1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The InductiveRangeCheckElimination pass splits a loop's iteration space into 11 // three disjoint ranges. It does that in a way such that the loop running in 12 // the middle loop provably does not need range checks. As an example, it will 13 // convert 14 // 15 // len = < known positive > 16 // for (i = 0; i < n; i++) { 17 // if (0 <= i && i < len) { 18 // do_something(); 19 // } else { 20 // throw_out_of_bounds(); 21 // } 22 // } 23 // 24 // to 25 // 26 // len = < known positive > 27 // limit = smin(n, len) 28 // // no first segment 29 // for (i = 0; i < limit; i++) { 30 // if (0 <= i && i < len) { // this check is fully redundant 31 // do_something(); 32 // } else { 33 // throw_out_of_bounds(); 34 // } 35 // } 36 // for (i = limit; i < n; i++) { 37 // if (0 <= i && i < len) { 38 // do_something(); 39 // } else { 40 // throw_out_of_bounds(); 41 // } 42 // } 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/ADT/APInt.h" 47 #include "llvm/ADT/ArrayRef.h" 48 #include "llvm/ADT/None.h" 49 #include "llvm/ADT/Optional.h" 50 #include "llvm/ADT/SmallPtrSet.h" 51 #include "llvm/ADT/SmallVector.h" 52 #include "llvm/ADT/StringRef.h" 53 #include "llvm/ADT/Twine.h" 54 #include "llvm/Analysis/BranchProbabilityInfo.h" 55 #include "llvm/Analysis/LoopInfo.h" 56 #include "llvm/Analysis/LoopPass.h" 57 #include "llvm/Analysis/ScalarEvolution.h" 58 #include "llvm/Analysis/ScalarEvolutionExpander.h" 59 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/Constants.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Dominators.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/InstrTypes.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/Metadata.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/PatternMatch.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/Use.h" 74 #include "llvm/IR/User.h" 75 #include "llvm/IR/Value.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/Transforms/Scalar.h" 85 #include "llvm/Transforms/Utils/Cloning.h" 86 #include "llvm/Transforms/Utils/LoopSimplify.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Utils/ValueMapper.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <iterator> 92 #include <limits> 93 #include <utility> 94 #include <vector> 95 96 using namespace llvm; 97 using namespace llvm::PatternMatch; 98 99 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, 100 cl::init(64)); 101 102 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden, 103 cl::init(false)); 104 105 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden, 106 cl::init(false)); 107 108 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", 109 cl::Hidden, cl::init(10)); 110 111 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks", 112 cl::Hidden, cl::init(false)); 113 114 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch", 115 cl::Hidden, cl::init(true)); 116 117 static const char *ClonedLoopTag = "irce.loop.clone"; 118 119 #define DEBUG_TYPE "irce" 120 121 namespace { 122 123 /// An inductive range check is conditional branch in a loop with 124 /// 125 /// 1. a very cold successor (i.e. the branch jumps to that successor very 126 /// rarely) 127 /// 128 /// and 129 /// 130 /// 2. a condition that is provably true for some contiguous range of values 131 /// taken by the containing loop's induction variable. 132 /// 133 class InductiveRangeCheck { 134 // Classifies a range check 135 enum RangeCheckKind : unsigned { 136 // Range check of the form "0 <= I". 137 RANGE_CHECK_LOWER = 1, 138 139 // Range check of the form "I < L" where L is known positive. 140 RANGE_CHECK_UPPER = 2, 141 142 // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER 143 // conditions. 144 RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER, 145 146 // Unrecognized range check condition. 147 RANGE_CHECK_UNKNOWN = (unsigned)-1 148 }; 149 150 static StringRef rangeCheckKindToStr(RangeCheckKind); 151 152 const SCEV *Begin = nullptr; 153 const SCEV *Step = nullptr; 154 const SCEV *End = nullptr; 155 Use *CheckUse = nullptr; 156 RangeCheckKind Kind = RANGE_CHECK_UNKNOWN; 157 bool IsSigned = true; 158 159 static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 160 ScalarEvolution &SE, Value *&Index, 161 Value *&Length, bool &IsSigned); 162 163 static void 164 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, 165 SmallVectorImpl<InductiveRangeCheck> &Checks, 166 SmallPtrSetImpl<Value *> &Visited); 167 168 public: 169 const SCEV *getBegin() const { return Begin; } 170 const SCEV *getStep() const { return Step; } 171 const SCEV *getEnd() const { return End; } 172 bool isSigned() const { return IsSigned; } 173 174 void print(raw_ostream &OS) const { 175 OS << "InductiveRangeCheck:\n"; 176 OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n"; 177 OS << " Begin: "; 178 Begin->print(OS); 179 OS << " Step: "; 180 Step->print(OS); 181 OS << " End: "; 182 if (End) 183 End->print(OS); 184 else 185 OS << "(null)"; 186 OS << "\n CheckUse: "; 187 getCheckUse()->getUser()->print(OS); 188 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; 189 } 190 191 LLVM_DUMP_METHOD 192 void dump() { 193 print(dbgs()); 194 } 195 196 Use *getCheckUse() const { return CheckUse; } 197 198 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If 199 /// R.getEnd() sle R.getBegin(), then R denotes the empty range. 200 201 class Range { 202 const SCEV *Begin; 203 const SCEV *End; 204 205 public: 206 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { 207 assert(Begin->getType() == End->getType() && "ill-typed range!"); 208 } 209 210 Type *getType() const { return Begin->getType(); } 211 const SCEV *getBegin() const { return Begin; } 212 const SCEV *getEnd() const { return End; } 213 bool isEmpty(ScalarEvolution &SE, bool IsSigned) const { 214 if (Begin == End) 215 return true; 216 if (IsSigned) 217 return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End); 218 else 219 return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End); 220 } 221 }; 222 223 /// This is the value the condition of the branch needs to evaluate to for the 224 /// branch to take the hot successor (see (1) above). 225 bool getPassingDirection() { return true; } 226 227 /// Computes a range for the induction variable (IndVar) in which the range 228 /// check is redundant and can be constant-folded away. The induction 229 /// variable is not required to be the canonical {0,+,1} induction variable. 230 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE, 231 const SCEVAddRecExpr *IndVar, 232 bool IsLatchSigned) const; 233 234 /// Parse out a set of inductive range checks from \p BI and append them to \p 235 /// Checks. 236 /// 237 /// NB! There may be conditions feeding into \p BI that aren't inductive range 238 /// checks, and hence don't end up in \p Checks. 239 static void 240 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE, 241 BranchProbabilityInfo &BPI, 242 SmallVectorImpl<InductiveRangeCheck> &Checks); 243 }; 244 245 class InductiveRangeCheckElimination : public LoopPass { 246 public: 247 static char ID; 248 249 InductiveRangeCheckElimination() : LoopPass(ID) { 250 initializeInductiveRangeCheckEliminationPass( 251 *PassRegistry::getPassRegistry()); 252 } 253 254 void getAnalysisUsage(AnalysisUsage &AU) const override { 255 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 256 getLoopAnalysisUsage(AU); 257 } 258 259 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 260 }; 261 262 } // end anonymous namespace 263 264 char InductiveRangeCheckElimination::ID = 0; 265 266 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce", 267 "Inductive range check elimination", false, false) 268 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 269 INITIALIZE_PASS_DEPENDENCY(LoopPass) 270 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce", 271 "Inductive range check elimination", false, false) 272 273 StringRef InductiveRangeCheck::rangeCheckKindToStr( 274 InductiveRangeCheck::RangeCheckKind RCK) { 275 switch (RCK) { 276 case InductiveRangeCheck::RANGE_CHECK_UNKNOWN: 277 return "RANGE_CHECK_UNKNOWN"; 278 279 case InductiveRangeCheck::RANGE_CHECK_UPPER: 280 return "RANGE_CHECK_UPPER"; 281 282 case InductiveRangeCheck::RANGE_CHECK_LOWER: 283 return "RANGE_CHECK_LOWER"; 284 285 case InductiveRangeCheck::RANGE_CHECK_BOTH: 286 return "RANGE_CHECK_BOTH"; 287 } 288 289 llvm_unreachable("unknown range check type!"); 290 } 291 292 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot 293 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set 294 /// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value being 295 /// range checked, and set `Length` to the upper limit `Index` is being range 296 /// checked with if (and only if) the range check type is stronger or equal to 297 /// RANGE_CHECK_UPPER. 298 InductiveRangeCheck::RangeCheckKind 299 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, 300 ScalarEvolution &SE, Value *&Index, 301 Value *&Length, bool &IsSigned) { 302 auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) { 303 const SCEV *S = SE.getSCEV(V); 304 if (isa<SCEVCouldNotCompute>(S)) 305 return false; 306 307 return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant && 308 SE.isKnownNonNegative(S); 309 }; 310 311 ICmpInst::Predicate Pred = ICI->getPredicate(); 312 Value *LHS = ICI->getOperand(0); 313 Value *RHS = ICI->getOperand(1); 314 315 switch (Pred) { 316 default: 317 return RANGE_CHECK_UNKNOWN; 318 319 case ICmpInst::ICMP_SLE: 320 std::swap(LHS, RHS); 321 LLVM_FALLTHROUGH; 322 case ICmpInst::ICMP_SGE: 323 IsSigned = true; 324 if (match(RHS, m_ConstantInt<0>())) { 325 Index = LHS; 326 return RANGE_CHECK_LOWER; 327 } 328 return RANGE_CHECK_UNKNOWN; 329 330 case ICmpInst::ICMP_SLT: 331 std::swap(LHS, RHS); 332 LLVM_FALLTHROUGH; 333 case ICmpInst::ICMP_SGT: 334 IsSigned = true; 335 if (match(RHS, m_ConstantInt<-1>())) { 336 Index = LHS; 337 return RANGE_CHECK_LOWER; 338 } 339 340 if (IsNonNegativeAndNotLoopVarying(LHS)) { 341 Index = RHS; 342 Length = LHS; 343 return RANGE_CHECK_UPPER; 344 } 345 return RANGE_CHECK_UNKNOWN; 346 347 case ICmpInst::ICMP_ULT: 348 std::swap(LHS, RHS); 349 LLVM_FALLTHROUGH; 350 case ICmpInst::ICMP_UGT: 351 IsSigned = false; 352 if (IsNonNegativeAndNotLoopVarying(LHS)) { 353 Index = RHS; 354 Length = LHS; 355 return RANGE_CHECK_BOTH; 356 } 357 return RANGE_CHECK_UNKNOWN; 358 } 359 360 llvm_unreachable("default clause returns!"); 361 } 362 363 void InductiveRangeCheck::extractRangeChecksFromCond( 364 Loop *L, ScalarEvolution &SE, Use &ConditionUse, 365 SmallVectorImpl<InductiveRangeCheck> &Checks, 366 SmallPtrSetImpl<Value *> &Visited) { 367 Value *Condition = ConditionUse.get(); 368 if (!Visited.insert(Condition).second) 369 return; 370 371 // TODO: Do the same for OR, XOR, NOT etc? 372 if (match(Condition, m_And(m_Value(), m_Value()))) { 373 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0), 374 Checks, Visited); 375 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1), 376 Checks, Visited); 377 return; 378 } 379 380 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition); 381 if (!ICI) 382 return; 383 384 Value *Length = nullptr, *Index; 385 bool IsSigned; 386 auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned); 387 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) 388 return; 389 390 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index)); 391 bool IsAffineIndex = 392 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); 393 394 if (!IsAffineIndex) 395 return; 396 397 InductiveRangeCheck IRC; 398 IRC.End = Length ? SE.getSCEV(Length) : nullptr; 399 IRC.Begin = IndexAddRec->getStart(); 400 IRC.Step = IndexAddRec->getStepRecurrence(SE); 401 IRC.CheckUse = &ConditionUse; 402 IRC.Kind = RCKind; 403 IRC.IsSigned = IsSigned; 404 Checks.push_back(IRC); 405 } 406 407 void InductiveRangeCheck::extractRangeChecksFromBranch( 408 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI, 409 SmallVectorImpl<InductiveRangeCheck> &Checks) { 410 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) 411 return; 412 413 BranchProbability LikelyTaken(15, 16); 414 415 if (!SkipProfitabilityChecks && 416 BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken) 417 return; 418 419 SmallPtrSet<Value *, 8> Visited; 420 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), 421 Checks, Visited); 422 } 423 424 // Add metadata to the loop L to disable loop optimizations. Callers need to 425 // confirm that optimizing loop L is not beneficial. 426 static void DisableAllLoopOptsOnLoop(Loop &L) { 427 // We do not care about any existing loopID related metadata for L, since we 428 // are setting all loop metadata to false. 429 LLVMContext &Context = L.getHeader()->getContext(); 430 // Reserve first location for self reference to the LoopID metadata node. 431 MDNode *Dummy = MDNode::get(Context, {}); 432 MDNode *DisableUnroll = MDNode::get( 433 Context, {MDString::get(Context, "llvm.loop.unroll.disable")}); 434 Metadata *FalseVal = 435 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0)); 436 MDNode *DisableVectorize = MDNode::get( 437 Context, 438 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal}); 439 MDNode *DisableLICMVersioning = MDNode::get( 440 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")}); 441 MDNode *DisableDistribution= MDNode::get( 442 Context, 443 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal}); 444 MDNode *NewLoopID = 445 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize, 446 DisableLICMVersioning, DisableDistribution}); 447 // Set operand 0 to refer to the loop id itself. 448 NewLoopID->replaceOperandWith(0, NewLoopID); 449 L.setLoopID(NewLoopID); 450 } 451 452 namespace { 453 454 // Keeps track of the structure of a loop. This is similar to llvm::Loop, 455 // except that it is more lightweight and can track the state of a loop through 456 // changing and potentially invalid IR. This structure also formalizes the 457 // kinds of loops we can deal with -- ones that have a single latch that is also 458 // an exiting block *and* have a canonical induction variable. 459 struct LoopStructure { 460 const char *Tag = ""; 461 462 BasicBlock *Header = nullptr; 463 BasicBlock *Latch = nullptr; 464 465 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th 466 // successor is `LatchExit', the exit block of the loop. 467 BranchInst *LatchBr = nullptr; 468 BasicBlock *LatchExit = nullptr; 469 unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max(); 470 471 // The loop represented by this instance of LoopStructure is semantically 472 // equivalent to: 473 // 474 // intN_ty inc = IndVarIncreasing ? 1 : -1; 475 // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT; 476 // 477 // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase) 478 // ... body ... 479 480 Value *IndVarBase = nullptr; 481 Value *IndVarStart = nullptr; 482 Value *IndVarStep = nullptr; 483 Value *LoopExitAt = nullptr; 484 bool IndVarIncreasing = false; 485 bool IsSignedPredicate = true; 486 487 LoopStructure() = default; 488 489 template <typename M> LoopStructure map(M Map) const { 490 LoopStructure Result; 491 Result.Tag = Tag; 492 Result.Header = cast<BasicBlock>(Map(Header)); 493 Result.Latch = cast<BasicBlock>(Map(Latch)); 494 Result.LatchBr = cast<BranchInst>(Map(LatchBr)); 495 Result.LatchExit = cast<BasicBlock>(Map(LatchExit)); 496 Result.LatchBrExitIdx = LatchBrExitIdx; 497 Result.IndVarBase = Map(IndVarBase); 498 Result.IndVarStart = Map(IndVarStart); 499 Result.IndVarStep = Map(IndVarStep); 500 Result.LoopExitAt = Map(LoopExitAt); 501 Result.IndVarIncreasing = IndVarIncreasing; 502 Result.IsSignedPredicate = IsSignedPredicate; 503 return Result; 504 } 505 506 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, 507 BranchProbabilityInfo &BPI, 508 Loop &, 509 const char *&); 510 }; 511 512 /// This class is used to constrain loops to run within a given iteration space. 513 /// The algorithm this class implements is given a Loop and a range [Begin, 514 /// End). The algorithm then tries to break out a "main loop" out of the loop 515 /// it is given in a way that the "main loop" runs with the induction variable 516 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post 517 /// loops to run any remaining iterations. The pre loop runs any iterations in 518 /// which the induction variable is < Begin, and the post loop runs any 519 /// iterations in which the induction variable is >= End. 520 class LoopConstrainer { 521 // The representation of a clone of the original loop we started out with. 522 struct ClonedLoop { 523 // The cloned blocks 524 std::vector<BasicBlock *> Blocks; 525 526 // `Map` maps values in the clonee into values in the cloned version 527 ValueToValueMapTy Map; 528 529 // An instance of `LoopStructure` for the cloned loop 530 LoopStructure Structure; 531 }; 532 533 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for 534 // more details on what these fields mean. 535 struct RewrittenRangeInfo { 536 BasicBlock *PseudoExit = nullptr; 537 BasicBlock *ExitSelector = nullptr; 538 std::vector<PHINode *> PHIValuesAtPseudoExit; 539 PHINode *IndVarEnd = nullptr; 540 541 RewrittenRangeInfo() = default; 542 }; 543 544 // Calculated subranges we restrict the iteration space of the main loop to. 545 // See the implementation of `calculateSubRanges' for more details on how 546 // these fields are computed. `LowLimit` is None if there is no restriction 547 // on low end of the restricted iteration space of the main loop. `HighLimit` 548 // is None if there is no restriction on high end of the restricted iteration 549 // space of the main loop. 550 551 struct SubRanges { 552 Optional<const SCEV *> LowLimit; 553 Optional<const SCEV *> HighLimit; 554 }; 555 556 // A utility function that does a `replaceUsesOfWith' on the incoming block 557 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's 558 // incoming block list with `ReplaceBy'. 559 static void replacePHIBlock(PHINode *PN, BasicBlock *Block, 560 BasicBlock *ReplaceBy); 561 562 // Compute a safe set of limits for the main loop to run in -- effectively the 563 // intersection of `Range' and the iteration space of the original loop. 564 // Return None if unable to compute the set of subranges. 565 Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const; 566 567 // Clone `OriginalLoop' and return the result in CLResult. The IR after 568 // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- 569 // the PHI nodes say that there is an incoming edge from `OriginalPreheader` 570 // but there is no such edge. 571 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; 572 573 // Create the appropriate loop structure needed to describe a cloned copy of 574 // `Original`. The clone is described by `VM`. 575 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent, 576 ValueToValueMapTy &VM); 577 578 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The 579 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the 580 // iteration space is not changed. `ExitLoopAt' is assumed to be slt 581 // `OriginalHeaderCount'. 582 // 583 // If there are iterations left to execute, control is made to jump to 584 // `ContinuationBlock', otherwise they take the normal loop exit. The 585 // returned `RewrittenRangeInfo' object is populated as follows: 586 // 587 // .PseudoExit is a basic block that unconditionally branches to 588 // `ContinuationBlock'. 589 // 590 // .ExitSelector is a basic block that decides, on exit from the loop, 591 // whether to branch to the "true" exit or to `PseudoExit'. 592 // 593 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value 594 // for each PHINode in the loop header on taking the pseudo exit. 595 // 596 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate 597 // preheader because it is made to branch to the loop header only 598 // conditionally. 599 RewrittenRangeInfo 600 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, 601 Value *ExitLoopAt, 602 BasicBlock *ContinuationBlock) const; 603 604 // The loop denoted by `LS' has `OldPreheader' as its preheader. This 605 // function creates a new preheader for `LS' and returns it. 606 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, 607 const char *Tag) const; 608 609 // `ContinuationBlockAndPreheader' was the continuation block for some call to 610 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. 611 // This function rewrites the PHI nodes in `LS.Header' to start with the 612 // correct value. 613 void rewriteIncomingValuesForPHIs( 614 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, 615 const LoopConstrainer::RewrittenRangeInfo &RRI) const; 616 617 // Even though we do not preserve any passes at this time, we at least need to 618 // keep the parent loop structure consistent. The `LPPassManager' seems to 619 // verify this after running a loop pass. This function adds the list of 620 // blocks denoted by BBs to this loops parent loop if required. 621 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs); 622 623 // Some global state. 624 Function &F; 625 LLVMContext &Ctx; 626 ScalarEvolution &SE; 627 DominatorTree &DT; 628 LPPassManager &LPM; 629 LoopInfo &LI; 630 631 // Information about the original loop we started out with. 632 Loop &OriginalLoop; 633 634 const SCEV *LatchTakenCount = nullptr; 635 BasicBlock *OriginalPreheader = nullptr; 636 637 // The preheader of the main loop. This may or may not be different from 638 // `OriginalPreheader'. 639 BasicBlock *MainLoopPreheader = nullptr; 640 641 // The range we need to run the main loop in. 642 InductiveRangeCheck::Range Range; 643 644 // The structure of the main loop (see comment at the beginning of this class 645 // for a definition) 646 LoopStructure MainLoopStructure; 647 648 public: 649 LoopConstrainer(Loop &L, LoopInfo &LI, LPPassManager &LPM, 650 const LoopStructure &LS, ScalarEvolution &SE, 651 DominatorTree &DT, InductiveRangeCheck::Range R) 652 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), 653 SE(SE), DT(DT), LPM(LPM), LI(LI), OriginalLoop(L), Range(R), 654 MainLoopStructure(LS) {} 655 656 // Entry point for the algorithm. Returns true on success. 657 bool run(); 658 }; 659 660 } // end anonymous namespace 661 662 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block, 663 BasicBlock *ReplaceBy) { 664 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 665 if (PN->getIncomingBlock(i) == Block) 666 PN->setIncomingBlock(i, ReplaceBy); 667 } 668 669 static bool CanBeMax(ScalarEvolution &SE, const SCEV *S, bool Signed) { 670 APInt Max = Signed ? 671 APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth()) : 672 APInt::getMaxValue(cast<IntegerType>(S->getType())->getBitWidth()); 673 return SE.getSignedRange(S).contains(Max) && 674 SE.getUnsignedRange(S).contains(Max); 675 } 676 677 static bool SumCanReachMax(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2, 678 bool Signed) { 679 // S1 < INT_MAX - S2 ===> S1 + S2 < INT_MAX. 680 assert(SE.isKnownNonNegative(S2) && 681 "We expected the 2nd arg to be non-negative!"); 682 const SCEV *Max = SE.getConstant( 683 Signed ? APInt::getSignedMaxValue( 684 cast<IntegerType>(S1->getType())->getBitWidth()) 685 : APInt::getMaxValue( 686 cast<IntegerType>(S1->getType())->getBitWidth())); 687 const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2); 688 return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 689 S1, CapForS1); 690 } 691 692 static bool CanBeMin(ScalarEvolution &SE, const SCEV *S, bool Signed) { 693 APInt Min = Signed ? 694 APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth()) : 695 APInt::getMinValue(cast<IntegerType>(S->getType())->getBitWidth()); 696 return SE.getSignedRange(S).contains(Min) && 697 SE.getUnsignedRange(S).contains(Min); 698 } 699 700 static bool SumCanReachMin(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2, 701 bool Signed) { 702 // S1 > INT_MIN - S2 ===> S1 + S2 > INT_MIN. 703 assert(SE.isKnownNonPositive(S2) && 704 "We expected the 2nd arg to be non-positive!"); 705 const SCEV *Max = SE.getConstant( 706 Signed ? APInt::getSignedMinValue( 707 cast<IntegerType>(S1->getType())->getBitWidth()) 708 : APInt::getMinValue( 709 cast<IntegerType>(S1->getType())->getBitWidth())); 710 const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2); 711 return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, 712 S1, CapForS1); 713 } 714 715 Optional<LoopStructure> 716 LoopStructure::parseLoopStructure(ScalarEvolution &SE, 717 BranchProbabilityInfo &BPI, 718 Loop &L, const char *&FailureReason) { 719 if (!L.isLoopSimplifyForm()) { 720 FailureReason = "loop not in LoopSimplify form"; 721 return None; 722 } 723 724 BasicBlock *Latch = L.getLoopLatch(); 725 assert(Latch && "Simplified loops only have one latch!"); 726 727 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) { 728 FailureReason = "loop has already been cloned"; 729 return None; 730 } 731 732 if (!L.isLoopExiting(Latch)) { 733 FailureReason = "no loop latch"; 734 return None; 735 } 736 737 BasicBlock *Header = L.getHeader(); 738 BasicBlock *Preheader = L.getLoopPreheader(); 739 if (!Preheader) { 740 FailureReason = "no preheader"; 741 return None; 742 } 743 744 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 745 if (!LatchBr || LatchBr->isUnconditional()) { 746 FailureReason = "latch terminator not conditional branch"; 747 return None; 748 } 749 750 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; 751 752 BranchProbability ExitProbability = 753 BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx); 754 755 if (!SkipProfitabilityChecks && 756 ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { 757 FailureReason = "short running loop, not profitable"; 758 return None; 759 } 760 761 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition()); 762 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) { 763 FailureReason = "latch terminator branch not conditional on integral icmp"; 764 return None; 765 } 766 767 const SCEV *LatchCount = SE.getExitCount(&L, Latch); 768 if (isa<SCEVCouldNotCompute>(LatchCount)) { 769 FailureReason = "could not compute latch count"; 770 return None; 771 } 772 773 ICmpInst::Predicate Pred = ICI->getPredicate(); 774 Value *LeftValue = ICI->getOperand(0); 775 const SCEV *LeftSCEV = SE.getSCEV(LeftValue); 776 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType()); 777 778 Value *RightValue = ICI->getOperand(1); 779 const SCEV *RightSCEV = SE.getSCEV(RightValue); 780 781 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. 782 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 783 if (isa<SCEVAddRecExpr>(RightSCEV)) { 784 std::swap(LeftSCEV, RightSCEV); 785 std::swap(LeftValue, RightValue); 786 Pred = ICmpInst::getSwappedPredicate(Pred); 787 } else { 788 FailureReason = "no add recurrences in the icmp"; 789 return None; 790 } 791 } 792 793 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { 794 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 795 return true; 796 797 IntegerType *Ty = cast<IntegerType>(AR->getType()); 798 IntegerType *WideTy = 799 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); 800 801 const SCEVAddRecExpr *ExtendAfterOp = 802 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 803 if (ExtendAfterOp) { 804 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); 805 const SCEV *ExtendedStep = 806 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); 807 808 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && 809 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; 810 811 if (NoSignedWrap) 812 return true; 813 } 814 815 // We may have proved this when computing the sign extension above. 816 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; 817 }; 818 819 // Here we check whether the suggested AddRec is an induction variable that 820 // can be handled (i.e. with known constant step), and if yes, calculate its 821 // step and identify whether it is increasing or decreasing. 822 auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing, 823 ConstantInt *&StepCI) { 824 if (!AR->isAffine()) 825 return false; 826 827 // Currently we only work with induction variables that have been proved to 828 // not wrap. This restriction can potentially be lifted in the future. 829 830 if (!HasNoSignedWrap(AR)) 831 return false; 832 833 if (const SCEVConstant *StepExpr = 834 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) { 835 StepCI = StepExpr->getValue(); 836 assert(!StepCI->isZero() && "Zero step?"); 837 IsIncreasing = !StepCI->isNegative(); 838 return true; 839 } 840 841 return false; 842 }; 843 844 // `ICI` is interpreted as taking the backedge if the *next* value of the 845 // induction variable satisfies some constraint. 846 847 const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV); 848 bool IsIncreasing = false; 849 bool IsSignedPredicate = true; 850 ConstantInt *StepCI; 851 if (!IsInductionVar(IndVarBase, IsIncreasing, StepCI)) { 852 FailureReason = "LHS in icmp not induction variable"; 853 return None; 854 } 855 856 const SCEV *StartNext = IndVarBase->getStart(); 857 const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE)); 858 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); 859 const SCEV *Step = SE.getSCEV(StepCI); 860 861 ConstantInt *One = ConstantInt::get(IndVarTy, 1); 862 if (IsIncreasing) { 863 bool DecreasedRightValueByOne = false; 864 if (StepCI->isOne()) { 865 // Try to turn eq/ne predicates to those we can work with. 866 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 867 // while (++i != len) { while (++i < len) { 868 // ... ---> ... 869 // } } 870 // If both parts are known non-negative, it is profitable to use 871 // unsigned comparison in increasing loop. This allows us to make the 872 // comparison check against "RightSCEV + 1" more optimistic. 873 if (SE.isKnownNonNegative(IndVarStart) && 874 SE.isKnownNonNegative(RightSCEV)) 875 Pred = ICmpInst::ICMP_ULT; 876 else 877 Pred = ICmpInst::ICMP_SLT; 878 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 && 879 !CanBeMin(SE, RightSCEV, /* IsSignedPredicate */ true)) { 880 // while (true) { while (true) { 881 // if (++i == len) ---> if (++i > len - 1) 882 // break; break; 883 // ... ... 884 // } } 885 // TODO: Insert ICMP_UGT if both are non-negative? 886 Pred = ICmpInst::ICMP_SGT; 887 RightSCEV = SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())); 888 DecreasedRightValueByOne = true; 889 } 890 } 891 892 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 893 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 894 bool FoundExpectedPred = 895 (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0); 896 897 if (!FoundExpectedPred) { 898 FailureReason = "expected icmp slt semantically, found something else"; 899 return None; 900 } 901 902 IsSignedPredicate = 903 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; 904 905 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 906 FailureReason = "unsigned latch conditions are explicitly prohibited"; 907 return None; 908 } 909 910 // The predicate that we need to check that the induction variable lies 911 // within bounds. 912 ICmpInst::Predicate BoundPred = 913 IsSignedPredicate ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 914 915 if (LatchBrExitIdx == 0) { 916 const SCEV *StepMinusOne = SE.getMinusSCEV(Step, 917 SE.getOne(Step->getType())); 918 if (SumCanReachMax(SE, RightSCEV, StepMinusOne, IsSignedPredicate)) { 919 // TODO: this restriction is easily removable -- we just have to 920 // remember that the icmp was an slt and not an sle. 921 FailureReason = "limit may overflow when coercing le to lt"; 922 return None; 923 } 924 925 if (!SE.isLoopEntryGuardedByCond( 926 &L, BoundPred, IndVarStart, 927 SE.getAddExpr(RightSCEV, Step))) { 928 FailureReason = "Induction variable start not bounded by upper limit"; 929 return None; 930 } 931 932 // We need to increase the right value unless we have already decreased 933 // it virtually when we replaced EQ with SGT. 934 if (!DecreasedRightValueByOne) { 935 IRBuilder<> B(Preheader->getTerminator()); 936 RightValue = B.CreateAdd(RightValue, One); 937 } 938 } else { 939 if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) { 940 FailureReason = "Induction variable start not bounded by upper limit"; 941 return None; 942 } 943 assert(!DecreasedRightValueByOne && 944 "Right value can be decreased only for LatchBrExitIdx == 0!"); 945 } 946 } else { 947 bool IncreasedRightValueByOne = false; 948 if (StepCI->isMinusOne()) { 949 // Try to turn eq/ne predicates to those we can work with. 950 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) 951 // while (--i != len) { while (--i > len) { 952 // ... ---> ... 953 // } } 954 // We intentionally don't turn the predicate into UGT even if we know 955 // that both operands are non-negative, because it will only pessimize 956 // our check against "RightSCEV - 1". 957 Pred = ICmpInst::ICMP_SGT; 958 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 && 959 !CanBeMax(SE, RightSCEV, /* IsSignedPredicate */ true)) { 960 // while (true) { while (true) { 961 // if (--i == len) ---> if (--i < len + 1) 962 // break; break; 963 // ... ... 964 // } } 965 // TODO: Insert ICMP_ULT if both are non-negative? 966 Pred = ICmpInst::ICMP_SLT; 967 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); 968 IncreasedRightValueByOne = true; 969 } 970 } 971 972 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); 973 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); 974 975 bool FoundExpectedPred = 976 (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0); 977 978 if (!FoundExpectedPred) { 979 FailureReason = "expected icmp sgt semantically, found something else"; 980 return None; 981 } 982 983 IsSignedPredicate = 984 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; 985 986 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { 987 FailureReason = "unsigned latch conditions are explicitly prohibited"; 988 return None; 989 } 990 991 // The predicate that we need to check that the induction variable lies 992 // within bounds. 993 ICmpInst::Predicate BoundPred = 994 IsSignedPredicate ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT; 995 996 if (LatchBrExitIdx == 0) { 997 const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType())); 998 if (SumCanReachMin(SE, RightSCEV, StepPlusOne, IsSignedPredicate)) { 999 // TODO: this restriction is easily removable -- we just have to 1000 // remember that the icmp was an sgt and not an sge. 1001 FailureReason = "limit may overflow when coercing ge to gt"; 1002 return None; 1003 } 1004 1005 if (!SE.isLoopEntryGuardedByCond( 1006 &L, BoundPred, IndVarStart, 1007 SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())))) { 1008 FailureReason = "Induction variable start not bounded by lower limit"; 1009 return None; 1010 } 1011 1012 // We need to decrease the right value unless we have already increased 1013 // it virtually when we replaced EQ with SLT. 1014 if (!IncreasedRightValueByOne) { 1015 IRBuilder<> B(Preheader->getTerminator()); 1016 RightValue = B.CreateSub(RightValue, One); 1017 } 1018 } else { 1019 if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) { 1020 FailureReason = "Induction variable start not bounded by lower limit"; 1021 return None; 1022 } 1023 assert(!IncreasedRightValueByOne && 1024 "Right value can be increased only for LatchBrExitIdx == 0!"); 1025 } 1026 } 1027 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); 1028 1029 assert(SE.getLoopDisposition(LatchCount, &L) == 1030 ScalarEvolution::LoopInvariant && 1031 "loop variant exit count doesn't make sense!"); 1032 1033 assert(!L.contains(LatchExit) && "expected an exit block!"); 1034 const DataLayout &DL = Preheader->getModule()->getDataLayout(); 1035 Value *IndVarStartV = 1036 SCEVExpander(SE, DL, "irce") 1037 .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator()); 1038 IndVarStartV->setName("indvar.start"); 1039 1040 LoopStructure Result; 1041 1042 Result.Tag = "main"; 1043 Result.Header = Header; 1044 Result.Latch = Latch; 1045 Result.LatchBr = LatchBr; 1046 Result.LatchExit = LatchExit; 1047 Result.LatchBrExitIdx = LatchBrExitIdx; 1048 Result.IndVarStart = IndVarStartV; 1049 Result.IndVarStep = StepCI; 1050 Result.IndVarBase = LeftValue; 1051 Result.IndVarIncreasing = IsIncreasing; 1052 Result.LoopExitAt = RightValue; 1053 Result.IsSignedPredicate = IsSignedPredicate; 1054 1055 FailureReason = nullptr; 1056 1057 return Result; 1058 } 1059 1060 Optional<LoopConstrainer::SubRanges> 1061 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const { 1062 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); 1063 1064 if (Range.getType() != Ty) 1065 return None; 1066 1067 LoopConstrainer::SubRanges Result; 1068 1069 // I think we can be more aggressive here and make this nuw / nsw if the 1070 // addition that feeds into the icmp for the latch's terminating branch is nuw 1071 // / nsw. In any case, a wrapping 2's complement addition is safe. 1072 const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart); 1073 const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt); 1074 1075 bool Increasing = MainLoopStructure.IndVarIncreasing; 1076 1077 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or 1078 // [Smallest, GreatestSeen] is the range of values the induction variable 1079 // takes. 1080 1081 const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr; 1082 1083 const SCEV *One = SE.getOne(Ty); 1084 if (Increasing) { 1085 Smallest = Start; 1086 Greatest = End; 1087 // No overflow, because the range [Smallest, GreatestSeen] is not empty. 1088 GreatestSeen = SE.getMinusSCEV(End, One); 1089 } else { 1090 // These two computations may sign-overflow. Here is why that is okay: 1091 // 1092 // We know that the induction variable does not sign-overflow on any 1093 // iteration except the last one, and it starts at `Start` and ends at 1094 // `End`, decrementing by one every time. 1095 // 1096 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the 1097 // induction variable is decreasing we know that that the smallest value 1098 // the loop body is actually executed with is `INT_SMIN` == `Smallest`. 1099 // 1100 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In 1101 // that case, `Clamp` will always return `Smallest` and 1102 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) 1103 // will be an empty range. Returning an empty range is always safe. 1104 1105 Smallest = SE.getAddExpr(End, One); 1106 Greatest = SE.getAddExpr(Start, One); 1107 GreatestSeen = Start; 1108 } 1109 1110 auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) { 1111 return IsSignedPredicate 1112 ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)) 1113 : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S)); 1114 }; 1115 1116 // In some cases we can prove that we don't need a pre or post loop. 1117 ICmpInst::Predicate PredLE = 1118 IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 1119 ICmpInst::Predicate PredLT = 1120 IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1121 1122 bool ProvablyNoPreloop = 1123 SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest); 1124 if (!ProvablyNoPreloop) 1125 Result.LowLimit = Clamp(Range.getBegin()); 1126 1127 bool ProvablyNoPostLoop = 1128 SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd()); 1129 if (!ProvablyNoPostLoop) 1130 Result.HighLimit = Clamp(Range.getEnd()); 1131 1132 return Result; 1133 } 1134 1135 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, 1136 const char *Tag) const { 1137 for (BasicBlock *BB : OriginalLoop.getBlocks()) { 1138 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); 1139 Result.Blocks.push_back(Clone); 1140 Result.Map[BB] = Clone; 1141 } 1142 1143 auto GetClonedValue = [&Result](Value *V) { 1144 assert(V && "null values not in domain!"); 1145 auto It = Result.Map.find(V); 1146 if (It == Result.Map.end()) 1147 return V; 1148 return static_cast<Value *>(It->second); 1149 }; 1150 1151 auto *ClonedLatch = 1152 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch())); 1153 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag, 1154 MDNode::get(Ctx, {})); 1155 1156 Result.Structure = MainLoopStructure.map(GetClonedValue); 1157 Result.Structure.Tag = Tag; 1158 1159 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { 1160 BasicBlock *ClonedBB = Result.Blocks[i]; 1161 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; 1162 1163 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); 1164 1165 for (Instruction &I : *ClonedBB) 1166 RemapInstruction(&I, Result.Map, 1167 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1168 1169 // Exit blocks will now have one more predecessor and their PHI nodes need 1170 // to be edited to reflect that. No phi nodes need to be introduced because 1171 // the loop is in LCSSA. 1172 1173 for (auto *SBB : successors(OriginalBB)) { 1174 if (OriginalLoop.contains(SBB)) 1175 continue; // not an exit block 1176 1177 for (PHINode &PN : SBB->phis()) { 1178 Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB); 1179 PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB); 1180 } 1181 } 1182 } 1183 } 1184 1185 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( 1186 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, 1187 BasicBlock *ContinuationBlock) const { 1188 // We start with a loop with a single latch: 1189 // 1190 // +--------------------+ 1191 // | | 1192 // | preheader | 1193 // | | 1194 // +--------+-----------+ 1195 // | ----------------\ 1196 // | / | 1197 // +--------v----v------+ | 1198 // | | | 1199 // | header | | 1200 // | | | 1201 // +--------------------+ | 1202 // | 1203 // ..... | 1204 // | 1205 // +--------------------+ | 1206 // | | | 1207 // | latch >----------/ 1208 // | | 1209 // +-------v------------+ 1210 // | 1211 // | 1212 // | +--------------------+ 1213 // | | | 1214 // +---> original exit | 1215 // | | 1216 // +--------------------+ 1217 // 1218 // We change the control flow to look like 1219 // 1220 // 1221 // +--------------------+ 1222 // | | 1223 // | preheader >-------------------------+ 1224 // | | | 1225 // +--------v-----------+ | 1226 // | /-------------+ | 1227 // | / | | 1228 // +--------v--v--------+ | | 1229 // | | | | 1230 // | header | | +--------+ | 1231 // | | | | | | 1232 // +--------------------+ | | +-----v-----v-----------+ 1233 // | | | | 1234 // | | | .pseudo.exit | 1235 // | | | | 1236 // | | +-----------v-----------+ 1237 // | | | 1238 // ..... | | | 1239 // | | +--------v-------------+ 1240 // +--------------------+ | | | | 1241 // | | | | | ContinuationBlock | 1242 // | latch >------+ | | | 1243 // | | | +----------------------+ 1244 // +---------v----------+ | 1245 // | | 1246 // | | 1247 // | +---------------^-----+ 1248 // | | | 1249 // +-----> .exit.selector | 1250 // | | 1251 // +----------v----------+ 1252 // | 1253 // +--------------------+ | 1254 // | | | 1255 // | original exit <----+ 1256 // | | 1257 // +--------------------+ 1258 1259 RewrittenRangeInfo RRI; 1260 1261 BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); 1262 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", 1263 &F, BBInsertLocation); 1264 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, 1265 BBInsertLocation); 1266 1267 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator()); 1268 bool Increasing = LS.IndVarIncreasing; 1269 bool IsSignedPredicate = LS.IsSignedPredicate; 1270 1271 IRBuilder<> B(PreheaderJump); 1272 1273 // EnterLoopCond - is it okay to start executing this `LS'? 1274 Value *EnterLoopCond = nullptr; 1275 if (Increasing) 1276 EnterLoopCond = IsSignedPredicate 1277 ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt) 1278 : B.CreateICmpULT(LS.IndVarStart, ExitSubloopAt); 1279 else 1280 EnterLoopCond = IsSignedPredicate 1281 ? B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt) 1282 : B.CreateICmpUGT(LS.IndVarStart, ExitSubloopAt); 1283 1284 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); 1285 PreheaderJump->eraseFromParent(); 1286 1287 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); 1288 B.SetInsertPoint(LS.LatchBr); 1289 Value *TakeBackedgeLoopCond = nullptr; 1290 if (Increasing) 1291 TakeBackedgeLoopCond = IsSignedPredicate 1292 ? B.CreateICmpSLT(LS.IndVarBase, ExitSubloopAt) 1293 : B.CreateICmpULT(LS.IndVarBase, ExitSubloopAt); 1294 else 1295 TakeBackedgeLoopCond = IsSignedPredicate 1296 ? B.CreateICmpSGT(LS.IndVarBase, ExitSubloopAt) 1297 : B.CreateICmpUGT(LS.IndVarBase, ExitSubloopAt); 1298 Value *CondForBranch = LS.LatchBrExitIdx == 1 1299 ? TakeBackedgeLoopCond 1300 : B.CreateNot(TakeBackedgeLoopCond); 1301 1302 LS.LatchBr->setCondition(CondForBranch); 1303 1304 B.SetInsertPoint(RRI.ExitSelector); 1305 1306 // IterationsLeft - are there any more iterations left, given the original 1307 // upper bound on the induction variable? If not, we branch to the "real" 1308 // exit. 1309 Value *IterationsLeft = nullptr; 1310 if (Increasing) 1311 IterationsLeft = IsSignedPredicate 1312 ? B.CreateICmpSLT(LS.IndVarBase, LS.LoopExitAt) 1313 : B.CreateICmpULT(LS.IndVarBase, LS.LoopExitAt); 1314 else 1315 IterationsLeft = IsSignedPredicate 1316 ? B.CreateICmpSGT(LS.IndVarBase, LS.LoopExitAt) 1317 : B.CreateICmpUGT(LS.IndVarBase, LS.LoopExitAt); 1318 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); 1319 1320 BranchInst *BranchToContinuation = 1321 BranchInst::Create(ContinuationBlock, RRI.PseudoExit); 1322 1323 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of 1324 // each of the PHI nodes in the loop header. This feeds into the initial 1325 // value of the same PHI nodes if/when we continue execution. 1326 for (PHINode &PN : LS.Header->phis()) { 1327 PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy", 1328 BranchToContinuation); 1329 1330 NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader); 1331 NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch), 1332 RRI.ExitSelector); 1333 RRI.PHIValuesAtPseudoExit.push_back(NewPHI); 1334 } 1335 1336 RRI.IndVarEnd = PHINode::Create(LS.IndVarBase->getType(), 2, "indvar.end", 1337 BranchToContinuation); 1338 RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader); 1339 RRI.IndVarEnd->addIncoming(LS.IndVarBase, RRI.ExitSelector); 1340 1341 // The latch exit now has a branch from `RRI.ExitSelector' instead of 1342 // `LS.Latch'. The PHI nodes need to be updated to reflect that. 1343 for (PHINode &PN : LS.LatchExit->phis()) 1344 replacePHIBlock(&PN, LS.Latch, RRI.ExitSelector); 1345 1346 return RRI; 1347 } 1348 1349 void LoopConstrainer::rewriteIncomingValuesForPHIs( 1350 LoopStructure &LS, BasicBlock *ContinuationBlock, 1351 const LoopConstrainer::RewrittenRangeInfo &RRI) const { 1352 unsigned PHIIndex = 0; 1353 for (PHINode &PN : LS.Header->phis()) 1354 for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i) 1355 if (PN.getIncomingBlock(i) == ContinuationBlock) 1356 PN.setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]); 1357 1358 LS.IndVarStart = RRI.IndVarEnd; 1359 } 1360 1361 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, 1362 BasicBlock *OldPreheader, 1363 const char *Tag) const { 1364 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); 1365 BranchInst::Create(LS.Header, Preheader); 1366 1367 for (PHINode &PN : LS.Header->phis()) 1368 for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i) 1369 replacePHIBlock(&PN, OldPreheader, Preheader); 1370 1371 return Preheader; 1372 } 1373 1374 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { 1375 Loop *ParentLoop = OriginalLoop.getParentLoop(); 1376 if (!ParentLoop) 1377 return; 1378 1379 for (BasicBlock *BB : BBs) 1380 ParentLoop->addBasicBlockToLoop(BB, LI); 1381 } 1382 1383 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, 1384 ValueToValueMapTy &VM) { 1385 Loop &New = *LI.AllocateLoop(); 1386 if (Parent) 1387 Parent->addChildLoop(&New); 1388 else 1389 LI.addTopLevelLoop(&New); 1390 LPM.addLoop(New); 1391 1392 // Add all of the blocks in Original to the new loop. 1393 for (auto *BB : Original->blocks()) 1394 if (LI.getLoopFor(BB) == Original) 1395 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI); 1396 1397 // Add all of the subloops to the new loop. 1398 for (Loop *SubLoop : *Original) 1399 createClonedLoopStructure(SubLoop, &New, VM); 1400 1401 return &New; 1402 } 1403 1404 bool LoopConstrainer::run() { 1405 BasicBlock *Preheader = nullptr; 1406 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); 1407 Preheader = OriginalLoop.getLoopPreheader(); 1408 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr && 1409 "preconditions!"); 1410 1411 OriginalPreheader = Preheader; 1412 MainLoopPreheader = Preheader; 1413 1414 bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate; 1415 Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate); 1416 if (!MaybeSR.hasValue()) { 1417 DEBUG(dbgs() << "irce: could not compute subranges\n"); 1418 return false; 1419 } 1420 1421 SubRanges SR = MaybeSR.getValue(); 1422 bool Increasing = MainLoopStructure.IndVarIncreasing; 1423 IntegerType *IVTy = 1424 cast<IntegerType>(MainLoopStructure.IndVarBase->getType()); 1425 1426 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); 1427 Instruction *InsertPt = OriginalPreheader->getTerminator(); 1428 1429 // It would have been better to make `PreLoop' and `PostLoop' 1430 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy 1431 // constructor. 1432 ClonedLoop PreLoop, PostLoop; 1433 bool NeedsPreLoop = 1434 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); 1435 bool NeedsPostLoop = 1436 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); 1437 1438 Value *ExitPreLoopAt = nullptr; 1439 Value *ExitMainLoopAt = nullptr; 1440 const SCEVConstant *MinusOneS = 1441 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */)); 1442 1443 if (NeedsPreLoop) { 1444 const SCEV *ExitPreLoopAtSCEV = nullptr; 1445 1446 if (Increasing) 1447 ExitPreLoopAtSCEV = *SR.LowLimit; 1448 else { 1449 if (CanBeMin(SE, *SR.HighLimit, IsSignedPredicate)) { 1450 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1451 << "preloop exit limit. HighLimit = " << *(*SR.HighLimit) 1452 << "\n"); 1453 return false; 1454 } 1455 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); 1456 } 1457 1458 if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) { 1459 DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" 1460 << " preloop exit limit " << *ExitPreLoopAtSCEV 1461 << " at block " << InsertPt->getParent()->getName() << "\n"); 1462 return false; 1463 } 1464 1465 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); 1466 ExitPreLoopAt->setName("exit.preloop.at"); 1467 } 1468 1469 if (NeedsPostLoop) { 1470 const SCEV *ExitMainLoopAtSCEV = nullptr; 1471 1472 if (Increasing) 1473 ExitMainLoopAtSCEV = *SR.HighLimit; 1474 else { 1475 if (CanBeMin(SE, *SR.LowLimit, IsSignedPredicate)) { 1476 DEBUG(dbgs() << "irce: could not prove no-overflow when computing " 1477 << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit) 1478 << "\n"); 1479 return false; 1480 } 1481 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); 1482 } 1483 1484 if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) { 1485 DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" 1486 << " main loop exit limit " << *ExitMainLoopAtSCEV 1487 << " at block " << InsertPt->getParent()->getName() << "\n"); 1488 return false; 1489 } 1490 1491 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); 1492 ExitMainLoopAt->setName("exit.mainloop.at"); 1493 } 1494 1495 // We clone these ahead of time so that we don't have to deal with changing 1496 // and temporarily invalid IR as we transform the loops. 1497 if (NeedsPreLoop) 1498 cloneLoop(PreLoop, "preloop"); 1499 if (NeedsPostLoop) 1500 cloneLoop(PostLoop, "postloop"); 1501 1502 RewrittenRangeInfo PreLoopRRI; 1503 1504 if (NeedsPreLoop) { 1505 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, 1506 PreLoop.Structure.Header); 1507 1508 MainLoopPreheader = 1509 createPreheader(MainLoopStructure, Preheader, "mainloop"); 1510 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, 1511 ExitPreLoopAt, MainLoopPreheader); 1512 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, 1513 PreLoopRRI); 1514 } 1515 1516 BasicBlock *PostLoopPreheader = nullptr; 1517 RewrittenRangeInfo PostLoopRRI; 1518 1519 if (NeedsPostLoop) { 1520 PostLoopPreheader = 1521 createPreheader(PostLoop.Structure, Preheader, "postloop"); 1522 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, 1523 ExitMainLoopAt, PostLoopPreheader); 1524 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, 1525 PostLoopRRI); 1526 } 1527 1528 BasicBlock *NewMainLoopPreheader = 1529 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; 1530 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, 1531 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, 1532 PostLoopRRI.ExitSelector, NewMainLoopPreheader}; 1533 1534 // Some of the above may be nullptr, filter them out before passing to 1535 // addToParentLoopIfNeeded. 1536 auto NewBlocksEnd = 1537 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); 1538 1539 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); 1540 1541 DT.recalculate(F); 1542 1543 // We need to first add all the pre and post loop blocks into the loop 1544 // structures (as part of createClonedLoopStructure), and then update the 1545 // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating 1546 // LI when LoopSimplifyForm is generated. 1547 Loop *PreL = nullptr, *PostL = nullptr; 1548 if (!PreLoop.Blocks.empty()) { 1549 PreL = createClonedLoopStructure( 1550 &OriginalLoop, OriginalLoop.getParentLoop(), PreLoop.Map); 1551 } 1552 1553 if (!PostLoop.Blocks.empty()) { 1554 PostL = createClonedLoopStructure( 1555 &OriginalLoop, OriginalLoop.getParentLoop(), PostLoop.Map); 1556 } 1557 1558 // This function canonicalizes the loop into Loop-Simplify and LCSSA forms. 1559 auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) { 1560 formLCSSARecursively(*L, DT, &LI, &SE); 1561 simplifyLoop(L, &DT, &LI, &SE, nullptr, true); 1562 // Pre/post loops are slow paths, we do not need to perform any loop 1563 // optimizations on them. 1564 if (!IsOriginalLoop) 1565 DisableAllLoopOptsOnLoop(*L); 1566 }; 1567 if (PreL) 1568 CanonicalizeLoop(PreL, false); 1569 if (PostL) 1570 CanonicalizeLoop(PostL, false); 1571 CanonicalizeLoop(&OriginalLoop, true); 1572 1573 return true; 1574 } 1575 1576 /// Computes and returns a range of values for the induction variable (IndVar) 1577 /// in which the range check can be safely elided. If it cannot compute such a 1578 /// range, returns None. 1579 Optional<InductiveRangeCheck::Range> 1580 InductiveRangeCheck::computeSafeIterationSpace( 1581 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar, 1582 bool IsLatchSigned) const { 1583 // IndVar is of the form "A + B * I" (where "I" is the canonical induction 1584 // variable, that may or may not exist as a real llvm::Value in the loop) and 1585 // this inductive range check is a range check on the "C + D * I" ("C" is 1586 // getBegin() and "D" is getStep()). We rewrite the value being range 1587 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". 1588 // 1589 // The actual inequalities we solve are of the form 1590 // 1591 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) 1592 // 1593 // Here L stands for upper limit of the safe iteration space. 1594 // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid 1595 // overflows when calculating (0 - M) and (L - M) we, depending on type of 1596 // IV's iteration space, limit the calculations by borders of the iteration 1597 // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0. 1598 // If we figured out that "anything greater than (-M) is safe", we strengthen 1599 // this to "everything greater than 0 is safe", assuming that values between 1600 // -M and 0 just do not exist in unsigned iteration space, and we don't want 1601 // to deal with overflown values. 1602 1603 if (!IndVar->isAffine()) 1604 return None; 1605 1606 const SCEV *A = IndVar->getStart(); 1607 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE)); 1608 if (!B) 1609 return None; 1610 assert(!B->isZero() && "Recurrence with zero step?"); 1611 1612 const SCEV *C = getBegin(); 1613 const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep()); 1614 if (D != B) 1615 return None; 1616 1617 assert(!D->getValue()->isZero() && "Recurrence with zero step?"); 1618 unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth(); 1619 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); 1620 1621 // Substract Y from X so that it does not go through border of the IV 1622 // iteration space. Mathematically, it is equivalent to: 1623 // 1624 // ClampedSubstract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1] 1625 // 1626 // In [1], 'X - Y' is a mathematical substraction (result is not bounded to 1627 // any width of bit grid). But after we take min/max, the result is 1628 // guaranteed to be within [INT_MIN, INT_MAX]. 1629 // 1630 // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min 1631 // values, depending on type of latch condition that defines IV iteration 1632 // space. 1633 auto ClampedSubstract = [&](const SCEV *X, const SCEV *Y) { 1634 assert(SE.isKnownNonNegative(X) && 1635 "We can only substract from values in [0; SINT_MAX]!"); 1636 if (IsLatchSigned) { 1637 // X is a number from signed range, Y is interpreted as signed. 1638 // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only 1639 // thing we should care about is that we didn't cross SINT_MAX. 1640 // So, if Y is positive, we substract Y safely. 1641 // Rule 1: Y > 0 ---> Y. 1642 // If 0 <= -Y <= (SINT_MAX - X), we substract Y safely. 1643 // Rule 2: Y >=s (X - SINT_MAX) ---> Y. 1644 // If 0 <= (SINT_MAX - X) < -Y, we can only substract (X - SINT_MAX). 1645 // Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX). 1646 // It gives us smax(Y, X - SINT_MAX) to substract in all cases. 1647 const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax); 1648 return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax), 1649 SCEV::FlagNSW); 1650 } else 1651 // X is a number from unsigned range, Y is interpreted as signed. 1652 // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only 1653 // thing we should care about is that we didn't cross zero. 1654 // So, if Y is negative, we substract Y safely. 1655 // Rule 1: Y <s 0 ---> Y. 1656 // If 0 <= Y <= X, we substract Y safely. 1657 // Rule 2: Y <=s X ---> Y. 1658 // If 0 <= X < Y, we should stop at 0 and can only substract X. 1659 // Rule 3: Y >s X ---> X. 1660 // It gives us smin(X, Y) to substract in all cases. 1661 return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW); 1662 }; 1663 const SCEV *M = SE.getMinusSCEV(C, A); 1664 const SCEV *Zero = SE.getZero(M->getType()); 1665 const SCEV *Begin = ClampedSubstract(Zero, M); 1666 const SCEV *L = nullptr; 1667 1668 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". 1669 // We can potentially do much better here. 1670 if (const SCEV *EndLimit = getEnd()) 1671 L = EndLimit; 1672 else { 1673 assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!"); 1674 L = SIntMax; 1675 } 1676 const SCEV *End = ClampedSubstract(L, M); 1677 return InductiveRangeCheck::Range(Begin, End); 1678 } 1679 1680 static Optional<InductiveRangeCheck::Range> 1681 IntersectSignedRange(ScalarEvolution &SE, 1682 const Optional<InductiveRangeCheck::Range> &R1, 1683 const InductiveRangeCheck::Range &R2) { 1684 if (R2.isEmpty(SE, /* IsSigned */ true)) 1685 return None; 1686 if (!R1.hasValue()) 1687 return R2; 1688 auto &R1Value = R1.getValue(); 1689 // We never return empty ranges from this function, and R1 is supposed to be 1690 // a result of intersection. Thus, R1 is never empty. 1691 assert(!R1Value.isEmpty(SE, /* IsSigned */ true) && 1692 "We should never have empty R1!"); 1693 1694 // TODO: we could widen the smaller range and have this work; but for now we 1695 // bail out to keep things simple. 1696 if (R1Value.getType() != R2.getType()) 1697 return None; 1698 1699 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); 1700 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); 1701 1702 // If the resulting range is empty, just return None. 1703 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1704 if (Ret.isEmpty(SE, /* IsSigned */ true)) 1705 return None; 1706 return Ret; 1707 } 1708 1709 static Optional<InductiveRangeCheck::Range> 1710 IntersectUnsignedRange(ScalarEvolution &SE, 1711 const Optional<InductiveRangeCheck::Range> &R1, 1712 const InductiveRangeCheck::Range &R2) { 1713 if (R2.isEmpty(SE, /* IsSigned */ false)) 1714 return None; 1715 if (!R1.hasValue()) 1716 return R2; 1717 auto &R1Value = R1.getValue(); 1718 // We never return empty ranges from this function, and R1 is supposed to be 1719 // a result of intersection. Thus, R1 is never empty. 1720 assert(!R1Value.isEmpty(SE, /* IsSigned */ false) && 1721 "We should never have empty R1!"); 1722 1723 // TODO: we could widen the smaller range and have this work; but for now we 1724 // bail out to keep things simple. 1725 if (R1Value.getType() != R2.getType()) 1726 return None; 1727 1728 const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin()); 1729 const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd()); 1730 1731 // If the resulting range is empty, just return None. 1732 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); 1733 if (Ret.isEmpty(SE, /* IsSigned */ false)) 1734 return None; 1735 return Ret; 1736 } 1737 1738 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) { 1739 if (skipLoop(L)) 1740 return false; 1741 1742 if (L->getBlocks().size() >= LoopSizeCutoff) { 1743 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";); 1744 return false; 1745 } 1746 1747 BasicBlock *Preheader = L->getLoopPreheader(); 1748 if (!Preheader) { 1749 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); 1750 return false; 1751 } 1752 1753 LLVMContext &Context = Preheader->getContext(); 1754 SmallVector<InductiveRangeCheck, 16> RangeChecks; 1755 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1756 BranchProbabilityInfo &BPI = 1757 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 1758 1759 for (auto BBI : L->getBlocks()) 1760 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator())) 1761 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI, 1762 RangeChecks); 1763 1764 if (RangeChecks.empty()) 1765 return false; 1766 1767 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { 1768 OS << "irce: looking at loop "; L->print(OS); 1769 OS << "irce: loop has " << RangeChecks.size() 1770 << " inductive range checks: \n"; 1771 for (InductiveRangeCheck &IRC : RangeChecks) 1772 IRC.print(OS); 1773 }; 1774 1775 DEBUG(PrintRecognizedRangeChecks(dbgs())); 1776 1777 if (PrintRangeChecks) 1778 PrintRecognizedRangeChecks(errs()); 1779 1780 const char *FailureReason = nullptr; 1781 Optional<LoopStructure> MaybeLoopStructure = 1782 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); 1783 if (!MaybeLoopStructure.hasValue()) { 1784 DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason 1785 << "\n";); 1786 return false; 1787 } 1788 LoopStructure LS = MaybeLoopStructure.getValue(); 1789 const SCEVAddRecExpr *IndVar = 1790 cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep))); 1791 1792 Optional<InductiveRangeCheck::Range> SafeIterRange; 1793 Instruction *ExprInsertPt = Preheader->getTerminator(); 1794 1795 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate; 1796 // Basing on the type of latch predicate, we interpret the IV iteration range 1797 // as signed or unsigned range. We use different min/max functions (signed or 1798 // unsigned) when intersecting this range with safe iteration ranges implied 1799 // by range checks. 1800 auto IntersectRange = 1801 LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange; 1802 1803 IRBuilder<> B(ExprInsertPt); 1804 for (InductiveRangeCheck &IRC : RangeChecks) { 1805 auto Result = IRC.computeSafeIterationSpace(SE, IndVar, 1806 LS.IsSignedPredicate); 1807 if (Result.hasValue()) { 1808 auto MaybeSafeIterRange = 1809 IntersectRange(SE, SafeIterRange, Result.getValue()); 1810 if (MaybeSafeIterRange.hasValue()) { 1811 assert( 1812 !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) && 1813 "We should never return empty ranges!"); 1814 RangeChecksToEliminate.push_back(IRC); 1815 SafeIterRange = MaybeSafeIterRange.getValue(); 1816 } 1817 } 1818 } 1819 1820 if (!SafeIterRange.hasValue()) 1821 return false; 1822 1823 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1824 LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LPM, 1825 LS, SE, DT, SafeIterRange.getValue()); 1826 bool Changed = LC.run(); 1827 1828 if (Changed) { 1829 auto PrintConstrainedLoopInfo = [L]() { 1830 dbgs() << "irce: in function "; 1831 dbgs() << L->getHeader()->getParent()->getName() << ": "; 1832 dbgs() << "constrained "; 1833 L->print(dbgs()); 1834 }; 1835 1836 DEBUG(PrintConstrainedLoopInfo()); 1837 1838 if (PrintChangedLoops) 1839 PrintConstrainedLoopInfo(); 1840 1841 // Optimize away the now-redundant range checks. 1842 1843 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { 1844 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() 1845 ? ConstantInt::getTrue(Context) 1846 : ConstantInt::getFalse(Context); 1847 IRC.getCheckUse()->set(FoldedRangeCheck); 1848 } 1849 } 1850 1851 return Changed; 1852 } 1853 1854 Pass *llvm::createInductiveRangeCheckEliminationPass() { 1855 return new InductiveRangeCheckElimination; 1856 } 1857