550 551 if (Preference == WantBlockAddress) 552 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 553 554 return dyn_cast<ConstantInt>(Val); 555 } 556 557 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 558 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 559 /// in any of our predecessors. If so, return the known list of value and pred 560 /// BB in the result vector. 561 /// 562 /// This returns true if there were any known values. 563 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 564 Value *V, BasicBlock *BB, PredValueInfo &Result, 565 ConstantPreference Preference, Instruction *CxtI) { 566 // This method walks up use-def chains recursively. Because of this, we could 567 // get into an infinite loop going around loops in the use-def chain. To 568 // prevent this, keep track of what (value, block) pairs we've already visited 569 // and terminate the search if we loop back to them 570 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 571 return false; 572 573 // An RAII help to remove this pair from the recursion set once the recursion 574 // stack pops back out again. 575 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 576 577 // If V is a constant, then it is known in all predecessors. 578 if (Constant *KC = getKnownConstant(V, Preference)) { 579 for (BasicBlock *Pred : predecessors(BB)) 580 Result.push_back(std::make_pair(KC, Pred)); 581 582 return !Result.empty(); 583 } 584 585 // If V is a non-instruction value, or an instruction in a different block, 586 // then it can't be derived from a PHI. 587 Instruction *I = dyn_cast<Instruction>(V); 588 if (!I || I->getParent() != BB) { 589 590 // Okay, if this is a live-in value, see if it has a known value at the end 591 // of any of our predecessors. 592 // 593 // FIXME: This should be an edge property, not a block end property. 594 /// TODO: Per PR2563, we could infer value range information about a 595 /// predecessor based on its terminator. 596 // 597 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 598 // "I" is a non-local compare-with-a-constant instruction. This would be 599 // able to handle value inequalities better, for example if the compare is 600 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 601 // Perhaps getConstantOnEdge should be smart enough to do this? 602 603 for (BasicBlock *P : predecessors(BB)) { 604 // If the value is known by LazyValueInfo to be a constant in a 605 // predecessor, use that information to try to thread this block. 606 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 607 if (Constant *KC = getKnownConstant(PredCst, Preference)) 608 Result.push_back(std::make_pair(KC, P)); 609 } 610 611 return !Result.empty(); 612 } 613 614 /// If I is a PHI node, then we know the incoming values for any constants. 615 if (PHINode *PN = dyn_cast<PHINode>(I)) { 616 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 617 Value *InVal = PN->getIncomingValue(i); 618 if (Constant *KC = getKnownConstant(InVal, Preference)) { 619 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 620 } else { 621 Constant *CI = LVI->getConstantOnEdge(InVal, 622 PN->getIncomingBlock(i), 623 BB, CxtI); 624 if (Constant *KC = getKnownConstant(CI, Preference)) 625 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 626 } 627 } 628 629 return !Result.empty(); 630 } 631 632 // Handle Cast instructions. Only see through Cast when the source operand is 633 // PHI or Cmp and the source type is i1 to save the compilation time. 634 if (CastInst *CI = dyn_cast<CastInst>(I)) { 635 Value *Source = CI->getOperand(0); 636 if (!Source->getType()->isIntegerTy(1)) 637 return false; 638 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 639 return false; 640 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 641 if (Result.empty()) 642 return false; 643 644 // Convert the known values. 645 for (auto &R : Result) 646 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 647 648 return true; 649 } 650 651 // Handle some boolean conditions. 652 if (I->getType()->getPrimitiveSizeInBits() == 1) { 653 assert(Preference == WantInteger && "One-bit non-integer type?"); 654 // X | true -> true 655 // X & false -> false 656 if (I->getOpcode() == Instruction::Or || 657 I->getOpcode() == Instruction::And) { 658 PredValueInfoTy LHSVals, RHSVals; 659 660 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 661 WantInteger, CxtI); 662 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 663 WantInteger, CxtI); 664 665 if (LHSVals.empty() && RHSVals.empty()) 666 return false; 667 668 ConstantInt *InterestingVal; 669 if (I->getOpcode() == Instruction::Or) 670 InterestingVal = ConstantInt::getTrue(I->getContext()); 671 else 672 InterestingVal = ConstantInt::getFalse(I->getContext()); 673 674 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 675 676 // Scan for the sentinel. If we find an undef, force it to the 677 // interesting value: x|undef -> true and x&undef -> false. 678 for (const auto &LHSVal : LHSVals) 679 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 680 Result.emplace_back(InterestingVal, LHSVal.second); 681 LHSKnownBBs.insert(LHSVal.second); 682 } 683 for (const auto &RHSVal : RHSVals) 684 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 685 // If we already inferred a value for this block on the LHS, don't 686 // re-add it. 687 if (!LHSKnownBBs.count(RHSVal.second)) 688 Result.emplace_back(InterestingVal, RHSVal.second); 689 } 690 691 return !Result.empty(); 692 } 693 694 // Handle the NOT form of XOR. 695 if (I->getOpcode() == Instruction::Xor && 696 isa<ConstantInt>(I->getOperand(1)) && 697 cast<ConstantInt>(I->getOperand(1))->isOne()) { 698 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 699 WantInteger, CxtI); 700 if (Result.empty()) 701 return false; 702 703 // Invert the known values. 704 for (auto &R : Result) 705 R.first = ConstantExpr::getNot(R.first); 706 707 return true; 708 } 709 710 // Try to simplify some other binary operator values. 711 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 712 assert(Preference != WantBlockAddress 713 && "A binary operator creating a block address?"); 714 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 715 PredValueInfoTy LHSVals; 716 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 717 WantInteger, CxtI); 718 719 // Try to use constant folding to simplify the binary operator. 720 for (const auto &LHSVal : LHSVals) { 721 Constant *V = LHSVal.first; 722 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 723 724 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 725 Result.push_back(std::make_pair(KC, LHSVal.second)); 726 } 727 } 728 729 return !Result.empty(); 730 } 731 732 // Handle compare with phi operand, where the PHI is defined in this block. 733 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 734 assert(Preference == WantInteger && "Compares only produce integers"); 735 Type *CmpType = Cmp->getType(); 736 Value *CmpLHS = Cmp->getOperand(0); 737 Value *CmpRHS = Cmp->getOperand(1); 738 CmpInst::Predicate Pred = Cmp->getPredicate(); 739 740 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 741 if (PN && PN->getParent() == BB) { 742 const DataLayout &DL = PN->getModule()->getDataLayout(); 743 // We can do this simplification if any comparisons fold to true or false. 744 // See if any do. 745 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 746 BasicBlock *PredBB = PN->getIncomingBlock(i); 747 Value *LHS = PN->getIncomingValue(i); 748 Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB); 749 750 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 751 if (!Res) { 752 if (!isa<Constant>(RHS)) 753 continue; 754 755 LazyValueInfo::Tristate 756 ResT = LVI->getPredicateOnEdge(Pred, LHS, 757 cast<Constant>(RHS), PredBB, BB, 758 CxtI ? CxtI : Cmp); 759 if (ResT == LazyValueInfo::Unknown) 760 continue; 761 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 762 } 763 764 if (Constant *KC = getKnownConstant(Res, WantInteger)) 765 Result.push_back(std::make_pair(KC, PredBB)); 766 } 767 768 return !Result.empty(); 769 } 770 771 // If comparing a live-in value against a constant, see if we know the 772 // live-in value on any predecessors. 773 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 774 Constant *CmpConst = cast<Constant>(CmpRHS); 775 776 if (!isa<Instruction>(CmpLHS) || 777 cast<Instruction>(CmpLHS)->getParent() != BB) { 778 for (BasicBlock *P : predecessors(BB)) { 779 // If the value is known by LazyValueInfo to be a constant in a 780 // predecessor, use that information to try to thread this block. 781 LazyValueInfo::Tristate Res = 782 LVI->getPredicateOnEdge(Pred, CmpLHS, 783 CmpConst, P, BB, CxtI ? CxtI : Cmp); 784 if (Res == LazyValueInfo::Unknown) 785 continue; 786 787 Constant *ResC = ConstantInt::get(CmpType, Res); 788 Result.push_back(std::make_pair(ResC, P)); 789 } 790 791 return !Result.empty(); 792 } 793 794 // InstCombine can fold some forms of constant range checks into 795 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 796 // x as a live-in. 797 { 798 using namespace PatternMatch; 799 800 Value *AddLHS; 801 ConstantInt *AddConst; 802 if (isa<ConstantInt>(CmpConst) && 803 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 804 if (!isa<Instruction>(AddLHS) || 805 cast<Instruction>(AddLHS)->getParent() != BB) { 806 for (BasicBlock *P : predecessors(BB)) { 807 // If the value is known by LazyValueInfo to be a ConstantRange in 808 // a predecessor, use that information to try to thread this 809 // block. 810 ConstantRange CR = LVI->getConstantRangeOnEdge( 811 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 812 // Propagate the range through the addition. 813 CR = CR.add(AddConst->getValue()); 814 815 // Get the range where the compare returns true. 816 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 817 Pred, cast<ConstantInt>(CmpConst)->getValue()); 818 819 Constant *ResC; 820 if (CmpRange.contains(CR)) 821 ResC = ConstantInt::getTrue(CmpType); 822 else if (CmpRange.inverse().contains(CR)) 823 ResC = ConstantInt::getFalse(CmpType); 824 else 825 continue; 826 827 Result.push_back(std::make_pair(ResC, P)); 828 } 829 830 return !Result.empty(); 831 } 832 } 833 } 834 835 // Try to find a constant value for the LHS of a comparison, 836 // and evaluate it statically if we can. 837 PredValueInfoTy LHSVals; 838 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 839 WantInteger, CxtI); 840 841 for (const auto &LHSVal : LHSVals) { 842 Constant *V = LHSVal.first; 843 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 844 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 845 Result.push_back(std::make_pair(KC, LHSVal.second)); 846 } 847 848 return !Result.empty(); 849 } 850 } 851 852 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 853 // Handle select instructions where at least one operand is a known constant 854 // and we can figure out the condition value for any predecessor block. 855 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 856 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 857 PredValueInfoTy Conds; 858 if ((TrueVal || FalseVal) && 859 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 860 WantInteger, CxtI)) { 861 for (auto &C : Conds) { 862 Constant *Cond = C.first; 863 864 // Figure out what value to use for the condition. 865 bool KnownCond; 866 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 867 // A known boolean. 868 KnownCond = CI->isOne(); 869 } else { 870 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 871 // Either operand will do, so be sure to pick the one that's a known 872 // constant. 873 // FIXME: Do this more cleverly if both values are known constants? 874 KnownCond = (TrueVal != nullptr); 875 } 876 877 // See if the select has a known constant value for this predecessor. 878 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 879 Result.push_back(std::make_pair(Val, C.second)); 880 } 881 882 return !Result.empty(); 883 } 884 } 885 886 // If all else fails, see if LVI can figure out a constant value for us. 887 Constant *CI = LVI->getConstant(V, BB, CxtI); 888 if (Constant *KC = getKnownConstant(CI, Preference)) { 889 for (BasicBlock *Pred : predecessors(BB)) 890 Result.push_back(std::make_pair(KC, Pred)); 891 } 892 893 return !Result.empty(); 894 } 895 896 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 897 /// in an undefined jump, decide which block is best to revector to. 898 /// 899 /// Since we can pick an arbitrary destination, we pick the successor with the 900 /// fewest predecessors. This should reduce the in-degree of the others. 901 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 902 TerminatorInst *BBTerm = BB->getTerminator(); 903 unsigned MinSucc = 0; 904 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 905 // Compute the successor with the minimum number of predecessors. 906 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 907 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 908 TestBB = BBTerm->getSuccessor(i); 909 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 910 if (NumPreds < MinNumPreds) { 911 MinSucc = i; 912 MinNumPreds = NumPreds; 913 } 914 } 915 916 return MinSucc; 917 } 918 919 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 920 if (!BB->hasAddressTaken()) return false; 921 922 // If the block has its address taken, it may be a tree of dead constants 923 // hanging off of it. These shouldn't keep the block alive. 924 BlockAddress *BA = BlockAddress::get(BB); 925 BA->removeDeadConstantUsers(); 926 return !BA->use_empty(); 927 } 928 929 /// ProcessBlock - If there are any predecessors whose control can be threaded 930 /// through to a successor, transform them now. 931 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 932 // If the block is trivially dead, just return and let the caller nuke it. 933 // This simplifies other transformations. 934 if (pred_empty(BB) && 935 BB != &BB->getParent()->getEntryBlock()) 936 return false; 937 938 // If this block has a single predecessor, and if that pred has a single 939 // successor, merge the blocks. This encourages recursive jump threading 940 // because now the condition in this block can be threaded through 941 // predecessors of our predecessor block. 942 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 943 const TerminatorInst *TI = SinglePred->getTerminator(); 944 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 945 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 946 // If SinglePred was a loop header, BB becomes one. 947 if (LoopHeaders.erase(SinglePred)) 948 LoopHeaders.insert(BB); 949 950 LVI->eraseBlock(SinglePred); 951 MergeBasicBlockIntoOnlyPred(BB); 952 953 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 954 // BB code within one basic block `BB`), we need to invalidate the LVI 955 // information associated with BB, because the LVI information need not be 956 // true for all of BB after the merge. For example, 957 // Before the merge, LVI info and code is as follows: 958 // SinglePred: <LVI info1 for %p val> 959 // %y = use of %p 960 // call @exit() // need not transfer execution to successor. 961 // assume(%p) // from this point on %p is true 962 // br label %BB 963 // BB: <LVI info2 for %p val, i.e. %p is true> 964 // %x = use of %p 965 // br label exit 966 // 967 // Note that this LVI info for blocks BB and SinglPred is correct for %p 968 // (info2 and info1 respectively). After the merge and the deletion of the 969 // LVI info1 for SinglePred. We have the following code: 970 // BB: <LVI info2 for %p val> 971 // %y = use of %p 972 // call @exit() 973 // assume(%p) 974 // %x = use of %p <-- LVI info2 is correct from here onwards. 975 // br label exit 976 // LVI info2 for BB is incorrect at the beginning of BB. 977 978 // Invalidate LVI information for BB if the LVI is not provably true for 979 // all of BB. 980 if (any_of(*BB, [](Instruction &I) { 981 return !isGuaranteedToTransferExecutionToSuccessor(&I); 982 })) 983 LVI->eraseBlock(BB); 984 return true; 985 } 986 } 987 988 if (TryToUnfoldSelectInCurrBB(BB)) 989 return true; 990 991 // Look if we can propagate guards to predecessors. 992 if (HasGuards && ProcessGuards(BB)) 993 return true; 994 995 // What kind of constant we're looking for. 996 ConstantPreference Preference = WantInteger; 997 998 // Look to see if the terminator is a conditional branch, switch or indirect 999 // branch, if not we can't thread it. 1000 Value *Condition; 1001 Instruction *Terminator = BB->getTerminator(); 1002 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1003 // Can't thread an unconditional jump. 1004 if (BI->isUnconditional()) return false; 1005 Condition = BI->getCondition(); 1006 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1007 Condition = SI->getCondition(); 1008 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1009 // Can't thread indirect branch with no successors. 1010 if (IB->getNumSuccessors() == 0) return false; 1011 Condition = IB->getAddress()->stripPointerCasts(); 1012 Preference = WantBlockAddress; 1013 } else { 1014 return false; // Must be an invoke. 1015 } 1016 1017 // Run constant folding to see if we can reduce the condition to a simple 1018 // constant. 1019 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1020 Value *SimpleVal = 1021 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1022 if (SimpleVal) { 1023 I->replaceAllUsesWith(SimpleVal); 1024 if (isInstructionTriviallyDead(I, TLI)) 1025 I->eraseFromParent(); 1026 Condition = SimpleVal; 1027 } 1028 } 1029 1030 // If the terminator is branching on an undef, we can pick any of the 1031 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1032 if (isa<UndefValue>(Condition)) { 1033 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1034 1035 // Fold the branch/switch. 1036 TerminatorInst *BBTerm = BB->getTerminator(); 1037 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1038 if (i == BestSucc) continue; 1039 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 1040 } 1041 1042 DEBUG(dbgs() << " In block '" << BB->getName() 1043 << "' folding undef terminator: " << *BBTerm << '\n'); 1044 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1045 BBTerm->eraseFromParent(); 1046 return true; 1047 } 1048 1049 // If the terminator of this block is branching on a constant, simplify the 1050 // terminator to an unconditional branch. This can occur due to threading in 1051 // other blocks. 1052 if (getKnownConstant(Condition, Preference)) { 1053 DEBUG(dbgs() << " In block '" << BB->getName() 1054 << "' folding terminator: " << *BB->getTerminator() << '\n'); 1055 ++NumFolds; 1056 ConstantFoldTerminator(BB, true); 1057 return true; 1058 } 1059 1060 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1061 1062 // All the rest of our checks depend on the condition being an instruction. 1063 if (!CondInst) { 1064 // FIXME: Unify this with code below. 1065 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1066 return true; 1067 return false; 1068 } 1069 1070 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1071 // If we're branching on a conditional, LVI might be able to determine 1072 // it's value at the branch instruction. We only handle comparisons 1073 // against a constant at this time. 1074 // TODO: This should be extended to handle switches as well. 1075 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1076 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1077 if (CondBr && CondConst) { 1078 // We should have returned as soon as we turn a conditional branch to 1079 // unconditional. Because its no longer interesting as far as jump 1080 // threading is concerned. 1081 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1082 1083 LazyValueInfo::Tristate Ret = 1084 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1085 CondConst, CondBr); 1086 if (Ret != LazyValueInfo::Unknown) { 1087 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1088 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1089 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 1090 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1091 CondBr->eraseFromParent(); 1092 if (CondCmp->use_empty()) 1093 CondCmp->eraseFromParent(); 1094 // We can safely replace *some* uses of the CondInst if it has 1095 // exactly one value as returned by LVI. RAUW is incorrect in the 1096 // presence of guards and assumes, that have the `Cond` as the use. This 1097 // is because we use the guards/assume to reason about the `Cond` value 1098 // at the end of block, but RAUW unconditionally replaces all uses 1099 // including the guards/assumes themselves and the uses before the 1100 // guard/assume. 1101 else if (CondCmp->getParent() == BB) { 1102 auto *CI = Ret == LazyValueInfo::True ? 1103 ConstantInt::getTrue(CondCmp->getType()) : 1104 ConstantInt::getFalse(CondCmp->getType()); 1105 ReplaceFoldableUses(CondCmp, CI); 1106 } 1107 return true; 1108 } 1109 1110 // We did not manage to simplify this branch, try to see whether 1111 // CondCmp depends on a known phi-select pattern. 1112 if (TryToUnfoldSelect(CondCmp, BB)) 1113 return true; 1114 } 1115 } 1116 1117 // Check for some cases that are worth simplifying. Right now we want to look 1118 // for loads that are used by a switch or by the condition for the branch. If 1119 // we see one, check to see if it's partially redundant. If so, insert a PHI 1120 // which can then be used to thread the values. 1121 Value *SimplifyValue = CondInst; 1122 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1123 if (isa<Constant>(CondCmp->getOperand(1))) 1124 SimplifyValue = CondCmp->getOperand(0); 1125 1126 // TODO: There are other places where load PRE would be profitable, such as 1127 // more complex comparisons. 1128 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 1129 if (SimplifyPartiallyRedundantLoad(LI)) 1130 return true; 1131 1132 // Before threading, try to propagate profile data backwards: 1133 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1134 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1135 updatePredecessorProfileMetadata(PN, BB); 1136 1137 // Handle a variety of cases where we are branching on something derived from 1138 // a PHI node in the current block. If we can prove that any predecessors 1139 // compute a predictable value based on a PHI node, thread those predecessors. 1140 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1141 return true; 1142 1143 // If this is an otherwise-unfoldable branch on a phi node in the current 1144 // block, see if we can simplify. 1145 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1146 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1147 return ProcessBranchOnPHI(PN); 1148 1149 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1150 if (CondInst->getOpcode() == Instruction::Xor && 1151 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1152 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1153 1154 // Search for a stronger dominating condition that can be used to simplify a 1155 // conditional branch leaving BB. 1156 if (ProcessImpliedCondition(BB)) 1157 return true; 1158 1159 return false; 1160 } 1161 1162 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1163 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1164 if (!BI || !BI->isConditional()) 1165 return false; 1166 1167 Value *Cond = BI->getCondition(); 1168 BasicBlock *CurrentBB = BB; 1169 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1170 unsigned Iter = 0; 1171 1172 auto &DL = BB->getModule()->getDataLayout(); 1173 1174 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1175 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1176 if (!PBI || !PBI->isConditional()) 1177 return false; 1178 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1179 return false; 1180 1181 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1182 Optional<bool> Implication = 1183 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1184 if (Implication) { 1185 BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB); 1186 BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI); 1187 BI->eraseFromParent(); 1188 return true; 1189 } 1190 CurrentBB = CurrentPred; 1191 CurrentPred = CurrentBB->getSinglePredecessor(); 1192 } 1193 1194 return false; 1195 } 1196 1197 /// Return true if Op is an instruction defined in the given block. 1198 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1199 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1200 if (OpInst->getParent() == BB) 1201 return true; 1202 return false; 1203 } 1204 1205 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 1206 /// load instruction, eliminate it by replacing it with a PHI node. This is an 1207 /// important optimization that encourages jump threading, and needs to be run 1208 /// interlaced with other jump threading tasks. 1209 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 1210 // Don't hack volatile and ordered loads. 1211 if (!LI->isUnordered()) return false; 1212 1213 // If the load is defined in a block with exactly one predecessor, it can't be 1214 // partially redundant. 1215 BasicBlock *LoadBB = LI->getParent(); 1216 if (LoadBB->getSinglePredecessor()) 1217 return false; 1218 1219 // If the load is defined in an EH pad, it can't be partially redundant, 1220 // because the edges between the invoke and the EH pad cannot have other 1221 // instructions between them. 1222 if (LoadBB->isEHPad()) 1223 return false; 1224 1225 Value *LoadedPtr = LI->getOperand(0); 1226 1227 // If the loaded operand is defined in the LoadBB and its not a phi, 1228 // it can't be available in predecessors. 1229 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1230 return false; 1231 1232 // Scan a few instructions up from the load, to see if it is obviously live at 1233 // the entry to its block. 1234 BasicBlock::iterator BBIt(LI); 1235 bool IsLoadCSE; 1236 if (Value *AvailableVal = FindAvailableLoadedValue( 1237 LI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1238 // If the value of the load is locally available within the block, just use 1239 // it. This frequently occurs for reg2mem'd allocas. 1240 1241 if (IsLoadCSE) { 1242 LoadInst *NLI = cast<LoadInst>(AvailableVal); 1243 combineMetadataForCSE(NLI, LI); 1244 }; 1245 1246 // If the returned value is the load itself, replace with an undef. This can 1247 // only happen in dead loops. 1248 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 1249 if (AvailableVal->getType() != LI->getType()) 1250 AvailableVal = 1251 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 1252 LI->replaceAllUsesWith(AvailableVal); 1253 LI->eraseFromParent(); 1254 return true; 1255 } 1256 1257 // Otherwise, if we scanned the whole block and got to the top of the block, 1258 // we know the block is locally transparent to the load. If not, something 1259 // might clobber its value. 1260 if (BBIt != LoadBB->begin()) 1261 return false; 1262 1263 // If all of the loads and stores that feed the value have the same AA tags, 1264 // then we can propagate them onto any newly inserted loads. 1265 AAMDNodes AATags; 1266 LI->getAAMetadata(AATags); 1267 1268 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1269 1270 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1271 1272 AvailablePredsTy AvailablePreds; 1273 BasicBlock *OneUnavailablePred = nullptr; 1274 SmallVector<LoadInst*, 8> CSELoads; 1275 1276 // If we got here, the loaded value is transparent through to the start of the 1277 // block. Check to see if it is available in any of the predecessor blocks. 1278 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1279 // If we already scanned this predecessor, skip it. 1280 if (!PredsScanned.insert(PredBB).second) 1281 continue; 1282 1283 BBIt = PredBB->end(); 1284 unsigned NumScanedInst = 0; 1285 Value *PredAvailable = nullptr; 1286 // NOTE: We don't CSE load that is volatile or anything stronger than 1287 // unordered, that should have been checked when we entered the function. 1288 assert(LI->isUnordered() && "Attempting to CSE volatile or atomic loads"); 1289 // If this is a load on a phi pointer, phi-translate it and search 1290 // for available load/store to the pointer in predecessors. 1291 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1292 PredAvailable = FindAvailablePtrLoadStore( 1293 Ptr, LI->getType(), LI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan, 1294 AA, &IsLoadCSE, &NumScanedInst); 1295 1296 // If PredBB has a single predecessor, continue scanning through the 1297 // single precessor. 1298 BasicBlock *SinglePredBB = PredBB; 1299 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1300 NumScanedInst < DefMaxInstsToScan) { 1301 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1302 if (SinglePredBB) { 1303 BBIt = SinglePredBB->end(); 1304 PredAvailable = FindAvailablePtrLoadStore( 1305 Ptr, LI->getType(), LI->isAtomic(), SinglePredBB, BBIt, 1306 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1307 &NumScanedInst); 1308 } 1309 } 1310 1311 if (!PredAvailable) { 1312 OneUnavailablePred = PredBB; 1313 continue; 1314 } 1315 1316 if (IsLoadCSE) 1317 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1318 1319 // If so, this load is partially redundant. Remember this info so that we 1320 // can create a PHI node. 1321 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1322 } 1323 1324 // If the loaded value isn't available in any predecessor, it isn't partially 1325 // redundant. 1326 if (AvailablePreds.empty()) return false; 1327 1328 // Okay, the loaded value is available in at least one (and maybe all!) 1329 // predecessors. If the value is unavailable in more than one unique 1330 // predecessor, we want to insert a merge block for those common predecessors. 1331 // This ensures that we only have to insert one reload, thus not increasing 1332 // code size. 1333 BasicBlock *UnavailablePred = nullptr; 1334 1335 // If the value is unavailable in one of predecessors, we will end up 1336 // inserting a new instruction into them. It is only valid if all the 1337 // instructions before LI are guaranteed to pass execution to its successor, 1338 // or if LI is safe to speculate. 1339 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1340 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1341 // It requires domination tree analysis, so for this simple case it is an 1342 // overkill. 1343 if (PredsScanned.size() != AvailablePreds.size() && 1344 !isSafeToSpeculativelyExecute(LI)) 1345 for (auto I = LoadBB->begin(); &*I != LI; ++I) 1346 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1347 return false; 1348 1349 // If there is exactly one predecessor where the value is unavailable, the 1350 // already computed 'OneUnavailablePred' block is it. If it ends in an 1351 // unconditional branch, we know that it isn't a critical edge. 1352 if (PredsScanned.size() == AvailablePreds.size()+1 && 1353 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1354 UnavailablePred = OneUnavailablePred; 1355 } else if (PredsScanned.size() != AvailablePreds.size()) { 1356 // Otherwise, we had multiple unavailable predecessors or we had a critical 1357 // edge from the one. 1358 SmallVector<BasicBlock*, 8> PredsToSplit; 1359 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1360 1361 for (const auto &AvailablePred : AvailablePreds) 1362 AvailablePredSet.insert(AvailablePred.first); 1363 1364 // Add all the unavailable predecessors to the PredsToSplit list. 1365 for (BasicBlock *P : predecessors(LoadBB)) { 1366 // If the predecessor is an indirect goto, we can't split the edge. 1367 if (isa<IndirectBrInst>(P->getTerminator())) 1368 return false; 1369 1370 if (!AvailablePredSet.count(P)) 1371 PredsToSplit.push_back(P); 1372 } 1373 1374 // Split them out to their own block. 1375 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1376 } 1377 1378 // If the value isn't available in all predecessors, then there will be 1379 // exactly one where it isn't available. Insert a load on that edge and add 1380 // it to the AvailablePreds list. 1381 if (UnavailablePred) { 1382 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1383 "Can't handle critical edge here!"); 1384 LoadInst *NewVal = new LoadInst( 1385 LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1386 LI->getName() + ".pr", false, LI->getAlignment(), LI->getOrdering(), 1387 LI->getSyncScopeID(), UnavailablePred->getTerminator()); 1388 NewVal->setDebugLoc(LI->getDebugLoc()); 1389 if (AATags) 1390 NewVal->setAAMetadata(AATags); 1391 1392 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1393 } 1394 1395 // Now we know that each predecessor of this block has a value in 1396 // AvailablePreds, sort them for efficient access as we're walking the preds. 1397 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1398 1399 // Create a PHI node at the start of the block for the PRE'd load value. 1400 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1401 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1402 &LoadBB->front()); 1403 PN->takeName(LI); 1404 PN->setDebugLoc(LI->getDebugLoc()); 1405 1406 // Insert new entries into the PHI for each predecessor. A single block may 1407 // have multiple entries here. 1408 for (pred_iterator PI = PB; PI != PE; ++PI) { 1409 BasicBlock *P = *PI; 1410 AvailablePredsTy::iterator I = 1411 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1412 std::make_pair(P, (Value*)nullptr)); 1413 1414 assert(I != AvailablePreds.end() && I->first == P && 1415 "Didn't find entry for predecessor!"); 1416 1417 // If we have an available predecessor but it requires casting, insert the 1418 // cast in the predecessor and use the cast. Note that we have to update the 1419 // AvailablePreds vector as we go so that all of the PHI entries for this 1420 // predecessor use the same bitcast. 1421 Value *&PredV = I->second; 1422 if (PredV->getType() != LI->getType()) 1423 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1424 P->getTerminator()); 1425 1426 PN->addIncoming(PredV, I->first); 1427 } 1428 1429 for (LoadInst *PredLI : CSELoads) { 1430 combineMetadataForCSE(PredLI, LI); 1431 } 1432 1433 LI->replaceAllUsesWith(PN); 1434 LI->eraseFromParent(); 1435 1436 return true; 1437 } 1438 1439 /// FindMostPopularDest - The specified list contains multiple possible 1440 /// threadable destinations. Pick the one that occurs the most frequently in 1441 /// the list. 1442 static BasicBlock * 1443 FindMostPopularDest(BasicBlock *BB, 1444 const SmallVectorImpl<std::pair<BasicBlock *, 1445 BasicBlock *>> &PredToDestList) { 1446 assert(!PredToDestList.empty()); 1447 1448 // Determine popularity. If there are multiple possible destinations, we 1449 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1450 // blocks with known and real destinations to threading undef. We'll handle 1451 // them later if interesting. 1452 DenseMap<BasicBlock*, unsigned> DestPopularity; 1453 for (const auto &PredToDest : PredToDestList) 1454 if (PredToDest.second) 1455 DestPopularity[PredToDest.second]++; 1456 1457 if (DestPopularity.empty()) 1458 return nullptr; 1459 1460 // Find the most popular dest. 1461 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1462 BasicBlock *MostPopularDest = DPI->first; 1463 unsigned Popularity = DPI->second; 1464 SmallVector<BasicBlock*, 4> SamePopularity; 1465 1466 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1467 // If the popularity of this entry isn't higher than the popularity we've 1468 // seen so far, ignore it. 1469 if (DPI->second < Popularity) 1470 ; // ignore. 1471 else if (DPI->second == Popularity) { 1472 // If it is the same as what we've seen so far, keep track of it. 1473 SamePopularity.push_back(DPI->first); 1474 } else { 1475 // If it is more popular, remember it. 1476 SamePopularity.clear(); 1477 MostPopularDest = DPI->first; 1478 Popularity = DPI->second; 1479 } 1480 } 1481 1482 // Okay, now we know the most popular destination. If there is more than one 1483 // destination, we need to determine one. This is arbitrary, but we need 1484 // to make a deterministic decision. Pick the first one that appears in the 1485 // successor list. 1486 if (!SamePopularity.empty()) { 1487 SamePopularity.push_back(MostPopularDest); 1488 TerminatorInst *TI = BB->getTerminator(); 1489 for (unsigned i = 0; ; ++i) { 1490 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1491 1492 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1493 continue; 1494 1495 MostPopularDest = TI->getSuccessor(i); 1496 break; 1497 } 1498 } 1499 1500 // Okay, we have finally picked the most popular destination. 1501 return MostPopularDest; 1502 } 1503 1504 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1505 ConstantPreference Preference, 1506 Instruction *CxtI) { 1507 // If threading this would thread across a loop header, don't even try to 1508 // thread the edge. 1509 if (LoopHeaders.count(BB)) 1510 return false; 1511 1512 PredValueInfoTy PredValues; 1513 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1514 return false; 1515 1516 assert(!PredValues.empty() && 1517 "ComputeValueKnownInPredecessors returned true with no values"); 1518 1519 DEBUG(dbgs() << "IN BB: " << *BB; 1520 for (const auto &PredValue : PredValues) { 1521 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1522 << *PredValue.first 1523 << " for pred '" << PredValue.second->getName() << "'.\n"; 1524 }); 1525 1526 // Decide what we want to thread through. Convert our list of known values to 1527 // a list of known destinations for each pred. This also discards duplicate 1528 // predecessors and keeps track of the undefined inputs (which are represented 1529 // as a null dest in the PredToDestList). 1530 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1531 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1532 1533 BasicBlock *OnlyDest = nullptr; 1534 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1535 Constant *OnlyVal = nullptr; 1536 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1537 1538 unsigned PredWithKnownDest = 0; 1539 for (const auto &PredValue : PredValues) { 1540 BasicBlock *Pred = PredValue.second; 1541 if (!SeenPreds.insert(Pred).second) 1542 continue; // Duplicate predecessor entry. 1543 1544 Constant *Val = PredValue.first; 1545 1546 BasicBlock *DestBB; 1547 if (isa<UndefValue>(Val)) 1548 DestBB = nullptr; 1549 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1550 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1551 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1552 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1553 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1554 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1555 } else { 1556 assert(isa<IndirectBrInst>(BB->getTerminator()) 1557 && "Unexpected terminator"); 1558 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1559 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1560 } 1561 1562 // If we have exactly one destination, remember it for efficiency below. 1563 if (PredToDestList.empty()) { 1564 OnlyDest = DestBB; 1565 OnlyVal = Val; 1566 } else { 1567 if (OnlyDest != DestBB) 1568 OnlyDest = MultipleDestSentinel; 1569 // It possible we have same destination, but different value, e.g. default 1570 // case in switchinst. 1571 if (Val != OnlyVal) 1572 OnlyVal = MultipleVal; 1573 } 1574 1575 // We know where this predecessor is going. 1576 ++PredWithKnownDest; 1577 1578 // If the predecessor ends with an indirect goto, we can't change its 1579 // destination. 1580 if (isa<IndirectBrInst>(Pred->getTerminator())) 1581 continue; 1582 1583 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1584 } 1585 1586 // If all edges were unthreadable, we fail. 1587 if (PredToDestList.empty()) 1588 return false; 1589 1590 // If all the predecessors go to a single known successor, we want to fold, 1591 // not thread. By doing so, we do not need to duplicate the current block and 1592 // also miss potential opportunities in case we dont/cant duplicate. 1593 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1594 if (PredWithKnownDest == 1595 (size_t)std::distance(pred_begin(BB), pred_end(BB))) { 1596 bool SeenFirstBranchToOnlyDest = false; 1597 for (BasicBlock *SuccBB : successors(BB)) { 1598 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) 1599 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1600 else 1601 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1602 } 1603 1604 // Finally update the terminator. 1605 TerminatorInst *Term = BB->getTerminator(); 1606 BranchInst::Create(OnlyDest, Term); 1607 Term->eraseFromParent(); 1608 1609 // If the condition is now dead due to the removal of the old terminator, 1610 // erase it. 1611 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1612 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1613 CondInst->eraseFromParent(); 1614 // We can safely replace *some* uses of the CondInst if it has 1615 // exactly one value as returned by LVI. RAUW is incorrect in the 1616 // presence of guards and assumes, that have the `Cond` as the use. This 1617 // is because we use the guards/assume to reason about the `Cond` value 1618 // at the end of block, but RAUW unconditionally replaces all uses 1619 // including the guards/assumes themselves and the uses before the 1620 // guard/assume. 1621 else if (OnlyVal && OnlyVal != MultipleVal && 1622 CondInst->getParent() == BB) 1623 ReplaceFoldableUses(CondInst, OnlyVal); 1624 } 1625 return true; 1626 } 1627 } 1628 1629 // Determine which is the most common successor. If we have many inputs and 1630 // this block is a switch, we want to start by threading the batch that goes 1631 // to the most popular destination first. If we only know about one 1632 // threadable destination (the common case) we can avoid this. 1633 BasicBlock *MostPopularDest = OnlyDest; 1634 1635 if (MostPopularDest == MultipleDestSentinel) { 1636 // Remove any loop headers from the Dest list, ThreadEdge conservatively 1637 // won't process them, but we might have other destination that are eligible 1638 // and we still want to process. 1639 erase_if(PredToDestList, 1640 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1641 return LoopHeaders.count(PredToDest.second) != 0; 1642 }); 1643 1644 if (PredToDestList.empty()) 1645 return false; 1646 1647 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1648 } 1649 1650 // Now that we know what the most popular destination is, factor all 1651 // predecessors that will jump to it into a single predecessor. 1652 SmallVector<BasicBlock*, 16> PredsToFactor; 1653 for (const auto &PredToDest : PredToDestList) 1654 if (PredToDest.second == MostPopularDest) { 1655 BasicBlock *Pred = PredToDest.first; 1656 1657 // This predecessor may be a switch or something else that has multiple 1658 // edges to the block. Factor each of these edges by listing them 1659 // according to # occurrences in PredsToFactor. 1660 for (BasicBlock *Succ : successors(Pred)) 1661 if (Succ == BB) 1662 PredsToFactor.push_back(Pred); 1663 } 1664 1665 // If the threadable edges are branching on an undefined value, we get to pick 1666 // the destination that these predecessors should get to. 1667 if (!MostPopularDest) 1668 MostPopularDest = BB->getTerminator()-> 1669 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1670 1671 // Ok, try to thread it! 1672 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1673 } 1674 1675 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1676 /// a PHI node in the current block. See if there are any simplifications we 1677 /// can do based on inputs to the phi node. 1678 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1679 BasicBlock *BB = PN->getParent(); 1680 1681 // TODO: We could make use of this to do it once for blocks with common PHI 1682 // values. 1683 SmallVector<BasicBlock*, 1> PredBBs; 1684 PredBBs.resize(1); 1685 1686 // If any of the predecessor blocks end in an unconditional branch, we can 1687 // *duplicate* the conditional branch into that block in order to further 1688 // encourage jump threading and to eliminate cases where we have branch on a 1689 // phi of an icmp (branch on icmp is much better). 1690 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1691 BasicBlock *PredBB = PN->getIncomingBlock(i); 1692 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1693 if (PredBr->isUnconditional()) { 1694 PredBBs[0] = PredBB; 1695 // Try to duplicate BB into PredBB. 1696 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1697 return true; 1698 } 1699 } 1700 1701 return false; 1702 } 1703 1704 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1705 /// a xor instruction in the current block. See if there are any 1706 /// simplifications we can do based on inputs to the xor. 1707 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1708 BasicBlock *BB = BO->getParent(); 1709 1710 // If either the LHS or RHS of the xor is a constant, don't do this 1711 // optimization. 1712 if (isa<ConstantInt>(BO->getOperand(0)) || 1713 isa<ConstantInt>(BO->getOperand(1))) 1714 return false; 1715 1716 // If the first instruction in BB isn't a phi, we won't be able to infer 1717 // anything special about any particular predecessor. 1718 if (!isa<PHINode>(BB->front())) 1719 return false; 1720 1721 // If this BB is a landing pad, we won't be able to split the edge into it. 1722 if (BB->isEHPad()) 1723 return false; 1724 1725 // If we have a xor as the branch input to this block, and we know that the 1726 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1727 // the condition into the predecessor and fix that value to true, saving some 1728 // logical ops on that path and encouraging other paths to simplify. 1729 // 1730 // This copies something like this: 1731 // 1732 // BB: 1733 // %X = phi i1 [1], [%X'] 1734 // %Y = icmp eq i32 %A, %B 1735 // %Z = xor i1 %X, %Y 1736 // br i1 %Z, ... 1737 // 1738 // Into: 1739 // BB': 1740 // %Y = icmp ne i32 %A, %B 1741 // br i1 %Y, ... 1742 1743 PredValueInfoTy XorOpValues; 1744 bool isLHS = true; 1745 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1746 WantInteger, BO)) { 1747 assert(XorOpValues.empty()); 1748 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1749 WantInteger, BO)) 1750 return false; 1751 isLHS = false; 1752 } 1753 1754 assert(!XorOpValues.empty() && 1755 "ComputeValueKnownInPredecessors returned true with no values"); 1756 1757 // Scan the information to see which is most popular: true or false. The 1758 // predecessors can be of the set true, false, or undef. 1759 unsigned NumTrue = 0, NumFalse = 0; 1760 for (const auto &XorOpValue : XorOpValues) { 1761 if (isa<UndefValue>(XorOpValue.first)) 1762 // Ignore undefs for the count. 1763 continue; 1764 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1765 ++NumFalse; 1766 else 1767 ++NumTrue; 1768 } 1769 1770 // Determine which value to split on, true, false, or undef if neither. 1771 ConstantInt *SplitVal = nullptr; 1772 if (NumTrue > NumFalse) 1773 SplitVal = ConstantInt::getTrue(BB->getContext()); 1774 else if (NumTrue != 0 || NumFalse != 0) 1775 SplitVal = ConstantInt::getFalse(BB->getContext()); 1776 1777 // Collect all of the blocks that this can be folded into so that we can 1778 // factor this once and clone it once. 1779 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1780 for (const auto &XorOpValue : XorOpValues) { 1781 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1782 continue; 1783 1784 BlocksToFoldInto.push_back(XorOpValue.second); 1785 } 1786 1787 // If we inferred a value for all of the predecessors, then duplication won't 1788 // help us. However, we can just replace the LHS or RHS with the constant. 1789 if (BlocksToFoldInto.size() == 1790 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1791 if (!SplitVal) { 1792 // If all preds provide undef, just nuke the xor, because it is undef too. 1793 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1794 BO->eraseFromParent(); 1795 } else if (SplitVal->isZero()) { 1796 // If all preds provide 0, replace the xor with the other input. 1797 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1798 BO->eraseFromParent(); 1799 } else { 1800 // If all preds provide 1, set the computed value to 1. 1801 BO->setOperand(!isLHS, SplitVal); 1802 } 1803 1804 return true; 1805 } 1806 1807 // Try to duplicate BB into PredBB. 1808 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1809 } 1810 1811 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1812 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1813 /// NewPred using the entries from OldPred (suitably mapped). 1814 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1815 BasicBlock *OldPred, 1816 BasicBlock *NewPred, 1817 DenseMap<Instruction*, Value*> &ValueMap) { 1818 for (PHINode &PN : PHIBB->phis()) { 1819 // Ok, we have a PHI node. Figure out what the incoming value was for the 1820 // DestBlock. 1821 Value *IV = PN.getIncomingValueForBlock(OldPred); 1822 1823 // Remap the value if necessary. 1824 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1825 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1826 if (I != ValueMap.end()) 1827 IV = I->second; 1828 } 1829 1830 PN.addIncoming(IV, NewPred); 1831 } 1832 } 1833 1834 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1835 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1836 /// across BB. Transform the IR to reflect this change. 1837 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1838 const SmallVectorImpl<BasicBlock *> &PredBBs, 1839 BasicBlock *SuccBB) { 1840 // If threading to the same block as we come from, we would infinite loop. 1841 if (SuccBB == BB) { 1842 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1843 << "' - would thread to self!\n"); 1844 return false; 1845 } 1846 1847 // If threading this would thread across a loop header, don't thread the edge. 1848 // See the comments above FindLoopHeaders for justifications and caveats. 1849 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 1850 DEBUG({ 1851 bool BBIsHeader = LoopHeaders.count(BB); 1852 bool SuccIsHeader = LoopHeaders.count(SuccBB); 1853 dbgs() << " Not threading across " 1854 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 1855 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 1856 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 1857 }); 1858 return false; 1859 } 1860 1861 unsigned JumpThreadCost = 1862 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1863 if (JumpThreadCost > BBDupThreshold) { 1864 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1865 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1866 return false; 1867 } 1868 1869 // And finally, do it! Start by factoring the predecessors if needed. 1870 BasicBlock *PredBB; 1871 if (PredBBs.size() == 1) 1872 PredBB = PredBBs[0]; 1873 else { 1874 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1875 << " common predecessors.\n"); 1876 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1877 } 1878 1879 // And finally, do it! 1880 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1881 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1882 << ", across block:\n " 1883 << *BB << "\n"); 1884 1885 LVI->threadEdge(PredBB, BB, SuccBB); 1886 1887 // We are going to have to map operands from the original BB block to the new 1888 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1889 // account for entry from PredBB. 1890 DenseMap<Instruction*, Value*> ValueMapping; 1891 1892 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1893 BB->getName()+".thread", 1894 BB->getParent(), BB); 1895 NewBB->moveAfter(PredBB); 1896 1897 // Set the block frequency of NewBB. 1898 if (HasProfileData) { 1899 auto NewBBFreq = 1900 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1901 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1902 } 1903 1904 BasicBlock::iterator BI = BB->begin(); 1905 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1906 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1907 1908 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1909 // mapping and using it to remap operands in the cloned instructions. 1910 for (; !isa<TerminatorInst>(BI); ++BI) { 1911 Instruction *New = BI->clone(); 1912 New->setName(BI->getName()); 1913 NewBB->getInstList().push_back(New); 1914 ValueMapping[&*BI] = New; 1915 1916 // Remap operands to patch up intra-block references. 1917 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1918 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1919 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1920 if (I != ValueMapping.end()) 1921 New->setOperand(i, I->second); 1922 } 1923 } 1924 1925 // We didn't copy the terminator from BB over to NewBB, because there is now 1926 // an unconditional jump to SuccBB. Insert the unconditional jump. 1927 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1928 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1929 1930 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1931 // PHI nodes for NewBB now. 1932 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1933 1934 // If there were values defined in BB that are used outside the block, then we 1935 // now have to update all uses of the value to use either the original value, 1936 // the cloned value, or some PHI derived value. This can require arbitrary 1937 // PHI insertion, of which we are prepared to do, clean these up now. 1938 SSAUpdater SSAUpdate; 1939 SmallVector<Use*, 16> UsesToRename; 1940 for (Instruction &I : *BB) { 1941 // Scan all uses of this instruction to see if it is used outside of its 1942 // block, and if so, record them in UsesToRename. 1943 for (Use &U : I.uses()) { 1944 Instruction *User = cast<Instruction>(U.getUser()); 1945 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1946 if (UserPN->getIncomingBlock(U) == BB) 1947 continue; 1948 } else if (User->getParent() == BB) 1949 continue; 1950 1951 UsesToRename.push_back(&U); 1952 } 1953 1954 // If there are no uses outside the block, we're done with this instruction. 1955 if (UsesToRename.empty()) 1956 continue; 1957 1958 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1959 1960 // We found a use of I outside of BB. Rename all uses of I that are outside 1961 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1962 // with the two values we know. 1963 SSAUpdate.Initialize(I.getType(), I.getName()); 1964 SSAUpdate.AddAvailableValue(BB, &I); 1965 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1966 1967 while (!UsesToRename.empty()) 1968 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1969 DEBUG(dbgs() << "\n"); 1970 } 1971 1972 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1973 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1974 // us to simplify any PHI nodes in BB. 1975 TerminatorInst *PredTerm = PredBB->getTerminator(); 1976 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1977 if (PredTerm->getSuccessor(i) == BB) { 1978 BB->removePredecessor(PredBB, true); 1979 PredTerm->setSuccessor(i, NewBB); 1980 } 1981 1982 // At this point, the IR is fully up to date and consistent. Do a quick scan 1983 // over the new instructions and zap any that are constants or dead. This 1984 // frequently happens because of phi translation. 1985 SimplifyInstructionsInBlock(NewBB, TLI); 1986 1987 // Update the edge weight from BB to SuccBB, which should be less than before. 1988 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1989 1990 // Threaded an edge! 1991 ++NumThreads; 1992 return true; 1993 } 1994 1995 /// Create a new basic block that will be the predecessor of BB and successor of 1996 /// all blocks in Preds. When profile data is available, update the frequency of 1997 /// this new block. 1998 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 1999 ArrayRef<BasicBlock *> Preds, 2000 const char *Suffix) { 2001 // Collect the frequencies of all predecessors of BB, which will be used to 2002 // update the edge weight on BB->SuccBB. 2003 BlockFrequency PredBBFreq(0); 2004 if (HasProfileData) 2005 for (auto Pred : Preds) 2006 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 2007 2008 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 2009 2010 // Set the block frequency of the newly created PredBB, which is the sum of 2011 // frequencies of Preds. 2012 if (HasProfileData) 2013 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 2014 return PredBB; 2015 } 2016 2017 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2018 const TerminatorInst *TI = BB->getTerminator(); 2019 assert(TI->getNumSuccessors() > 1 && "not a split"); 2020 2021 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2022 if (!WeightsNode) 2023 return false; 2024 2025 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2026 if (MDName->getString() != "branch_weights") 2027 return false; 2028 2029 // Ensure there are weights for all of the successors. Note that the first 2030 // operand to the metadata node is a name, not a weight. 2031 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2032 } 2033 2034 /// Update the block frequency of BB and branch weight and the metadata on the 2035 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2036 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2037 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2038 BasicBlock *BB, 2039 BasicBlock *NewBB, 2040 BasicBlock *SuccBB) { 2041 if (!HasProfileData) 2042 return; 2043 2044 assert(BFI && BPI && "BFI & BPI should have been created here"); 2045 2046 // As the edge from PredBB to BB is deleted, we have to update the block 2047 // frequency of BB. 2048 auto BBOrigFreq = BFI->getBlockFreq(BB); 2049 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2050 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2051 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2052 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2053 2054 // Collect updated outgoing edges' frequencies from BB and use them to update 2055 // edge probabilities. 2056 SmallVector<uint64_t, 4> BBSuccFreq; 2057 for (BasicBlock *Succ : successors(BB)) { 2058 auto SuccFreq = (Succ == SuccBB) 2059 ? BB2SuccBBFreq - NewBBFreq 2060 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2061 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2062 } 2063 2064 uint64_t MaxBBSuccFreq = 2065 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2066 2067 SmallVector<BranchProbability, 4> BBSuccProbs; 2068 if (MaxBBSuccFreq == 0) 2069 BBSuccProbs.assign(BBSuccFreq.size(), 2070 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2071 else { 2072 for (uint64_t Freq : BBSuccFreq) 2073 BBSuccProbs.push_back( 2074 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2075 // Normalize edge probabilities so that they sum up to one. 2076 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2077 BBSuccProbs.end()); 2078 } 2079 2080 // Update edge probabilities in BPI. 2081 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2082 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2083 2084 // Update the profile metadata as well. 2085 // 2086 // Don't do this if the profile of the transformed blocks was statically 2087 // estimated. (This could occur despite the function having an entry 2088 // frequency in completely cold parts of the CFG.) 2089 // 2090 // In this case we don't want to suggest to subsequent passes that the 2091 // calculated weights are fully consistent. Consider this graph: 2092 // 2093 // check_1 2094 // 50% / | 2095 // eq_1 | 50% 2096 // \ | 2097 // check_2 2098 // 50% / | 2099 // eq_2 | 50% 2100 // \ | 2101 // check_3 2102 // 50% / | 2103 // eq_3 | 50% 2104 // \ | 2105 // 2106 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2107 // the overall probabilities are inconsistent; the total probability that the 2108 // value is either 1, 2 or 3 is 150%. 2109 // 2110 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2111 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2112 // the loop exit edge. Then based solely on static estimation we would assume 2113 // the loop was extremely hot. 2114 // 2115 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2116 // shouldn't make edges extremely likely or unlikely based solely on static 2117 // estimation. 2118 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2119 SmallVector<uint32_t, 4> Weights; 2120 for (auto Prob : BBSuccProbs) 2121 Weights.push_back(Prob.getNumerator()); 2122 2123 auto TI = BB->getTerminator(); 2124 TI->setMetadata( 2125 LLVMContext::MD_prof, 2126 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2127 } 2128 } 2129 2130 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2131 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2132 /// If we can duplicate the contents of BB up into PredBB do so now, this 2133 /// improves the odds that the branch will be on an analyzable instruction like 2134 /// a compare. 2135 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2136 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2137 assert(!PredBBs.empty() && "Can't handle an empty set"); 2138 2139 // If BB is a loop header, then duplicating this block outside the loop would 2140 // cause us to transform this into an irreducible loop, don't do this. 2141 // See the comments above FindLoopHeaders for justifications and caveats. 2142 if (LoopHeaders.count(BB)) { 2143 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2144 << "' into predecessor block '" << PredBBs[0]->getName() 2145 << "' - it might create an irreducible loop!\n"); 2146 return false; 2147 } 2148 2149 unsigned DuplicationCost = 2150 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2151 if (DuplicationCost > BBDupThreshold) { 2152 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2153 << "' - Cost is too high: " << DuplicationCost << "\n"); 2154 return false; 2155 } 2156 2157 // And finally, do it! Start by factoring the predecessors if needed. 2158 BasicBlock *PredBB; 2159 if (PredBBs.size() == 1) 2160 PredBB = PredBBs[0]; 2161 else { 2162 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2163 << " common predecessors.\n"); 2164 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2165 } 2166 2167 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2168 // of PredBB. 2169 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 2170 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 2171 << DuplicationCost << " block is:" << *BB << "\n"); 2172 2173 // Unless PredBB ends with an unconditional branch, split the edge so that we 2174 // can just clone the bits from BB into the end of the new PredBB. 2175 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2176 2177 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2178 PredBB = SplitEdge(PredBB, BB); 2179 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2180 } 2181 2182 // We are going to have to map operands from the original BB block into the 2183 // PredBB block. Evaluate PHI nodes in BB. 2184 DenseMap<Instruction*, Value*> ValueMapping; 2185 2186 BasicBlock::iterator BI = BB->begin(); 2187 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2188 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2189 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2190 // mapping and using it to remap operands in the cloned instructions. 2191 for (; BI != BB->end(); ++BI) { 2192 Instruction *New = BI->clone(); 2193 2194 // Remap operands to patch up intra-block references. 2195 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2196 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2197 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2198 if (I != ValueMapping.end()) 2199 New->setOperand(i, I->second); 2200 } 2201 2202 // If this instruction can be simplified after the operands are updated, 2203 // just use the simplified value instead. This frequently happens due to 2204 // phi translation. 2205 if (Value *IV = SimplifyInstruction( 2206 New, 2207 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2208 ValueMapping[&*BI] = IV; 2209 if (!New->mayHaveSideEffects()) { 2210 New->deleteValue(); 2211 New = nullptr; 2212 } 2213 } else { 2214 ValueMapping[&*BI] = New; 2215 } 2216 if (New) { 2217 // Otherwise, insert the new instruction into the block. 2218 New->setName(BI->getName()); 2219 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2220 } 2221 } 2222 2223 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2224 // add entries to the PHI nodes for branch from PredBB now. 2225 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2226 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2227 ValueMapping); 2228 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2229 ValueMapping); 2230 2231 // If there were values defined in BB that are used outside the block, then we 2232 // now have to update all uses of the value to use either the original value, 2233 // the cloned value, or some PHI derived value. This can require arbitrary 2234 // PHI insertion, of which we are prepared to do, clean these up now. 2235 SSAUpdater SSAUpdate; 2236 SmallVector<Use*, 16> UsesToRename; 2237 for (Instruction &I : *BB) { 2238 // Scan all uses of this instruction to see if it is used outside of its 2239 // block, and if so, record them in UsesToRename. 2240 for (Use &U : I.uses()) { 2241 Instruction *User = cast<Instruction>(U.getUser()); 2242 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2243 if (UserPN->getIncomingBlock(U) == BB) 2244 continue; 2245 } else if (User->getParent() == BB) 2246 continue; 2247 2248 UsesToRename.push_back(&U); 2249 } 2250 2251 // If there are no uses outside the block, we're done with this instruction. 2252 if (UsesToRename.empty()) 2253 continue; 2254 2255 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2256 2257 // We found a use of I outside of BB. Rename all uses of I that are outside 2258 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2259 // with the two values we know. 2260 SSAUpdate.Initialize(I.getType(), I.getName()); 2261 SSAUpdate.AddAvailableValue(BB, &I); 2262 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2263 2264 while (!UsesToRename.empty()) 2265 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2266 DEBUG(dbgs() << "\n"); 2267 } 2268 2269 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2270 // that we nuked. 2271 BB->removePredecessor(PredBB, true); 2272 2273 // Remove the unconditional branch at the end of the PredBB block. 2274 OldPredBranch->eraseFromParent(); 2275 2276 ++NumDupes; 2277 return true; 2278 } 2279 2280 /// TryToUnfoldSelect - Look for blocks of the form 2281 /// bb1: 2282 /// %a = select 2283 /// br bb2 2284 /// 2285 /// bb2: 2286 /// %p = phi [%a, %bb1] ... 2287 /// %c = icmp %p 2288 /// br i1 %c 2289 /// 2290 /// And expand the select into a branch structure if one of its arms allows %c 2291 /// to be folded. This later enables threading from bb1 over bb2. 2292 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2293 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2294 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2295 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2296 2297 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2298 CondLHS->getParent() != BB) 2299 return false; 2300 2301 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2302 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2303 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2304 2305 // Look if one of the incoming values is a select in the corresponding 2306 // predecessor. 2307 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2308 continue; 2309 2310 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2311 if (!PredTerm || !PredTerm->isUnconditional()) 2312 continue; 2313 2314 // Now check if one of the select values would allow us to constant fold the 2315 // terminator in BB. We don't do the transform if both sides fold, those 2316 // cases will be threaded in any case. 2317 LazyValueInfo::Tristate LHSFolds = 2318 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2319 CondRHS, Pred, BB, CondCmp); 2320 LazyValueInfo::Tristate RHSFolds = 2321 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2322 CondRHS, Pred, BB, CondCmp); 2323 if ((LHSFolds != LazyValueInfo::Unknown || 2324 RHSFolds != LazyValueInfo::Unknown) && 2325 LHSFolds != RHSFolds) { 2326 // Expand the select. 2327 // 2328 // Pred -- 2329 // | v 2330 // | NewBB 2331 // | | 2332 // |----- 2333 // v 2334 // BB 2335 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2336 BB->getParent(), BB); 2337 // Move the unconditional branch to NewBB. 2338 PredTerm->removeFromParent(); 2339 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2340 // Create a conditional branch and update PHI nodes. 2341 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2342 CondLHS->setIncomingValue(I, SI->getFalseValue()); 2343 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 2344 // The select is now dead. 2345 SI->eraseFromParent(); 2346 2347 // Update any other PHI nodes in BB. 2348 for (BasicBlock::iterator BI = BB->begin(); 2349 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2350 if (Phi != CondLHS) 2351 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2352 return true; 2353 } 2354 } 2355 return false; 2356 } 2357 2358 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2359 /// same BB in the form 2360 /// bb: 2361 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2362 /// %s = select %p, trueval, falseval 2363 /// 2364 /// or 2365 /// 2366 /// bb: 2367 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2368 /// %c = cmp %p, 0 2369 /// %s = select %c, trueval, falseval 2370 /// 2371 /// And expand the select into a branch structure. This later enables 2372 /// jump-threading over bb in this pass. 2373 /// 2374 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2375 /// select if the associated PHI has at least one constant. If the unfolded 2376 /// select is not jump-threaded, it will be folded again in the later 2377 /// optimizations. 2378 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2379 // If threading this would thread across a loop header, don't thread the edge. 2380 // See the comments above FindLoopHeaders for justifications and caveats. 2381 if (LoopHeaders.count(BB)) 2382 return false; 2383 2384 for (BasicBlock::iterator BI = BB->begin(); 2385 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2386 // Look for a Phi having at least one constant incoming value. 2387 if (llvm::all_of(PN->incoming_values(), 2388 [](Value *V) { return !isa<ConstantInt>(V); })) 2389 continue; 2390 2391 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2392 // Check if SI is in BB and use V as condition. 2393 if (SI->getParent() != BB) 2394 return false; 2395 Value *Cond = SI->getCondition(); 2396 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2397 }; 2398 2399 SelectInst *SI = nullptr; 2400 for (Use &U : PN->uses()) { 2401 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2402 // Look for a ICmp in BB that compares PN with a constant and is the 2403 // condition of a Select. 2404 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2405 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2406 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2407 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2408 SI = SelectI; 2409 break; 2410 } 2411 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2412 // Look for a Select in BB that uses PN as condtion. 2413 if (isUnfoldCandidate(SelectI, U.get())) { 2414 SI = SelectI; 2415 break; 2416 } 2417 } 2418 } 2419 2420 if (!SI) 2421 continue; 2422 // Expand the select. 2423 TerminatorInst *Term = 2424 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2425 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2426 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2427 NewPN->addIncoming(SI->getFalseValue(), BB); 2428 SI->replaceAllUsesWith(NewPN); 2429 SI->eraseFromParent(); 2430 return true; 2431 } 2432 return false; 2433 } 2434 2435 /// Try to propagate a guard from the current BB into one of its predecessors 2436 /// in case if another branch of execution implies that the condition of this 2437 /// guard is always true. Currently we only process the simplest case that 2438 /// looks like: 2439 /// 2440 /// Start: 2441 /// %cond = ... 2442 /// br i1 %cond, label %T1, label %F1 2443 /// T1: 2444 /// br label %Merge 2445 /// F1: 2446 /// br label %Merge 2447 /// Merge: 2448 /// %condGuard = ... 2449 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2450 /// 2451 /// And cond either implies condGuard or !condGuard. In this case all the 2452 /// instructions before the guard can be duplicated in both branches, and the 2453 /// guard is then threaded to one of them. 2454 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2455 using namespace PatternMatch; 2456 2457 // We only want to deal with two predecessors. 2458 BasicBlock *Pred1, *Pred2; 2459 auto PI = pred_begin(BB), PE = pred_end(BB); 2460 if (PI == PE) 2461 return false; 2462 Pred1 = *PI++; 2463 if (PI == PE) 2464 return false; 2465 Pred2 = *PI++; 2466 if (PI != PE) 2467 return false; 2468 if (Pred1 == Pred2) 2469 return false; 2470 2471 // Try to thread one of the guards of the block. 2472 // TODO: Look up deeper than to immediate predecessor? 2473 auto *Parent = Pred1->getSinglePredecessor(); 2474 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2475 return false; 2476 2477 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2478 for (auto &I : *BB) 2479 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>())) 2480 if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2481 return true; 2482 2483 return false; 2484 } 2485 2486 /// Try to propagate the guard from BB which is the lower block of a diamond 2487 /// to one of its branches, in case if diamond's condition implies guard's 2488 /// condition. 2489 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2490 BranchInst *BI) { 2491 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2492 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2493 Value *GuardCond = Guard->getArgOperand(0); 2494 Value *BranchCond = BI->getCondition(); 2495 BasicBlock *TrueDest = BI->getSuccessor(0); 2496 BasicBlock *FalseDest = BI->getSuccessor(1); 2497 2498 auto &DL = BB->getModule()->getDataLayout(); 2499 bool TrueDestIsSafe = false; 2500 bool FalseDestIsSafe = false; 2501 2502 // True dest is safe if BranchCond => GuardCond. 2503 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2504 if (Impl && *Impl) 2505 TrueDestIsSafe = true; 2506 else { 2507 // False dest is safe if !BranchCond => GuardCond. 2508 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2509 if (Impl && *Impl) 2510 FalseDestIsSafe = true; 2511 } 2512 2513 if (!TrueDestIsSafe && !FalseDestIsSafe) 2514 return false; 2515 2516 BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2517 BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2518 2519 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2520 Instruction *AfterGuard = Guard->getNextNode(); 2521 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2522 if (Cost > BBDupThreshold) 2523 return false; 2524 // Duplicate all instructions before the guard and the guard itself to the 2525 // branch where implication is not proved. 2526 GuardedBlock = DuplicateInstructionsInSplitBetween( 2527 BB, GuardedBlock, AfterGuard, GuardedMapping); 2528 assert(GuardedBlock && "Could not create the guarded block?"); 2529 // Duplicate all instructions before the guard in the unguarded branch. 2530 // Since we have successfully duplicated the guarded block and this block 2531 // has fewer instructions, we expect it to succeed. 2532 UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock, 2533 Guard, UnguardedMapping); 2534 assert(UnguardedBlock && "Could not create the unguarded block?"); 2535 DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2536 << GuardedBlock->getName() << "\n"); 2537 2538 // Some instructions before the guard may still have uses. For them, we need 2539 // to create Phi nodes merging their copies in both guarded and unguarded 2540 // branches. Those instructions that have no uses can be just removed. 2541 SmallVector<Instruction *, 4> ToRemove; 2542 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2543 if (!isa<PHINode>(&*BI)) 2544 ToRemove.push_back(&*BI); 2545 2546 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2547 assert(InsertionPoint && "Empty block?"); 2548 // Substitute with Phis & remove. 2549 for (auto *Inst : reverse(ToRemove)) { 2550 if (!Inst->use_empty()) { 2551 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2552 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2553 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2554 NewPN->insertBefore(InsertionPoint); 2555 Inst->replaceAllUsesWith(NewPN); 2556 } 2557 Inst->eraseFromParent(); 2558 } 2559 return true; 2560 } 2561