1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies expensive constants to hoist and coalesces them to 11 // better prepare it for SelectionDAG-based code generation. This works around 12 // the limitations of the basic-block-at-a-time approach. 13 // 14 // First it scans all instructions for integer constants and calculates its 15 // cost. If the constant can be folded into the instruction (the cost is 16 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't 17 // consider it expensive and leave it alone. This is the default behavior and 18 // the default implementation of getIntImmCost will always return TCC_Free. 19 // 20 // If the cost is more than TCC_BASIC, then the integer constant can't be folded 21 // into the instruction and it might be beneficial to hoist the constant. 22 // Similar constants are coalesced to reduce register pressure and 23 // materialization code. 24 // 25 // When a constant is hoisted, it is also hidden behind a bitcast to force it to 26 // be live-out of the basic block. Otherwise the constant would be just 27 // duplicated and each basic block would have its own copy in the SelectionDAG. 28 // The SelectionDAG recognizes such constants as opaque and doesn't perform 29 // certain transformations on them, which would create a new expensive constant. 30 // 31 // This optimization is only applied to integer constants in instructions and 32 // simple (this means not nested) constant cast expressions. For example: 33 // %0 = load i64* inttoptr (i64 big_constant to i64*) 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/Transforms/Scalar/ConstantHoisting.h" 37 #include "llvm/ADT/APInt.h" 38 #include "llvm/ADT/DenseMap.h" 39 #include "llvm/ADT/None.h" 40 #include "llvm/ADT/Optional.h" 41 #include "llvm/ADT/SmallPtrSet.h" 42 #include "llvm/ADT/SmallVector.h" 43 #include "llvm/ADT/Statistic.h" 44 #include "llvm/Analysis/BlockFrequencyInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/BlockFrequency.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <tuple> 69 #include <utility> 70 71 using namespace llvm; 72 using namespace consthoist; 73 74 #define DEBUG_TYPE "consthoist" 75 76 STATISTIC(NumConstantsHoisted, "Number of constants hoisted"); 77 STATISTIC(NumConstantsRebased, "Number of constants rebased"); 78 79 static cl::opt<bool> ConstHoistWithBlockFrequency( 80 "consthoist-with-block-frequency", cl::init(true), cl::Hidden, 81 cl::desc("Enable the use of the block frequency analysis to reduce the " 82 "chance to execute const materialization more frequently than " 83 "without hoisting.")); 84 85 static cl::opt<bool> ConstHoistGEP( 86 "consthoist-gep", cl::init(false), cl::Hidden, 87 cl::desc("Try hoisting constant gep expressions")); 88 89 static cl::opt<unsigned> 90 MinNumOfDependentToRebase("consthoist-min-num-to-rebase", 91 cl::desc("Do not rebase if number of dependent constants of a Base is less " 92 "than this number."), 93 cl::init(0), cl::Hidden); 94 95 namespace { 96 97 /// The constant hoisting pass. 98 class ConstantHoistingLegacyPass : public FunctionPass { 99 public: 100 static char ID; // Pass identification, replacement for typeid 101 102 ConstantHoistingLegacyPass() : FunctionPass(ID) { 103 initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry()); 104 } 105 106 bool runOnFunction(Function &Fn) override; 107 108 StringRef getPassName() const override { return "Constant Hoisting"; } 109 110 void getAnalysisUsage(AnalysisUsage &AU) const override { 111 AU.setPreservesCFG(); 112 if (ConstHoistWithBlockFrequency) 113 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 114 AU.addRequired<DominatorTreeWrapperPass>(); 115 AU.addRequired<TargetTransformInfoWrapperPass>(); 116 } 117 118 void releaseMemory() override { Impl.releaseMemory(); } 119 120 private: 121 ConstantHoistingPass Impl; 122 }; 123 124 } // end anonymous namespace 125 126 char ConstantHoistingLegacyPass::ID = 0; 127 128 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist", 129 "Constant Hoisting", false, false) 130 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 131 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 132 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 133 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist", 134 "Constant Hoisting", false, false) 135 136 FunctionPass *llvm::createConstantHoistingPass() { 137 return new ConstantHoistingLegacyPass(); 138 } 139 140 /// Perform the constant hoisting optimization for the given function. 141 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) { 142 if (skipFunction(Fn)) 143 return false; 144 145 LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n"); 146 LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n'); 147 148 bool MadeChange = 149 Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn), 150 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 151 ConstHoistWithBlockFrequency 152 ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI() 153 : nullptr, 154 Fn.getEntryBlock()); 155 156 if (MadeChange) { 157 LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: " 158 << Fn.getName() << '\n'); 159 LLVM_DEBUG(dbgs() << Fn); 160 } 161 LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n"); 162 163 return MadeChange; 164 } 165 166 /// Find the constant materialization insertion point. 167 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst, 168 unsigned Idx) const { 169 // If the operand is a cast instruction, then we have to materialize the 170 // constant before the cast instruction. 171 if (Idx != ~0U) { 172 Value *Opnd = Inst->getOperand(Idx); 173 if (auto CastInst = dyn_cast<Instruction>(Opnd)) 174 if (CastInst->isCast()) 175 return CastInst; 176 } 177 178 // The simple and common case. This also includes constant expressions. 179 if (!isa<PHINode>(Inst) && !Inst->isEHPad()) 180 return Inst; 181 182 // We can't insert directly before a phi node or an eh pad. Insert before 183 // the terminator of the incoming or dominating block. 184 assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!"); 185 if (Idx != ~0U && isa<PHINode>(Inst)) 186 return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator(); 187 188 // This must be an EH pad. Iterate over immediate dominators until we find a 189 // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads 190 // and terminators. 191 auto IDom = DT->getNode(Inst->getParent())->getIDom(); 192 while (IDom->getBlock()->isEHPad()) { 193 assert(Entry != IDom->getBlock() && "eh pad in entry block"); 194 IDom = IDom->getIDom(); 195 } 196 197 return IDom->getBlock()->getTerminator(); 198 } 199 200 /// Given \p BBs as input, find another set of BBs which collectively 201 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB 202 /// set found in \p BBs. 203 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI, 204 BasicBlock *Entry, 205 SmallPtrSet<BasicBlock *, 8> &BBs) { 206 assert(!BBs.count(Entry) && "Assume Entry is not in BBs"); 207 // Nodes on the current path to the root. 208 SmallPtrSet<BasicBlock *, 8> Path; 209 // Candidates includes any block 'BB' in set 'BBs' that is not strictly 210 // dominated by any other blocks in set 'BBs', and all nodes in the path 211 // in the dominator tree from Entry to 'BB'. 212 SmallPtrSet<BasicBlock *, 16> Candidates; 213 for (auto BB : BBs) { 214 Path.clear(); 215 // Walk up the dominator tree until Entry or another BB in BBs 216 // is reached. Insert the nodes on the way to the Path. 217 BasicBlock *Node = BB; 218 // The "Path" is a candidate path to be added into Candidates set. 219 bool isCandidate = false; 220 do { 221 Path.insert(Node); 222 if (Node == Entry || Candidates.count(Node)) { 223 isCandidate = true; 224 break; 225 } 226 assert(DT.getNode(Node)->getIDom() && 227 "Entry doens't dominate current Node"); 228 Node = DT.getNode(Node)->getIDom()->getBlock(); 229 } while (!BBs.count(Node)); 230 231 // If isCandidate is false, Node is another Block in BBs dominating 232 // current 'BB'. Drop the nodes on the Path. 233 if (!isCandidate) 234 continue; 235 236 // Add nodes on the Path into Candidates. 237 Candidates.insert(Path.begin(), Path.end()); 238 } 239 240 // Sort the nodes in Candidates in top-down order and save the nodes 241 // in Orders. 242 unsigned Idx = 0; 243 SmallVector<BasicBlock *, 16> Orders; 244 Orders.push_back(Entry); 245 while (Idx != Orders.size()) { 246 BasicBlock *Node = Orders[Idx++]; 247 for (auto ChildDomNode : DT.getNode(Node)->getChildren()) { 248 if (Candidates.count(ChildDomNode->getBlock())) 249 Orders.push_back(ChildDomNode->getBlock()); 250 } 251 } 252 253 // Visit Orders in bottom-up order. 254 using InsertPtsCostPair = 255 std::pair<SmallPtrSet<BasicBlock *, 16>, BlockFrequency>; 256 257 // InsertPtsMap is a map from a BB to the best insertion points for the 258 // subtree of BB (subtree not including the BB itself). 259 DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap; 260 InsertPtsMap.reserve(Orders.size() + 1); 261 for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) { 262 BasicBlock *Node = *RIt; 263 bool NodeInBBs = BBs.count(Node); 264 SmallPtrSet<BasicBlock *, 16> &InsertPts = InsertPtsMap[Node].first; 265 BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second; 266 267 // Return the optimal insert points in BBs. 268 if (Node == Entry) { 269 BBs.clear(); 270 if (InsertPtsFreq > BFI.getBlockFreq(Node) || 271 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)) 272 BBs.insert(Entry); 273 else 274 BBs.insert(InsertPts.begin(), InsertPts.end()); 275 break; 276 } 277 278 BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock(); 279 // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child 280 // will update its parent's ParentInsertPts and ParentPtsFreq. 281 SmallPtrSet<BasicBlock *, 16> &ParentInsertPts = InsertPtsMap[Parent].first; 282 BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second; 283 // Choose to insert in Node or in subtree of Node. 284 // Don't hoist to EHPad because we may not find a proper place to insert 285 // in EHPad. 286 // If the total frequency of InsertPts is the same as the frequency of the 287 // target Node, and InsertPts contains more than one nodes, choose hoisting 288 // to reduce code size. 289 if (NodeInBBs || 290 (!Node->isEHPad() && 291 (InsertPtsFreq > BFI.getBlockFreq(Node) || 292 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) { 293 ParentInsertPts.insert(Node); 294 ParentPtsFreq += BFI.getBlockFreq(Node); 295 } else { 296 ParentInsertPts.insert(InsertPts.begin(), InsertPts.end()); 297 ParentPtsFreq += InsertPtsFreq; 298 } 299 } 300 } 301 302 /// Find an insertion point that dominates all uses. 303 SmallPtrSet<Instruction *, 8> ConstantHoistingPass::findConstantInsertionPoint( 304 const ConstantInfo &ConstInfo) const { 305 assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry."); 306 // Collect all basic blocks. 307 SmallPtrSet<BasicBlock *, 8> BBs; 308 SmallPtrSet<Instruction *, 8> InsertPts; 309 for (auto const &RCI : ConstInfo.RebasedConstants) 310 for (auto const &U : RCI.Uses) 311 BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent()); 312 313 if (BBs.count(Entry)) { 314 InsertPts.insert(&Entry->front()); 315 return InsertPts; 316 } 317 318 if (BFI) { 319 findBestInsertionSet(*DT, *BFI, Entry, BBs); 320 for (auto BB : BBs) { 321 BasicBlock::iterator InsertPt = BB->begin(); 322 for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt) 323 ; 324 InsertPts.insert(&*InsertPt); 325 } 326 return InsertPts; 327 } 328 329 while (BBs.size() >= 2) { 330 BasicBlock *BB, *BB1, *BB2; 331 BB1 = *BBs.begin(); 332 BB2 = *std::next(BBs.begin()); 333 BB = DT->findNearestCommonDominator(BB1, BB2); 334 if (BB == Entry) { 335 InsertPts.insert(&Entry->front()); 336 return InsertPts; 337 } 338 BBs.erase(BB1); 339 BBs.erase(BB2); 340 BBs.insert(BB); 341 } 342 assert((BBs.size() == 1) && "Expected only one element."); 343 Instruction &FirstInst = (*BBs.begin())->front(); 344 InsertPts.insert(findMatInsertPt(&FirstInst)); 345 return InsertPts; 346 } 347 348 /// Record constant integer ConstInt for instruction Inst at operand 349 /// index Idx. 350 /// 351 /// The operand at index Idx is not necessarily the constant integer itself. It 352 /// could also be a cast instruction or a constant expression that uses the 353 /// constant integer. 354 void ConstantHoistingPass::collectConstantCandidates( 355 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, 356 ConstantInt *ConstInt) { 357 unsigned Cost; 358 // Ask the target about the cost of materializing the constant for the given 359 // instruction and operand index. 360 if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst)) 361 Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx, 362 ConstInt->getValue(), ConstInt->getType()); 363 else 364 Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(), 365 ConstInt->getType()); 366 367 // Ignore cheap integer constants. 368 if (Cost > TargetTransformInfo::TCC_Basic) { 369 ConstCandMapType::iterator Itr; 370 bool Inserted; 371 ConstPtrUnionType Cand = ConstInt; 372 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); 373 if (Inserted) { 374 ConstIntCandVec.push_back(ConstantCandidate(ConstInt)); 375 Itr->second = ConstIntCandVec.size() - 1; 376 } 377 ConstIntCandVec[Itr->second].addUser(Inst, Idx, Cost); 378 LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs() 379 << "Collect constant " << *ConstInt << " from " << *Inst 380 << " with cost " << Cost << '\n'; 381 else dbgs() << "Collect constant " << *ConstInt 382 << " indirectly from " << *Inst << " via " 383 << *Inst->getOperand(Idx) << " with cost " << Cost 384 << '\n';); 385 } 386 } 387 388 /// Record constant GEP expression for instruction Inst at operand index Idx. 389 void ConstantHoistingPass::collectConstantCandidates( 390 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, 391 ConstantExpr *ConstExpr) { 392 // TODO: Handle vector GEPs 393 if (ConstExpr->getType()->isVectorTy()) 394 return; 395 396 GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0)); 397 if (!BaseGV) 398 return; 399 400 // Get offset from the base GV. 401 PointerType *GVPtrTy = dyn_cast<PointerType>(BaseGV->getType()); 402 IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace()); 403 APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true); 404 auto *GEPO = cast<GEPOperator>(ConstExpr); 405 if (!GEPO->accumulateConstantOffset(*DL, Offset)) 406 return; 407 408 if (!Offset.isIntN(32)) 409 return; 410 411 // A constant GEP expression that has a GlobalVariable as base pointer is 412 // usually lowered to a load from constant pool. Such operation is unlikely 413 // to be cheaper than compute it by <Base + Offset>, which can be lowered to 414 // an ADD instruction or folded into Load/Store instruction. 415 int Cost = TTI->getIntImmCost(Instruction::Add, 1, Offset, PtrIntTy); 416 ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV]; 417 ConstCandMapType::iterator Itr; 418 bool Inserted; 419 ConstPtrUnionType Cand = ConstExpr; 420 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); 421 if (Inserted) { 422 ExprCandVec.push_back(ConstantCandidate( 423 ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()), 424 ConstExpr)); 425 Itr->second = ExprCandVec.size() - 1; 426 } 427 ExprCandVec[Itr->second].addUser(Inst, Idx, Cost); 428 } 429 430 /// Check the operand for instruction Inst at index Idx. 431 void ConstantHoistingPass::collectConstantCandidates( 432 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) { 433 Value *Opnd = Inst->getOperand(Idx); 434 435 // Visit constant integers. 436 if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) { 437 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 438 return; 439 } 440 441 // Visit cast instructions that have constant integers. 442 if (auto CastInst = dyn_cast<Instruction>(Opnd)) { 443 // Only visit cast instructions, which have been skipped. All other 444 // instructions should have already been visited. 445 if (!CastInst->isCast()) 446 return; 447 448 if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) { 449 // Pretend the constant is directly used by the instruction and ignore 450 // the cast instruction. 451 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 452 return; 453 } 454 } 455 456 // Visit constant expressions that have constant integers. 457 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { 458 // Handle constant gep expressions. 459 if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing()) 460 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr); 461 462 // Only visit constant cast expressions. 463 if (!ConstExpr->isCast()) 464 return; 465 466 if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) { 467 // Pretend the constant is directly used by the instruction and ignore 468 // the constant expression. 469 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 470 return; 471 } 472 } 473 } 474 475 /// Scan the instruction for expensive integer constants and record them 476 /// in the constant candidate vector. 477 void ConstantHoistingPass::collectConstantCandidates( 478 ConstCandMapType &ConstCandMap, Instruction *Inst) { 479 // Skip all cast instructions. They are visited indirectly later on. 480 if (Inst->isCast()) 481 return; 482 483 // Scan all operands. 484 for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) { 485 // The cost of materializing the constants (defined in 486 // `TargetTransformInfo::getIntImmCost`) for instructions which only take 487 // constant variables is lower than `TargetTransformInfo::TCC_Basic`. So 488 // it's safe for us to collect constant candidates from all IntrinsicInsts. 489 if (canReplaceOperandWithVariable(Inst, Idx) || isa<IntrinsicInst>(Inst)) { 490 collectConstantCandidates(ConstCandMap, Inst, Idx); 491 } 492 } // end of for all operands 493 } 494 495 /// Collect all integer constants in the function that cannot be folded 496 /// into an instruction itself. 497 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) { 498 ConstCandMapType ConstCandMap; 499 for (BasicBlock &BB : Fn) 500 for (Instruction &Inst : BB) 501 collectConstantCandidates(ConstCandMap, &Inst); 502 } 503 504 // This helper function is necessary to deal with values that have different 505 // bit widths (APInt Operator- does not like that). If the value cannot be 506 // represented in uint64 we return an "empty" APInt. This is then interpreted 507 // as the value is not in range. 508 static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) { 509 Optional<APInt> Res = None; 510 unsigned BW = V1.getBitWidth() > V2.getBitWidth() ? 511 V1.getBitWidth() : V2.getBitWidth(); 512 uint64_t LimVal1 = V1.getLimitedValue(); 513 uint64_t LimVal2 = V2.getLimitedValue(); 514 515 if (LimVal1 == ~0ULL || LimVal2 == ~0ULL) 516 return Res; 517 518 uint64_t Diff = LimVal1 - LimVal2; 519 return APInt(BW, Diff, true); 520 } 521 522 // From a list of constants, one needs to picked as the base and the other 523 // constants will be transformed into an offset from that base constant. The 524 // question is which we can pick best? For example, consider these constants 525 // and their number of uses: 526 // 527 // Constants| 2 | 4 | 12 | 42 | 528 // NumUses | 3 | 2 | 8 | 7 | 529 // 530 // Selecting constant 12 because it has the most uses will generate negative 531 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative 532 // offsets lead to less optimal code generation, then there might be better 533 // solutions. Suppose immediates in the range of 0..35 are most optimally 534 // supported by the architecture, then selecting constant 2 is most optimal 535 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in 536 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would 537 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in 538 // selecting the base constant the range of the offsets is a very important 539 // factor too that we take into account here. This algorithm calculates a total 540 // costs for selecting a constant as the base and substract the costs if 541 // immediates are out of range. It has quadratic complexity, so we call this 542 // function only when we're optimising for size and there are less than 100 543 // constants, we fall back to the straightforward algorithm otherwise 544 // which does not do all the offset calculations. 545 unsigned 546 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S, 547 ConstCandVecType::iterator E, 548 ConstCandVecType::iterator &MaxCostItr) { 549 unsigned NumUses = 0; 550 551 if(!Entry->getParent()->optForSize() || std::distance(S,E) > 100) { 552 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 553 NumUses += ConstCand->Uses.size(); 554 if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost) 555 MaxCostItr = ConstCand; 556 } 557 return NumUses; 558 } 559 560 LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n"); 561 int MaxCost = -1; 562 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 563 auto Value = ConstCand->ConstInt->getValue(); 564 Type *Ty = ConstCand->ConstInt->getType(); 565 int Cost = 0; 566 NumUses += ConstCand->Uses.size(); 567 LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue() 568 << "\n"); 569 570 for (auto User : ConstCand->Uses) { 571 unsigned Opcode = User.Inst->getOpcode(); 572 unsigned OpndIdx = User.OpndIdx; 573 Cost += TTI->getIntImmCost(Opcode, OpndIdx, Value, Ty); 574 LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n"); 575 576 for (auto C2 = S; C2 != E; ++C2) { 577 Optional<APInt> Diff = calculateOffsetDiff( 578 C2->ConstInt->getValue(), 579 ConstCand->ConstInt->getValue()); 580 if (Diff) { 581 const int ImmCosts = 582 TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty); 583 Cost -= ImmCosts; 584 LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " " 585 << "has penalty: " << ImmCosts << "\n" 586 << "Adjusted cost: " << Cost << "\n"); 587 } 588 } 589 } 590 LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n"); 591 if (Cost > MaxCost) { 592 MaxCost = Cost; 593 MaxCostItr = ConstCand; 594 LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue() 595 << "\n"); 596 } 597 } 598 return NumUses; 599 } 600 601 /// Find the base constant within the given range and rebase all other 602 /// constants with respect to the base constant. 603 void ConstantHoistingPass::findAndMakeBaseConstant( 604 ConstCandVecType::iterator S, ConstCandVecType::iterator E, 605 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) { 606 auto MaxCostItr = S; 607 unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr); 608 609 // Don't hoist constants that have only one use. 610 if (NumUses <= 1) 611 return; 612 613 ConstantInt *ConstInt = MaxCostItr->ConstInt; 614 ConstantExpr *ConstExpr = MaxCostItr->ConstExpr; 615 ConstantInfo ConstInfo; 616 ConstInfo.BaseInt = ConstInt; 617 ConstInfo.BaseExpr = ConstExpr; 618 Type *Ty = ConstInt->getType(); 619 620 // Rebase the constants with respect to the base constant. 621 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 622 APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue(); 623 Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff); 624 Type *ConstTy = 625 ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr; 626 ConstInfo.RebasedConstants.push_back( 627 RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy)); 628 } 629 ConstInfoVec.push_back(std::move(ConstInfo)); 630 } 631 632 /// Finds and combines constant candidates that can be easily 633 /// rematerialized with an add from a common base constant. 634 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) { 635 // If BaseGV is nullptr, find base among candidate constant integers; 636 // Otherwise find base among constant GEPs that share the same BaseGV. 637 ConstCandVecType &ConstCandVec = BaseGV ? 638 ConstGEPCandMap[BaseGV] : ConstIntCandVec; 639 ConstInfoVecType &ConstInfoVec = BaseGV ? 640 ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; 641 642 // Sort the constants by value and type. This invalidates the mapping! 643 std::stable_sort(ConstCandVec.begin(), ConstCandVec.end(), 644 [](const ConstantCandidate &LHS, const ConstantCandidate &RHS) { 645 if (LHS.ConstInt->getType() != RHS.ConstInt->getType()) 646 return LHS.ConstInt->getType()->getBitWidth() < 647 RHS.ConstInt->getType()->getBitWidth(); 648 return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue()); 649 }); 650 651 // Simple linear scan through the sorted constant candidate vector for viable 652 // merge candidates. 653 auto MinValItr = ConstCandVec.begin(); 654 for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end(); 655 CC != E; ++CC) { 656 if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) { 657 Type *MemUseValTy = nullptr; 658 for (auto &U : CC->Uses) { 659 auto *UI = U.Inst; 660 if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { 661 MemUseValTy = LI->getType(); 662 break; 663 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 664 // Make sure the constant is used as pointer operand of the StoreInst. 665 if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) { 666 MemUseValTy = SI->getValueOperand()->getType(); 667 break; 668 } 669 } 670 } 671 672 // Check if the constant is in range of an add with immediate. 673 APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue(); 674 if ((Diff.getBitWidth() <= 64) && 675 TTI->isLegalAddImmediate(Diff.getSExtValue()) && 676 // Check if Diff can be used as offset in addressing mode of the user 677 // memory instruction. 678 (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy, 679 /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(), 680 /*HasBaseReg*/true, /*Scale*/0))) 681 continue; 682 } 683 // We either have now a different constant type or the constant is not in 684 // range of an add with immediate anymore. 685 findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec); 686 // Start a new base constant search. 687 MinValItr = CC; 688 } 689 // Finalize the last base constant search. 690 findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec); 691 } 692 693 /// Updates the operand at Idx in instruction Inst with the result of 694 /// instruction Mat. If the instruction is a PHI node then special 695 /// handling for duplicate values form the same incoming basic block is 696 /// required. 697 /// \return The update will always succeed, but the return value indicated if 698 /// Mat was used for the update or not. 699 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) { 700 if (auto PHI = dyn_cast<PHINode>(Inst)) { 701 // Check if any previous operand of the PHI node has the same incoming basic 702 // block. This is a very odd case that happens when the incoming basic block 703 // has a switch statement. In this case use the same value as the previous 704 // operand(s), otherwise we will fail verification due to different values. 705 // The values are actually the same, but the variable names are different 706 // and the verifier doesn't like that. 707 BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx); 708 for (unsigned i = 0; i < Idx; ++i) { 709 if (PHI->getIncomingBlock(i) == IncomingBB) { 710 Value *IncomingVal = PHI->getIncomingValue(i); 711 Inst->setOperand(Idx, IncomingVal); 712 return false; 713 } 714 } 715 } 716 717 Inst->setOperand(Idx, Mat); 718 return true; 719 } 720 721 /// Emit materialization code for all rebased constants and update their 722 /// users. 723 void ConstantHoistingPass::emitBaseConstants(Instruction *Base, 724 Constant *Offset, 725 Type *Ty, 726 const ConstantUser &ConstUser) { 727 Instruction *Mat = Base; 728 729 // The same offset can be dereferenced to different types in nested struct. 730 if (!Offset && Ty && Ty != Base->getType()) 731 Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0); 732 733 if (Offset) { 734 Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst, 735 ConstUser.OpndIdx); 736 if (Ty) { 737 // Constant being rebased is a ConstantExpr. 738 PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx, 739 cast<PointerType>(Ty)->getAddressSpace()); 740 Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt); 741 Mat = GetElementPtrInst::Create(Int8PtrTy->getElementType(), Base, 742 Offset, "mat_gep", InsertionPt); 743 Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt); 744 } else 745 // Constant being rebased is a ConstantInt. 746 Mat = BinaryOperator::Create(Instruction::Add, Base, Offset, 747 "const_mat", InsertionPt); 748 749 LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0) 750 << " + " << *Offset << ") in BB " 751 << Mat->getParent()->getName() << '\n' 752 << *Mat << '\n'); 753 Mat->setDebugLoc(ConstUser.Inst->getDebugLoc()); 754 } 755 Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx); 756 757 // Visit constant integer. 758 if (isa<ConstantInt>(Opnd)) { 759 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); 760 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset) 761 Mat->eraseFromParent(); 762 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); 763 return; 764 } 765 766 // Visit cast instruction. 767 if (auto CastInst = dyn_cast<Instruction>(Opnd)) { 768 assert(CastInst->isCast() && "Expected an cast instruction!"); 769 // Check if we already have visited this cast instruction before to avoid 770 // unnecessary cloning. 771 Instruction *&ClonedCastInst = ClonedCastMap[CastInst]; 772 if (!ClonedCastInst) { 773 ClonedCastInst = CastInst->clone(); 774 ClonedCastInst->setOperand(0, Mat); 775 ClonedCastInst->insertAfter(CastInst); 776 // Use the same debug location as the original cast instruction. 777 ClonedCastInst->setDebugLoc(CastInst->getDebugLoc()); 778 LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n' 779 << "To : " << *ClonedCastInst << '\n'); 780 } 781 782 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); 783 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst); 784 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); 785 return; 786 } 787 788 // Visit constant expression. 789 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { 790 if (ConstExpr->isGEPWithNoNotionalOverIndexing()) { 791 // Operand is a ConstantGEP, replace it. 792 updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat); 793 return; 794 } 795 796 // Aside from constant GEPs, only constant cast expressions are collected. 797 assert(ConstExpr->isCast() && "ConstExpr should be a cast"); 798 Instruction *ConstExprInst = ConstExpr->getAsInstruction(); 799 ConstExprInst->setOperand(0, Mat); 800 ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst, 801 ConstUser.OpndIdx)); 802 803 // Use the same debug location as the instruction we are about to update. 804 ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc()); 805 806 LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n' 807 << "From : " << *ConstExpr << '\n'); 808 LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); 809 if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) { 810 ConstExprInst->eraseFromParent(); 811 if (Offset) 812 Mat->eraseFromParent(); 813 } 814 LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n'); 815 return; 816 } 817 } 818 819 /// Hoist and hide the base constant behind a bitcast and emit 820 /// materialization code for derived constants. 821 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) { 822 bool MadeChange = false; 823 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec = 824 BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; 825 for (auto const &ConstInfo : ConstInfoVec) { 826 SmallPtrSet<Instruction *, 8> IPSet = findConstantInsertionPoint(ConstInfo); 827 assert(!IPSet.empty() && "IPSet is empty"); 828 829 unsigned UsesNum = 0; 830 unsigned ReBasesNum = 0; 831 unsigned NotRebasedNum = 0; 832 for (Instruction *IP : IPSet) { 833 // First, collect constants depending on this IP of the base. 834 unsigned Uses = 0; 835 using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>; 836 SmallVector<RebasedUse, 4> ToBeRebased; 837 for (auto const &RCI : ConstInfo.RebasedConstants) { 838 for (auto const &U : RCI.Uses) { 839 Uses++; 840 BasicBlock *OrigMatInsertBB = 841 findMatInsertPt(U.Inst, U.OpndIdx)->getParent(); 842 // If Base constant is to be inserted in multiple places, 843 // generate rebase for U using the Base dominating U. 844 if (IPSet.size() == 1 || 845 DT->dominates(IP->getParent(), OrigMatInsertBB)) 846 ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U)); 847 } 848 } 849 UsesNum = Uses; 850 851 // If only few constants depend on this IP of base, skip rebasing, 852 // assuming the base and the rebased have the same materialization cost. 853 if (ToBeRebased.size() < MinNumOfDependentToRebase) { 854 NotRebasedNum += ToBeRebased.size(); 855 continue; 856 } 857 858 // Emit an instance of the base at this IP. 859 Instruction *Base = nullptr; 860 // Hoist and hide the base constant behind a bitcast. 861 if (ConstInfo.BaseExpr) { 862 assert(BaseGV && "A base constant expression must have an base GV"); 863 Type *Ty = ConstInfo.BaseExpr->getType(); 864 Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP); 865 } else { 866 IntegerType *Ty = ConstInfo.BaseInt->getType(); 867 Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP); 868 } 869 870 Base->setDebugLoc(IP->getDebugLoc()); 871 872 LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt 873 << ") to BB " << IP->getParent()->getName() << '\n' 874 << *Base << '\n'); 875 876 // Emit materialization code for rebased constants depending on this IP. 877 for (auto const &R : ToBeRebased) { 878 Constant *Off = std::get<0>(R); 879 Type *Ty = std::get<1>(R); 880 ConstantUser U = std::get<2>(R); 881 emitBaseConstants(Base, Off, Ty, U); 882 ReBasesNum++; 883 // Use the same debug location as the last user of the constant. 884 Base->setDebugLoc(DILocation::getMergedLocation( 885 Base->getDebugLoc(), U.Inst->getDebugLoc())); 886 } 887 assert(!Base->use_empty() && "The use list is empty!?"); 888 assert(isa<Instruction>(Base->user_back()) && 889 "All uses should be instructions."); 890 } 891 (void)UsesNum; 892 (void)ReBasesNum; 893 (void)NotRebasedNum; 894 // Expect all uses are rebased after rebase is done. 895 assert(UsesNum == (ReBasesNum + NotRebasedNum) && 896 "Not all uses are rebased"); 897 898 NumConstantsHoisted++; 899 900 // Base constant is also included in ConstInfo.RebasedConstants, so 901 // deduct 1 from ConstInfo.RebasedConstants.size(). 902 NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1; 903 904 MadeChange = true; 905 } 906 return MadeChange; 907 } 908 909 /// Check all cast instructions we made a copy of and remove them if they 910 /// have no more users. 911 void ConstantHoistingPass::deleteDeadCastInst() const { 912 for (auto const &I : ClonedCastMap) 913 if (I.first->use_empty()) 914 I.first->eraseFromParent(); 915 } 916 917 /// Optimize expensive integer constants in the given function. 918 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI, 919 DominatorTree &DT, BlockFrequencyInfo *BFI, 920 BasicBlock &Entry) { 921 this->TTI = &TTI; 922 this->DT = &DT; 923 this->BFI = BFI; 924 this->DL = &Fn.getParent()->getDataLayout(); 925 this->Ctx = &Fn.getContext(); 926 this->Entry = &Entry; 927 // Collect all constant candidates. 928 collectConstantCandidates(Fn); 929 930 // Combine constants that can be easily materialized with an add from a common 931 // base constant. 932 if (!ConstIntCandVec.empty()) 933 findBaseConstants(nullptr); 934 for (auto &MapEntry : ConstGEPCandMap) 935 if (!MapEntry.second.empty()) 936 findBaseConstants(MapEntry.first); 937 938 // Finally hoist the base constant and emit materialization code for dependent 939 // constants. 940 bool MadeChange = false; 941 if (!ConstIntInfoVec.empty()) 942 MadeChange = emitBaseConstants(nullptr); 943 for (auto MapEntry : ConstGEPInfoMap) 944 if (!MapEntry.second.empty()) 945 MadeChange |= emitBaseConstants(MapEntry.first); 946 947 948 // Cleanup dead instructions. 949 deleteDeadCastInst(); 950 951 return MadeChange; 952 } 953 954 PreservedAnalyses ConstantHoistingPass::run(Function &F, 955 FunctionAnalysisManager &AM) { 956 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 957 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 958 auto BFI = ConstHoistWithBlockFrequency 959 ? &AM.getResult<BlockFrequencyAnalysis>(F) 960 : nullptr; 961 if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock())) 962 return PreservedAnalyses::all(); 963 964 PreservedAnalyses PA; 965 PA.preserveSet<CFGAnalyses>(); 966 return PA; 967 } 968