1 //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This file is a part of MemorySanitizer, a detector of uninitialized 12 /// reads. 13 /// 14 /// The algorithm of the tool is similar to Memcheck 15 /// (http://goo.gl/QKbem). We associate a few shadow bits with every 16 /// byte of the application memory, poison the shadow of the malloc-ed 17 /// or alloca-ed memory, load the shadow bits on every memory read, 18 /// propagate the shadow bits through some of the arithmetic 19 /// instruction (including MOV), store the shadow bits on every memory 20 /// write, report a bug on some other instructions (e.g. JMP) if the 21 /// associated shadow is poisoned. 22 /// 23 /// But there are differences too. The first and the major one: 24 /// compiler instrumentation instead of binary instrumentation. This 25 /// gives us much better register allocation, possible compiler 26 /// optimizations and a fast start-up. But this brings the major issue 27 /// as well: msan needs to see all program events, including system 28 /// calls and reads/writes in system libraries, so we either need to 29 /// compile *everything* with msan or use a binary translation 30 /// component (e.g. DynamoRIO) to instrument pre-built libraries. 31 /// Another difference from Memcheck is that we use 8 shadow bits per 32 /// byte of application memory and use a direct shadow mapping. This 33 /// greatly simplifies the instrumentation code and avoids races on 34 /// shadow updates (Memcheck is single-threaded so races are not a 35 /// concern there. Memcheck uses 2 shadow bits per byte with a slow 36 /// path storage that uses 8 bits per byte). 37 /// 38 /// The default value of shadow is 0, which means "clean" (not poisoned). 39 /// 40 /// Every module initializer should call __msan_init to ensure that the 41 /// shadow memory is ready. On error, __msan_warning is called. Since 42 /// parameters and return values may be passed via registers, we have a 43 /// specialized thread-local shadow for return values 44 /// (__msan_retval_tls) and parameters (__msan_param_tls). 45 /// 46 /// Origin tracking. 47 /// 48 /// MemorySanitizer can track origins (allocation points) of all uninitialized 49 /// values. This behavior is controlled with a flag (msan-track-origins) and is 50 /// disabled by default. 51 /// 52 /// Origins are 4-byte values created and interpreted by the runtime library. 53 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 54 /// of application memory. Propagation of origins is basically a bunch of 55 /// "select" instructions that pick the origin of a dirty argument, if an 56 /// instruction has one. 57 /// 58 /// Every 4 aligned, consecutive bytes of application memory have one origin 59 /// value associated with them. If these bytes contain uninitialized data 60 /// coming from 2 different allocations, the last store wins. Because of this, 61 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in 62 /// practice. 63 /// 64 /// Origins are meaningless for fully initialized values, so MemorySanitizer 65 /// avoids storing origin to memory when a fully initialized value is stored. 66 /// This way it avoids needless overwritting origin of the 4-byte region on 67 /// a short (i.e. 1 byte) clean store, and it is also good for performance. 68 /// 69 /// Atomic handling. 70 /// 71 /// Ideally, every atomic store of application value should update the 72 /// corresponding shadow location in an atomic way. Unfortunately, atomic store 73 /// of two disjoint locations can not be done without severe slowdown. 74 /// 75 /// Therefore, we implement an approximation that may err on the safe side. 76 /// In this implementation, every atomically accessed location in the program 77 /// may only change from (partially) uninitialized to fully initialized, but 78 /// not the other way around. We load the shadow _after_ the application load, 79 /// and we store the shadow _before_ the app store. Also, we always store clean 80 /// shadow (if the application store is atomic). This way, if the store-load 81 /// pair constitutes a happens-before arc, shadow store and load are correctly 82 /// ordered such that the load will get either the value that was stored, or 83 /// some later value (which is always clean). 84 /// 85 /// This does not work very well with Compare-And-Swap (CAS) and 86 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 87 /// must store the new shadow before the app operation, and load the shadow 88 /// after the app operation. Computers don't work this way. Current 89 /// implementation ignores the load aspect of CAS/RMW, always returning a clean 90 /// value. It implements the store part as a simple atomic store by storing a 91 /// clean shadow. 92 /// 93 /// Instrumenting inline assembly. 94 /// 95 /// For inline assembly code LLVM has little idea about which memory locations 96 /// become initialized depending on the arguments. It can be possible to figure 97 /// out which arguments are meant to point to inputs and outputs, but the 98 /// actual semantics can be only visible at runtime. In the Linux kernel it's 99 /// also possible that the arguments only indicate the offset for a base taken 100 /// from a segment register, so it's dangerous to treat any asm() arguments as 101 /// pointers. We take a conservative approach generating calls to 102 /// __msan_instrument_asm_store(ptr, size) 103 /// , which defer the memory unpoisoning to the runtime library. 104 /// The latter can perform more complex address checks to figure out whether 105 /// it's safe to touch the shadow memory. 106 /// Like with atomic operations, we call __msan_instrument_asm_store() before 107 /// the assembly call, so that changes to the shadow memory will be seen by 108 /// other threads together with main memory initialization. 109 /// 110 /// KernelMemorySanitizer (KMSAN) implementation. 111 /// 112 /// The major differences between KMSAN and MSan instrumentation are: 113 /// - KMSAN always tracks the origins and implies msan-keep-going=true; 114 /// - KMSAN allocates shadow and origin memory for each page separately, so 115 /// there are no explicit accesses to shadow and origin in the 116 /// instrumentation. 117 /// Shadow and origin values for a particular X-byte memory location 118 /// (X=1,2,4,8) are accessed through pointers obtained via the 119 /// __msan_metadata_ptr_for_load_X(ptr) 120 /// __msan_metadata_ptr_for_store_X(ptr) 121 /// functions. The corresponding functions check that the X-byte accesses 122 /// are possible and returns the pointers to shadow and origin memory. 123 /// Arbitrary sized accesses are handled with: 124 /// __msan_metadata_ptr_for_load_n(ptr, size) 125 /// __msan_metadata_ptr_for_store_n(ptr, size); 126 /// - TLS variables are stored in a single per-task struct. A call to a 127 /// function __msan_get_context_state() returning a pointer to that struct 128 /// is inserted into every instrumented function before the entry block; 129 /// - __msan_warning() takes a 32-bit origin parameter; 130 /// - local variables are poisoned with __msan_poison_alloca() upon function 131 /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the 132 /// function; 133 /// - the pass doesn't declare any global variables or add global constructors 134 /// to the translation unit. 135 /// 136 /// Also, KMSAN currently ignores uninitialized memory passed into inline asm 137 /// calls, making sure we're on the safe side wrt. possible false positives. 138 /// 139 /// KernelMemorySanitizer only supports X86_64 at the moment. 140 /// 141 //===----------------------------------------------------------------------===// 142 143 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 144 #include "llvm/ADT/APInt.h" 145 #include "llvm/ADT/ArrayRef.h" 146 #include "llvm/ADT/DepthFirstIterator.h" 147 #include "llvm/ADT/SmallString.h" 148 #include "llvm/ADT/SmallVector.h" 149 #include "llvm/ADT/StringExtras.h" 150 #include "llvm/ADT/StringRef.h" 151 #include "llvm/ADT/Triple.h" 152 #include "llvm/Analysis/TargetLibraryInfo.h" 153 #include "llvm/IR/Argument.h" 154 #include "llvm/IR/Attributes.h" 155 #include "llvm/IR/BasicBlock.h" 156 #include "llvm/IR/CallSite.h" 157 #include "llvm/IR/CallingConv.h" 158 #include "llvm/IR/Constant.h" 159 #include "llvm/IR/Constants.h" 160 #include "llvm/IR/DataLayout.h" 161 #include "llvm/IR/DerivedTypes.h" 162 #include "llvm/IR/Function.h" 163 #include "llvm/IR/GlobalValue.h" 164 #include "llvm/IR/GlobalVariable.h" 165 #include "llvm/IR/IRBuilder.h" 166 #include "llvm/IR/InlineAsm.h" 167 #include "llvm/IR/InstVisitor.h" 168 #include "llvm/IR/InstrTypes.h" 169 #include "llvm/IR/Instruction.h" 170 #include "llvm/IR/Instructions.h" 171 #include "llvm/IR/IntrinsicInst.h" 172 #include "llvm/IR/Intrinsics.h" 173 #include "llvm/IR/LLVMContext.h" 174 #include "llvm/IR/MDBuilder.h" 175 #include "llvm/IR/Module.h" 176 #include "llvm/IR/Type.h" 177 #include "llvm/IR/Value.h" 178 #include "llvm/IR/ValueMap.h" 179 #include "llvm/Pass.h" 180 #include "llvm/Support/AtomicOrdering.h" 181 #include "llvm/Support/Casting.h" 182 #include "llvm/Support/CommandLine.h" 183 #include "llvm/Support/Compiler.h" 184 #include "llvm/Support/Debug.h" 185 #include "llvm/Support/ErrorHandling.h" 186 #include "llvm/Support/MathExtras.h" 187 #include "llvm/Support/raw_ostream.h" 188 #include "llvm/Transforms/Instrumentation.h" 189 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 190 #include "llvm/Transforms/Utils/Local.h" 191 #include "llvm/Transforms/Utils/ModuleUtils.h" 192 #include <algorithm> 193 #include <cassert> 194 #include <cstddef> 195 #include <cstdint> 196 #include <memory> 197 #include <string> 198 #include <tuple> 199 200 using namespace llvm; 201 202 #define DEBUG_TYPE "msan" 203 204 static const unsigned kOriginSize = 4; 205 static const unsigned kMinOriginAlignment = 4; 206 static const unsigned kShadowTLSAlignment = 8; 207 208 // These constants must be kept in sync with the ones in msan.h. 209 static const unsigned kParamTLSSize = 800; 210 static const unsigned kRetvalTLSSize = 800; 211 212 // Accesses sizes are powers of two: 1, 2, 4, 8. 213 static const size_t kNumberOfAccessSizes = 4; 214 215 /// Track origins of uninitialized values. 216 /// 217 /// Adds a section to MemorySanitizer report that points to the allocation 218 /// (stack or heap) the uninitialized bits came from originally. 219 static cl::opt<int> ClTrackOrigins("msan-track-origins", 220 cl::desc("Track origins (allocation sites) of poisoned memory"), 221 cl::Hidden, cl::init(0)); 222 223 static cl::opt<bool> ClKeepGoing("msan-keep-going", 224 cl::desc("keep going after reporting a UMR"), 225 cl::Hidden, cl::init(false)); 226 227 static cl::opt<bool> ClPoisonStack("msan-poison-stack", 228 cl::desc("poison uninitialized stack variables"), 229 cl::Hidden, cl::init(true)); 230 231 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 232 cl::desc("poison uninitialized stack variables with a call"), 233 cl::Hidden, cl::init(false)); 234 235 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 236 cl::desc("poison uninitialized stack variables with the given pattern"), 237 cl::Hidden, cl::init(0xff)); 238 239 static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 240 cl::desc("poison undef temps"), 241 cl::Hidden, cl::init(true)); 242 243 static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 244 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 245 cl::Hidden, cl::init(true)); 246 247 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 248 cl::desc("exact handling of relational integer ICmp"), 249 cl::Hidden, cl::init(false)); 250 251 // When compiling the Linux kernel, we sometimes see false positives related to 252 // MSan being unable to understand that inline assembly calls may initialize 253 // local variables. 254 // This flag makes the compiler conservatively unpoison every memory location 255 // passed into an assembly call. Note that this may cause false positives. 256 // Because it's impossible to figure out the array sizes, we can only unpoison 257 // the first sizeof(type) bytes for each type* pointer. 258 // The instrumentation is only enabled in KMSAN builds, and only if 259 // -msan-handle-asm-conservative is on. This is done because we may want to 260 // quickly disable assembly instrumentation when it breaks. 261 static cl::opt<bool> ClHandleAsmConservative( 262 "msan-handle-asm-conservative", 263 cl::desc("conservative handling of inline assembly"), cl::Hidden, 264 cl::init(true)); 265 266 // This flag controls whether we check the shadow of the address 267 // operand of load or store. Such bugs are very rare, since load from 268 // a garbage address typically results in SEGV, but still happen 269 // (e.g. only lower bits of address are garbage, or the access happens 270 // early at program startup where malloc-ed memory is more likely to 271 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 272 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 273 cl::desc("report accesses through a pointer which has poisoned shadow"), 274 cl::Hidden, cl::init(true)); 275 276 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 277 cl::desc("print out instructions with default strict semantics"), 278 cl::Hidden, cl::init(false)); 279 280 static cl::opt<int> ClInstrumentationWithCallThreshold( 281 "msan-instrumentation-with-call-threshold", 282 cl::desc( 283 "If the function being instrumented requires more than " 284 "this number of checks and origin stores, use callbacks instead of " 285 "inline checks (-1 means never use callbacks)."), 286 cl::Hidden, cl::init(3500)); 287 288 static cl::opt<bool> 289 ClEnableKmsan("msan-kernel", 290 cl::desc("Enable KernelMemorySanitizer instrumentation"), 291 cl::Hidden, cl::init(false)); 292 293 // This is an experiment to enable handling of cases where shadow is a non-zero 294 // compile-time constant. For some unexplainable reason they were silently 295 // ignored in the instrumentation. 296 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 297 cl::desc("Insert checks for constant shadow values"), 298 cl::Hidden, cl::init(false)); 299 300 // This is off by default because of a bug in gold: 301 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 302 static cl::opt<bool> ClWithComdat("msan-with-comdat", 303 cl::desc("Place MSan constructors in comdat sections"), 304 cl::Hidden, cl::init(false)); 305 306 // These options allow to specify custom memory map parameters 307 // See MemoryMapParams for details. 308 static cl::opt<unsigned long long> ClAndMask("msan-and-mask", 309 cl::desc("Define custom MSan AndMask"), 310 cl::Hidden, cl::init(0)); 311 312 static cl::opt<unsigned long long> ClXorMask("msan-xor-mask", 313 cl::desc("Define custom MSan XorMask"), 314 cl::Hidden, cl::init(0)); 315 316 static cl::opt<unsigned long long> ClShadowBase("msan-shadow-base", 317 cl::desc("Define custom MSan ShadowBase"), 318 cl::Hidden, cl::init(0)); 319 320 static cl::opt<unsigned long long> ClOriginBase("msan-origin-base", 321 cl::desc("Define custom MSan OriginBase"), 322 cl::Hidden, cl::init(0)); 323 324 static const char *const kMsanModuleCtorName = "msan.module_ctor"; 325 static const char *const kMsanInitName = "__msan_init"; 326 327 namespace { 328 329 // Memory map parameters used in application-to-shadow address calculation. 330 // Offset = (Addr & ~AndMask) ^ XorMask 331 // Shadow = ShadowBase + Offset 332 // Origin = OriginBase + Offset 333 struct MemoryMapParams { 334 uint64_t AndMask; 335 uint64_t XorMask; 336 uint64_t ShadowBase; 337 uint64_t OriginBase; 338 }; 339 340 struct PlatformMemoryMapParams { 341 const MemoryMapParams *bits32; 342 const MemoryMapParams *bits64; 343 }; 344 345 } // end anonymous namespace 346 347 // i386 Linux 348 static const MemoryMapParams Linux_I386_MemoryMapParams = { 349 0x000080000000, // AndMask 350 0, // XorMask (not used) 351 0, // ShadowBase (not used) 352 0x000040000000, // OriginBase 353 }; 354 355 // x86_64 Linux 356 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 357 #ifdef MSAN_LINUX_X86_64_OLD_MAPPING 358 0x400000000000, // AndMask 359 0, // XorMask (not used) 360 0, // ShadowBase (not used) 361 0x200000000000, // OriginBase 362 #else 363 0, // AndMask (not used) 364 0x500000000000, // XorMask 365 0, // ShadowBase (not used) 366 0x100000000000, // OriginBase 367 #endif 368 }; 369 370 // mips64 Linux 371 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 372 0, // AndMask (not used) 373 0x008000000000, // XorMask 374 0, // ShadowBase (not used) 375 0x002000000000, // OriginBase 376 }; 377 378 // ppc64 Linux 379 static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 380 0xE00000000000, // AndMask 381 0x100000000000, // XorMask 382 0x080000000000, // ShadowBase 383 0x1C0000000000, // OriginBase 384 }; 385 386 // aarch64 Linux 387 static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 388 0, // AndMask (not used) 389 0x06000000000, // XorMask 390 0, // ShadowBase (not used) 391 0x01000000000, // OriginBase 392 }; 393 394 // i386 FreeBSD 395 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 396 0x000180000000, // AndMask 397 0x000040000000, // XorMask 398 0x000020000000, // ShadowBase 399 0x000700000000, // OriginBase 400 }; 401 402 // x86_64 FreeBSD 403 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 404 0xc00000000000, // AndMask 405 0x200000000000, // XorMask 406 0x100000000000, // ShadowBase 407 0x380000000000, // OriginBase 408 }; 409 410 // x86_64 NetBSD 411 static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { 412 0, // AndMask 413 0x500000000000, // XorMask 414 0, // ShadowBase 415 0x100000000000, // OriginBase 416 }; 417 418 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 419 &Linux_I386_MemoryMapParams, 420 &Linux_X86_64_MemoryMapParams, 421 }; 422 423 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 424 nullptr, 425 &Linux_MIPS64_MemoryMapParams, 426 }; 427 428 static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 429 nullptr, 430 &Linux_PowerPC64_MemoryMapParams, 431 }; 432 433 static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 434 nullptr, 435 &Linux_AArch64_MemoryMapParams, 436 }; 437 438 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 439 &FreeBSD_I386_MemoryMapParams, 440 &FreeBSD_X86_64_MemoryMapParams, 441 }; 442 443 static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { 444 nullptr, 445 &NetBSD_X86_64_MemoryMapParams, 446 }; 447 448 namespace { 449 450 /// Instrument functions of a module to detect uninitialized reads. 451 /// 452 /// Instantiating MemorySanitizer inserts the msan runtime library API function 453 /// declarations into the module if they don't exist already. Instantiating 454 /// ensures the __msan_init function is in the list of global constructors for 455 /// the module. 456 class MemorySanitizer { 457 public: 458 MemorySanitizer(Module &M, int TrackOrigins = 0, bool Recover = false, 459 bool EnableKmsan = false) { 460 this->CompileKernel = 461 ClEnableKmsan.getNumOccurrences() > 0 ? ClEnableKmsan : EnableKmsan; 462 if (ClTrackOrigins.getNumOccurrences() > 0) 463 this->TrackOrigins = ClTrackOrigins; 464 else 465 this->TrackOrigins = this->CompileKernel ? 2 : TrackOrigins; 466 this->Recover = ClKeepGoing.getNumOccurrences() > 0 467 ? ClKeepGoing 468 : (this->CompileKernel | Recover); 469 initializeModule(M); 470 } 471 472 // MSan cannot be moved or copied because of MapParams. 473 MemorySanitizer(MemorySanitizer &&) = delete; 474 MemorySanitizer &operator=(MemorySanitizer &&) = delete; 475 MemorySanitizer(const MemorySanitizer &) = delete; 476 MemorySanitizer &operator=(const MemorySanitizer &) = delete; 477 478 bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); 479 480 private: 481 friend struct MemorySanitizerVisitor; 482 friend struct VarArgAMD64Helper; 483 friend struct VarArgMIPS64Helper; 484 friend struct VarArgAArch64Helper; 485 friend struct VarArgPowerPC64Helper; 486 487 void initializeModule(Module &M); 488 void initializeCallbacks(Module &M); 489 void createKernelApi(Module &M); 490 void createUserspaceApi(Module &M); 491 492 /// True if we're compiling the Linux kernel. 493 bool CompileKernel; 494 /// Track origins (allocation points) of uninitialized values. 495 int TrackOrigins; 496 bool Recover; 497 498 LLVMContext *C; 499 Type *IntptrTy; 500 Type *OriginTy; 501 502 // XxxTLS variables represent the per-thread state in MSan and per-task state 503 // in KMSAN. 504 // For the userspace these point to thread-local globals. In the kernel land 505 // they point to the members of a per-task struct obtained via a call to 506 // __msan_get_context_state(). 507 508 /// Thread-local shadow storage for function parameters. 509 Value *ParamTLS; 510 511 /// Thread-local origin storage for function parameters. 512 Value *ParamOriginTLS; 513 514 /// Thread-local shadow storage for function return value. 515 Value *RetvalTLS; 516 517 /// Thread-local origin storage for function return value. 518 Value *RetvalOriginTLS; 519 520 /// Thread-local shadow storage for in-register va_arg function 521 /// parameters (x86_64-specific). 522 Value *VAArgTLS; 523 524 /// Thread-local shadow storage for in-register va_arg function 525 /// parameters (x86_64-specific). 526 Value *VAArgOriginTLS; 527 528 /// Thread-local shadow storage for va_arg overflow area 529 /// (x86_64-specific). 530 Value *VAArgOverflowSizeTLS; 531 532 /// Thread-local space used to pass origin value to the UMR reporting 533 /// function. 534 Value *OriginTLS; 535 536 /// Are the instrumentation callbacks set up? 537 bool CallbacksInitialized = false; 538 539 /// The run-time callback to print a warning. 540 Value *WarningFn; 541 542 // These arrays are indexed by log2(AccessSize). 543 Value *MaybeWarningFn[kNumberOfAccessSizes]; 544 Value *MaybeStoreOriginFn[kNumberOfAccessSizes]; 545 546 /// Run-time helper that generates a new origin value for a stack 547 /// allocation. 548 Value *MsanSetAllocaOrigin4Fn; 549 550 /// Run-time helper that poisons stack on function entry. 551 Value *MsanPoisonStackFn; 552 553 /// Run-time helper that records a store (or any event) of an 554 /// uninitialized value and returns an updated origin id encoding this info. 555 Value *MsanChainOriginFn; 556 557 /// MSan runtime replacements for memmove, memcpy and memset. 558 Value *MemmoveFn, *MemcpyFn, *MemsetFn; 559 560 /// KMSAN callback for task-local function argument shadow. 561 Value *MsanGetContextStateFn; 562 563 /// Functions for poisoning/unpoisoning local variables 564 Value *MsanPoisonAllocaFn, *MsanUnpoisonAllocaFn; 565 566 /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin 567 /// pointers. 568 Value *MsanMetadataPtrForLoadN, *MsanMetadataPtrForStoreN; 569 Value *MsanMetadataPtrForLoad_1_8[4]; 570 Value *MsanMetadataPtrForStore_1_8[4]; 571 Value *MsanInstrumentAsmStoreFn; 572 573 /// Helper to choose between different MsanMetadataPtrXxx(). 574 Value *getKmsanShadowOriginAccessFn(bool isStore, int size); 575 576 /// Memory map parameters used in application-to-shadow calculation. 577 const MemoryMapParams *MapParams; 578 579 /// Custom memory map parameters used when -msan-shadow-base or 580 // -msan-origin-base is provided. 581 MemoryMapParams CustomMapParams; 582 583 MDNode *ColdCallWeights; 584 585 /// Branch weights for origin store. 586 MDNode *OriginStoreWeights; 587 588 /// An empty volatile inline asm that prevents callback merge. 589 InlineAsm *EmptyAsm; 590 591 Function *MsanCtorFunction; 592 }; 593 594 /// A legacy function pass for msan instrumentation. 595 /// 596 /// Instruments functions to detect unitialized reads. 597 struct MemorySanitizerLegacyPass : public FunctionPass { 598 // Pass identification, replacement for typeid. 599 static char ID; 600 601 MemorySanitizerLegacyPass(int TrackOrigins = 0, bool Recover = false, 602 bool EnableKmsan = false) 603 : FunctionPass(ID), TrackOrigins(TrackOrigins), Recover(Recover), 604 EnableKmsan(EnableKmsan) {} 605 StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } 606 607 void getAnalysisUsage(AnalysisUsage &AU) const override { 608 AU.addRequired<TargetLibraryInfoWrapperPass>(); 609 } 610 611 bool runOnFunction(Function &F) override { 612 return MSan->sanitizeFunction( 613 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()); 614 } 615 bool doInitialization(Module &M) override; 616 617 Optional<MemorySanitizer> MSan; 618 int TrackOrigins; 619 bool Recover; 620 bool EnableKmsan; 621 }; 622 623 } // end anonymous namespace 624 625 PreservedAnalyses MemorySanitizerPass::run(Function &F, 626 FunctionAnalysisManager &FAM) { 627 MemorySanitizer Msan(*F.getParent(), TrackOrigins, Recover, EnableKmsan); 628 if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) 629 return PreservedAnalyses::none(); 630 return PreservedAnalyses::all(); 631 } 632 633 char MemorySanitizerLegacyPass::ID = 0; 634 635 INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", 636 "MemorySanitizer: detects uninitialized reads.", false, 637 false) 638 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 639 INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", 640 "MemorySanitizer: detects uninitialized reads.", false, 641 false) 642 643 FunctionPass *llvm::createMemorySanitizerLegacyPassPass(int TrackOrigins, 644 bool Recover, 645 bool CompileKernel) { 646 return new MemorySanitizerLegacyPass(TrackOrigins, Recover, CompileKernel); 647 } 648 649 /// Create a non-const global initialized with the given string. 650 /// 651 /// Creates a writable global for Str so that we can pass it to the 652 /// run-time lib. Runtime uses first 4 bytes of the string to store the 653 /// frame ID, so the string needs to be mutable. 654 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 655 StringRef Str) { 656 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 657 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 658 GlobalValue::PrivateLinkage, StrConst, ""); 659 } 660 661 /// Create KMSAN API callbacks. 662 void MemorySanitizer::createKernelApi(Module &M) { 663 IRBuilder<> IRB(*C); 664 665 // These will be initialized in insertKmsanPrologue(). 666 RetvalTLS = nullptr; 667 RetvalOriginTLS = nullptr; 668 ParamTLS = nullptr; 669 ParamOriginTLS = nullptr; 670 VAArgTLS = nullptr; 671 VAArgOriginTLS = nullptr; 672 VAArgOverflowSizeTLS = nullptr; 673 // OriginTLS is unused in the kernel. 674 OriginTLS = nullptr; 675 676 // __msan_warning() in the kernel takes an origin. 677 WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), 678 IRB.getInt32Ty()); 679 // Requests the per-task context state (kmsan_context_state*) from the 680 // runtime library. 681 MsanGetContextStateFn = M.getOrInsertFunction( 682 "__msan_get_context_state", 683 PointerType::get( 684 StructType::get(ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 685 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), 686 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), 687 ArrayType::get(IRB.getInt64Ty(), 688 kParamTLSSize / 8), /* va_arg_origin */ 689 IRB.getInt64Ty(), 690 ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, 691 OriginTy), 692 0)); 693 694 Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), 695 PointerType::get(IRB.getInt32Ty(), 0)); 696 697 for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { 698 std::string name_load = 699 "__msan_metadata_ptr_for_load_" + std::to_string(size); 700 std::string name_store = 701 "__msan_metadata_ptr_for_store_" + std::to_string(size); 702 MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( 703 name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 704 MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( 705 name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); 706 } 707 708 MsanMetadataPtrForLoadN = M.getOrInsertFunction( 709 "__msan_metadata_ptr_for_load_n", RetTy, 710 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 711 MsanMetadataPtrForStoreN = M.getOrInsertFunction( 712 "__msan_metadata_ptr_for_store_n", RetTy, 713 PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); 714 715 // Functions for poisoning and unpoisoning memory. 716 MsanPoisonAllocaFn = 717 M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), 718 IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); 719 MsanUnpoisonAllocaFn = M.getOrInsertFunction( 720 "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); 721 } 722 723 static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { 724 return M.getOrInsertGlobal(Name, Ty, [&] { 725 return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, 726 nullptr, Name, nullptr, 727 GlobalVariable::InitialExecTLSModel); 728 }); 729 } 730 731 /// Insert declarations for userspace-specific functions and globals. 732 void MemorySanitizer::createUserspaceApi(Module &M) { 733 IRBuilder<> IRB(*C); 734 // Create the callback. 735 // FIXME: this function should have "Cold" calling conv, 736 // which is not yet implemented. 737 StringRef WarningFnName = Recover ? "__msan_warning" 738 : "__msan_warning_noreturn"; 739 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); 740 741 // Create the global TLS variables. 742 RetvalTLS = 743 getOrInsertGlobal(M, "__msan_retval_tls", 744 ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); 745 746 RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); 747 748 ParamTLS = 749 getOrInsertGlobal(M, "__msan_param_tls", 750 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 751 752 ParamOriginTLS = 753 getOrInsertGlobal(M, "__msan_param_origin_tls", 754 ArrayType::get(OriginTy, kParamTLSSize / 4)); 755 756 VAArgTLS = 757 getOrInsertGlobal(M, "__msan_va_arg_tls", 758 ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); 759 760 VAArgOriginTLS = 761 getOrInsertGlobal(M, "__msan_va_arg_origin_tls", 762 ArrayType::get(OriginTy, kParamTLSSize / 4)); 763 764 VAArgOverflowSizeTLS = 765 getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); 766 OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty()); 767 768 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 769 AccessSizeIndex++) { 770 unsigned AccessSize = 1 << AccessSizeIndex; 771 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 772 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 773 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 774 IRB.getInt32Ty()); 775 776 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 777 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 778 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 779 IRB.getInt8PtrTy(), IRB.getInt32Ty()); 780 } 781 782 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 783 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 784 IRB.getInt8PtrTy(), IntptrTy); 785 MsanPoisonStackFn = 786 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 787 IRB.getInt8PtrTy(), IntptrTy); 788 } 789 790 /// Insert extern declaration of runtime-provided functions and globals. 791 void MemorySanitizer::initializeCallbacks(Module &M) { 792 // Only do this once. 793 if (CallbacksInitialized) 794 return; 795 796 IRBuilder<> IRB(*C); 797 // Initialize callbacks that are common for kernel and userspace 798 // instrumentation. 799 MsanChainOriginFn = M.getOrInsertFunction( 800 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); 801 MemmoveFn = M.getOrInsertFunction( 802 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 803 IRB.getInt8PtrTy(), IntptrTy); 804 MemcpyFn = M.getOrInsertFunction( 805 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 806 IntptrTy); 807 MemsetFn = M.getOrInsertFunction( 808 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 809 IntptrTy); 810 // We insert an empty inline asm after __msan_report* to avoid callback merge. 811 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 812 StringRef(""), StringRef(""), 813 /*hasSideEffects=*/true); 814 815 MsanInstrumentAsmStoreFn = 816 M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), 817 PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); 818 819 if (CompileKernel) { 820 createKernelApi(M); 821 } else { 822 createUserspaceApi(M); 823 } 824 CallbacksInitialized = true; 825 } 826 827 Value *MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, int size) { 828 Value **Fns = 829 isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; 830 switch (size) { 831 case 1: 832 return Fns[0]; 833 case 2: 834 return Fns[1]; 835 case 4: 836 return Fns[2]; 837 case 8: 838 return Fns[3]; 839 default: 840 return nullptr; 841 } 842 } 843 844 /// Module-level initialization. 845 /// 846 /// inserts a call to __msan_init to the module's constructor list. 847 void MemorySanitizer::initializeModule(Module &M) { 848 auto &DL = M.getDataLayout(); 849 850 bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; 851 bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; 852 // Check the overrides first 853 if (ShadowPassed || OriginPassed) { 854 CustomMapParams.AndMask = ClAndMask; 855 CustomMapParams.XorMask = ClXorMask; 856 CustomMapParams.ShadowBase = ClShadowBase; 857 CustomMapParams.OriginBase = ClOriginBase; 858 MapParams = &CustomMapParams; 859 } else { 860 Triple TargetTriple(M.getTargetTriple()); 861 switch (TargetTriple.getOS()) { 862 case Triple::FreeBSD: 863 switch (TargetTriple.getArch()) { 864 case Triple::x86_64: 865 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 866 break; 867 case Triple::x86: 868 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 869 break; 870 default: 871 report_fatal_error("unsupported architecture"); 872 } 873 break; 874 case Triple::NetBSD: 875 switch (TargetTriple.getArch()) { 876 case Triple::x86_64: 877 MapParams = NetBSD_X86_MemoryMapParams.bits64; 878 break; 879 default: 880 report_fatal_error("unsupported architecture"); 881 } 882 break; 883 case Triple::Linux: 884 switch (TargetTriple.getArch()) { 885 case Triple::x86_64: 886 MapParams = Linux_X86_MemoryMapParams.bits64; 887 break; 888 case Triple::x86: 889 MapParams = Linux_X86_MemoryMapParams.bits32; 890 break; 891 case Triple::mips64: 892 case Triple::mips64el: 893 MapParams = Linux_MIPS_MemoryMapParams.bits64; 894 break; 895 case Triple::ppc64: 896 case Triple::ppc64le: 897 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 898 break; 899 case Triple::aarch64: 900 case Triple::aarch64_be: 901 MapParams = Linux_ARM_MemoryMapParams.bits64; 902 break; 903 default: 904 report_fatal_error("unsupported architecture"); 905 } 906 break; 907 default: 908 report_fatal_error("unsupported operating system"); 909 } 910 } 911 912 C = &(M.getContext()); 913 IRBuilder<> IRB(*C); 914 IntptrTy = IRB.getIntPtrTy(DL); 915 OriginTy = IRB.getInt32Ty(); 916 917 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 918 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 919 920 if (!CompileKernel) { 921 std::tie(MsanCtorFunction, std::ignore) = 922 getOrCreateSanitizerCtorAndInitFunctions( 923 M, kMsanModuleCtorName, kMsanInitName, 924 /*InitArgTypes=*/{}, 925 /*InitArgs=*/{}, 926 // This callback is invoked when the functions are created the first 927 // time. Hook them into the global ctors list in that case: 928 [&](Function *Ctor, Function *) { 929 if (!ClWithComdat) { 930 appendToGlobalCtors(M, Ctor, 0); 931 return; 932 } 933 Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); 934 Ctor->setComdat(MsanCtorComdat); 935 appendToGlobalCtors(M, Ctor, 0, Ctor); 936 }); 937 938 if (TrackOrigins) 939 M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { 940 return new GlobalVariable( 941 M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 942 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 943 }); 944 945 if (Recover) 946 M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { 947 return new GlobalVariable(M, IRB.getInt32Ty(), true, 948 GlobalValue::WeakODRLinkage, 949 IRB.getInt32(Recover), "__msan_keep_going"); 950 }); 951 } 952 } 953 954 bool MemorySanitizerLegacyPass::doInitialization(Module &M) { 955 MSan.emplace(M, TrackOrigins, Recover, EnableKmsan); 956 return true; 957 } 958 959 namespace { 960 961 /// A helper class that handles instrumentation of VarArg 962 /// functions on a particular platform. 963 /// 964 /// Implementations are expected to insert the instrumentation 965 /// necessary to propagate argument shadow through VarArg function 966 /// calls. Visit* methods are called during an InstVisitor pass over 967 /// the function, and should avoid creating new basic blocks. A new 968 /// instance of this class is created for each instrumented function. 969 struct VarArgHelper { 970 virtual ~VarArgHelper() = default; 971 972 /// Visit a CallSite. 973 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; 974 975 /// Visit a va_start call. 976 virtual void visitVAStartInst(VAStartInst &I) = 0; 977 978 /// Visit a va_copy call. 979 virtual void visitVACopyInst(VACopyInst &I) = 0; 980 981 /// Finalize function instrumentation. 982 /// 983 /// This method is called after visiting all interesting (see above) 984 /// instructions in a function. 985 virtual void finalizeInstrumentation() = 0; 986 }; 987 988 struct MemorySanitizerVisitor; 989 990 } // end anonymous namespace 991 992 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 993 MemorySanitizerVisitor &Visitor); 994 995 static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 996 if (TypeSize <= 8) return 0; 997 return Log2_32_Ceil((TypeSize + 7) / 8); 998 } 999 1000 namespace { 1001 1002 /// This class does all the work for a given function. Store and Load 1003 /// instructions store and load corresponding shadow and origin 1004 /// values. Most instructions propagate shadow from arguments to their 1005 /// return values. Certain instructions (most importantly, BranchInst) 1006 /// test their argument shadow and print reports (with a runtime call) if it's 1007 /// non-zero. 1008 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 1009 Function &F; 1010 MemorySanitizer &MS; 1011 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 1012 ValueMap<Value*, Value*> ShadowMap, OriginMap; 1013 std::unique_ptr<VarArgHelper> VAHelper; 1014 const TargetLibraryInfo *TLI; 1015 BasicBlock *ActualFnStart; 1016 1017 // The following flags disable parts of MSan instrumentation based on 1018 // blacklist contents and command-line options. 1019 bool InsertChecks; 1020 bool PropagateShadow; 1021 bool PoisonStack; 1022 bool PoisonUndef; 1023 bool CheckReturnValue; 1024 1025 struct ShadowOriginAndInsertPoint { 1026 Value *Shadow; 1027 Value *Origin; 1028 Instruction *OrigIns; 1029 1030 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 1031 : Shadow(S), Origin(O), OrigIns(I) {} 1032 }; 1033 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 1034 SmallVector<StoreInst *, 16> StoreList; 1035 1036 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, 1037 const TargetLibraryInfo &TLI) 1038 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { 1039 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 1040 InsertChecks = SanitizeFunction; 1041 PropagateShadow = SanitizeFunction; 1042 PoisonStack = SanitizeFunction && ClPoisonStack; 1043 PoisonUndef = SanitizeFunction && ClPoisonUndef; 1044 // FIXME: Consider using SpecialCaseList to specify a list of functions that 1045 // must always return fully initialized values. For now, we hardcode "main". 1046 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 1047 1048 MS.initializeCallbacks(*F.getParent()); 1049 if (MS.CompileKernel) 1050 ActualFnStart = insertKmsanPrologue(F); 1051 else 1052 ActualFnStart = &F.getEntryBlock(); 1053 1054 LLVM_DEBUG(if (!InsertChecks) dbgs() 1055 << "MemorySanitizer is not inserting checks into '" 1056 << F.getName() << "'\n"); 1057 } 1058 1059 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 1060 if (MS.TrackOrigins <= 1) return V; 1061 return IRB.CreateCall(MS.MsanChainOriginFn, V); 1062 } 1063 1064 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 1065 const DataLayout &DL = F.getParent()->getDataLayout(); 1066 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1067 if (IntptrSize == kOriginSize) return Origin; 1068 assert(IntptrSize == kOriginSize * 2); 1069 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 1070 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 1071 } 1072 1073 /// Fill memory range with the given origin value. 1074 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 1075 unsigned Size, unsigned Alignment) { 1076 const DataLayout &DL = F.getParent()->getDataLayout(); 1077 unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy); 1078 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 1079 assert(IntptrAlignment >= kMinOriginAlignment); 1080 assert(IntptrSize >= kOriginSize); 1081 1082 unsigned Ofs = 0; 1083 unsigned CurrentAlignment = Alignment; 1084 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 1085 Value *IntptrOrigin = originToIntptr(IRB, Origin); 1086 Value *IntptrOriginPtr = 1087 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 1088 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 1089 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 1090 : IntptrOriginPtr; 1091 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 1092 Ofs += IntptrSize / kOriginSize; 1093 CurrentAlignment = IntptrAlignment; 1094 } 1095 } 1096 1097 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 1098 Value *GEP = 1099 i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr; 1100 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 1101 CurrentAlignment = kMinOriginAlignment; 1102 } 1103 } 1104 1105 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 1106 Value *OriginPtr, unsigned Alignment, bool AsCall) { 1107 const DataLayout &DL = F.getParent()->getDataLayout(); 1108 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1109 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 1110 if (Shadow->getType()->isAggregateType()) { 1111 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1112 OriginAlignment); 1113 } else { 1114 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1115 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 1116 if (ConstantShadow) { 1117 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 1118 paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, 1119 OriginAlignment); 1120 return; 1121 } 1122 1123 unsigned TypeSizeInBits = 1124 DL.getTypeSizeInBits(ConvertedShadow->getType()); 1125 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1126 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1127 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex]; 1128 Value *ConvertedShadow2 = IRB.CreateZExt( 1129 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1130 IRB.CreateCall(Fn, {ConvertedShadow2, 1131 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 1132 Origin}); 1133 } else { 1134 Value *Cmp = IRB.CreateICmpNE( 1135 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 1136 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1137 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 1138 IRBuilder<> IRBNew(CheckTerm); 1139 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, 1140 OriginAlignment); 1141 } 1142 } 1143 } 1144 1145 void materializeStores(bool InstrumentWithCalls) { 1146 for (StoreInst *SI : StoreList) { 1147 IRBuilder<> IRB(SI); 1148 Value *Val = SI->getValueOperand(); 1149 Value *Addr = SI->getPointerOperand(); 1150 Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); 1151 Value *ShadowPtr, *OriginPtr; 1152 Type *ShadowTy = Shadow->getType(); 1153 unsigned Alignment = SI->getAlignment(); 1154 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1155 std::tie(ShadowPtr, OriginPtr) = 1156 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); 1157 1158 StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); 1159 LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 1160 (void)NewSI; 1161 1162 if (SI->isAtomic()) 1163 SI->setOrdering(addReleaseOrdering(SI->getOrdering())); 1164 1165 if (MS.TrackOrigins && !SI->isAtomic()) 1166 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, 1167 OriginAlignment, InstrumentWithCalls); 1168 } 1169 } 1170 1171 /// Helper function to insert a warning at IRB's current insert point. 1172 void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { 1173 if (!Origin) 1174 Origin = (Value *)IRB.getInt32(0); 1175 if (MS.CompileKernel) { 1176 IRB.CreateCall(MS.WarningFn, Origin); 1177 } else { 1178 if (MS.TrackOrigins) { 1179 IRB.CreateStore(Origin, MS.OriginTLS); 1180 } 1181 IRB.CreateCall(MS.WarningFn, {}); 1182 } 1183 IRB.CreateCall(MS.EmptyAsm, {}); 1184 // FIXME: Insert UnreachableInst if !MS.Recover? 1185 // This may invalidate some of the following checks and needs to be done 1186 // at the very end. 1187 } 1188 1189 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 1190 bool AsCall) { 1191 IRBuilder<> IRB(OrigIns); 1192 LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 1193 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 1194 LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 1195 1196 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 1197 if (ConstantShadow) { 1198 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 1199 insertWarningFn(IRB, Origin); 1200 } 1201 return; 1202 } 1203 1204 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 1205 1206 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 1207 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 1208 if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { 1209 Value *Fn = MS.MaybeWarningFn[SizeIndex]; 1210 Value *ConvertedShadow2 = 1211 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 1212 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 1213 ? Origin 1214 : (Value *)IRB.getInt32(0)}); 1215 } else { 1216 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 1217 getCleanShadow(ConvertedShadow), "_mscmp"); 1218 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 1219 Cmp, OrigIns, 1220 /* Unreachable */ !MS.Recover, MS.ColdCallWeights); 1221 1222 IRB.SetInsertPoint(CheckTerm); 1223 insertWarningFn(IRB, Origin); 1224 LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 1225 } 1226 } 1227 1228 void materializeChecks(bool InstrumentWithCalls) { 1229 for (const auto &ShadowData : InstrumentationList) { 1230 Instruction *OrigIns = ShadowData.OrigIns; 1231 Value *Shadow = ShadowData.Shadow; 1232 Value *Origin = ShadowData.Origin; 1233 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 1234 } 1235 LLVM_DEBUG(dbgs() << "DONE:\n" << F); 1236 } 1237 1238 BasicBlock *insertKmsanPrologue(Function &F) { 1239 BasicBlock *ret = 1240 SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI()); 1241 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 1242 Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); 1243 Constant *Zero = IRB.getInt32(0); 1244 MS.ParamTLS = 1245 IRB.CreateGEP(ContextState, {Zero, IRB.getInt32(0)}, "param_shadow"); 1246 MS.RetvalTLS = 1247 IRB.CreateGEP(ContextState, {Zero, IRB.getInt32(1)}, "retval_shadow"); 1248 MS.VAArgTLS = 1249 IRB.CreateGEP(ContextState, {Zero, IRB.getInt32(2)}, "va_arg_shadow"); 1250 MS.VAArgOriginTLS = 1251 IRB.CreateGEP(ContextState, {Zero, IRB.getInt32(3)}, "va_arg_origin"); 1252 MS.VAArgOverflowSizeTLS = IRB.CreateGEP( 1253 ContextState, {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); 1254 MS.ParamOriginTLS = 1255 IRB.CreateGEP(ContextState, {Zero, IRB.getInt32(5)}, "param_origin"); 1256 MS.RetvalOriginTLS = 1257 IRB.CreateGEP(ContextState, {Zero, IRB.getInt32(6)}, "retval_origin"); 1258 return ret; 1259 } 1260 1261 /// Add MemorySanitizer instrumentation to a function. 1262 bool runOnFunction() { 1263 // In the presence of unreachable blocks, we may see Phi nodes with 1264 // incoming nodes from such blocks. Since InstVisitor skips unreachable 1265 // blocks, such nodes will not have any shadow value associated with them. 1266 // It's easier to remove unreachable blocks than deal with missing shadow. 1267 removeUnreachableBlocks(F); 1268 1269 // Iterate all BBs in depth-first order and create shadow instructions 1270 // for all instructions (where applicable). 1271 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 1272 for (BasicBlock *BB : depth_first(ActualFnStart)) 1273 visit(*BB); 1274 1275 // Finalize PHI nodes. 1276 for (PHINode *PN : ShadowPHINodes) { 1277 PHINode *PNS = cast<PHINode>(getShadow(PN)); 1278 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 1279 size_t NumValues = PN->getNumIncomingValues(); 1280 for (size_t v = 0; v < NumValues; v++) { 1281 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 1282 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 1283 } 1284 } 1285 1286 VAHelper->finalizeInstrumentation(); 1287 1288 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 1289 InstrumentationList.size() + StoreList.size() > 1290 (unsigned)ClInstrumentationWithCallThreshold; 1291 1292 // Insert shadow value checks. 1293 materializeChecks(InstrumentWithCalls); 1294 1295 // Delayed instrumentation of StoreInst. 1296 // This may not add new address checks. 1297 materializeStores(InstrumentWithCalls); 1298 1299 return true; 1300 } 1301 1302 /// Compute the shadow type that corresponds to a given Value. 1303 Type *getShadowTy(Value *V) { 1304 return getShadowTy(V->getType()); 1305 } 1306 1307 /// Compute the shadow type that corresponds to a given Type. 1308 Type *getShadowTy(Type *OrigTy) { 1309 if (!OrigTy->isSized()) { 1310 return nullptr; 1311 } 1312 // For integer type, shadow is the same as the original type. 1313 // This may return weird-sized types like i1. 1314 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 1315 return IT; 1316 const DataLayout &DL = F.getParent()->getDataLayout(); 1317 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 1318 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 1319 return VectorType::get(IntegerType::get(*MS.C, EltSize), 1320 VT->getNumElements()); 1321 } 1322 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 1323 return ArrayType::get(getShadowTy(AT->getElementType()), 1324 AT->getNumElements()); 1325 } 1326 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 1327 SmallVector<Type*, 4> Elements; 1328 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1329 Elements.push_back(getShadowTy(ST->getElementType(i))); 1330 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 1331 LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 1332 return Res; 1333 } 1334 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 1335 return IntegerType::get(*MS.C, TypeSize); 1336 } 1337 1338 /// Flatten a vector type. 1339 Type *getShadowTyNoVec(Type *ty) { 1340 if (VectorType *vt = dyn_cast<VectorType>(ty)) 1341 return IntegerType::get(*MS.C, vt->getBitWidth()); 1342 return ty; 1343 } 1344 1345 /// Convert a shadow value to it's flattened variant. 1346 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 1347 Type *Ty = V->getType(); 1348 Type *NoVecTy = getShadowTyNoVec(Ty); 1349 if (Ty == NoVecTy) return V; 1350 return IRB.CreateBitCast(V, NoVecTy); 1351 } 1352 1353 /// Compute the integer shadow offset that corresponds to a given 1354 /// application address. 1355 /// 1356 /// Offset = (Addr & ~AndMask) ^ XorMask 1357 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 1358 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 1359 1360 uint64_t AndMask = MS.MapParams->AndMask; 1361 if (AndMask) 1362 OffsetLong = 1363 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 1364 1365 uint64_t XorMask = MS.MapParams->XorMask; 1366 if (XorMask) 1367 OffsetLong = 1368 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 1369 return OffsetLong; 1370 } 1371 1372 /// Compute the shadow and origin addresses corresponding to a given 1373 /// application address. 1374 /// 1375 /// Shadow = ShadowBase + Offset 1376 /// Origin = (OriginBase + Offset) & ~3ULL 1377 std::pair<Value *, Value *> getShadowOriginPtrUserspace(Value *Addr, 1378 IRBuilder<> &IRB, 1379 Type *ShadowTy, 1380 unsigned Alignment) { 1381 Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); 1382 Value *ShadowLong = ShadowOffset; 1383 uint64_t ShadowBase = MS.MapParams->ShadowBase; 1384 if (ShadowBase != 0) { 1385 ShadowLong = 1386 IRB.CreateAdd(ShadowLong, 1387 ConstantInt::get(MS.IntptrTy, ShadowBase)); 1388 } 1389 Value *ShadowPtr = 1390 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1391 Value *OriginPtr = nullptr; 1392 if (MS.TrackOrigins) { 1393 Value *OriginLong = ShadowOffset; 1394 uint64_t OriginBase = MS.MapParams->OriginBase; 1395 if (OriginBase != 0) 1396 OriginLong = IRB.CreateAdd(OriginLong, 1397 ConstantInt::get(MS.IntptrTy, OriginBase)); 1398 if (Alignment < kMinOriginAlignment) { 1399 uint64_t Mask = kMinOriginAlignment - 1; 1400 OriginLong = 1401 IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); 1402 } 1403 OriginPtr = 1404 IRB.CreateIntToPtr(OriginLong, PointerType::get(IRB.getInt32Ty(), 0)); 1405 } 1406 return std::make_pair(ShadowPtr, OriginPtr); 1407 } 1408 1409 std::pair<Value *, Value *> 1410 getShadowOriginPtrKernel(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, 1411 unsigned Alignment, bool isStore) { 1412 Value *ShadowOriginPtrs; 1413 const DataLayout &DL = F.getParent()->getDataLayout(); 1414 int Size = DL.getTypeStoreSize(ShadowTy); 1415 1416 Value *Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); 1417 Value *AddrCast = 1418 IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); 1419 if (Getter) { 1420 ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); 1421 } else { 1422 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 1423 ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN 1424 : MS.MsanMetadataPtrForLoadN, 1425 {AddrCast, SizeVal}); 1426 } 1427 Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); 1428 ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); 1429 Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); 1430 1431 return std::make_pair(ShadowPtr, OriginPtr); 1432 } 1433 1434 std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, 1435 Type *ShadowTy, 1436 unsigned Alignment, 1437 bool isStore) { 1438 std::pair<Value *, Value *> ret; 1439 if (MS.CompileKernel) 1440 ret = getShadowOriginPtrKernel(Addr, IRB, ShadowTy, Alignment, isStore); 1441 else 1442 ret = getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); 1443 return ret; 1444 } 1445 1446 /// Compute the shadow address for a given function argument. 1447 /// 1448 /// Shadow = ParamTLS+ArgOffset. 1449 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 1450 int ArgOffset) { 1451 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 1452 if (ArgOffset) 1453 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1454 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 1455 "_msarg"); 1456 } 1457 1458 /// Compute the origin address for a given function argument. 1459 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 1460 int ArgOffset) { 1461 if (!MS.TrackOrigins) 1462 return nullptr; 1463 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 1464 if (ArgOffset) 1465 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 1466 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 1467 "_msarg_o"); 1468 } 1469 1470 /// Compute the shadow address for a retval. 1471 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 1472 return IRB.CreatePointerCast(MS.RetvalTLS, 1473 PointerType::get(getShadowTy(A), 0), 1474 "_msret"); 1475 } 1476 1477 /// Compute the origin address for a retval. 1478 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 1479 // We keep a single origin for the entire retval. Might be too optimistic. 1480 return MS.RetvalOriginTLS; 1481 } 1482 1483 /// Set SV to be the shadow value for V. 1484 void setShadow(Value *V, Value *SV) { 1485 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1486 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1487 } 1488 1489 /// Set Origin to be the origin value for V. 1490 void setOrigin(Value *V, Value *Origin) { 1491 if (!MS.TrackOrigins) return; 1492 assert(!OriginMap.count(V) && "Values may only have one origin"); 1493 LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1494 OriginMap[V] = Origin; 1495 } 1496 1497 Constant *getCleanShadow(Type *OrigTy) { 1498 Type *ShadowTy = getShadowTy(OrigTy); 1499 if (!ShadowTy) 1500 return nullptr; 1501 return Constant::getNullValue(ShadowTy); 1502 } 1503 1504 /// Create a clean shadow value for a given value. 1505 /// 1506 /// Clean shadow (all zeroes) means all bits of the value are defined 1507 /// (initialized). 1508 Constant *getCleanShadow(Value *V) { 1509 return getCleanShadow(V->getType()); 1510 } 1511 1512 /// Create a dirty shadow of a given shadow type. 1513 Constant *getPoisonedShadow(Type *ShadowTy) { 1514 assert(ShadowTy); 1515 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1516 return Constant::getAllOnesValue(ShadowTy); 1517 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1518 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1519 getPoisonedShadow(AT->getElementType())); 1520 return ConstantArray::get(AT, Vals); 1521 } 1522 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1523 SmallVector<Constant *, 4> Vals; 1524 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1525 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1526 return ConstantStruct::get(ST, Vals); 1527 } 1528 llvm_unreachable("Unexpected shadow type"); 1529 } 1530 1531 /// Create a dirty shadow for a given value. 1532 Constant *getPoisonedShadow(Value *V) { 1533 Type *ShadowTy = getShadowTy(V); 1534 if (!ShadowTy) 1535 return nullptr; 1536 return getPoisonedShadow(ShadowTy); 1537 } 1538 1539 /// Create a clean (zero) origin. 1540 Value *getCleanOrigin() { 1541 return Constant::getNullValue(MS.OriginTy); 1542 } 1543 1544 /// Get the shadow value for a given Value. 1545 /// 1546 /// This function either returns the value set earlier with setShadow, 1547 /// or extracts if from ParamTLS (for function arguments). 1548 Value *getShadow(Value *V) { 1549 if (!PropagateShadow) return getCleanShadow(V); 1550 if (Instruction *I = dyn_cast<Instruction>(V)) { 1551 if (I->getMetadata("nosanitize")) 1552 return getCleanShadow(V); 1553 // For instructions the shadow is already stored in the map. 1554 Value *Shadow = ShadowMap[V]; 1555 if (!Shadow) { 1556 LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1557 (void)I; 1558 assert(Shadow && "No shadow for a value"); 1559 } 1560 return Shadow; 1561 } 1562 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1563 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1564 LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1565 (void)U; 1566 return AllOnes; 1567 } 1568 if (Argument *A = dyn_cast<Argument>(V)) { 1569 // For arguments we compute the shadow on demand and store it in the map. 1570 Value **ShadowPtr = &ShadowMap[V]; 1571 if (*ShadowPtr) 1572 return *ShadowPtr; 1573 Function *F = A->getParent(); 1574 IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI()); 1575 unsigned ArgOffset = 0; 1576 const DataLayout &DL = F->getParent()->getDataLayout(); 1577 for (auto &FArg : F->args()) { 1578 if (!FArg.getType()->isSized()) { 1579 LLVM_DEBUG(dbgs() << "Arg is not sized\n"); 1580 continue; 1581 } 1582 unsigned Size = 1583 FArg.hasByValAttr() 1584 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) 1585 : DL.getTypeAllocSize(FArg.getType()); 1586 if (A == &FArg) { 1587 bool Overflow = ArgOffset + Size > kParamTLSSize; 1588 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1589 if (FArg.hasByValAttr()) { 1590 // ByVal pointer itself has clean shadow. We copy the actual 1591 // argument shadow to the underlying memory. 1592 // Figure out maximal valid memcpy alignment. 1593 unsigned ArgAlign = FArg.getParamAlignment(); 1594 if (ArgAlign == 0) { 1595 Type *EltType = A->getType()->getPointerElementType(); 1596 ArgAlign = DL.getABITypeAlignment(EltType); 1597 } 1598 Value *CpShadowPtr = 1599 getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, 1600 /*isStore*/ true) 1601 .first; 1602 // TODO(glider): need to copy origins. 1603 if (Overflow) { 1604 // ParamTLS overflow. 1605 EntryIRB.CreateMemSet( 1606 CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), 1607 Size, ArgAlign); 1608 } else { 1609 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1610 Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, 1611 CopyAlign, Size); 1612 LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1613 (void)Cpy; 1614 } 1615 *ShadowPtr = getCleanShadow(V); 1616 } else { 1617 if (Overflow) { 1618 // ParamTLS overflow. 1619 *ShadowPtr = getCleanShadow(V); 1620 } else { 1621 *ShadowPtr = 1622 EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment); 1623 } 1624 } 1625 LLVM_DEBUG(dbgs() 1626 << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); 1627 if (MS.TrackOrigins && !Overflow) { 1628 Value *OriginPtr = 1629 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1630 setOrigin(A, EntryIRB.CreateLoad(OriginPtr)); 1631 } else { 1632 setOrigin(A, getCleanOrigin()); 1633 } 1634 } 1635 ArgOffset += alignTo(Size, kShadowTLSAlignment); 1636 } 1637 assert(*ShadowPtr && "Could not find shadow for an argument"); 1638 return *ShadowPtr; 1639 } 1640 // For everything else the shadow is zero. 1641 return getCleanShadow(V); 1642 } 1643 1644 /// Get the shadow for i-th argument of the instruction I. 1645 Value *getShadow(Instruction *I, int i) { 1646 return getShadow(I->getOperand(i)); 1647 } 1648 1649 /// Get the origin for a value. 1650 Value *getOrigin(Value *V) { 1651 if (!MS.TrackOrigins) return nullptr; 1652 if (!PropagateShadow) return getCleanOrigin(); 1653 if (isa<Constant>(V)) return getCleanOrigin(); 1654 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1655 "Unexpected value type in getOrigin()"); 1656 if (Instruction *I = dyn_cast<Instruction>(V)) { 1657 if (I->getMetadata("nosanitize")) 1658 return getCleanOrigin(); 1659 } 1660 Value *Origin = OriginMap[V]; 1661 assert(Origin && "Missing origin"); 1662 return Origin; 1663 } 1664 1665 /// Get the origin for i-th argument of the instruction I. 1666 Value *getOrigin(Instruction *I, int i) { 1667 return getOrigin(I->getOperand(i)); 1668 } 1669 1670 /// Remember the place where a shadow check should be inserted. 1671 /// 1672 /// This location will be later instrumented with a check that will print a 1673 /// UMR warning in runtime if the shadow value is not 0. 1674 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1675 assert(Shadow); 1676 if (!InsertChecks) return; 1677 #ifndef NDEBUG 1678 Type *ShadowTy = Shadow->getType(); 1679 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1680 "Can only insert checks for integer and vector shadow types"); 1681 #endif 1682 InstrumentationList.push_back( 1683 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1684 } 1685 1686 /// Remember the place where a shadow check should be inserted. 1687 /// 1688 /// This location will be later instrumented with a check that will print a 1689 /// UMR warning in runtime if the value is not fully defined. 1690 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1691 assert(Val); 1692 Value *Shadow, *Origin; 1693 if (ClCheckConstantShadow) { 1694 Shadow = getShadow(Val); 1695 if (!Shadow) return; 1696 Origin = getOrigin(Val); 1697 } else { 1698 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1699 if (!Shadow) return; 1700 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1701 } 1702 insertShadowCheck(Shadow, Origin, OrigIns); 1703 } 1704 1705 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1706 switch (a) { 1707 case AtomicOrdering::NotAtomic: 1708 return AtomicOrdering::NotAtomic; 1709 case AtomicOrdering::Unordered: 1710 case AtomicOrdering::Monotonic: 1711 case AtomicOrdering::Release: 1712 return AtomicOrdering::Release; 1713 case AtomicOrdering::Acquire: 1714 case AtomicOrdering::AcquireRelease: 1715 return AtomicOrdering::AcquireRelease; 1716 case AtomicOrdering::SequentiallyConsistent: 1717 return AtomicOrdering::SequentiallyConsistent; 1718 } 1719 llvm_unreachable("Unknown ordering"); 1720 } 1721 1722 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1723 switch (a) { 1724 case AtomicOrdering::NotAtomic: 1725 return AtomicOrdering::NotAtomic; 1726 case AtomicOrdering::Unordered: 1727 case AtomicOrdering::Monotonic: 1728 case AtomicOrdering::Acquire: 1729 return AtomicOrdering::Acquire; 1730 case AtomicOrdering::Release: 1731 case AtomicOrdering::AcquireRelease: 1732 return AtomicOrdering::AcquireRelease; 1733 case AtomicOrdering::SequentiallyConsistent: 1734 return AtomicOrdering::SequentiallyConsistent; 1735 } 1736 llvm_unreachable("Unknown ordering"); 1737 } 1738 1739 // ------------------- Visitors. 1740 using InstVisitor<MemorySanitizerVisitor>::visit; 1741 void visit(Instruction &I) { 1742 if (!I.getMetadata("nosanitize")) 1743 InstVisitor<MemorySanitizerVisitor>::visit(I); 1744 } 1745 1746 /// Instrument LoadInst 1747 /// 1748 /// Loads the corresponding shadow and (optionally) origin. 1749 /// Optionally, checks that the load address is fully defined. 1750 void visitLoadInst(LoadInst &I) { 1751 assert(I.getType()->isSized() && "Load type must have size"); 1752 assert(!I.getMetadata("nosanitize")); 1753 IRBuilder<> IRB(I.getNextNode()); 1754 Type *ShadowTy = getShadowTy(&I); 1755 Value *Addr = I.getPointerOperand(); 1756 Value *ShadowPtr, *OriginPtr; 1757 unsigned Alignment = I.getAlignment(); 1758 if (PropagateShadow) { 1759 std::tie(ShadowPtr, OriginPtr) = 1760 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 1761 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, Alignment, "_msld")); 1762 } else { 1763 setShadow(&I, getCleanShadow(&I)); 1764 } 1765 1766 if (ClCheckAccessAddress) 1767 insertShadowCheck(I.getPointerOperand(), &I); 1768 1769 if (I.isAtomic()) 1770 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1771 1772 if (MS.TrackOrigins) { 1773 if (PropagateShadow) { 1774 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1775 setOrigin(&I, IRB.CreateAlignedLoad(OriginPtr, OriginAlignment)); 1776 } else { 1777 setOrigin(&I, getCleanOrigin()); 1778 } 1779 } 1780 } 1781 1782 /// Instrument StoreInst 1783 /// 1784 /// Stores the corresponding shadow and (optionally) origin. 1785 /// Optionally, checks that the store address is fully defined. 1786 void visitStoreInst(StoreInst &I) { 1787 StoreList.push_back(&I); 1788 if (ClCheckAccessAddress) 1789 insertShadowCheck(I.getPointerOperand(), &I); 1790 } 1791 1792 void handleCASOrRMW(Instruction &I) { 1793 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1794 1795 IRBuilder<> IRB(&I); 1796 Value *Addr = I.getOperand(0); 1797 Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), 1798 /*Alignment*/ 1, /*isStore*/ true) 1799 .first; 1800 1801 if (ClCheckAccessAddress) 1802 insertShadowCheck(Addr, &I); 1803 1804 // Only test the conditional argument of cmpxchg instruction. 1805 // The other argument can potentially be uninitialized, but we can not 1806 // detect this situation reliably without possible false positives. 1807 if (isa<AtomicCmpXchgInst>(I)) 1808 insertShadowCheck(I.getOperand(1), &I); 1809 1810 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1811 1812 setShadow(&I, getCleanShadow(&I)); 1813 setOrigin(&I, getCleanOrigin()); 1814 } 1815 1816 void visitAtomicRMWInst(AtomicRMWInst &I) { 1817 handleCASOrRMW(I); 1818 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1819 } 1820 1821 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1822 handleCASOrRMW(I); 1823 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1824 } 1825 1826 // Vector manipulation. 1827 void visitExtractElementInst(ExtractElementInst &I) { 1828 insertShadowCheck(I.getOperand(1), &I); 1829 IRBuilder<> IRB(&I); 1830 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1831 "_msprop")); 1832 setOrigin(&I, getOrigin(&I, 0)); 1833 } 1834 1835 void visitInsertElementInst(InsertElementInst &I) { 1836 insertShadowCheck(I.getOperand(2), &I); 1837 IRBuilder<> IRB(&I); 1838 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1839 I.getOperand(2), "_msprop")); 1840 setOriginForNaryOp(I); 1841 } 1842 1843 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1844 insertShadowCheck(I.getOperand(2), &I); 1845 IRBuilder<> IRB(&I); 1846 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1847 I.getOperand(2), "_msprop")); 1848 setOriginForNaryOp(I); 1849 } 1850 1851 // Casts. 1852 void visitSExtInst(SExtInst &I) { 1853 IRBuilder<> IRB(&I); 1854 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1855 setOrigin(&I, getOrigin(&I, 0)); 1856 } 1857 1858 void visitZExtInst(ZExtInst &I) { 1859 IRBuilder<> IRB(&I); 1860 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1861 setOrigin(&I, getOrigin(&I, 0)); 1862 } 1863 1864 void visitTruncInst(TruncInst &I) { 1865 IRBuilder<> IRB(&I); 1866 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1867 setOrigin(&I, getOrigin(&I, 0)); 1868 } 1869 1870 void visitBitCastInst(BitCastInst &I) { 1871 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1872 // a musttail call and a ret, don't instrument. New instructions are not 1873 // allowed after a musttail call. 1874 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1875 if (CI->isMustTailCall()) 1876 return; 1877 IRBuilder<> IRB(&I); 1878 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1879 setOrigin(&I, getOrigin(&I, 0)); 1880 } 1881 1882 void visitPtrToIntInst(PtrToIntInst &I) { 1883 IRBuilder<> IRB(&I); 1884 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1885 "_msprop_ptrtoint")); 1886 setOrigin(&I, getOrigin(&I, 0)); 1887 } 1888 1889 void visitIntToPtrInst(IntToPtrInst &I) { 1890 IRBuilder<> IRB(&I); 1891 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1892 "_msprop_inttoptr")); 1893 setOrigin(&I, getOrigin(&I, 0)); 1894 } 1895 1896 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1897 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1898 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1899 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1900 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1901 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1902 1903 /// Propagate shadow for bitwise AND. 1904 /// 1905 /// This code is exact, i.e. if, for example, a bit in the left argument 1906 /// is defined and 0, then neither the value not definedness of the 1907 /// corresponding bit in B don't affect the resulting shadow. 1908 void visitAnd(BinaryOperator &I) { 1909 IRBuilder<> IRB(&I); 1910 // "And" of 0 and a poisoned value results in unpoisoned value. 1911 // 1&1 => 1; 0&1 => 0; p&1 => p; 1912 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1913 // 1&p => p; 0&p => 0; p&p => p; 1914 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1915 Value *S1 = getShadow(&I, 0); 1916 Value *S2 = getShadow(&I, 1); 1917 Value *V1 = I.getOperand(0); 1918 Value *V2 = I.getOperand(1); 1919 if (V1->getType() != S1->getType()) { 1920 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1921 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1922 } 1923 Value *S1S2 = IRB.CreateAnd(S1, S2); 1924 Value *V1S2 = IRB.CreateAnd(V1, S2); 1925 Value *S1V2 = IRB.CreateAnd(S1, V2); 1926 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1927 setOriginForNaryOp(I); 1928 } 1929 1930 void visitOr(BinaryOperator &I) { 1931 IRBuilder<> IRB(&I); 1932 // "Or" of 1 and a poisoned value results in unpoisoned value. 1933 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1934 // 1|0 => 1; 0|0 => 0; p|0 => p; 1935 // 1|p => 1; 0|p => p; p|p => p; 1936 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1937 Value *S1 = getShadow(&I, 0); 1938 Value *S2 = getShadow(&I, 1); 1939 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1940 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1941 if (V1->getType() != S1->getType()) { 1942 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1943 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1944 } 1945 Value *S1S2 = IRB.CreateAnd(S1, S2); 1946 Value *V1S2 = IRB.CreateAnd(V1, S2); 1947 Value *S1V2 = IRB.CreateAnd(S1, V2); 1948 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1949 setOriginForNaryOp(I); 1950 } 1951 1952 /// Default propagation of shadow and/or origin. 1953 /// 1954 /// This class implements the general case of shadow propagation, used in all 1955 /// cases where we don't know and/or don't care about what the operation 1956 /// actually does. It converts all input shadow values to a common type 1957 /// (extending or truncating as necessary), and bitwise OR's them. 1958 /// 1959 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 1960 /// fully initialized), and less prone to false positives. 1961 /// 1962 /// This class also implements the general case of origin propagation. For a 1963 /// Nary operation, result origin is set to the origin of an argument that is 1964 /// not entirely initialized. If there is more than one such arguments, the 1965 /// rightmost of them is picked. It does not matter which one is picked if all 1966 /// arguments are initialized. 1967 template <bool CombineShadow> 1968 class Combiner { 1969 Value *Shadow = nullptr; 1970 Value *Origin = nullptr; 1971 IRBuilder<> &IRB; 1972 MemorySanitizerVisitor *MSV; 1973 1974 public: 1975 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) 1976 : IRB(IRB), MSV(MSV) {} 1977 1978 /// Add a pair of shadow and origin values to the mix. 1979 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 1980 if (CombineShadow) { 1981 assert(OpShadow); 1982 if (!Shadow) 1983 Shadow = OpShadow; 1984 else { 1985 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 1986 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 1987 } 1988 } 1989 1990 if (MSV->MS.TrackOrigins) { 1991 assert(OpOrigin); 1992 if (!Origin) { 1993 Origin = OpOrigin; 1994 } else { 1995 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 1996 // No point in adding something that might result in 0 origin value. 1997 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 1998 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 1999 Value *Cond = 2000 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 2001 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 2002 } 2003 } 2004 } 2005 return *this; 2006 } 2007 2008 /// Add an application value to the mix. 2009 Combiner &Add(Value *V) { 2010 Value *OpShadow = MSV->getShadow(V); 2011 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 2012 return Add(OpShadow, OpOrigin); 2013 } 2014 2015 /// Set the current combined values as the given instruction's shadow 2016 /// and origin. 2017 void Done(Instruction *I) { 2018 if (CombineShadow) { 2019 assert(Shadow); 2020 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 2021 MSV->setShadow(I, Shadow); 2022 } 2023 if (MSV->MS.TrackOrigins) { 2024 assert(Origin); 2025 MSV->setOrigin(I, Origin); 2026 } 2027 } 2028 }; 2029 2030 using ShadowAndOriginCombiner = Combiner<true>; 2031 using OriginCombiner = Combiner<false>; 2032 2033 /// Propagate origin for arbitrary operation. 2034 void setOriginForNaryOp(Instruction &I) { 2035 if (!MS.TrackOrigins) return; 2036 IRBuilder<> IRB(&I); 2037 OriginCombiner OC(this, IRB); 2038 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2039 OC.Add(OI->get()); 2040 OC.Done(&I); 2041 } 2042 2043 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 2044 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 2045 "Vector of pointers is not a valid shadow type"); 2046 return Ty->isVectorTy() ? 2047 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : 2048 Ty->getPrimitiveSizeInBits(); 2049 } 2050 2051 /// Cast between two shadow types, extending or truncating as 2052 /// necessary. 2053 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 2054 bool Signed = false) { 2055 Type *srcTy = V->getType(); 2056 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 2057 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 2058 if (srcSizeInBits > 1 && dstSizeInBits == 1) 2059 return IRB.CreateICmpNE(V, getCleanShadow(V)); 2060 2061 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 2062 return IRB.CreateIntCast(V, dstTy, Signed); 2063 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 2064 dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) 2065 return IRB.CreateIntCast(V, dstTy, Signed); 2066 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 2067 Value *V2 = 2068 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 2069 return IRB.CreateBitCast(V2, dstTy); 2070 // TODO: handle struct types. 2071 } 2072 2073 /// Cast an application value to the type of its own shadow. 2074 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 2075 Type *ShadowTy = getShadowTy(V); 2076 if (V->getType() == ShadowTy) 2077 return V; 2078 if (V->getType()->isPtrOrPtrVectorTy()) 2079 return IRB.CreatePtrToInt(V, ShadowTy); 2080 else 2081 return IRB.CreateBitCast(V, ShadowTy); 2082 } 2083 2084 /// Propagate shadow for arbitrary operation. 2085 void handleShadowOr(Instruction &I) { 2086 IRBuilder<> IRB(&I); 2087 ShadowAndOriginCombiner SC(this, IRB); 2088 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 2089 SC.Add(OI->get()); 2090 SC.Done(&I); 2091 } 2092 2093 // Handle multiplication by constant. 2094 // 2095 // Handle a special case of multiplication by constant that may have one or 2096 // more zeros in the lower bits. This makes corresponding number of lower bits 2097 // of the result zero as well. We model it by shifting the other operand 2098 // shadow left by the required number of bits. Effectively, we transform 2099 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 2100 // We use multiplication by 2**N instead of shift to cover the case of 2101 // multiplication by 0, which may occur in some elements of a vector operand. 2102 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 2103 Value *OtherArg) { 2104 Constant *ShadowMul; 2105 Type *Ty = ConstArg->getType(); 2106 if (Ty->isVectorTy()) { 2107 unsigned NumElements = Ty->getVectorNumElements(); 2108 Type *EltTy = Ty->getSequentialElementType(); 2109 SmallVector<Constant *, 16> Elements; 2110 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 2111 if (ConstantInt *Elt = 2112 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 2113 const APInt &V = Elt->getValue(); 2114 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2115 Elements.push_back(ConstantInt::get(EltTy, V2)); 2116 } else { 2117 Elements.push_back(ConstantInt::get(EltTy, 1)); 2118 } 2119 } 2120 ShadowMul = ConstantVector::get(Elements); 2121 } else { 2122 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 2123 const APInt &V = Elt->getValue(); 2124 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 2125 ShadowMul = ConstantInt::get(Ty, V2); 2126 } else { 2127 ShadowMul = ConstantInt::get(Ty, 1); 2128 } 2129 } 2130 2131 IRBuilder<> IRB(&I); 2132 setShadow(&I, 2133 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 2134 setOrigin(&I, getOrigin(OtherArg)); 2135 } 2136 2137 void visitMul(BinaryOperator &I) { 2138 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 2139 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 2140 if (constOp0 && !constOp1) 2141 handleMulByConstant(I, constOp0, I.getOperand(1)); 2142 else if (constOp1 && !constOp0) 2143 handleMulByConstant(I, constOp1, I.getOperand(0)); 2144 else 2145 handleShadowOr(I); 2146 } 2147 2148 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 2149 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 2150 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 2151 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 2152 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 2153 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 2154 2155 void handleIntegerDiv(Instruction &I) { 2156 IRBuilder<> IRB(&I); 2157 // Strict on the second argument. 2158 insertShadowCheck(I.getOperand(1), &I); 2159 setShadow(&I, getShadow(&I, 0)); 2160 setOrigin(&I, getOrigin(&I, 0)); 2161 } 2162 2163 void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2164 void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } 2165 void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } 2166 void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } 2167 2168 // Floating point division is side-effect free. We can not require that the 2169 // divisor is fully initialized and must propagate shadow. See PR37523. 2170 void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } 2171 void visitFRem(BinaryOperator &I) { handleShadowOr(I); } 2172 2173 /// Instrument == and != comparisons. 2174 /// 2175 /// Sometimes the comparison result is known even if some of the bits of the 2176 /// arguments are not. 2177 void handleEqualityComparison(ICmpInst &I) { 2178 IRBuilder<> IRB(&I); 2179 Value *A = I.getOperand(0); 2180 Value *B = I.getOperand(1); 2181 Value *Sa = getShadow(A); 2182 Value *Sb = getShadow(B); 2183 2184 // Get rid of pointers and vectors of pointers. 2185 // For ints (and vectors of ints), types of A and Sa match, 2186 // and this is a no-op. 2187 A = IRB.CreatePointerCast(A, Sa->getType()); 2188 B = IRB.CreatePointerCast(B, Sb->getType()); 2189 2190 // A == B <==> (C = A^B) == 0 2191 // A != B <==> (C = A^B) != 0 2192 // Sc = Sa | Sb 2193 Value *C = IRB.CreateXor(A, B); 2194 Value *Sc = IRB.CreateOr(Sa, Sb); 2195 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 2196 // Result is defined if one of the following is true 2197 // * there is a defined 1 bit in C 2198 // * C is fully defined 2199 // Si = !(C & ~Sc) && Sc 2200 Value *Zero = Constant::getNullValue(Sc->getType()); 2201 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 2202 Value *Si = 2203 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 2204 IRB.CreateICmpEQ( 2205 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 2206 Si->setName("_msprop_icmp"); 2207 setShadow(&I, Si); 2208 setOriginForNaryOp(I); 2209 } 2210 2211 /// Build the lowest possible value of V, taking into account V's 2212 /// uninitialized bits. 2213 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2214 bool isSigned) { 2215 if (isSigned) { 2216 // Split shadow into sign bit and other bits. 2217 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2218 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2219 // Maximise the undefined shadow bit, minimize other undefined bits. 2220 return 2221 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 2222 } else { 2223 // Minimize undefined bits. 2224 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 2225 } 2226 } 2227 2228 /// Build the highest possible value of V, taking into account V's 2229 /// uninitialized bits. 2230 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 2231 bool isSigned) { 2232 if (isSigned) { 2233 // Split shadow into sign bit and other bits. 2234 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 2235 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 2236 // Minimise the undefined shadow bit, maximise other undefined bits. 2237 return 2238 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 2239 } else { 2240 // Maximize undefined bits. 2241 return IRB.CreateOr(A, Sa); 2242 } 2243 } 2244 2245 /// Instrument relational comparisons. 2246 /// 2247 /// This function does exact shadow propagation for all relational 2248 /// comparisons of integers, pointers and vectors of those. 2249 /// FIXME: output seems suboptimal when one of the operands is a constant 2250 void handleRelationalComparisonExact(ICmpInst &I) { 2251 IRBuilder<> IRB(&I); 2252 Value *A = I.getOperand(0); 2253 Value *B = I.getOperand(1); 2254 Value *Sa = getShadow(A); 2255 Value *Sb = getShadow(B); 2256 2257 // Get rid of pointers and vectors of pointers. 2258 // For ints (and vectors of ints), types of A and Sa match, 2259 // and this is a no-op. 2260 A = IRB.CreatePointerCast(A, Sa->getType()); 2261 B = IRB.CreatePointerCast(B, Sb->getType()); 2262 2263 // Let [a0, a1] be the interval of possible values of A, taking into account 2264 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 2265 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 2266 bool IsSigned = I.isSigned(); 2267 Value *S1 = IRB.CreateICmp(I.getPredicate(), 2268 getLowestPossibleValue(IRB, A, Sa, IsSigned), 2269 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 2270 Value *S2 = IRB.CreateICmp(I.getPredicate(), 2271 getHighestPossibleValue(IRB, A, Sa, IsSigned), 2272 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 2273 Value *Si = IRB.CreateXor(S1, S2); 2274 setShadow(&I, Si); 2275 setOriginForNaryOp(I); 2276 } 2277 2278 /// Instrument signed relational comparisons. 2279 /// 2280 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 2281 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 2282 void handleSignedRelationalComparison(ICmpInst &I) { 2283 Constant *constOp; 2284 Value *op = nullptr; 2285 CmpInst::Predicate pre; 2286 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 2287 op = I.getOperand(0); 2288 pre = I.getPredicate(); 2289 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 2290 op = I.getOperand(1); 2291 pre = I.getSwappedPredicate(); 2292 } else { 2293 handleShadowOr(I); 2294 return; 2295 } 2296 2297 if ((constOp->isNullValue() && 2298 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 2299 (constOp->isAllOnesValue() && 2300 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 2301 IRBuilder<> IRB(&I); 2302 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 2303 "_msprop_icmp_s"); 2304 setShadow(&I, Shadow); 2305 setOrigin(&I, getOrigin(op)); 2306 } else { 2307 handleShadowOr(I); 2308 } 2309 } 2310 2311 void visitICmpInst(ICmpInst &I) { 2312 if (!ClHandleICmp) { 2313 handleShadowOr(I); 2314 return; 2315 } 2316 if (I.isEquality()) { 2317 handleEqualityComparison(I); 2318 return; 2319 } 2320 2321 assert(I.isRelational()); 2322 if (ClHandleICmpExact) { 2323 handleRelationalComparisonExact(I); 2324 return; 2325 } 2326 if (I.isSigned()) { 2327 handleSignedRelationalComparison(I); 2328 return; 2329 } 2330 2331 assert(I.isUnsigned()); 2332 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 2333 handleRelationalComparisonExact(I); 2334 return; 2335 } 2336 2337 handleShadowOr(I); 2338 } 2339 2340 void visitFCmpInst(FCmpInst &I) { 2341 handleShadowOr(I); 2342 } 2343 2344 void handleShift(BinaryOperator &I) { 2345 IRBuilder<> IRB(&I); 2346 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2347 // Otherwise perform the same shift on S1. 2348 Value *S1 = getShadow(&I, 0); 2349 Value *S2 = getShadow(&I, 1); 2350 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 2351 S2->getType()); 2352 Value *V2 = I.getOperand(1); 2353 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 2354 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2355 setOriginForNaryOp(I); 2356 } 2357 2358 void visitShl(BinaryOperator &I) { handleShift(I); } 2359 void visitAShr(BinaryOperator &I) { handleShift(I); } 2360 void visitLShr(BinaryOperator &I) { handleShift(I); } 2361 2362 /// Instrument llvm.memmove 2363 /// 2364 /// At this point we don't know if llvm.memmove will be inlined or not. 2365 /// If we don't instrument it and it gets inlined, 2366 /// our interceptor will not kick in and we will lose the memmove. 2367 /// If we instrument the call here, but it does not get inlined, 2368 /// we will memove the shadow twice: which is bad in case 2369 /// of overlapping regions. So, we simply lower the intrinsic to a call. 2370 /// 2371 /// Similar situation exists for memcpy and memset. 2372 void visitMemMoveInst(MemMoveInst &I) { 2373 IRBuilder<> IRB(&I); 2374 IRB.CreateCall( 2375 MS.MemmoveFn, 2376 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2377 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2378 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2379 I.eraseFromParent(); 2380 } 2381 2382 // Similar to memmove: avoid copying shadow twice. 2383 // This is somewhat unfortunate as it may slowdown small constant memcpys. 2384 // FIXME: consider doing manual inline for small constant sizes and proper 2385 // alignment. 2386 void visitMemCpyInst(MemCpyInst &I) { 2387 IRBuilder<> IRB(&I); 2388 IRB.CreateCall( 2389 MS.MemcpyFn, 2390 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2391 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2392 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2393 I.eraseFromParent(); 2394 } 2395 2396 // Same as memcpy. 2397 void visitMemSetInst(MemSetInst &I) { 2398 IRBuilder<> IRB(&I); 2399 IRB.CreateCall( 2400 MS.MemsetFn, 2401 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2402 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 2403 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 2404 I.eraseFromParent(); 2405 } 2406 2407 void visitVAStartInst(VAStartInst &I) { 2408 VAHelper->visitVAStartInst(I); 2409 } 2410 2411 void visitVACopyInst(VACopyInst &I) { 2412 VAHelper->visitVACopyInst(I); 2413 } 2414 2415 /// Handle vector store-like intrinsics. 2416 /// 2417 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 2418 /// has 1 pointer argument and 1 vector argument, returns void. 2419 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 2420 IRBuilder<> IRB(&I); 2421 Value* Addr = I.getArgOperand(0); 2422 Value *Shadow = getShadow(&I, 1); 2423 Value *ShadowPtr, *OriginPtr; 2424 2425 // We don't know the pointer alignment (could be unaligned SSE store!). 2426 // Have to assume to worst case. 2427 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2428 Addr, IRB, Shadow->getType(), /*Alignment*/ 1, /*isStore*/ true); 2429 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); 2430 2431 if (ClCheckAccessAddress) 2432 insertShadowCheck(Addr, &I); 2433 2434 // FIXME: factor out common code from materializeStores 2435 if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); 2436 return true; 2437 } 2438 2439 /// Handle vector load-like intrinsics. 2440 /// 2441 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 2442 /// has 1 pointer argument, returns a vector. 2443 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 2444 IRBuilder<> IRB(&I); 2445 Value *Addr = I.getArgOperand(0); 2446 2447 Type *ShadowTy = getShadowTy(&I); 2448 Value *ShadowPtr, *OriginPtr; 2449 if (PropagateShadow) { 2450 // We don't know the pointer alignment (could be unaligned SSE load!). 2451 // Have to assume to worst case. 2452 unsigned Alignment = 1; 2453 std::tie(ShadowPtr, OriginPtr) = 2454 getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); 2455 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, Alignment, "_msld")); 2456 } else { 2457 setShadow(&I, getCleanShadow(&I)); 2458 } 2459 2460 if (ClCheckAccessAddress) 2461 insertShadowCheck(Addr, &I); 2462 2463 if (MS.TrackOrigins) { 2464 if (PropagateShadow) 2465 setOrigin(&I, IRB.CreateLoad(OriginPtr)); 2466 else 2467 setOrigin(&I, getCleanOrigin()); 2468 } 2469 return true; 2470 } 2471 2472 /// Handle (SIMD arithmetic)-like intrinsics. 2473 /// 2474 /// Instrument intrinsics with any number of arguments of the same type, 2475 /// equal to the return type. The type should be simple (no aggregates or 2476 /// pointers; vectors are fine). 2477 /// Caller guarantees that this intrinsic does not access memory. 2478 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 2479 Type *RetTy = I.getType(); 2480 if (!(RetTy->isIntOrIntVectorTy() || 2481 RetTy->isFPOrFPVectorTy() || 2482 RetTy->isX86_MMXTy())) 2483 return false; 2484 2485 unsigned NumArgOperands = I.getNumArgOperands(); 2486 2487 for (unsigned i = 0; i < NumArgOperands; ++i) { 2488 Type *Ty = I.getArgOperand(i)->getType(); 2489 if (Ty != RetTy) 2490 return false; 2491 } 2492 2493 IRBuilder<> IRB(&I); 2494 ShadowAndOriginCombiner SC(this, IRB); 2495 for (unsigned i = 0; i < NumArgOperands; ++i) 2496 SC.Add(I.getArgOperand(i)); 2497 SC.Done(&I); 2498 2499 return true; 2500 } 2501 2502 /// Heuristically instrument unknown intrinsics. 2503 /// 2504 /// The main purpose of this code is to do something reasonable with all 2505 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 2506 /// We recognize several classes of intrinsics by their argument types and 2507 /// ModRefBehaviour and apply special intrumentation when we are reasonably 2508 /// sure that we know what the intrinsic does. 2509 /// 2510 /// We special-case intrinsics where this approach fails. See llvm.bswap 2511 /// handling as an example of that. 2512 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2513 unsigned NumArgOperands = I.getNumArgOperands(); 2514 if (NumArgOperands == 0) 2515 return false; 2516 2517 if (NumArgOperands == 2 && 2518 I.getArgOperand(0)->getType()->isPointerTy() && 2519 I.getArgOperand(1)->getType()->isVectorTy() && 2520 I.getType()->isVoidTy() && 2521 !I.onlyReadsMemory()) { 2522 // This looks like a vector store. 2523 return handleVectorStoreIntrinsic(I); 2524 } 2525 2526 if (NumArgOperands == 1 && 2527 I.getArgOperand(0)->getType()->isPointerTy() && 2528 I.getType()->isVectorTy() && 2529 I.onlyReadsMemory()) { 2530 // This looks like a vector load. 2531 return handleVectorLoadIntrinsic(I); 2532 } 2533 2534 if (I.doesNotAccessMemory()) 2535 if (maybeHandleSimpleNomemIntrinsic(I)) 2536 return true; 2537 2538 // FIXME: detect and handle SSE maskstore/maskload 2539 return false; 2540 } 2541 2542 void handleBswap(IntrinsicInst &I) { 2543 IRBuilder<> IRB(&I); 2544 Value *Op = I.getArgOperand(0); 2545 Type *OpType = Op->getType(); 2546 Function *BswapFunc = Intrinsic::getDeclaration( 2547 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2548 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2549 setOrigin(&I, getOrigin(Op)); 2550 } 2551 2552 // Instrument vector convert instrinsic. 2553 // 2554 // This function instruments intrinsics like cvtsi2ss: 2555 // %Out = int_xxx_cvtyyy(%ConvertOp) 2556 // or 2557 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2558 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2559 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2560 // elements from \p CopyOp. 2561 // In most cases conversion involves floating-point value which may trigger a 2562 // hardware exception when not fully initialized. For this reason we require 2563 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2564 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2565 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2566 // return a fully initialized value. 2567 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2568 IRBuilder<> IRB(&I); 2569 Value *CopyOp, *ConvertOp; 2570 2571 switch (I.getNumArgOperands()) { 2572 case 3: 2573 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2574 LLVM_FALLTHROUGH; 2575 case 2: 2576 CopyOp = I.getArgOperand(0); 2577 ConvertOp = I.getArgOperand(1); 2578 break; 2579 case 1: 2580 ConvertOp = I.getArgOperand(0); 2581 CopyOp = nullptr; 2582 break; 2583 default: 2584 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2585 } 2586 2587 // The first *NumUsedElements* elements of ConvertOp are converted to the 2588 // same number of output elements. The rest of the output is copied from 2589 // CopyOp, or (if not available) filled with zeroes. 2590 // Combine shadow for elements of ConvertOp that are used in this operation, 2591 // and insert a check. 2592 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2593 // int->any conversion. 2594 Value *ConvertShadow = getShadow(ConvertOp); 2595 Value *AggShadow = nullptr; 2596 if (ConvertOp->getType()->isVectorTy()) { 2597 AggShadow = IRB.CreateExtractElement( 2598 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2599 for (int i = 1; i < NumUsedElements; ++i) { 2600 Value *MoreShadow = IRB.CreateExtractElement( 2601 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2602 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2603 } 2604 } else { 2605 AggShadow = ConvertShadow; 2606 } 2607 assert(AggShadow->getType()->isIntegerTy()); 2608 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2609 2610 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2611 // ConvertOp. 2612 if (CopyOp) { 2613 assert(CopyOp->getType() == I.getType()); 2614 assert(CopyOp->getType()->isVectorTy()); 2615 Value *ResultShadow = getShadow(CopyOp); 2616 Type *EltTy = ResultShadow->getType()->getVectorElementType(); 2617 for (int i = 0; i < NumUsedElements; ++i) { 2618 ResultShadow = IRB.CreateInsertElement( 2619 ResultShadow, ConstantInt::getNullValue(EltTy), 2620 ConstantInt::get(IRB.getInt32Ty(), i)); 2621 } 2622 setShadow(&I, ResultShadow); 2623 setOrigin(&I, getOrigin(CopyOp)); 2624 } else { 2625 setShadow(&I, getCleanShadow(&I)); 2626 setOrigin(&I, getCleanOrigin()); 2627 } 2628 } 2629 2630 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2631 // zeroes if it is zero, and all ones otherwise. 2632 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2633 if (S->getType()->isVectorTy()) 2634 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2635 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2636 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2637 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2638 } 2639 2640 // Given a vector, extract its first element, and return all 2641 // zeroes if it is zero, and all ones otherwise. 2642 Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2643 Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); 2644 Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); 2645 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2646 } 2647 2648 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2649 Type *T = S->getType(); 2650 assert(T->isVectorTy()); 2651 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2652 return IRB.CreateSExt(S2, T); 2653 } 2654 2655 // Instrument vector shift instrinsic. 2656 // 2657 // This function instruments intrinsics like int_x86_avx2_psll_w. 2658 // Intrinsic shifts %In by %ShiftSize bits. 2659 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2660 // size, and the rest is ignored. Behavior is defined even if shift size is 2661 // greater than register (or field) width. 2662 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2663 assert(I.getNumArgOperands() == 2); 2664 IRBuilder<> IRB(&I); 2665 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2666 // Otherwise perform the same shift on S1. 2667 Value *S1 = getShadow(&I, 0); 2668 Value *S2 = getShadow(&I, 1); 2669 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2670 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2671 Value *V1 = I.getOperand(0); 2672 Value *V2 = I.getOperand(1); 2673 Value *Shift = IRB.CreateCall(I.getCalledValue(), 2674 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2675 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2676 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2677 setOriginForNaryOp(I); 2678 } 2679 2680 // Get an X86_MMX-sized vector type. 2681 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2682 const unsigned X86_MMXSizeInBits = 64; 2683 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2684 X86_MMXSizeInBits / EltSizeInBits); 2685 } 2686 2687 // Returns a signed counterpart for an (un)signed-saturate-and-pack 2688 // intrinsic. 2689 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2690 switch (id) { 2691 case Intrinsic::x86_sse2_packsswb_128: 2692 case Intrinsic::x86_sse2_packuswb_128: 2693 return Intrinsic::x86_sse2_packsswb_128; 2694 2695 case Intrinsic::x86_sse2_packssdw_128: 2696 case Intrinsic::x86_sse41_packusdw: 2697 return Intrinsic::x86_sse2_packssdw_128; 2698 2699 case Intrinsic::x86_avx2_packsswb: 2700 case Intrinsic::x86_avx2_packuswb: 2701 return Intrinsic::x86_avx2_packsswb; 2702 2703 case Intrinsic::x86_avx2_packssdw: 2704 case Intrinsic::x86_avx2_packusdw: 2705 return Intrinsic::x86_avx2_packssdw; 2706 2707 case Intrinsic::x86_mmx_packsswb: 2708 case Intrinsic::x86_mmx_packuswb: 2709 return Intrinsic::x86_mmx_packsswb; 2710 2711 case Intrinsic::x86_mmx_packssdw: 2712 return Intrinsic::x86_mmx_packssdw; 2713 default: 2714 llvm_unreachable("unexpected intrinsic id"); 2715 } 2716 } 2717 2718 // Instrument vector pack instrinsic. 2719 // 2720 // This function instruments intrinsics like x86_mmx_packsswb, that 2721 // packs elements of 2 input vectors into half as many bits with saturation. 2722 // Shadow is propagated with the signed variant of the same intrinsic applied 2723 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2724 // EltSizeInBits is used only for x86mmx arguments. 2725 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2726 assert(I.getNumArgOperands() == 2); 2727 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2728 IRBuilder<> IRB(&I); 2729 Value *S1 = getShadow(&I, 0); 2730 Value *S2 = getShadow(&I, 1); 2731 assert(isX86_MMX || S1->getType()->isVectorTy()); 2732 2733 // SExt and ICmpNE below must apply to individual elements of input vectors. 2734 // In case of x86mmx arguments, cast them to appropriate vector types and 2735 // back. 2736 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2737 if (isX86_MMX) { 2738 S1 = IRB.CreateBitCast(S1, T); 2739 S2 = IRB.CreateBitCast(S2, T); 2740 } 2741 Value *S1_ext = IRB.CreateSExt( 2742 IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); 2743 Value *S2_ext = IRB.CreateSExt( 2744 IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); 2745 if (isX86_MMX) { 2746 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2747 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2748 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2749 } 2750 2751 Function *ShadowFn = Intrinsic::getDeclaration( 2752 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2753 2754 Value *S = 2755 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2756 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2757 setShadow(&I, S); 2758 setOriginForNaryOp(I); 2759 } 2760 2761 // Instrument sum-of-absolute-differencies intrinsic. 2762 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2763 const unsigned SignificantBitsPerResultElement = 16; 2764 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2765 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2766 unsigned ZeroBitsPerResultElement = 2767 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2768 2769 IRBuilder<> IRB(&I); 2770 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2771 S = IRB.CreateBitCast(S, ResTy); 2772 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2773 ResTy); 2774 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2775 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2776 setShadow(&I, S); 2777 setOriginForNaryOp(I); 2778 } 2779 2780 // Instrument multiply-add intrinsic. 2781 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2782 unsigned EltSizeInBits = 0) { 2783 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2784 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2785 IRBuilder<> IRB(&I); 2786 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2787 S = IRB.CreateBitCast(S, ResTy); 2788 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2789 ResTy); 2790 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2791 setShadow(&I, S); 2792 setOriginForNaryOp(I); 2793 } 2794 2795 // Instrument compare-packed intrinsic. 2796 // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or 2797 // all-ones shadow. 2798 void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { 2799 IRBuilder<> IRB(&I); 2800 Type *ResTy = getShadowTy(&I); 2801 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2802 Value *S = IRB.CreateSExt( 2803 IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); 2804 setShadow(&I, S); 2805 setOriginForNaryOp(I); 2806 } 2807 2808 // Instrument compare-scalar intrinsic. 2809 // This handles both cmp* intrinsics which return the result in the first 2810 // element of a vector, and comi* which return the result as i32. 2811 void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { 2812 IRBuilder<> IRB(&I); 2813 Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2814 Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); 2815 setShadow(&I, S); 2816 setOriginForNaryOp(I); 2817 } 2818 2819 void handleStmxcsr(IntrinsicInst &I) { 2820 IRBuilder<> IRB(&I); 2821 Value* Addr = I.getArgOperand(0); 2822 Type *Ty = IRB.getInt32Ty(); 2823 Value *ShadowPtr = 2824 getShadowOriginPtr(Addr, IRB, Ty, /*Alignment*/ 1, /*isStore*/ true) 2825 .first; 2826 2827 IRB.CreateStore(getCleanShadow(Ty), 2828 IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); 2829 2830 if (ClCheckAccessAddress) 2831 insertShadowCheck(Addr, &I); 2832 } 2833 2834 void handleLdmxcsr(IntrinsicInst &I) { 2835 if (!InsertChecks) return; 2836 2837 IRBuilder<> IRB(&I); 2838 Value *Addr = I.getArgOperand(0); 2839 Type *Ty = IRB.getInt32Ty(); 2840 unsigned Alignment = 1; 2841 Value *ShadowPtr, *OriginPtr; 2842 std::tie(ShadowPtr, OriginPtr) = 2843 getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); 2844 2845 if (ClCheckAccessAddress) 2846 insertShadowCheck(Addr, &I); 2847 2848 Value *Shadow = IRB.CreateAlignedLoad(ShadowPtr, Alignment, "_ldmxcsr"); 2849 Value *Origin = 2850 MS.TrackOrigins ? IRB.CreateLoad(OriginPtr) : getCleanOrigin(); 2851 insertShadowCheck(Shadow, Origin, &I); 2852 } 2853 2854 void handleMaskedStore(IntrinsicInst &I) { 2855 IRBuilder<> IRB(&I); 2856 Value *V = I.getArgOperand(0); 2857 Value *Addr = I.getArgOperand(1); 2858 unsigned Align = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 2859 Value *Mask = I.getArgOperand(3); 2860 Value *Shadow = getShadow(V); 2861 2862 Value *ShadowPtr; 2863 Value *OriginPtr; 2864 std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( 2865 Addr, IRB, Shadow->getType(), Align, /*isStore*/ true); 2866 2867 if (ClCheckAccessAddress) { 2868 insertShadowCheck(Addr, &I); 2869 // Uninitialized mask is kind of like uninitialized address, but not as 2870 // scary. 2871 insertShadowCheck(Mask, &I); 2872 } 2873 2874 IRB.CreateMaskedStore(Shadow, ShadowPtr, Align, Mask); 2875 2876 if (MS.TrackOrigins) { 2877 auto &DL = F.getParent()->getDataLayout(); 2878 paintOrigin(IRB, getOrigin(V), OriginPtr, 2879 DL.getTypeStoreSize(Shadow->getType()), 2880 std::max(Align, kMinOriginAlignment)); 2881 } 2882 } 2883 2884 bool handleMaskedLoad(IntrinsicInst &I) { 2885 IRBuilder<> IRB(&I); 2886 Value *Addr = I.getArgOperand(0); 2887 unsigned Align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 2888 Value *Mask = I.getArgOperand(2); 2889 Value *PassThru = I.getArgOperand(3); 2890 2891 Type *ShadowTy = getShadowTy(&I); 2892 Value *ShadowPtr, *OriginPtr; 2893 if (PropagateShadow) { 2894 std::tie(ShadowPtr, OriginPtr) = 2895 getShadowOriginPtr(Addr, IRB, ShadowTy, Align, /*isStore*/ false); 2896 setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Align, Mask, 2897 getShadow(PassThru), "_msmaskedld")); 2898 } else { 2899 setShadow(&I, getCleanShadow(&I)); 2900 } 2901 2902 if (ClCheckAccessAddress) { 2903 insertShadowCheck(Addr, &I); 2904 insertShadowCheck(Mask, &I); 2905 } 2906 2907 if (MS.TrackOrigins) { 2908 if (PropagateShadow) { 2909 // Choose between PassThru's and the loaded value's origins. 2910 Value *MaskedPassThruShadow = IRB.CreateAnd( 2911 getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); 2912 2913 Value *Acc = IRB.CreateExtractElement( 2914 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2915 for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N; 2916 ++i) { 2917 Value *More = IRB.CreateExtractElement( 2918 MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2919 Acc = IRB.CreateOr(Acc, More); 2920 } 2921 2922 Value *Origin = IRB.CreateSelect( 2923 IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), 2924 getOrigin(PassThru), IRB.CreateLoad(OriginPtr)); 2925 2926 setOrigin(&I, Origin); 2927 } else { 2928 setOrigin(&I, getCleanOrigin()); 2929 } 2930 } 2931 return true; 2932 } 2933 2934 2935 void visitIntrinsicInst(IntrinsicInst &I) { 2936 switch (I.getIntrinsicID()) { 2937 case Intrinsic::bswap: 2938 handleBswap(I); 2939 break; 2940 case Intrinsic::masked_store: 2941 handleMaskedStore(I); 2942 break; 2943 case Intrinsic::masked_load: 2944 handleMaskedLoad(I); 2945 break; 2946 case Intrinsic::x86_sse_stmxcsr: 2947 handleStmxcsr(I); 2948 break; 2949 case Intrinsic::x86_sse_ldmxcsr: 2950 handleLdmxcsr(I); 2951 break; 2952 case Intrinsic::x86_avx512_vcvtsd2usi64: 2953 case Intrinsic::x86_avx512_vcvtsd2usi32: 2954 case Intrinsic::x86_avx512_vcvtss2usi64: 2955 case Intrinsic::x86_avx512_vcvtss2usi32: 2956 case Intrinsic::x86_avx512_cvttss2usi64: 2957 case Intrinsic::x86_avx512_cvttss2usi: 2958 case Intrinsic::x86_avx512_cvttsd2usi64: 2959 case Intrinsic::x86_avx512_cvttsd2usi: 2960 case Intrinsic::x86_avx512_cvtusi2ss: 2961 case Intrinsic::x86_avx512_cvtusi642sd: 2962 case Intrinsic::x86_avx512_cvtusi642ss: 2963 case Intrinsic::x86_sse2_cvtsd2si64: 2964 case Intrinsic::x86_sse2_cvtsd2si: 2965 case Intrinsic::x86_sse2_cvtsd2ss: 2966 case Intrinsic::x86_sse2_cvttsd2si64: 2967 case Intrinsic::x86_sse2_cvttsd2si: 2968 case Intrinsic::x86_sse_cvtss2si64: 2969 case Intrinsic::x86_sse_cvtss2si: 2970 case Intrinsic::x86_sse_cvttss2si64: 2971 case Intrinsic::x86_sse_cvttss2si: 2972 handleVectorConvertIntrinsic(I, 1); 2973 break; 2974 case Intrinsic::x86_sse_cvtps2pi: 2975 case Intrinsic::x86_sse_cvttps2pi: 2976 handleVectorConvertIntrinsic(I, 2); 2977 break; 2978 2979 case Intrinsic::x86_avx512_psll_w_512: 2980 case Intrinsic::x86_avx512_psll_d_512: 2981 case Intrinsic::x86_avx512_psll_q_512: 2982 case Intrinsic::x86_avx512_pslli_w_512: 2983 case Intrinsic::x86_avx512_pslli_d_512: 2984 case Intrinsic::x86_avx512_pslli_q_512: 2985 case Intrinsic::x86_avx512_psrl_w_512: 2986 case Intrinsic::x86_avx512_psrl_d_512: 2987 case Intrinsic::x86_avx512_psrl_q_512: 2988 case Intrinsic::x86_avx512_psra_w_512: 2989 case Intrinsic::x86_avx512_psra_d_512: 2990 case Intrinsic::x86_avx512_psra_q_512: 2991 case Intrinsic::x86_avx512_psrli_w_512: 2992 case Intrinsic::x86_avx512_psrli_d_512: 2993 case Intrinsic::x86_avx512_psrli_q_512: 2994 case Intrinsic::x86_avx512_psrai_w_512: 2995 case Intrinsic::x86_avx512_psrai_d_512: 2996 case Intrinsic::x86_avx512_psrai_q_512: 2997 case Intrinsic::x86_avx512_psra_q_256: 2998 case Intrinsic::x86_avx512_psra_q_128: 2999 case Intrinsic::x86_avx512_psrai_q_256: 3000 case Intrinsic::x86_avx512_psrai_q_128: 3001 case Intrinsic::x86_avx2_psll_w: 3002 case Intrinsic::x86_avx2_psll_d: 3003 case Intrinsic::x86_avx2_psll_q: 3004 case Intrinsic::x86_avx2_pslli_w: 3005 case Intrinsic::x86_avx2_pslli_d: 3006 case Intrinsic::x86_avx2_pslli_q: 3007 case Intrinsic::x86_avx2_psrl_w: 3008 case Intrinsic::x86_avx2_psrl_d: 3009 case Intrinsic::x86_avx2_psrl_q: 3010 case Intrinsic::x86_avx2_psra_w: 3011 case Intrinsic::x86_avx2_psra_d: 3012 case Intrinsic::x86_avx2_psrli_w: 3013 case Intrinsic::x86_avx2_psrli_d: 3014 case Intrinsic::x86_avx2_psrli_q: 3015 case Intrinsic::x86_avx2_psrai_w: 3016 case Intrinsic::x86_avx2_psrai_d: 3017 case Intrinsic::x86_sse2_psll_w: 3018 case Intrinsic::x86_sse2_psll_d: 3019 case Intrinsic::x86_sse2_psll_q: 3020 case Intrinsic::x86_sse2_pslli_w: 3021 case Intrinsic::x86_sse2_pslli_d: 3022 case Intrinsic::x86_sse2_pslli_q: 3023 case Intrinsic::x86_sse2_psrl_w: 3024 case Intrinsic::x86_sse2_psrl_d: 3025 case Intrinsic::x86_sse2_psrl_q: 3026 case Intrinsic::x86_sse2_psra_w: 3027 case Intrinsic::x86_sse2_psra_d: 3028 case Intrinsic::x86_sse2_psrli_w: 3029 case Intrinsic::x86_sse2_psrli_d: 3030 case Intrinsic::x86_sse2_psrli_q: 3031 case Intrinsic::x86_sse2_psrai_w: 3032 case Intrinsic::x86_sse2_psrai_d: 3033 case Intrinsic::x86_mmx_psll_w: 3034 case Intrinsic::x86_mmx_psll_d: 3035 case Intrinsic::x86_mmx_psll_q: 3036 case Intrinsic::x86_mmx_pslli_w: 3037 case Intrinsic::x86_mmx_pslli_d: 3038 case Intrinsic::x86_mmx_pslli_q: 3039 case Intrinsic::x86_mmx_psrl_w: 3040 case Intrinsic::x86_mmx_psrl_d: 3041 case Intrinsic::x86_mmx_psrl_q: 3042 case Intrinsic::x86_mmx_psra_w: 3043 case Intrinsic::x86_mmx_psra_d: 3044 case Intrinsic::x86_mmx_psrli_w: 3045 case Intrinsic::x86_mmx_psrli_d: 3046 case Intrinsic::x86_mmx_psrli_q: 3047 case Intrinsic::x86_mmx_psrai_w: 3048 case Intrinsic::x86_mmx_psrai_d: 3049 handleVectorShiftIntrinsic(I, /* Variable */ false); 3050 break; 3051 case Intrinsic::x86_avx2_psllv_d: 3052 case Intrinsic::x86_avx2_psllv_d_256: 3053 case Intrinsic::x86_avx512_psllv_d_512: 3054 case Intrinsic::x86_avx2_psllv_q: 3055 case Intrinsic::x86_avx2_psllv_q_256: 3056 case Intrinsic::x86_avx512_psllv_q_512: 3057 case Intrinsic::x86_avx2_psrlv_d: 3058 case Intrinsic::x86_avx2_psrlv_d_256: 3059 case Intrinsic::x86_avx512_psrlv_d_512: 3060 case Intrinsic::x86_avx2_psrlv_q: 3061 case Intrinsic::x86_avx2_psrlv_q_256: 3062 case Intrinsic::x86_avx512_psrlv_q_512: 3063 case Intrinsic::x86_avx2_psrav_d: 3064 case Intrinsic::x86_avx2_psrav_d_256: 3065 case Intrinsic::x86_avx512_psrav_d_512: 3066 case Intrinsic::x86_avx512_psrav_q_128: 3067 case Intrinsic::x86_avx512_psrav_q_256: 3068 case Intrinsic::x86_avx512_psrav_q_512: 3069 handleVectorShiftIntrinsic(I, /* Variable */ true); 3070 break; 3071 3072 case Intrinsic::x86_sse2_packsswb_128: 3073 case Intrinsic::x86_sse2_packssdw_128: 3074 case Intrinsic::x86_sse2_packuswb_128: 3075 case Intrinsic::x86_sse41_packusdw: 3076 case Intrinsic::x86_avx2_packsswb: 3077 case Intrinsic::x86_avx2_packssdw: 3078 case Intrinsic::x86_avx2_packuswb: 3079 case Intrinsic::x86_avx2_packusdw: 3080 handleVectorPackIntrinsic(I); 3081 break; 3082 3083 case Intrinsic::x86_mmx_packsswb: 3084 case Intrinsic::x86_mmx_packuswb: 3085 handleVectorPackIntrinsic(I, 16); 3086 break; 3087 3088 case Intrinsic::x86_mmx_packssdw: 3089 handleVectorPackIntrinsic(I, 32); 3090 break; 3091 3092 case Intrinsic::x86_mmx_psad_bw: 3093 case Intrinsic::x86_sse2_psad_bw: 3094 case Intrinsic::x86_avx2_psad_bw: 3095 handleVectorSadIntrinsic(I); 3096 break; 3097 3098 case Intrinsic::x86_sse2_pmadd_wd: 3099 case Intrinsic::x86_avx2_pmadd_wd: 3100 case Intrinsic::x86_ssse3_pmadd_ub_sw_128: 3101 case Intrinsic::x86_avx2_pmadd_ub_sw: 3102 handleVectorPmaddIntrinsic(I); 3103 break; 3104 3105 case Intrinsic::x86_ssse3_pmadd_ub_sw: 3106 handleVectorPmaddIntrinsic(I, 8); 3107 break; 3108 3109 case Intrinsic::x86_mmx_pmadd_wd: 3110 handleVectorPmaddIntrinsic(I, 16); 3111 break; 3112 3113 case Intrinsic::x86_sse_cmp_ss: 3114 case Intrinsic::x86_sse2_cmp_sd: 3115 case Intrinsic::x86_sse_comieq_ss: 3116 case Intrinsic::x86_sse_comilt_ss: 3117 case Intrinsic::x86_sse_comile_ss: 3118 case Intrinsic::x86_sse_comigt_ss: 3119 case Intrinsic::x86_sse_comige_ss: 3120 case Intrinsic::x86_sse_comineq_ss: 3121 case Intrinsic::x86_sse_ucomieq_ss: 3122 case Intrinsic::x86_sse_ucomilt_ss: 3123 case Intrinsic::x86_sse_ucomile_ss: 3124 case Intrinsic::x86_sse_ucomigt_ss: 3125 case Intrinsic::x86_sse_ucomige_ss: 3126 case Intrinsic::x86_sse_ucomineq_ss: 3127 case Intrinsic::x86_sse2_comieq_sd: 3128 case Intrinsic::x86_sse2_comilt_sd: 3129 case Intrinsic::x86_sse2_comile_sd: 3130 case Intrinsic::x86_sse2_comigt_sd: 3131 case Intrinsic::x86_sse2_comige_sd: 3132 case Intrinsic::x86_sse2_comineq_sd: 3133 case Intrinsic::x86_sse2_ucomieq_sd: 3134 case Intrinsic::x86_sse2_ucomilt_sd: 3135 case Intrinsic::x86_sse2_ucomile_sd: 3136 case Intrinsic::x86_sse2_ucomigt_sd: 3137 case Intrinsic::x86_sse2_ucomige_sd: 3138 case Intrinsic::x86_sse2_ucomineq_sd: 3139 handleVectorCompareScalarIntrinsic(I); 3140 break; 3141 3142 case Intrinsic::x86_sse_cmp_ps: 3143 case Intrinsic::x86_sse2_cmp_pd: 3144 // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function 3145 // generates reasonably looking IR that fails in the backend with "Do not 3146 // know how to split the result of this operator!". 3147 handleVectorComparePackedIntrinsic(I); 3148 break; 3149 3150 case Intrinsic::is_constant: 3151 // The result of llvm.is.constant() is always defined. 3152 setShadow(&I, getCleanShadow(&I)); 3153 setOrigin(&I, getCleanOrigin()); 3154 break; 3155 3156 default: 3157 if (!handleUnknownIntrinsic(I)) 3158 visitInstruction(I); 3159 break; 3160 } 3161 } 3162 3163 void visitCallSite(CallSite CS) { 3164 Instruction &I = *CS.getInstruction(); 3165 assert(!I.getMetadata("nosanitize")); 3166 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite"); 3167 if (CS.isCall()) { 3168 CallInst *Call = cast<CallInst>(&I); 3169 3170 // For inline asm, do the usual thing: check argument shadow and mark all 3171 // outputs as clean. Note that any side effects of the inline asm that are 3172 // not immediately visible in its constraints are not handled. 3173 if (Call->isInlineAsm()) { 3174 if (ClHandleAsmConservative && MS.CompileKernel) 3175 visitAsmInstruction(I); 3176 else 3177 visitInstruction(I); 3178 return; 3179 } 3180 3181 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); 3182 3183 // We are going to insert code that relies on the fact that the callee 3184 // will become a non-readonly function after it is instrumented by us. To 3185 // prevent this code from being optimized out, mark that function 3186 // non-readonly in advance. 3187 if (Function *Func = Call->getCalledFunction()) { 3188 // Clear out readonly/readnone attributes. 3189 AttrBuilder B; 3190 B.addAttribute(Attribute::ReadOnly) 3191 .addAttribute(Attribute::ReadNone); 3192 Func->removeAttributes(AttributeList::FunctionIndex, B); 3193 } 3194 3195 maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); 3196 } 3197 IRBuilder<> IRB(&I); 3198 3199 unsigned ArgOffset = 0; 3200 LLVM_DEBUG(dbgs() << " CallSite: " << I << "\n"); 3201 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3202 ArgIt != End; ++ArgIt) { 3203 Value *A = *ArgIt; 3204 unsigned i = ArgIt - CS.arg_begin(); 3205 if (!A->getType()->isSized()) { 3206 LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); 3207 continue; 3208 } 3209 unsigned Size = 0; 3210 Value *Store = nullptr; 3211 // Compute the Shadow for arg even if it is ByVal, because 3212 // in that case getShadow() will copy the actual arg shadow to 3213 // __msan_param_tls. 3214 Value *ArgShadow = getShadow(A); 3215 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 3216 LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A 3217 << " Shadow: " << *ArgShadow << "\n"); 3218 bool ArgIsInitialized = false; 3219 const DataLayout &DL = F.getParent()->getDataLayout(); 3220 if (CS.paramHasAttr(i, Attribute::ByVal)) { 3221 assert(A->getType()->isPointerTy() && 3222 "ByVal argument is not a pointer!"); 3223 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); 3224 if (ArgOffset + Size > kParamTLSSize) break; 3225 unsigned ParamAlignment = CS.getParamAlignment(i); 3226 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment); 3227 Value *AShadowPtr = 3228 getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, 3229 /*isStore*/ false) 3230 .first; 3231 3232 Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, 3233 Alignment, Size); 3234 // TODO(glider): need to copy origins. 3235 } else { 3236 Size = DL.getTypeAllocSize(A->getType()); 3237 if (ArgOffset + Size > kParamTLSSize) break; 3238 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 3239 kShadowTLSAlignment); 3240 Constant *Cst = dyn_cast<Constant>(ArgShadow); 3241 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 3242 } 3243 if (MS.TrackOrigins && !ArgIsInitialized) 3244 IRB.CreateStore(getOrigin(A), 3245 getOriginPtrForArgument(A, IRB, ArgOffset)); 3246 (void)Store; 3247 assert(Size != 0 && Store != nullptr); 3248 LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); 3249 ArgOffset += alignTo(Size, 8); 3250 } 3251 LLVM_DEBUG(dbgs() << " done with call args\n"); 3252 3253 FunctionType *FT = CS.getFunctionType(); 3254 if (FT->isVarArg()) { 3255 VAHelper->visitCallSite(CS, IRB); 3256 } 3257 3258 // Now, get the shadow for the RetVal. 3259 if (!I.getType()->isSized()) return; 3260 // Don't emit the epilogue for musttail call returns. 3261 if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; 3262 IRBuilder<> IRBBefore(&I); 3263 // Until we have full dynamic coverage, make sure the retval shadow is 0. 3264 Value *Base = getShadowPtrForRetval(&I, IRBBefore); 3265 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment); 3266 BasicBlock::iterator NextInsn; 3267 if (CS.isCall()) { 3268 NextInsn = ++I.getIterator(); 3269 assert(NextInsn != I.getParent()->end()); 3270 } else { 3271 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); 3272 if (!NormalDest->getSinglePredecessor()) { 3273 // FIXME: this case is tricky, so we are just conservative here. 3274 // Perhaps we need to split the edge between this BB and NormalDest, 3275 // but a naive attempt to use SplitEdge leads to a crash. 3276 setShadow(&I, getCleanShadow(&I)); 3277 setOrigin(&I, getCleanOrigin()); 3278 return; 3279 } 3280 // FIXME: NextInsn is likely in a basic block that has not been visited yet. 3281 // Anything inserted there will be instrumented by MSan later! 3282 NextInsn = NormalDest->getFirstInsertionPt(); 3283 assert(NextInsn != NormalDest->end() && 3284 "Could not find insertion point for retval shadow load"); 3285 } 3286 IRBuilder<> IRBAfter(&*NextInsn); 3287 Value *RetvalShadow = 3288 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter), 3289 kShadowTLSAlignment, "_msret"); 3290 setShadow(&I, RetvalShadow); 3291 if (MS.TrackOrigins) 3292 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter))); 3293 } 3294 3295 bool isAMustTailRetVal(Value *RetVal) { 3296 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 3297 RetVal = I->getOperand(0); 3298 } 3299 if (auto *I = dyn_cast<CallInst>(RetVal)) { 3300 return I->isMustTailCall(); 3301 } 3302 return false; 3303 } 3304 3305 void visitReturnInst(ReturnInst &I) { 3306 IRBuilder<> IRB(&I); 3307 Value *RetVal = I.getReturnValue(); 3308 if (!RetVal) return; 3309 // Don't emit the epilogue for musttail call returns. 3310 if (isAMustTailRetVal(RetVal)) return; 3311 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 3312 if (CheckReturnValue) { 3313 insertShadowCheck(RetVal, &I); 3314 Value *Shadow = getCleanShadow(RetVal); 3315 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3316 } else { 3317 Value *Shadow = getShadow(RetVal); 3318 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 3319 if (MS.TrackOrigins) 3320 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 3321 } 3322 } 3323 3324 void visitPHINode(PHINode &I) { 3325 IRBuilder<> IRB(&I); 3326 if (!PropagateShadow) { 3327 setShadow(&I, getCleanShadow(&I)); 3328 setOrigin(&I, getCleanOrigin()); 3329 return; 3330 } 3331 3332 ShadowPHINodes.push_back(&I); 3333 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 3334 "_msphi_s")); 3335 if (MS.TrackOrigins) 3336 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 3337 "_msphi_o")); 3338 } 3339 3340 Value *getLocalVarDescription(AllocaInst &I) { 3341 SmallString<2048> StackDescriptionStorage; 3342 raw_svector_ostream StackDescription(StackDescriptionStorage); 3343 // We create a string with a description of the stack allocation and 3344 // pass it into __msan_set_alloca_origin. 3345 // It will be printed by the run-time if stack-originated UMR is found. 3346 // The first 4 bytes of the string are set to '----' and will be replaced 3347 // by __msan_va_arg_overflow_size_tls at the first call. 3348 StackDescription << "----" << I.getName() << "@" << F.getName(); 3349 return createPrivateNonConstGlobalForString(*F.getParent(), 3350 StackDescription.str()); 3351 } 3352 3353 void instrumentAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3354 if (PoisonStack && ClPoisonStackWithCall) { 3355 IRB.CreateCall(MS.MsanPoisonStackFn, 3356 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3357 } else { 3358 Value *ShadowBase, *OriginBase; 3359 std::tie(ShadowBase, OriginBase) = 3360 getShadowOriginPtr(&I, IRB, IRB.getInt8Ty(), 1, /*isStore*/ true); 3361 3362 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 3363 IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlignment()); 3364 } 3365 3366 if (PoisonStack && MS.TrackOrigins) { 3367 Value *Descr = getLocalVarDescription(I); 3368 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 3369 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3370 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 3371 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 3372 } 3373 } 3374 3375 void instrumentAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { 3376 Value *Descr = getLocalVarDescription(I); 3377 if (PoisonStack) { 3378 IRB.CreateCall(MS.MsanPoisonAllocaFn, 3379 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, 3380 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); 3381 } else { 3382 IRB.CreateCall(MS.MsanUnpoisonAllocaFn, 3383 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); 3384 } 3385 } 3386 3387 void visitAllocaInst(AllocaInst &I) { 3388 setShadow(&I, getCleanShadow(&I)); 3389 setOrigin(&I, getCleanOrigin()); 3390 IRBuilder<> IRB(I.getNextNode()); 3391 const DataLayout &DL = F.getParent()->getDataLayout(); 3392 uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); 3393 Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); 3394 if (I.isArrayAllocation()) 3395 Len = IRB.CreateMul(Len, I.getArraySize()); 3396 3397 if (MS.CompileKernel) 3398 instrumentAllocaKmsan(I, IRB, Len); 3399 else 3400 instrumentAllocaUserspace(I, IRB, Len); 3401 } 3402 3403 void visitSelectInst(SelectInst& I) { 3404 IRBuilder<> IRB(&I); 3405 // a = select b, c, d 3406 Value *B = I.getCondition(); 3407 Value *C = I.getTrueValue(); 3408 Value *D = I.getFalseValue(); 3409 Value *Sb = getShadow(B); 3410 Value *Sc = getShadow(C); 3411 Value *Sd = getShadow(D); 3412 3413 // Result shadow if condition shadow is 0. 3414 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 3415 Value *Sa1; 3416 if (I.getType()->isAggregateType()) { 3417 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 3418 // an extra "select". This results in much more compact IR. 3419 // Sa = select Sb, poisoned, (select b, Sc, Sd) 3420 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 3421 } else { 3422 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 3423 // If Sb (condition is poisoned), look for bits in c and d that are equal 3424 // and both unpoisoned. 3425 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 3426 3427 // Cast arguments to shadow-compatible type. 3428 C = CreateAppToShadowCast(IRB, C); 3429 D = CreateAppToShadowCast(IRB, D); 3430 3431 // Result shadow if condition shadow is 1. 3432 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd)); 3433 } 3434 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 3435 setShadow(&I, Sa); 3436 if (MS.TrackOrigins) { 3437 // Origins are always i32, so any vector conditions must be flattened. 3438 // FIXME: consider tracking vector origins for app vectors? 3439 if (B->getType()->isVectorTy()) { 3440 Type *FlatTy = getShadowTyNoVec(B->getType()); 3441 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 3442 ConstantInt::getNullValue(FlatTy)); 3443 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 3444 ConstantInt::getNullValue(FlatTy)); 3445 } 3446 // a = select b, c, d 3447 // Oa = Sb ? Ob : (b ? Oc : Od) 3448 setOrigin( 3449 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 3450 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 3451 getOrigin(I.getFalseValue())))); 3452 } 3453 } 3454 3455 void visitLandingPadInst(LandingPadInst &I) { 3456 // Do nothing. 3457 // See https://github.com/google/sanitizers/issues/504 3458 setShadow(&I, getCleanShadow(&I)); 3459 setOrigin(&I, getCleanOrigin()); 3460 } 3461 3462 void visitCatchSwitchInst(CatchSwitchInst &I) { 3463 setShadow(&I, getCleanShadow(&I)); 3464 setOrigin(&I, getCleanOrigin()); 3465 } 3466 3467 void visitFuncletPadInst(FuncletPadInst &I) { 3468 setShadow(&I, getCleanShadow(&I)); 3469 setOrigin(&I, getCleanOrigin()); 3470 } 3471 3472 void visitGetElementPtrInst(GetElementPtrInst &I) { 3473 handleShadowOr(I); 3474 } 3475 3476 void visitExtractValueInst(ExtractValueInst &I) { 3477 IRBuilder<> IRB(&I); 3478 Value *Agg = I.getAggregateOperand(); 3479 LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 3480 Value *AggShadow = getShadow(Agg); 3481 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3482 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 3483 LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 3484 setShadow(&I, ResShadow); 3485 setOriginForNaryOp(I); 3486 } 3487 3488 void visitInsertValueInst(InsertValueInst &I) { 3489 IRBuilder<> IRB(&I); 3490 LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); 3491 Value *AggShadow = getShadow(I.getAggregateOperand()); 3492 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 3493 LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 3494 LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 3495 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 3496 LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); 3497 setShadow(&I, Res); 3498 setOriginForNaryOp(I); 3499 } 3500 3501 void dumpInst(Instruction &I) { 3502 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3503 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 3504 } else { 3505 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 3506 } 3507 errs() << "QQQ " << I << "\n"; 3508 } 3509 3510 void visitResumeInst(ResumeInst &I) { 3511 LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); 3512 // Nothing to do here. 3513 } 3514 3515 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 3516 LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 3517 // Nothing to do here. 3518 } 3519 3520 void visitCatchReturnInst(CatchReturnInst &CRI) { 3521 LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 3522 // Nothing to do here. 3523 } 3524 3525 void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, 3526 const DataLayout &DL, bool isOutput) { 3527 // For each assembly argument, we check its value for being initialized. 3528 // If the argument is a pointer, we assume it points to a single element 3529 // of the corresponding type (or to a 8-byte word, if the type is unsized). 3530 // Each such pointer is instrumented with a call to the runtime library. 3531 Type *OpType = Operand->getType(); 3532 // Check the operand value itself. 3533 insertShadowCheck(Operand, &I); 3534 if (!OpType->isPointerTy() || !isOutput) { 3535 assert(!isOutput); 3536 return; 3537 } 3538 Type *ElType = OpType->getPointerElementType(); 3539 if (!ElType->isSized()) 3540 return; 3541 int Size = DL.getTypeStoreSize(ElType); 3542 Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); 3543 Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); 3544 IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); 3545 } 3546 3547 /// Get the number of output arguments returned by pointers. 3548 int getNumOutputArgs(InlineAsm *IA, CallInst *CI) { 3549 int NumRetOutputs = 0; 3550 int NumOutputs = 0; 3551 Type *RetTy = dyn_cast<Value>(CI)->getType(); 3552 if (!RetTy->isVoidTy()) { 3553 // Register outputs are returned via the CallInst return value. 3554 StructType *ST = dyn_cast_or_null<StructType>(RetTy); 3555 if (ST) 3556 NumRetOutputs = ST->getNumElements(); 3557 else 3558 NumRetOutputs = 1; 3559 } 3560 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 3561 for (size_t i = 0, n = Constraints.size(); i < n; i++) { 3562 InlineAsm::ConstraintInfo Info = Constraints[i]; 3563 switch (Info.Type) { 3564 case InlineAsm::isOutput: 3565 NumOutputs++; 3566 break; 3567 default: 3568 break; 3569 } 3570 } 3571 return NumOutputs - NumRetOutputs; 3572 } 3573 3574 void visitAsmInstruction(Instruction &I) { 3575 // Conservative inline assembly handling: check for poisoned shadow of 3576 // asm() arguments, then unpoison the result and all the memory locations 3577 // pointed to by those arguments. 3578 // An inline asm() statement in C++ contains lists of input and output 3579 // arguments used by the assembly code. These are mapped to operands of the 3580 // CallInst as follows: 3581 // - nR register outputs ("=r) are returned by value in a single structure 3582 // (SSA value of the CallInst); 3583 // - nO other outputs ("=m" and others) are returned by pointer as first 3584 // nO operands of the CallInst; 3585 // - nI inputs ("r", "m" and others) are passed to CallInst as the 3586 // remaining nI operands. 3587 // The total number of asm() arguments in the source is nR+nO+nI, and the 3588 // corresponding CallInst has nO+nI+1 operands (the last operand is the 3589 // function to be called). 3590 const DataLayout &DL = F.getParent()->getDataLayout(); 3591 CallInst *CI = dyn_cast<CallInst>(&I); 3592 IRBuilder<> IRB(&I); 3593 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); 3594 int OutputArgs = getNumOutputArgs(IA, CI); 3595 // The last operand of a CallInst is the function itself. 3596 int NumOperands = CI->getNumOperands() - 1; 3597 3598 // Check input arguments. Doing so before unpoisoning output arguments, so 3599 // that we won't overwrite uninit values before checking them. 3600 for (int i = OutputArgs; i < NumOperands; i++) { 3601 Value *Operand = CI->getOperand(i); 3602 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); 3603 } 3604 // Unpoison output arguments. This must happen before the actual InlineAsm 3605 // call, so that the shadow for memory published in the asm() statement 3606 // remains valid. 3607 for (int i = 0; i < OutputArgs; i++) { 3608 Value *Operand = CI->getOperand(i); 3609 instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); 3610 } 3611 3612 setShadow(&I, getCleanShadow(&I)); 3613 setOrigin(&I, getCleanOrigin()); 3614 } 3615 3616 void visitInstruction(Instruction &I) { 3617 // Everything else: stop propagating and check for poisoned shadow. 3618 if (ClDumpStrictInstructions) 3619 dumpInst(I); 3620 LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 3621 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { 3622 Value *Operand = I.getOperand(i); 3623 if (Operand->getType()->isSized()) 3624 insertShadowCheck(Operand, &I); 3625 } 3626 setShadow(&I, getCleanShadow(&I)); 3627 setOrigin(&I, getCleanOrigin()); 3628 } 3629 }; 3630 3631 /// AMD64-specific implementation of VarArgHelper. 3632 struct VarArgAMD64Helper : public VarArgHelper { 3633 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 3634 // See a comment in visitCallSite for more details. 3635 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 3636 static const unsigned AMD64FpEndOffsetSSE = 176; 3637 // If SSE is disabled, fp_offset in va_list is zero. 3638 static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; 3639 3640 unsigned AMD64FpEndOffset; 3641 Function &F; 3642 MemorySanitizer &MS; 3643 MemorySanitizerVisitor &MSV; 3644 Value *VAArgTLSCopy = nullptr; 3645 Value *VAArgTLSOriginCopy = nullptr; 3646 Value *VAArgOverflowSize = nullptr; 3647 3648 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3649 3650 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3651 3652 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 3653 MemorySanitizerVisitor &MSV) 3654 : F(F), MS(MS), MSV(MSV) { 3655 AMD64FpEndOffset = AMD64FpEndOffsetSSE; 3656 for (const auto &Attr : F.getAttributes().getFnAttributes()) { 3657 if (Attr.isStringAttribute() && 3658 (Attr.getKindAsString() == "target-features")) { 3659 if (Attr.getValueAsString().contains("-sse")) 3660 AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; 3661 break; 3662 } 3663 } 3664 } 3665 3666 ArgKind classifyArgument(Value* arg) { 3667 // A very rough approximation of X86_64 argument classification rules. 3668 Type *T = arg->getType(); 3669 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 3670 return AK_FloatingPoint; 3671 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3672 return AK_GeneralPurpose; 3673 if (T->isPointerTy()) 3674 return AK_GeneralPurpose; 3675 return AK_Memory; 3676 } 3677 3678 // For VarArg functions, store the argument shadow in an ABI-specific format 3679 // that corresponds to va_list layout. 3680 // We do this because Clang lowers va_arg in the frontend, and this pass 3681 // only sees the low level code that deals with va_list internals. 3682 // A much easier alternative (provided that Clang emits va_arg instructions) 3683 // would have been to associate each live instance of va_list with a copy of 3684 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 3685 // order. 3686 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3687 unsigned GpOffset = 0; 3688 unsigned FpOffset = AMD64GpEndOffset; 3689 unsigned OverflowOffset = AMD64FpEndOffset; 3690 const DataLayout &DL = F.getParent()->getDataLayout(); 3691 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 3692 ArgIt != End; ++ArgIt) { 3693 Value *A = *ArgIt; 3694 unsigned ArgNo = CS.getArgumentNo(ArgIt); 3695 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 3696 bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); 3697 if (IsByVal) { 3698 // ByVal arguments always go to the overflow area. 3699 // Fixed arguments passed through the overflow area will be stepped 3700 // over by va_start, so don't count them towards the offset. 3701 if (IsFixed) 3702 continue; 3703 assert(A->getType()->isPointerTy()); 3704 Type *RealTy = A->getType()->getPointerElementType(); 3705 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 3706 Value *ShadowBase = getShadowPtrForVAArgument( 3707 RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); 3708 Value *OriginBase = nullptr; 3709 if (MS.TrackOrigins) 3710 OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); 3711 OverflowOffset += alignTo(ArgSize, 8); 3712 if (!ShadowBase) 3713 continue; 3714 Value *ShadowPtr, *OriginPtr; 3715 std::tie(ShadowPtr, OriginPtr) = 3716 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, 3717 /*isStore*/ false); 3718 3719 IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, 3720 kShadowTLSAlignment, ArgSize); 3721 if (MS.TrackOrigins) 3722 IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, 3723 kShadowTLSAlignment, ArgSize); 3724 } else { 3725 ArgKind AK = classifyArgument(A); 3726 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 3727 AK = AK_Memory; 3728 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 3729 AK = AK_Memory; 3730 Value *ShadowBase, *OriginBase = nullptr; 3731 switch (AK) { 3732 case AK_GeneralPurpose: 3733 ShadowBase = 3734 getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); 3735 if (MS.TrackOrigins) 3736 OriginBase = 3737 getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); 3738 GpOffset += 8; 3739 break; 3740 case AK_FloatingPoint: 3741 ShadowBase = 3742 getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); 3743 if (MS.TrackOrigins) 3744 OriginBase = 3745 getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); 3746 FpOffset += 16; 3747 break; 3748 case AK_Memory: 3749 if (IsFixed) 3750 continue; 3751 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3752 ShadowBase = 3753 getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); 3754 if (MS.TrackOrigins) 3755 OriginBase = 3756 getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3757 OverflowOffset += alignTo(ArgSize, 8); 3758 } 3759 // Take fixed arguments into account for GpOffset and FpOffset, 3760 // but don't actually store shadows for them. 3761 // TODO(glider): don't call get*PtrForVAArgument() for them. 3762 if (IsFixed) 3763 continue; 3764 if (!ShadowBase) 3765 continue; 3766 Value *Shadow = MSV.getShadow(A); 3767 IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); 3768 if (MS.TrackOrigins) { 3769 Value *Origin = MSV.getOrigin(A); 3770 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 3771 MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, 3772 std::max(kShadowTLSAlignment, kMinOriginAlignment)); 3773 } 3774 } 3775 } 3776 Constant *OverflowSize = 3777 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 3778 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3779 } 3780 3781 /// Compute the shadow address for a given va_arg. 3782 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3783 unsigned ArgOffset, unsigned ArgSize) { 3784 // Make sure we don't overflow __msan_va_arg_tls. 3785 if (ArgOffset + ArgSize > kParamTLSSize) 3786 return nullptr; 3787 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3788 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3789 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3790 "_msarg_va_s"); 3791 } 3792 3793 /// Compute the origin address for a given va_arg. 3794 Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { 3795 Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); 3796 // getOriginPtrForVAArgument() is always called after 3797 // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never 3798 // overflow. 3799 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3800 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 3801 "_msarg_va_o"); 3802 } 3803 3804 void unpoisonVAListTagForInst(IntrinsicInst &I) { 3805 IRBuilder<> IRB(&I); 3806 Value *VAListTag = I.getArgOperand(0); 3807 Value *ShadowPtr, *OriginPtr; 3808 unsigned Alignment = 8; 3809 std::tie(ShadowPtr, OriginPtr) = 3810 MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, 3811 /*isStore*/ true); 3812 3813 // Unpoison the whole __va_list_tag. 3814 // FIXME: magic ABI constants. 3815 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3816 /* size */ 24, Alignment, false); 3817 // We shouldn't need to zero out the origins, as they're only checked for 3818 // nonzero shadow. 3819 } 3820 3821 void visitVAStartInst(VAStartInst &I) override { 3822 if (F.getCallingConv() == CallingConv::Win64) 3823 return; 3824 VAStartInstrumentationList.push_back(&I); 3825 unpoisonVAListTagForInst(I); 3826 } 3827 3828 void visitVACopyInst(VACopyInst &I) override { 3829 if (F.getCallingConv() == CallingConv::Win64) return; 3830 unpoisonVAListTagForInst(I); 3831 } 3832 3833 void finalizeInstrumentation() override { 3834 assert(!VAArgOverflowSize && !VAArgTLSCopy && 3835 "finalizeInstrumentation called twice"); 3836 if (!VAStartInstrumentationList.empty()) { 3837 // If there is a va_start in this function, make a backup copy of 3838 // va_arg_tls somewhere in the function entry block. 3839 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 3840 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3841 Value *CopySize = 3842 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 3843 VAArgOverflowSize); 3844 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3845 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); 3846 if (MS.TrackOrigins) { 3847 VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3848 IRB.CreateMemCpy(VAArgTLSOriginCopy, 8, MS.VAArgOriginTLS, 8, CopySize); 3849 } 3850 } 3851 3852 // Instrument va_start. 3853 // Copy va_list shadow from the backup copy of the TLS contents. 3854 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3855 CallInst *OrigInst = VAStartInstrumentationList[i]; 3856 IRBuilder<> IRB(OrigInst->getNextNode()); 3857 Value *VAListTag = OrigInst->getArgOperand(0); 3858 3859 Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( 3860 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3861 ConstantInt::get(MS.IntptrTy, 16)), 3862 PointerType::get(Type::getInt64PtrTy(*MS.C), 0)); 3863 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3864 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 3865 unsigned Alignment = 16; 3866 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 3867 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 3868 Alignment, /*isStore*/ true); 3869 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 3870 AMD64FpEndOffset); 3871 if (MS.TrackOrigins) 3872 IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, 3873 Alignment, AMD64FpEndOffset); 3874 Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( 3875 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3876 ConstantInt::get(MS.IntptrTy, 8)), 3877 PointerType::get(Type::getInt64PtrTy(*MS.C), 0)); 3878 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr); 3879 Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; 3880 std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = 3881 MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), 3882 Alignment, /*isStore*/ true); 3883 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 3884 AMD64FpEndOffset); 3885 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, 3886 VAArgOverflowSize); 3887 if (MS.TrackOrigins) { 3888 SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, 3889 AMD64FpEndOffset); 3890 IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, 3891 VAArgOverflowSize); 3892 } 3893 } 3894 } 3895 }; 3896 3897 /// MIPS64-specific implementation of VarArgHelper. 3898 struct VarArgMIPS64Helper : public VarArgHelper { 3899 Function &F; 3900 MemorySanitizer &MS; 3901 MemorySanitizerVisitor &MSV; 3902 Value *VAArgTLSCopy = nullptr; 3903 Value *VAArgSize = nullptr; 3904 3905 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3906 3907 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 3908 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 3909 3910 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3911 unsigned VAArgOffset = 0; 3912 const DataLayout &DL = F.getParent()->getDataLayout(); 3913 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 3914 CS.getFunctionType()->getNumParams(), End = CS.arg_end(); 3915 ArgIt != End; ++ArgIt) { 3916 Triple TargetTriple(F.getParent()->getTargetTriple()); 3917 Value *A = *ArgIt; 3918 Value *Base; 3919 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3920 if (TargetTriple.getArch() == Triple::mips64) { 3921 // Adjusting the shadow for argument with size < 8 to match the placement 3922 // of bits in big endian system 3923 if (ArgSize < 8) 3924 VAArgOffset += (8 - ArgSize); 3925 } 3926 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); 3927 VAArgOffset += ArgSize; 3928 VAArgOffset = alignTo(VAArgOffset, 8); 3929 if (!Base) 3930 continue; 3931 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3932 } 3933 3934 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 3935 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 3936 // a new class member i.e. it is the total size of all VarArgs. 3937 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 3938 } 3939 3940 /// Compute the shadow address for a given va_arg. 3941 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3942 unsigned ArgOffset, unsigned ArgSize) { 3943 // Make sure we don't overflow __msan_va_arg_tls. 3944 if (ArgOffset + ArgSize > kParamTLSSize) 3945 return nullptr; 3946 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3947 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3948 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3949 "_msarg"); 3950 } 3951 3952 void visitVAStartInst(VAStartInst &I) override { 3953 IRBuilder<> IRB(&I); 3954 VAStartInstrumentationList.push_back(&I); 3955 Value *VAListTag = I.getArgOperand(0); 3956 Value *ShadowPtr, *OriginPtr; 3957 unsigned Alignment = 8; 3958 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 3959 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 3960 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3961 /* size */ 8, Alignment, false); 3962 } 3963 3964 void visitVACopyInst(VACopyInst &I) override { 3965 IRBuilder<> IRB(&I); 3966 VAStartInstrumentationList.push_back(&I); 3967 Value *VAListTag = I.getArgOperand(0); 3968 Value *ShadowPtr, *OriginPtr; 3969 unsigned Alignment = 8; 3970 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 3971 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 3972 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3973 /* size */ 8, Alignment, false); 3974 } 3975 3976 void finalizeInstrumentation() override { 3977 assert(!VAArgSize && !VAArgTLSCopy && 3978 "finalizeInstrumentation called twice"); 3979 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 3980 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3981 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 3982 VAArgSize); 3983 3984 if (!VAStartInstrumentationList.empty()) { 3985 // If there is a va_start in this function, make a backup copy of 3986 // va_arg_tls somewhere in the function entry block. 3987 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3988 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); 3989 } 3990 3991 // Instrument va_start. 3992 // Copy va_list shadow from the backup copy of the TLS contents. 3993 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3994 CallInst *OrigInst = VAStartInstrumentationList[i]; 3995 IRBuilder<> IRB(OrigInst->getNextNode()); 3996 Value *VAListTag = OrigInst->getArgOperand(0); 3997 Value *RegSaveAreaPtrPtr = 3998 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3999 PointerType::get(Type::getInt64PtrTy(*MS.C), 0)); 4000 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 4001 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4002 unsigned Alignment = 8; 4003 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4004 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4005 Alignment, /*isStore*/ true); 4006 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4007 CopySize); 4008 } 4009 } 4010 }; 4011 4012 /// AArch64-specific implementation of VarArgHelper. 4013 struct VarArgAArch64Helper : public VarArgHelper { 4014 static const unsigned kAArch64GrArgSize = 64; 4015 static const unsigned kAArch64VrArgSize = 128; 4016 4017 static const unsigned AArch64GrBegOffset = 0; 4018 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 4019 // Make VR space aligned to 16 bytes. 4020 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; 4021 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 4022 + kAArch64VrArgSize; 4023 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 4024 4025 Function &F; 4026 MemorySanitizer &MS; 4027 MemorySanitizerVisitor &MSV; 4028 Value *VAArgTLSCopy = nullptr; 4029 Value *VAArgOverflowSize = nullptr; 4030 4031 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4032 4033 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 4034 4035 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 4036 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4037 4038 ArgKind classifyArgument(Value* arg) { 4039 Type *T = arg->getType(); 4040 if (T->isFPOrFPVectorTy()) 4041 return AK_FloatingPoint; 4042 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 4043 || (T->isPointerTy())) 4044 return AK_GeneralPurpose; 4045 return AK_Memory; 4046 } 4047 4048 // The instrumentation stores the argument shadow in a non ABI-specific 4049 // format because it does not know which argument is named (since Clang, 4050 // like x86_64 case, lowers the va_args in the frontend and this pass only 4051 // sees the low level code that deals with va_list internals). 4052 // The first seven GR registers are saved in the first 56 bytes of the 4053 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 4054 // the remaining arguments. 4055 // Using constant offset within the va_arg TLS array allows fast copy 4056 // in the finalize instrumentation. 4057 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4058 unsigned GrOffset = AArch64GrBegOffset; 4059 unsigned VrOffset = AArch64VrBegOffset; 4060 unsigned OverflowOffset = AArch64VAEndOffset; 4061 4062 const DataLayout &DL = F.getParent()->getDataLayout(); 4063 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 4064 ArgIt != End; ++ArgIt) { 4065 Value *A = *ArgIt; 4066 unsigned ArgNo = CS.getArgumentNo(ArgIt); 4067 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 4068 ArgKind AK = classifyArgument(A); 4069 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 4070 AK = AK_Memory; 4071 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 4072 AK = AK_Memory; 4073 Value *Base; 4074 switch (AK) { 4075 case AK_GeneralPurpose: 4076 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); 4077 GrOffset += 8; 4078 break; 4079 case AK_FloatingPoint: 4080 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); 4081 VrOffset += 16; 4082 break; 4083 case AK_Memory: 4084 // Don't count fixed arguments in the overflow area - va_start will 4085 // skip right over them. 4086 if (IsFixed) 4087 continue; 4088 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4089 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 4090 alignTo(ArgSize, 8)); 4091 OverflowOffset += alignTo(ArgSize, 8); 4092 break; 4093 } 4094 // Count Gp/Vr fixed arguments to their respective offsets, but don't 4095 // bother to actually store a shadow. 4096 if (IsFixed) 4097 continue; 4098 if (!Base) 4099 continue; 4100 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4101 } 4102 Constant *OverflowSize = 4103 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 4104 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 4105 } 4106 4107 /// Compute the shadow address for a given va_arg. 4108 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4109 unsigned ArgOffset, unsigned ArgSize) { 4110 // Make sure we don't overflow __msan_va_arg_tls. 4111 if (ArgOffset + ArgSize > kParamTLSSize) 4112 return nullptr; 4113 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4114 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4115 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4116 "_msarg"); 4117 } 4118 4119 void visitVAStartInst(VAStartInst &I) override { 4120 IRBuilder<> IRB(&I); 4121 VAStartInstrumentationList.push_back(&I); 4122 Value *VAListTag = I.getArgOperand(0); 4123 Value *ShadowPtr, *OriginPtr; 4124 unsigned Alignment = 8; 4125 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4126 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4127 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4128 /* size */ 32, Alignment, false); 4129 } 4130 4131 void visitVACopyInst(VACopyInst &I) override { 4132 IRBuilder<> IRB(&I); 4133 VAStartInstrumentationList.push_back(&I); 4134 Value *VAListTag = I.getArgOperand(0); 4135 Value *ShadowPtr, *OriginPtr; 4136 unsigned Alignment = 8; 4137 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4138 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4139 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4140 /* size */ 32, Alignment, false); 4141 } 4142 4143 // Retrieve a va_list field of 'void*' size. 4144 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4145 Value *SaveAreaPtrPtr = 4146 IRB.CreateIntToPtr( 4147 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4148 ConstantInt::get(MS.IntptrTy, offset)), 4149 Type::getInt64PtrTy(*MS.C)); 4150 return IRB.CreateLoad(SaveAreaPtrPtr); 4151 } 4152 4153 // Retrieve a va_list field of 'int' size. 4154 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 4155 Value *SaveAreaPtr = 4156 IRB.CreateIntToPtr( 4157 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4158 ConstantInt::get(MS.IntptrTy, offset)), 4159 Type::getInt32PtrTy(*MS.C)); 4160 Value *SaveArea32 = IRB.CreateLoad(SaveAreaPtr); 4161 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 4162 } 4163 4164 void finalizeInstrumentation() override { 4165 assert(!VAArgOverflowSize && !VAArgTLSCopy && 4166 "finalizeInstrumentation called twice"); 4167 if (!VAStartInstrumentationList.empty()) { 4168 // If there is a va_start in this function, make a backup copy of 4169 // va_arg_tls somewhere in the function entry block. 4170 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4171 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 4172 Value *CopySize = 4173 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 4174 VAArgOverflowSize); 4175 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4176 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); 4177 } 4178 4179 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 4180 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 4181 4182 // Instrument va_start, copy va_list shadow from the backup copy of 4183 // the TLS contents. 4184 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4185 CallInst *OrigInst = VAStartInstrumentationList[i]; 4186 IRBuilder<> IRB(OrigInst->getNextNode()); 4187 4188 Value *VAListTag = OrigInst->getArgOperand(0); 4189 4190 // The variadic ABI for AArch64 creates two areas to save the incoming 4191 // argument registers (one for 64-bit general register xn-x7 and another 4192 // for 128-bit FP/SIMD vn-v7). 4193 // We need then to propagate the shadow arguments on both regions 4194 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 4195 // The remaning arguments are saved on shadow for 'va::stack'. 4196 // One caveat is it requires only to propagate the non-named arguments, 4197 // however on the call site instrumentation 'all' the arguments are 4198 // saved. So to copy the shadow values from the va_arg TLS array 4199 // we need to adjust the offset for both GR and VR fields based on 4200 // the __{gr,vr}_offs value (since they are stores based on incoming 4201 // named arguments). 4202 4203 // Read the stack pointer from the va_list. 4204 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 4205 4206 // Read both the __gr_top and __gr_off and add them up. 4207 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 4208 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 4209 4210 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 4211 4212 // Read both the __vr_top and __vr_off and add them up. 4213 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 4214 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 4215 4216 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 4217 4218 // It does not know how many named arguments is being used and, on the 4219 // callsite all the arguments were saved. Since __gr_off is defined as 4220 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 4221 // argument by ignoring the bytes of shadow from named arguments. 4222 Value *GrRegSaveAreaShadowPtrOff = 4223 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 4224 4225 Value *GrRegSaveAreaShadowPtr = 4226 MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4227 /*Alignment*/ 8, /*isStore*/ true) 4228 .first; 4229 4230 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4231 GrRegSaveAreaShadowPtrOff); 4232 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 4233 4234 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, 8, GrSrcPtr, 8, GrCopySize); 4235 4236 // Again, but for FP/SIMD values. 4237 Value *VrRegSaveAreaShadowPtrOff = 4238 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 4239 4240 Value *VrRegSaveAreaShadowPtr = 4241 MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4242 /*Alignment*/ 8, /*isStore*/ true) 4243 .first; 4244 4245 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 4246 IRB.getInt8Ty(), 4247 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4248 IRB.getInt32(AArch64VrBegOffset)), 4249 VrRegSaveAreaShadowPtrOff); 4250 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 4251 4252 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, 8, VrSrcPtr, 8, VrCopySize); 4253 4254 // And finally for remaining arguments. 4255 Value *StackSaveAreaShadowPtr = 4256 MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), 4257 /*Alignment*/ 16, /*isStore*/ true) 4258 .first; 4259 4260 Value *StackSrcPtr = 4261 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 4262 IRB.getInt32(AArch64VAEndOffset)); 4263 4264 IRB.CreateMemCpy(StackSaveAreaShadowPtr, 16, StackSrcPtr, 16, 4265 VAArgOverflowSize); 4266 } 4267 } 4268 }; 4269 4270 /// PowerPC64-specific implementation of VarArgHelper. 4271 struct VarArgPowerPC64Helper : public VarArgHelper { 4272 Function &F; 4273 MemorySanitizer &MS; 4274 MemorySanitizerVisitor &MSV; 4275 Value *VAArgTLSCopy = nullptr; 4276 Value *VAArgSize = nullptr; 4277 4278 SmallVector<CallInst*, 16> VAStartInstrumentationList; 4279 4280 VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, 4281 MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} 4282 4283 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 4284 // For PowerPC, we need to deal with alignment of stack arguments - 4285 // they are mostly aligned to 8 bytes, but vectors and i128 arrays 4286 // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, 4287 // and QPX vectors are aligned to 32 bytes. For that reason, we 4288 // compute current offset from stack pointer (which is always properly 4289 // aligned), and offset for the first vararg, then subtract them. 4290 unsigned VAArgBase; 4291 Triple TargetTriple(F.getParent()->getTargetTriple()); 4292 // Parameter save area starts at 48 bytes from frame pointer for ABIv1, 4293 // and 32 bytes for ABIv2. This is usually determined by target 4294 // endianness, but in theory could be overriden by function attribute. 4295 // For simplicity, we ignore it here (it'd only matter for QPX vectors). 4296 if (TargetTriple.getArch() == Triple::ppc64) 4297 VAArgBase = 48; 4298 else 4299 VAArgBase = 32; 4300 unsigned VAArgOffset = VAArgBase; 4301 const DataLayout &DL = F.getParent()->getDataLayout(); 4302 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 4303 ArgIt != End; ++ArgIt) { 4304 Value *A = *ArgIt; 4305 unsigned ArgNo = CS.getArgumentNo(ArgIt); 4306 bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); 4307 bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); 4308 if (IsByVal) { 4309 assert(A->getType()->isPointerTy()); 4310 Type *RealTy = A->getType()->getPointerElementType(); 4311 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 4312 uint64_t ArgAlign = CS.getParamAlignment(ArgNo); 4313 if (ArgAlign < 8) 4314 ArgAlign = 8; 4315 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4316 if (!IsFixed) { 4317 Value *Base = getShadowPtrForVAArgument( 4318 RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); 4319 if (Base) { 4320 Value *AShadowPtr, *AOriginPtr; 4321 std::tie(AShadowPtr, AOriginPtr) = 4322 MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), 4323 kShadowTLSAlignment, /*isStore*/ false); 4324 4325 IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, 4326 kShadowTLSAlignment, ArgSize); 4327 } 4328 } 4329 VAArgOffset += alignTo(ArgSize, 8); 4330 } else { 4331 Value *Base; 4332 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 4333 uint64_t ArgAlign = 8; 4334 if (A->getType()->isArrayTy()) { 4335 // Arrays are aligned to element size, except for long double 4336 // arrays, which are aligned to 8 bytes. 4337 Type *ElementTy = A->getType()->getArrayElementType(); 4338 if (!ElementTy->isPPC_FP128Ty()) 4339 ArgAlign = DL.getTypeAllocSize(ElementTy); 4340 } else if (A->getType()->isVectorTy()) { 4341 // Vectors are naturally aligned. 4342 ArgAlign = DL.getTypeAllocSize(A->getType()); 4343 } 4344 if (ArgAlign < 8) 4345 ArgAlign = 8; 4346 VAArgOffset = alignTo(VAArgOffset, ArgAlign); 4347 if (DL.isBigEndian()) { 4348 // Adjusting the shadow for argument with size < 8 to match the placement 4349 // of bits in big endian system 4350 if (ArgSize < 8) 4351 VAArgOffset += (8 - ArgSize); 4352 } 4353 if (!IsFixed) { 4354 Base = getShadowPtrForVAArgument(A->getType(), IRB, 4355 VAArgOffset - VAArgBase, ArgSize); 4356 if (Base) 4357 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 4358 } 4359 VAArgOffset += ArgSize; 4360 VAArgOffset = alignTo(VAArgOffset, 8); 4361 } 4362 if (IsFixed) 4363 VAArgBase = VAArgOffset; 4364 } 4365 4366 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), 4367 VAArgOffset - VAArgBase); 4368 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 4369 // a new class member i.e. it is the total size of all VarArgs. 4370 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 4371 } 4372 4373 /// Compute the shadow address for a given va_arg. 4374 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 4375 unsigned ArgOffset, unsigned ArgSize) { 4376 // Make sure we don't overflow __msan_va_arg_tls. 4377 if (ArgOffset + ArgSize > kParamTLSSize) 4378 return nullptr; 4379 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 4380 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 4381 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 4382 "_msarg"); 4383 } 4384 4385 void visitVAStartInst(VAStartInst &I) override { 4386 IRBuilder<> IRB(&I); 4387 VAStartInstrumentationList.push_back(&I); 4388 Value *VAListTag = I.getArgOperand(0); 4389 Value *ShadowPtr, *OriginPtr; 4390 unsigned Alignment = 8; 4391 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4392 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4393 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4394 /* size */ 8, Alignment, false); 4395 } 4396 4397 void visitVACopyInst(VACopyInst &I) override { 4398 IRBuilder<> IRB(&I); 4399 Value *VAListTag = I.getArgOperand(0); 4400 Value *ShadowPtr, *OriginPtr; 4401 unsigned Alignment = 8; 4402 std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( 4403 VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); 4404 // Unpoison the whole __va_list_tag. 4405 // FIXME: magic ABI constants. 4406 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 4407 /* size */ 8, Alignment, false); 4408 } 4409 4410 void finalizeInstrumentation() override { 4411 assert(!VAArgSize && !VAArgTLSCopy && 4412 "finalizeInstrumentation called twice"); 4413 IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); 4414 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 4415 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 4416 VAArgSize); 4417 4418 if (!VAStartInstrumentationList.empty()) { 4419 // If there is a va_start in this function, make a backup copy of 4420 // va_arg_tls somewhere in the function entry block. 4421 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 4422 IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); 4423 } 4424 4425 // Instrument va_start. 4426 // Copy va_list shadow from the backup copy of the TLS contents. 4427 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 4428 CallInst *OrigInst = VAStartInstrumentationList[i]; 4429 IRBuilder<> IRB(OrigInst->getNextNode()); 4430 Value *VAListTag = OrigInst->getArgOperand(0); 4431 Value *RegSaveAreaPtrPtr = 4432 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 4433 PointerType::get(Type::getInt64PtrTy(*MS.C), 0)); 4434 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 4435 Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; 4436 unsigned Alignment = 8; 4437 std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = 4438 MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), 4439 Alignment, /*isStore*/ true); 4440 IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, 4441 CopySize); 4442 } 4443 } 4444 }; 4445 4446 /// A no-op implementation of VarArgHelper. 4447 struct VarArgNoOpHelper : public VarArgHelper { 4448 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 4449 MemorySanitizerVisitor &MSV) {} 4450 4451 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} 4452 4453 void visitVAStartInst(VAStartInst &I) override {} 4454 4455 void visitVACopyInst(VACopyInst &I) override {} 4456 4457 void finalizeInstrumentation() override {} 4458 }; 4459 4460 } // end anonymous namespace 4461 4462 static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 4463 MemorySanitizerVisitor &Visitor) { 4464 // VarArg handling is only implemented on AMD64. False positives are possible 4465 // on other platforms. 4466 Triple TargetTriple(Func.getParent()->getTargetTriple()); 4467 if (TargetTriple.getArch() == Triple::x86_64) 4468 return new VarArgAMD64Helper(Func, Msan, Visitor); 4469 else if (TargetTriple.isMIPS64()) 4470 return new VarArgMIPS64Helper(Func, Msan, Visitor); 4471 else if (TargetTriple.getArch() == Triple::aarch64) 4472 return new VarArgAArch64Helper(Func, Msan, Visitor); 4473 else if (TargetTriple.getArch() == Triple::ppc64 || 4474 TargetTriple.getArch() == Triple::ppc64le) 4475 return new VarArgPowerPC64Helper(Func, Msan, Visitor); 4476 else 4477 return new VarArgNoOpHelper(Func, Msan, Visitor); 4478 } 4479 4480 bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { 4481 if (!CompileKernel && (&F == MsanCtorFunction)) 4482 return false; 4483 MemorySanitizerVisitor Visitor(F, *this, TLI); 4484 4485 // Clear out readonly/readnone attributes. 4486 AttrBuilder B; 4487 B.addAttribute(Attribute::ReadOnly) 4488 .addAttribute(Attribute::ReadNone); 4489 F.removeAttributes(AttributeList::FunctionIndex, B); 4490 4491 return Visitor.runOnFunction(); 4492 } 4493