1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 12 /// analysis. 13 /// 14 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 15 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 16 /// analysis framework to be used by clients to help detect application-specific 17 /// issues within their own code. 18 /// 19 /// The analysis is based on automatic propagation of data flow labels (also 20 /// known as taint labels) through a program as it performs computation. Each 21 /// byte of application memory is backed by two bytes of shadow memory which 22 /// hold the label. On Linux/x86_64, memory is laid out as follows: 23 /// 24 /// +--------------------+ 0x800000000000 (top of memory) 25 /// | application memory | 26 /// +--------------------+ 0x700000008000 (kAppAddr) 27 /// | | 28 /// | unused | 29 /// | | 30 /// +--------------------+ 0x200200000000 (kUnusedAddr) 31 /// | union table | 32 /// +--------------------+ 0x200000000000 (kUnionTableAddr) 33 /// | shadow memory | 34 /// +--------------------+ 0x000000010000 (kShadowAddr) 35 /// | reserved by kernel | 36 /// +--------------------+ 0x000000000000 37 /// 38 /// To derive a shadow memory address from an application memory address, 39 /// bits 44-46 are cleared to bring the address into the range 40 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to 41 /// account for the double byte representation of shadow labels and move the 42 /// address into the shadow memory range. See the function 43 /// DataFlowSanitizer::getShadowAddress below. 44 /// 45 /// For more information, please refer to the design document: 46 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 47 // 48 //===----------------------------------------------------------------------===// 49 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/DenseSet.h" 52 #include "llvm/ADT/DepthFirstIterator.h" 53 #include "llvm/ADT/None.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/StringExtras.h" 57 #include "llvm/ADT/StringRef.h" 58 #include "llvm/ADT/Triple.h" 59 #include "llvm/Transforms/Utils/Local.h" 60 #include "llvm/Analysis/ValueTracking.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CallSite.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GlobalAlias.h" 72 #include "llvm/IR/GlobalValue.h" 73 #include "llvm/IR/GlobalVariable.h" 74 #include "llvm/IR/IRBuilder.h" 75 #include "llvm/IR/InlineAsm.h" 76 #include "llvm/IR/InstVisitor.h" 77 #include "llvm/IR/InstrTypes.h" 78 #include "llvm/IR/Instruction.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/IntrinsicInst.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/MDBuilder.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/ErrorHandling.h" 91 #include "llvm/Support/SpecialCaseList.h" 92 #include "llvm/Transforms/Instrumentation.h" 93 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstddef> 97 #include <cstdint> 98 #include <iterator> 99 #include <memory> 100 #include <set> 101 #include <string> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 107 // External symbol to be used when generating the shadow address for 108 // architectures with multiple VMAs. Instead of using a constant integer 109 // the runtime will set the external mask based on the VMA range. 110 static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask"; 111 112 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 113 // alignment requirements provided by the input IR are correct. For example, 114 // if the input IR contains a load with alignment 8, this flag will cause 115 // the shadow load to have alignment 16. This flag is disabled by default as 116 // we have unfortunately encountered too much code (including Clang itself; 117 // see PR14291) which performs misaligned access. 118 static cl::opt<bool> ClPreserveAlignment( 119 "dfsan-preserve-alignment", 120 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 121 cl::init(false)); 122 123 // The ABI list files control how shadow parameters are passed. The pass treats 124 // every function labelled "uninstrumented" in the ABI list file as conforming 125 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 126 // additional annotations for those functions, a call to one of those functions 127 // will produce a warning message, as the labelling behaviour of the function is 128 // unknown. The other supported annotations are "functional" and "discard", 129 // which are described below under DataFlowSanitizer::WrapperKind. 130 static cl::list<std::string> ClABIListFiles( 131 "dfsan-abilist", 132 cl::desc("File listing native ABI functions and how the pass treats them"), 133 cl::Hidden); 134 135 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented 136 // functions (see DataFlowSanitizer::InstrumentedABI below). 137 static cl::opt<bool> ClArgsABI( 138 "dfsan-args-abi", 139 cl::desc("Use the argument ABI rather than the TLS ABI"), 140 cl::Hidden); 141 142 // Controls whether the pass includes or ignores the labels of pointers in load 143 // instructions. 144 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 145 "dfsan-combine-pointer-labels-on-load", 146 cl::desc("Combine the label of the pointer with the label of the data when " 147 "loading from memory."), 148 cl::Hidden, cl::init(true)); 149 150 // Controls whether the pass includes or ignores the labels of pointers in 151 // stores instructions. 152 static cl::opt<bool> ClCombinePointerLabelsOnStore( 153 "dfsan-combine-pointer-labels-on-store", 154 cl::desc("Combine the label of the pointer with the label of the data when " 155 "storing in memory."), 156 cl::Hidden, cl::init(false)); 157 158 static cl::opt<bool> ClDebugNonzeroLabels( 159 "dfsan-debug-nonzero-labels", 160 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 161 "load or return with a nonzero label"), 162 cl::Hidden); 163 164 static StringRef GetGlobalTypeString(const GlobalValue &G) { 165 // Types of GlobalVariables are always pointer types. 166 Type *GType = G.getValueType(); 167 // For now we support blacklisting struct types only. 168 if (StructType *SGType = dyn_cast<StructType>(GType)) { 169 if (!SGType->isLiteral()) 170 return SGType->getName(); 171 } 172 return "<unknown type>"; 173 } 174 175 namespace { 176 177 class DFSanABIList { 178 std::unique_ptr<SpecialCaseList> SCL; 179 180 public: 181 DFSanABIList() = default; 182 183 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 184 185 /// Returns whether either this function or its source file are listed in the 186 /// given category. 187 bool isIn(const Function &F, StringRef Category) const { 188 return isIn(*F.getParent(), Category) || 189 SCL->inSection("dataflow", "fun", F.getName(), Category); 190 } 191 192 /// Returns whether this global alias is listed in the given category. 193 /// 194 /// If GA aliases a function, the alias's name is matched as a function name 195 /// would be. Similarly, aliases of globals are matched like globals. 196 bool isIn(const GlobalAlias &GA, StringRef Category) const { 197 if (isIn(*GA.getParent(), Category)) 198 return true; 199 200 if (isa<FunctionType>(GA.getValueType())) 201 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 202 203 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 204 SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), 205 Category); 206 } 207 208 /// Returns whether this module is listed in the given category. 209 bool isIn(const Module &M, StringRef Category) const { 210 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 211 } 212 }; 213 214 /// TransformedFunction is used to express the result of transforming one 215 /// function type into another. This struct is immutable. It holds metadata 216 /// useful for updating calls of the old function to the new type. 217 struct TransformedFunction { 218 TransformedFunction(FunctionType* OriginalType, 219 FunctionType* TransformedType, 220 std::vector<unsigned> ArgumentIndexMapping) 221 : OriginalType(OriginalType), 222 TransformedType(TransformedType), 223 ArgumentIndexMapping(ArgumentIndexMapping) {} 224 225 // Disallow copies. 226 TransformedFunction(const TransformedFunction&) = delete; 227 TransformedFunction& operator=(const TransformedFunction&) = delete; 228 229 // Allow moves. 230 TransformedFunction(TransformedFunction&&) = default; 231 TransformedFunction& operator=(TransformedFunction&&) = default; 232 233 /// Type of the function before the transformation. 234 FunctionType *OriginalType; 235 236 /// Type of the function after the transformation. 237 FunctionType *TransformedType; 238 239 /// Transforming a function may change the position of arguments. This 240 /// member records the mapping from each argument's old position to its new 241 /// position. Argument positions are zero-indexed. If the transformation 242 /// from F to F' made the first argument of F into the third argument of F', 243 /// then ArgumentIndexMapping[0] will equal 2. 244 std::vector<unsigned> ArgumentIndexMapping; 245 }; 246 247 /// Given function attributes from a call site for the original function, 248 /// return function attributes appropriate for a call to the transformed 249 /// function. 250 AttributeList TransformFunctionAttributes( 251 const TransformedFunction& TransformedFunction, 252 LLVMContext& Ctx, AttributeList CallSiteAttrs) { 253 254 // Construct a vector of AttributeSet for each function argument. 255 std::vector<llvm::AttributeSet> ArgumentAttributes( 256 TransformedFunction.TransformedType->getNumParams()); 257 258 // Copy attributes from the parameter of the original function to the 259 // transformed version. 'ArgumentIndexMapping' holds the mapping from 260 // old argument position to new. 261 for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); 262 i < ie; ++i) { 263 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; 264 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); 265 } 266 267 // Copy annotations on varargs arguments. 268 for (unsigned i = TransformedFunction.OriginalType->getNumParams(), 269 ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { 270 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); 271 } 272 273 return AttributeList::get( 274 Ctx, 275 CallSiteAttrs.getFnAttributes(), 276 CallSiteAttrs.getRetAttributes(), 277 llvm::makeArrayRef(ArgumentAttributes)); 278 } 279 280 class DataFlowSanitizer : public ModulePass { 281 friend struct DFSanFunction; 282 friend class DFSanVisitor; 283 284 enum { 285 ShadowWidth = 16 286 }; 287 288 /// Which ABI should be used for instrumented functions? 289 enum InstrumentedABI { 290 /// Argument and return value labels are passed through additional 291 /// arguments and by modifying the return type. 292 IA_Args, 293 294 /// Argument and return value labels are passed through TLS variables 295 /// __dfsan_arg_tls and __dfsan_retval_tls. 296 IA_TLS 297 }; 298 299 /// How should calls to uninstrumented functions be handled? 300 enum WrapperKind { 301 /// This function is present in an uninstrumented form but we don't know 302 /// how it should be handled. Print a warning and call the function anyway. 303 /// Don't label the return value. 304 WK_Warning, 305 306 /// This function does not write to (user-accessible) memory, and its return 307 /// value is unlabelled. 308 WK_Discard, 309 310 /// This function does not write to (user-accessible) memory, and the label 311 /// of its return value is the union of the label of its arguments. 312 WK_Functional, 313 314 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 315 /// where F is the name of the function. This function may wrap the 316 /// original function or provide its own implementation. This is similar to 317 /// the IA_Args ABI, except that IA_Args uses a struct return type to 318 /// pass the return value shadow in a register, while WK_Custom uses an 319 /// extra pointer argument to return the shadow. This allows the wrapped 320 /// form of the function type to be expressed in C. 321 WK_Custom 322 }; 323 324 Module *Mod; 325 LLVMContext *Ctx; 326 IntegerType *ShadowTy; 327 PointerType *ShadowPtrTy; 328 IntegerType *IntptrTy; 329 ConstantInt *ZeroShadow; 330 ConstantInt *ShadowPtrMask; 331 ConstantInt *ShadowPtrMul; 332 Constant *ArgTLS; 333 Constant *RetvalTLS; 334 void *(*GetArgTLSPtr)(); 335 void *(*GetRetvalTLSPtr)(); 336 Constant *GetArgTLS; 337 Constant *GetRetvalTLS; 338 Constant *ExternalShadowMask; 339 FunctionType *DFSanUnionFnTy; 340 FunctionType *DFSanUnionLoadFnTy; 341 FunctionType *DFSanUnimplementedFnTy; 342 FunctionType *DFSanSetLabelFnTy; 343 FunctionType *DFSanNonzeroLabelFnTy; 344 FunctionType *DFSanVarargWrapperFnTy; 345 Constant *DFSanUnionFn; 346 Constant *DFSanCheckedUnionFn; 347 Constant *DFSanUnionLoadFn; 348 Constant *DFSanUnimplementedFn; 349 Constant *DFSanSetLabelFn; 350 Constant *DFSanNonzeroLabelFn; 351 Constant *DFSanVarargWrapperFn; 352 MDNode *ColdCallWeights; 353 DFSanABIList ABIList; 354 DenseMap<Value *, Function *> UnwrappedFnMap; 355 AttrBuilder ReadOnlyNoneAttrs; 356 bool DFSanRuntimeShadowMask = false; 357 358 Value *getShadowAddress(Value *Addr, Instruction *Pos); 359 bool isInstrumented(const Function *F); 360 bool isInstrumented(const GlobalAlias *GA); 361 FunctionType *getArgsFunctionType(FunctionType *T); 362 FunctionType *getTrampolineFunctionType(FunctionType *T); 363 TransformedFunction getCustomFunctionType(FunctionType *T); 364 InstrumentedABI getInstrumentedABI(); 365 WrapperKind getWrapperKind(Function *F); 366 void addGlobalNamePrefix(GlobalValue *GV); 367 Function *buildWrapperFunction(Function *F, StringRef NewFName, 368 GlobalValue::LinkageTypes NewFLink, 369 FunctionType *NewFT); 370 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 371 372 public: 373 static char ID; 374 375 DataFlowSanitizer( 376 const std::vector<std::string> &ABIListFiles = std::vector<std::string>(), 377 void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr); 378 379 bool doInitialization(Module &M) override; 380 bool runOnModule(Module &M) override; 381 }; 382 383 struct DFSanFunction { 384 DataFlowSanitizer &DFS; 385 Function *F; 386 DominatorTree DT; 387 DataFlowSanitizer::InstrumentedABI IA; 388 bool IsNativeABI; 389 Value *ArgTLSPtr = nullptr; 390 Value *RetvalTLSPtr = nullptr; 391 AllocaInst *LabelReturnAlloca = nullptr; 392 DenseMap<Value *, Value *> ValShadowMap; 393 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 394 std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; 395 DenseSet<Instruction *> SkipInsts; 396 std::vector<Value *> NonZeroChecks; 397 bool AvoidNewBlocks; 398 399 struct CachedCombinedShadow { 400 BasicBlock *Block; 401 Value *Shadow; 402 }; 403 DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow> 404 CachedCombinedShadows; 405 DenseMap<Value *, std::set<Value *>> ShadowElements; 406 407 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) 408 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { 409 DT.recalculate(*F); 410 // FIXME: Need to track down the register allocator issue which causes poor 411 // performance in pathological cases with large numbers of basic blocks. 412 AvoidNewBlocks = F->size() > 1000; 413 } 414 415 Value *getArgTLSPtr(); 416 Value *getArgTLS(unsigned Index, Instruction *Pos); 417 Value *getRetvalTLS(); 418 Value *getShadow(Value *V); 419 void setShadow(Instruction *I, Value *Shadow); 420 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 421 Value *combineOperandShadows(Instruction *Inst); 422 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, 423 Instruction *Pos); 424 void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow, 425 Instruction *Pos); 426 }; 427 428 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 429 public: 430 DFSanFunction &DFSF; 431 432 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 433 434 const DataLayout &getDataLayout() const { 435 return DFSF.F->getParent()->getDataLayout(); 436 } 437 438 void visitOperandShadowInst(Instruction &I); 439 void visitBinaryOperator(BinaryOperator &BO); 440 void visitCastInst(CastInst &CI); 441 void visitCmpInst(CmpInst &CI); 442 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 443 void visitLoadInst(LoadInst &LI); 444 void visitStoreInst(StoreInst &SI); 445 void visitReturnInst(ReturnInst &RI); 446 void visitCallSite(CallSite CS); 447 void visitPHINode(PHINode &PN); 448 void visitExtractElementInst(ExtractElementInst &I); 449 void visitInsertElementInst(InsertElementInst &I); 450 void visitShuffleVectorInst(ShuffleVectorInst &I); 451 void visitExtractValueInst(ExtractValueInst &I); 452 void visitInsertValueInst(InsertValueInst &I); 453 void visitAllocaInst(AllocaInst &I); 454 void visitSelectInst(SelectInst &I); 455 void visitMemSetInst(MemSetInst &I); 456 void visitMemTransferInst(MemTransferInst &I); 457 }; 458 459 } // end anonymous namespace 460 461 char DataFlowSanitizer::ID; 462 463 INITIALIZE_PASS(DataFlowSanitizer, "dfsan", 464 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 465 466 ModulePass * 467 llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles, 468 void *(*getArgTLS)(), 469 void *(*getRetValTLS)()) { 470 return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS); 471 } 472 473 DataFlowSanitizer::DataFlowSanitizer( 474 const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(), 475 void *(*getRetValTLS)()) 476 : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) { 477 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 478 AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(), 479 ClABIListFiles.end()); 480 ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles)); 481 } 482 483 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { 484 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); 485 ArgTypes.append(T->getNumParams(), ShadowTy); 486 if (T->isVarArg()) 487 ArgTypes.push_back(ShadowPtrTy); 488 Type *RetType = T->getReturnType(); 489 if (!RetType->isVoidTy()) 490 RetType = StructType::get(RetType, ShadowTy); 491 return FunctionType::get(RetType, ArgTypes, T->isVarArg()); 492 } 493 494 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 495 assert(!T->isVarArg()); 496 SmallVector<Type *, 4> ArgTypes; 497 ArgTypes.push_back(T->getPointerTo()); 498 ArgTypes.append(T->param_begin(), T->param_end()); 499 ArgTypes.append(T->getNumParams(), ShadowTy); 500 Type *RetType = T->getReturnType(); 501 if (!RetType->isVoidTy()) 502 ArgTypes.push_back(ShadowPtrTy); 503 return FunctionType::get(T->getReturnType(), ArgTypes, false); 504 } 505 506 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 507 SmallVector<Type *, 4> ArgTypes; 508 509 // Some parameters of the custom function being constructed are 510 // parameters of T. Record the mapping from parameters of T to 511 // parameters of the custom function, so that parameter attributes 512 // at call sites can be updated. 513 std::vector<unsigned> ArgumentIndexMapping; 514 for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { 515 Type* param_type = T->getParamType(i); 516 FunctionType *FT; 517 if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( 518 cast<PointerType>(param_type)->getElementType()))) { 519 ArgumentIndexMapping.push_back(ArgTypes.size()); 520 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 521 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 522 } else { 523 ArgumentIndexMapping.push_back(ArgTypes.size()); 524 ArgTypes.push_back(param_type); 525 } 526 } 527 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) 528 ArgTypes.push_back(ShadowTy); 529 if (T->isVarArg()) 530 ArgTypes.push_back(ShadowPtrTy); 531 Type *RetType = T->getReturnType(); 532 if (!RetType->isVoidTy()) 533 ArgTypes.push_back(ShadowPtrTy); 534 return TransformedFunction( 535 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 536 ArgumentIndexMapping); 537 } 538 539 bool DataFlowSanitizer::doInitialization(Module &M) { 540 Triple TargetTriple(M.getTargetTriple()); 541 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; 542 bool IsMIPS64 = TargetTriple.isMIPS64(); 543 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || 544 TargetTriple.getArch() == Triple::aarch64_be; 545 546 const DataLayout &DL = M.getDataLayout(); 547 548 Mod = &M; 549 Ctx = &M.getContext(); 550 ShadowTy = IntegerType::get(*Ctx, ShadowWidth); 551 ShadowPtrTy = PointerType::getUnqual(ShadowTy); 552 IntptrTy = DL.getIntPtrType(*Ctx); 553 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0); 554 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8); 555 if (IsX86_64) 556 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); 557 else if (IsMIPS64) 558 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); 559 // AArch64 supports multiple VMAs and the shadow mask is set at runtime. 560 else if (IsAArch64) 561 DFSanRuntimeShadowMask = true; 562 else 563 report_fatal_error("unsupported triple"); 564 565 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy }; 566 DFSanUnionFnTy = 567 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false); 568 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy }; 569 DFSanUnionLoadFnTy = 570 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false); 571 DFSanUnimplementedFnTy = FunctionType::get( 572 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 573 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy }; 574 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 575 DFSanSetLabelArgs, /*isVarArg=*/false); 576 DFSanNonzeroLabelFnTy = FunctionType::get( 577 Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 578 DFSanVarargWrapperFnTy = FunctionType::get( 579 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 580 581 if (GetArgTLSPtr) { 582 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 583 ArgTLS = nullptr; 584 GetArgTLS = ConstantExpr::getIntToPtr( 585 ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)), 586 PointerType::getUnqual( 587 FunctionType::get(PointerType::getUnqual(ArgTLSTy), false))); 588 } 589 if (GetRetvalTLSPtr) { 590 RetvalTLS = nullptr; 591 GetRetvalTLS = ConstantExpr::getIntToPtr( 592 ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)), 593 PointerType::getUnqual( 594 FunctionType::get(PointerType::getUnqual(ShadowTy), false))); 595 } 596 597 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 598 return true; 599 } 600 601 bool DataFlowSanitizer::isInstrumented(const Function *F) { 602 return !ABIList.isIn(*F, "uninstrumented"); 603 } 604 605 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 606 return !ABIList.isIn(*GA, "uninstrumented"); 607 } 608 609 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { 610 return ClArgsABI ? IA_Args : IA_TLS; 611 } 612 613 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 614 if (ABIList.isIn(*F, "functional")) 615 return WK_Functional; 616 if (ABIList.isIn(*F, "discard")) 617 return WK_Discard; 618 if (ABIList.isIn(*F, "custom")) 619 return WK_Custom; 620 621 return WK_Warning; 622 } 623 624 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { 625 std::string GVName = GV->getName(), Prefix = "dfs$"; 626 GV->setName(Prefix + GVName); 627 628 // Try to change the name of the function in module inline asm. We only do 629 // this for specific asm directives, currently only ".symver", to try to avoid 630 // corrupting asm which happens to contain the symbol name as a substring. 631 // Note that the substitution for .symver assumes that the versioned symbol 632 // also has an instrumented name. 633 std::string Asm = GV->getParent()->getModuleInlineAsm(); 634 std::string SearchStr = ".symver " + GVName + ","; 635 size_t Pos = Asm.find(SearchStr); 636 if (Pos != std::string::npos) { 637 Asm.replace(Pos, SearchStr.size(), 638 ".symver " + Prefix + GVName + "," + Prefix); 639 GV->getParent()->setModuleInlineAsm(Asm); 640 } 641 } 642 643 Function * 644 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 645 GlobalValue::LinkageTypes NewFLink, 646 FunctionType *NewFT) { 647 FunctionType *FT = F->getFunctionType(); 648 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 649 NewFName, F->getParent()); 650 NewF->copyAttributesFrom(F); 651 NewF->removeAttributes( 652 AttributeList::ReturnIndex, 653 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 654 655 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 656 if (F->isVarArg()) { 657 NewF->removeAttributes(AttributeList::FunctionIndex, 658 AttrBuilder().addAttribute("split-stack")); 659 CallInst::Create(DFSanVarargWrapperFn, 660 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 661 BB); 662 new UnreachableInst(*Ctx, BB); 663 } else { 664 std::vector<Value *> Args; 665 unsigned n = FT->getNumParams(); 666 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) 667 Args.push_back(&*ai); 668 CallInst *CI = CallInst::Create(F, Args, "", BB); 669 if (FT->getReturnType()->isVoidTy()) 670 ReturnInst::Create(*Ctx, BB); 671 else 672 ReturnInst::Create(*Ctx, CI, BB); 673 } 674 675 return NewF; 676 } 677 678 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 679 StringRef FName) { 680 FunctionType *FTT = getTrampolineFunctionType(FT); 681 Constant *C = Mod->getOrInsertFunction(FName, FTT); 682 Function *F = dyn_cast<Function>(C); 683 if (F && F->isDeclaration()) { 684 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 685 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 686 std::vector<Value *> Args; 687 Function::arg_iterator AI = F->arg_begin(); ++AI; 688 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 689 Args.push_back(&*AI); 690 CallInst *CI = CallInst::Create(&*F->arg_begin(), Args, "", BB); 691 ReturnInst *RI; 692 if (FT->getReturnType()->isVoidTy()) 693 RI = ReturnInst::Create(*Ctx, BB); 694 else 695 RI = ReturnInst::Create(*Ctx, CI, BB); 696 697 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); 698 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; 699 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) 700 DFSF.ValShadowMap[&*ValAI] = &*ShadowAI; 701 DFSanVisitor(DFSF).visitCallInst(*CI); 702 if (!FT->getReturnType()->isVoidTy()) 703 new StoreInst(DFSF.getShadow(RI->getReturnValue()), 704 &*std::prev(F->arg_end()), RI); 705 } 706 707 return C; 708 } 709 710 bool DataFlowSanitizer::runOnModule(Module &M) { 711 if (ABIList.isIn(M, "skip")) 712 return false; 713 714 if (!GetArgTLSPtr) { 715 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); 716 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); 717 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) 718 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 719 } 720 if (!GetRetvalTLSPtr) { 721 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy); 722 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) 723 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 724 } 725 726 ExternalShadowMask = 727 Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); 728 729 DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy); 730 if (Function *F = dyn_cast<Function>(DFSanUnionFn)) { 731 F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind); 732 F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone); 733 F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 734 F->addParamAttr(0, Attribute::ZExt); 735 F->addParamAttr(1, Attribute::ZExt); 736 } 737 DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy); 738 if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) { 739 F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind); 740 F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone); 741 F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 742 F->addParamAttr(0, Attribute::ZExt); 743 F->addParamAttr(1, Attribute::ZExt); 744 } 745 DFSanUnionLoadFn = 746 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy); 747 if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) { 748 F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind); 749 F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly); 750 F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 751 } 752 DFSanUnimplementedFn = 753 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 754 DFSanSetLabelFn = 755 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy); 756 if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) { 757 F->addParamAttr(0, Attribute::ZExt); 758 } 759 DFSanNonzeroLabelFn = 760 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 761 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 762 DFSanVarargWrapperFnTy); 763 764 std::vector<Function *> FnsToInstrument; 765 SmallPtrSet<Function *, 2> FnsWithNativeABI; 766 for (Function &i : M) { 767 if (!i.isIntrinsic() && 768 &i != DFSanUnionFn && 769 &i != DFSanCheckedUnionFn && 770 &i != DFSanUnionLoadFn && 771 &i != DFSanUnimplementedFn && 772 &i != DFSanSetLabelFn && 773 &i != DFSanNonzeroLabelFn && 774 &i != DFSanVarargWrapperFn) 775 FnsToInstrument.push_back(&i); 776 } 777 778 // Give function aliases prefixes when necessary, and build wrappers where the 779 // instrumentedness is inconsistent. 780 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { 781 GlobalAlias *GA = &*i; 782 ++i; 783 // Don't stop on weak. We assume people aren't playing games with the 784 // instrumentedness of overridden weak aliases. 785 if (auto F = dyn_cast<Function>(GA->getBaseObject())) { 786 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); 787 if (GAInst && FInst) { 788 addGlobalNamePrefix(GA); 789 } else if (GAInst != FInst) { 790 // Non-instrumented alias of an instrumented function, or vice versa. 791 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 792 // below will take care of instrumenting it. 793 Function *NewF = 794 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); 795 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); 796 NewF->takeName(GA); 797 GA->eraseFromParent(); 798 FnsToInstrument.push_back(NewF); 799 } 800 } 801 } 802 803 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 804 .addAttribute(Attribute::ReadNone); 805 806 // First, change the ABI of every function in the module. ABI-listed 807 // functions keep their original ABI and get a wrapper function. 808 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), 809 e = FnsToInstrument.end(); 810 i != e; ++i) { 811 Function &F = **i; 812 FunctionType *FT = F.getFunctionType(); 813 814 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 815 FT->getReturnType()->isVoidTy()); 816 817 if (isInstrumented(&F)) { 818 // Instrumented functions get a 'dfs$' prefix. This allows us to more 819 // easily identify cases of mismatching ABIs. 820 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { 821 FunctionType *NewFT = getArgsFunctionType(FT); 822 Function *NewF = Function::Create(NewFT, F.getLinkage(), 823 F.getAddressSpace(), "", &M); 824 NewF->copyAttributesFrom(&F); 825 NewF->removeAttributes( 826 AttributeList::ReturnIndex, 827 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 828 for (Function::arg_iterator FArg = F.arg_begin(), 829 NewFArg = NewF->arg_begin(), 830 FArgEnd = F.arg_end(); 831 FArg != FArgEnd; ++FArg, ++NewFArg) { 832 FArg->replaceAllUsesWith(&*NewFArg); 833 } 834 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); 835 836 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); 837 UI != UE;) { 838 BlockAddress *BA = dyn_cast<BlockAddress>(*UI); 839 ++UI; 840 if (BA) { 841 BA->replaceAllUsesWith( 842 BlockAddress::get(NewF, BA->getBasicBlock())); 843 delete BA; 844 } 845 } 846 F.replaceAllUsesWith( 847 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); 848 NewF->takeName(&F); 849 F.eraseFromParent(); 850 *i = NewF; 851 addGlobalNamePrefix(NewF); 852 } else { 853 addGlobalNamePrefix(&F); 854 } 855 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 856 // Build a wrapper function for F. The wrapper simply calls F, and is 857 // added to FnsToInstrument so that any instrumentation according to its 858 // WrapperKind is done in the second pass below. 859 FunctionType *NewFT = getInstrumentedABI() == IA_Args 860 ? getArgsFunctionType(FT) 861 : FT; 862 863 // If the function being wrapped has local linkage, then preserve the 864 // function's linkage in the wrapper function. 865 GlobalValue::LinkageTypes wrapperLinkage = 866 F.hasLocalLinkage() 867 ? F.getLinkage() 868 : GlobalValue::LinkOnceODRLinkage; 869 870 Function *NewF = buildWrapperFunction( 871 &F, std::string("dfsw$") + std::string(F.getName()), 872 wrapperLinkage, NewFT); 873 if (getInstrumentedABI() == IA_TLS) 874 NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); 875 876 Value *WrappedFnCst = 877 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 878 F.replaceAllUsesWith(WrappedFnCst); 879 880 UnwrappedFnMap[WrappedFnCst] = &F; 881 *i = NewF; 882 883 if (!F.isDeclaration()) { 884 // This function is probably defining an interposition of an 885 // uninstrumented function and hence needs to keep the original ABI. 886 // But any functions it may call need to use the instrumented ABI, so 887 // we instrument it in a mode which preserves the original ABI. 888 FnsWithNativeABI.insert(&F); 889 890 // This code needs to rebuild the iterators, as they may be invalidated 891 // by the push_back, taking care that the new range does not include 892 // any functions added by this code. 893 size_t N = i - FnsToInstrument.begin(), 894 Count = e - FnsToInstrument.begin(); 895 FnsToInstrument.push_back(&F); 896 i = FnsToInstrument.begin() + N; 897 e = FnsToInstrument.begin() + Count; 898 } 899 // Hopefully, nobody will try to indirectly call a vararg 900 // function... yet. 901 } else if (FT->isVarArg()) { 902 UnwrappedFnMap[&F] = &F; 903 *i = nullptr; 904 } 905 } 906 907 for (Function *i : FnsToInstrument) { 908 if (!i || i->isDeclaration()) 909 continue; 910 911 removeUnreachableBlocks(*i); 912 913 DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); 914 915 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 916 // Build a copy of the list before iterating over it. 917 SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); 918 919 for (BasicBlock *i : BBList) { 920 Instruction *Inst = &i->front(); 921 while (true) { 922 // DFSanVisitor may split the current basic block, changing the current 923 // instruction's next pointer and moving the next instruction to the 924 // tail block from which we should continue. 925 Instruction *Next = Inst->getNextNode(); 926 // DFSanVisitor may delete Inst, so keep track of whether it was a 927 // terminator. 928 bool IsTerminator = Inst->isTerminator(); 929 if (!DFSF.SkipInsts.count(Inst)) 930 DFSanVisitor(DFSF).visit(Inst); 931 if (IsTerminator) 932 break; 933 Inst = Next; 934 } 935 } 936 937 // We will not necessarily be able to compute the shadow for every phi node 938 // until we have visited every block. Therefore, the code that handles phi 939 // nodes adds them to the PHIFixups list so that they can be properly 940 // handled here. 941 for (std::vector<std::pair<PHINode *, PHINode *>>::iterator 942 i = DFSF.PHIFixups.begin(), 943 e = DFSF.PHIFixups.end(); 944 i != e; ++i) { 945 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; 946 ++val) { 947 i->second->setIncomingValue( 948 val, DFSF.getShadow(i->first->getIncomingValue(val))); 949 } 950 } 951 952 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 953 // places (i.e. instructions in basic blocks we haven't even begun visiting 954 // yet). To make our life easier, do this work in a pass after the main 955 // instrumentation. 956 if (ClDebugNonzeroLabels) { 957 for (Value *V : DFSF.NonZeroChecks) { 958 Instruction *Pos; 959 if (Instruction *I = dyn_cast<Instruction>(V)) 960 Pos = I->getNextNode(); 961 else 962 Pos = &DFSF.F->getEntryBlock().front(); 963 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 964 Pos = Pos->getNextNode(); 965 IRBuilder<> IRB(Pos); 966 Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow); 967 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 968 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 969 IRBuilder<> ThenIRB(BI); 970 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 971 } 972 } 973 } 974 975 return false; 976 } 977 978 Value *DFSanFunction::getArgTLSPtr() { 979 if (ArgTLSPtr) 980 return ArgTLSPtr; 981 if (DFS.ArgTLS) 982 return ArgTLSPtr = DFS.ArgTLS; 983 984 IRBuilder<> IRB(&F->getEntryBlock().front()); 985 return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS, {}); 986 } 987 988 Value *DFSanFunction::getRetvalTLS() { 989 if (RetvalTLSPtr) 990 return RetvalTLSPtr; 991 if (DFS.RetvalTLS) 992 return RetvalTLSPtr = DFS.RetvalTLS; 993 994 IRBuilder<> IRB(&F->getEntryBlock().front()); 995 return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS, {}); 996 } 997 998 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) { 999 IRBuilder<> IRB(Pos); 1000 return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx); 1001 } 1002 1003 Value *DFSanFunction::getShadow(Value *V) { 1004 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1005 return DFS.ZeroShadow; 1006 Value *&Shadow = ValShadowMap[V]; 1007 if (!Shadow) { 1008 if (Argument *A = dyn_cast<Argument>(V)) { 1009 if (IsNativeABI) 1010 return DFS.ZeroShadow; 1011 switch (IA) { 1012 case DataFlowSanitizer::IA_TLS: { 1013 Value *ArgTLSPtr = getArgTLSPtr(); 1014 Instruction *ArgTLSPos = 1015 DFS.ArgTLS ? &*F->getEntryBlock().begin() 1016 : cast<Instruction>(ArgTLSPtr)->getNextNode(); 1017 IRBuilder<> IRB(ArgTLSPos); 1018 Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos)); 1019 break; 1020 } 1021 case DataFlowSanitizer::IA_Args: { 1022 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; 1023 Function::arg_iterator i = F->arg_begin(); 1024 while (ArgIdx--) 1025 ++i; 1026 Shadow = &*i; 1027 assert(Shadow->getType() == DFS.ShadowTy); 1028 break; 1029 } 1030 } 1031 NonZeroChecks.push_back(Shadow); 1032 } else { 1033 Shadow = DFS.ZeroShadow; 1034 } 1035 } 1036 return Shadow; 1037 } 1038 1039 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1040 assert(!ValShadowMap.count(I)); 1041 assert(Shadow->getType() == DFS.ShadowTy); 1042 ValShadowMap[I] = Shadow; 1043 } 1044 1045 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1046 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1047 IRBuilder<> IRB(Pos); 1048 Value *ShadowPtrMaskValue; 1049 if (DFSanRuntimeShadowMask) 1050 ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); 1051 else 1052 ShadowPtrMaskValue = ShadowPtrMask; 1053 return IRB.CreateIntToPtr( 1054 IRB.CreateMul( 1055 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), 1056 IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), 1057 ShadowPtrMul), 1058 ShadowPtrTy); 1059 } 1060 1061 // Generates IR to compute the union of the two given shadows, inserting it 1062 // before Pos. Returns the computed union Value. 1063 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1064 if (V1 == DFS.ZeroShadow) 1065 return V2; 1066 if (V2 == DFS.ZeroShadow) 1067 return V1; 1068 if (V1 == V2) 1069 return V1; 1070 1071 auto V1Elems = ShadowElements.find(V1); 1072 auto V2Elems = ShadowElements.find(V2); 1073 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1074 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1075 V2Elems->second.begin(), V2Elems->second.end())) { 1076 return V1; 1077 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1078 V1Elems->second.begin(), V1Elems->second.end())) { 1079 return V2; 1080 } 1081 } else if (V1Elems != ShadowElements.end()) { 1082 if (V1Elems->second.count(V2)) 1083 return V1; 1084 } else if (V2Elems != ShadowElements.end()) { 1085 if (V2Elems->second.count(V1)) 1086 return V2; 1087 } 1088 1089 auto Key = std::make_pair(V1, V2); 1090 if (V1 > V2) 1091 std::swap(Key.first, Key.second); 1092 CachedCombinedShadow &CCS = CachedCombinedShadows[Key]; 1093 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1094 return CCS.Shadow; 1095 1096 IRBuilder<> IRB(Pos); 1097 if (AvoidNewBlocks) { 1098 CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2}); 1099 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1100 Call->addParamAttr(0, Attribute::ZExt); 1101 Call->addParamAttr(1, Attribute::ZExt); 1102 1103 CCS.Block = Pos->getParent(); 1104 CCS.Shadow = Call; 1105 } else { 1106 BasicBlock *Head = Pos->getParent(); 1107 Value *Ne = IRB.CreateICmpNE(V1, V2); 1108 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1109 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); 1110 IRBuilder<> ThenIRB(BI); 1111 CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2}); 1112 Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1113 Call->addParamAttr(0, Attribute::ZExt); 1114 Call->addParamAttr(1, Attribute::ZExt); 1115 1116 BasicBlock *Tail = BI->getSuccessor(0); 1117 PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1118 Phi->addIncoming(Call, Call->getParent()); 1119 Phi->addIncoming(V1, Head); 1120 1121 CCS.Block = Tail; 1122 CCS.Shadow = Phi; 1123 } 1124 1125 std::set<Value *> UnionElems; 1126 if (V1Elems != ShadowElements.end()) { 1127 UnionElems = V1Elems->second; 1128 } else { 1129 UnionElems.insert(V1); 1130 } 1131 if (V2Elems != ShadowElements.end()) { 1132 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1133 } else { 1134 UnionElems.insert(V2); 1135 } 1136 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1137 1138 return CCS.Shadow; 1139 } 1140 1141 // A convenience function which folds the shadows of each of the operands 1142 // of the provided instruction Inst, inserting the IR before Inst. Returns 1143 // the computed union Value. 1144 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1145 if (Inst->getNumOperands() == 0) 1146 return DFS.ZeroShadow; 1147 1148 Value *Shadow = getShadow(Inst->getOperand(0)); 1149 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { 1150 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); 1151 } 1152 return Shadow; 1153 } 1154 1155 void DFSanVisitor::visitOperandShadowInst(Instruction &I) { 1156 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1157 DFSF.setShadow(&I, CombinedShadow); 1158 } 1159 1160 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where 1161 // Addr has alignment Align, and take the union of each of those shadows. 1162 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, 1163 Instruction *Pos) { 1164 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1165 const auto i = AllocaShadowMap.find(AI); 1166 if (i != AllocaShadowMap.end()) { 1167 IRBuilder<> IRB(Pos); 1168 return IRB.CreateLoad(i->second); 1169 } 1170 } 1171 1172 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1173 SmallVector<Value *, 2> Objs; 1174 GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout()); 1175 bool AllConstants = true; 1176 for (Value *Obj : Objs) { 1177 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 1178 continue; 1179 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 1180 continue; 1181 1182 AllConstants = false; 1183 break; 1184 } 1185 if (AllConstants) 1186 return DFS.ZeroShadow; 1187 1188 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1189 switch (Size) { 1190 case 0: 1191 return DFS.ZeroShadow; 1192 case 1: { 1193 LoadInst *LI = new LoadInst(ShadowAddr, "", Pos); 1194 LI->setAlignment(ShadowAlign); 1195 return LI; 1196 } 1197 case 2: { 1198 IRBuilder<> IRB(Pos); 1199 Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr, 1200 ConstantInt::get(DFS.IntptrTy, 1)); 1201 return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign), 1202 IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos); 1203 } 1204 } 1205 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) { 1206 // Fast path for the common case where each byte has identical shadow: load 1207 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any 1208 // shadow is non-equal. 1209 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); 1210 IRBuilder<> FallbackIRB(FallbackBB); 1211 CallInst *FallbackCall = FallbackIRB.CreateCall( 1212 DFS.DFSanUnionLoadFn, 1213 {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1214 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1215 1216 // Compare each of the shadows stored in the loaded 64 bits to each other, 1217 // by computing (WideShadow rotl ShadowWidth) == WideShadow. 1218 IRBuilder<> IRB(Pos); 1219 Value *WideAddr = 1220 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); 1221 Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign); 1222 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy); 1223 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth); 1224 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth); 1225 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); 1226 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); 1227 1228 BasicBlock *Head = Pos->getParent(); 1229 BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); 1230 1231 if (DomTreeNode *OldNode = DT.getNode(Head)) { 1232 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1233 1234 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); 1235 for (auto Child : Children) 1236 DT.changeImmediateDominator(Child, NewNode); 1237 } 1238 1239 // In the following code LastBr will refer to the previous basic block's 1240 // conditional branch instruction, whose true successor is fixed up to point 1241 // to the next block during the loop below or to the tail after the final 1242 // iteration. 1243 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); 1244 ReplaceInstWithInst(Head->getTerminator(), LastBr); 1245 DT.addNewBlock(FallbackBB, Head); 1246 1247 for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size; 1248 Ofs += 64 / DFS.ShadowWidth) { 1249 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); 1250 DT.addNewBlock(NextBB, LastBr->getParent()); 1251 IRBuilder<> NextIRB(NextBB); 1252 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, 1253 ConstantInt::get(DFS.IntptrTy, 1)); 1254 Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign); 1255 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); 1256 LastBr->setSuccessor(0, NextBB); 1257 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); 1258 } 1259 1260 LastBr->setSuccessor(0, Tail); 1261 FallbackIRB.CreateBr(Tail); 1262 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); 1263 Shadow->addIncoming(FallbackCall, FallbackBB); 1264 Shadow->addIncoming(TruncShadow, LastBr->getParent()); 1265 return Shadow; 1266 } 1267 1268 IRBuilder<> IRB(Pos); 1269 CallInst *FallbackCall = IRB.CreateCall( 1270 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 1271 FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); 1272 return FallbackCall; 1273 } 1274 1275 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 1276 auto &DL = LI.getModule()->getDataLayout(); 1277 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 1278 if (Size == 0) { 1279 DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow); 1280 return; 1281 } 1282 1283 uint64_t Align; 1284 if (ClPreserveAlignment) { 1285 Align = LI.getAlignment(); 1286 if (Align == 0) 1287 Align = DL.getABITypeAlignment(LI.getType()); 1288 } else { 1289 Align = 1; 1290 } 1291 IRBuilder<> IRB(&LI); 1292 Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI); 1293 if (ClCombinePointerLabelsOnLoad) { 1294 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 1295 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI); 1296 } 1297 if (Shadow != DFSF.DFS.ZeroShadow) 1298 DFSF.NonZeroChecks.push_back(Shadow); 1299 1300 DFSF.setShadow(&LI, Shadow); 1301 } 1302 1303 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align, 1304 Value *Shadow, Instruction *Pos) { 1305 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1306 const auto i = AllocaShadowMap.find(AI); 1307 if (i != AllocaShadowMap.end()) { 1308 IRBuilder<> IRB(Pos); 1309 IRB.CreateStore(Shadow, i->second); 1310 return; 1311 } 1312 } 1313 1314 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; 1315 IRBuilder<> IRB(Pos); 1316 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 1317 if (Shadow == DFS.ZeroShadow) { 1318 IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth); 1319 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 1320 Value *ExtShadowAddr = 1321 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 1322 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 1323 return; 1324 } 1325 1326 const unsigned ShadowVecSize = 128 / DFS.ShadowWidth; 1327 uint64_t Offset = 0; 1328 if (Size >= ShadowVecSize) { 1329 VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize); 1330 Value *ShadowVec = UndefValue::get(ShadowVecTy); 1331 for (unsigned i = 0; i != ShadowVecSize; ++i) { 1332 ShadowVec = IRB.CreateInsertElement( 1333 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); 1334 } 1335 Value *ShadowVecAddr = 1336 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 1337 do { 1338 Value *CurShadowVecAddr = 1339 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 1340 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 1341 Size -= ShadowVecSize; 1342 ++Offset; 1343 } while (Size >= ShadowVecSize); 1344 Offset *= ShadowVecSize; 1345 } 1346 while (Size > 0) { 1347 Value *CurShadowAddr = 1348 IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset); 1349 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); 1350 --Size; 1351 ++Offset; 1352 } 1353 } 1354 1355 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 1356 auto &DL = SI.getModule()->getDataLayout(); 1357 uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); 1358 if (Size == 0) 1359 return; 1360 1361 uint64_t Align; 1362 if (ClPreserveAlignment) { 1363 Align = SI.getAlignment(); 1364 if (Align == 0) 1365 Align = DL.getABITypeAlignment(SI.getValueOperand()->getType()); 1366 } else { 1367 Align = 1; 1368 } 1369 1370 Value* Shadow = DFSF.getShadow(SI.getValueOperand()); 1371 if (ClCombinePointerLabelsOnStore) { 1372 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 1373 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 1374 } 1375 DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI); 1376 } 1377 1378 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 1379 visitOperandShadowInst(BO); 1380 } 1381 1382 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } 1383 1384 void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); } 1385 1386 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1387 visitOperandShadowInst(GEPI); 1388 } 1389 1390 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 1391 visitOperandShadowInst(I); 1392 } 1393 1394 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 1395 visitOperandShadowInst(I); 1396 } 1397 1398 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 1399 visitOperandShadowInst(I); 1400 } 1401 1402 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 1403 visitOperandShadowInst(I); 1404 } 1405 1406 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 1407 visitOperandShadowInst(I); 1408 } 1409 1410 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 1411 bool AllLoadsStores = true; 1412 for (User *U : I.users()) { 1413 if (isa<LoadInst>(U)) 1414 continue; 1415 1416 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1417 if (SI->getPointerOperand() == &I) 1418 continue; 1419 } 1420 1421 AllLoadsStores = false; 1422 break; 1423 } 1424 if (AllLoadsStores) { 1425 IRBuilder<> IRB(&I); 1426 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy); 1427 } 1428 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow); 1429 } 1430 1431 void DFSanVisitor::visitSelectInst(SelectInst &I) { 1432 Value *CondShadow = DFSF.getShadow(I.getCondition()); 1433 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 1434 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 1435 1436 if (isa<VectorType>(I.getCondition()->getType())) { 1437 DFSF.setShadow( 1438 &I, 1439 DFSF.combineShadows( 1440 CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I)); 1441 } else { 1442 Value *ShadowSel; 1443 if (TrueShadow == FalseShadow) { 1444 ShadowSel = TrueShadow; 1445 } else { 1446 ShadowSel = 1447 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 1448 } 1449 DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I)); 1450 } 1451 } 1452 1453 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 1454 IRBuilder<> IRB(&I); 1455 Value *ValShadow = DFSF.getShadow(I.getValue()); 1456 IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, 1457 {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( 1458 *DFSF.DFS.Ctx)), 1459 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 1460 } 1461 1462 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 1463 IRBuilder<> IRB(&I); 1464 Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 1465 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 1466 Value *LenShadow = IRB.CreateMul( 1467 I.getLength(), 1468 ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8)); 1469 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 1470 DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr); 1471 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 1472 auto *MTI = cast<MemTransferInst>( 1473 IRB.CreateCall(I.getCalledValue(), 1474 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 1475 if (ClPreserveAlignment) { 1476 MTI->setDestAlignment(I.getDestAlignment() * (DFSF.DFS.ShadowWidth / 8)); 1477 MTI->setSourceAlignment(I.getSourceAlignment() * (DFSF.DFS.ShadowWidth / 8)); 1478 } else { 1479 MTI->setDestAlignment(DFSF.DFS.ShadowWidth / 8); 1480 MTI->setSourceAlignment(DFSF.DFS.ShadowWidth / 8); 1481 } 1482 } 1483 1484 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 1485 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 1486 switch (DFSF.IA) { 1487 case DataFlowSanitizer::IA_TLS: { 1488 Value *S = DFSF.getShadow(RI.getReturnValue()); 1489 IRBuilder<> IRB(&RI); 1490 IRB.CreateStore(S, DFSF.getRetvalTLS()); 1491 break; 1492 } 1493 case DataFlowSanitizer::IA_Args: { 1494 IRBuilder<> IRB(&RI); 1495 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 1496 Value *InsVal = 1497 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); 1498 Value *InsShadow = 1499 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); 1500 RI.setOperand(0, InsShadow); 1501 break; 1502 } 1503 } 1504 } 1505 } 1506 1507 void DFSanVisitor::visitCallSite(CallSite CS) { 1508 Function *F = CS.getCalledFunction(); 1509 if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) { 1510 visitOperandShadowInst(*CS.getInstruction()); 1511 return; 1512 } 1513 1514 // Calls to this function are synthesized in wrappers, and we shouldn't 1515 // instrument them. 1516 if (F == DFSF.DFS.DFSanVarargWrapperFn) 1517 return; 1518 1519 IRBuilder<> IRB(CS.getInstruction()); 1520 1521 DenseMap<Value *, Function *>::iterator i = 1522 DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue()); 1523 if (i != DFSF.DFS.UnwrappedFnMap.end()) { 1524 Function *F = i->second; 1525 switch (DFSF.DFS.getWrapperKind(F)) { 1526 case DataFlowSanitizer::WK_Warning: 1527 CS.setCalledFunction(F); 1528 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 1529 IRB.CreateGlobalStringPtr(F->getName())); 1530 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1531 return; 1532 case DataFlowSanitizer::WK_Discard: 1533 CS.setCalledFunction(F); 1534 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); 1535 return; 1536 case DataFlowSanitizer::WK_Functional: 1537 CS.setCalledFunction(F); 1538 visitOperandShadowInst(*CS.getInstruction()); 1539 return; 1540 case DataFlowSanitizer::WK_Custom: 1541 // Don't try to handle invokes of custom functions, it's too complicated. 1542 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 1543 // wrapper. 1544 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { 1545 FunctionType *FT = F->getFunctionType(); 1546 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 1547 std::string CustomFName = "__dfsw_"; 1548 CustomFName += F->getName(); 1549 Constant *CustomF = DFSF.DFS.Mod->getOrInsertFunction( 1550 CustomFName, CustomFn.TransformedType); 1551 if (Function *CustomFn = dyn_cast<Function>(CustomF)) { 1552 CustomFn->copyAttributesFrom(F); 1553 1554 // Custom functions returning non-void will write to the return label. 1555 if (!FT->getReturnType()->isVoidTy()) { 1556 CustomFn->removeAttributes(AttributeList::FunctionIndex, 1557 DFSF.DFS.ReadOnlyNoneAttrs); 1558 } 1559 } 1560 1561 std::vector<Value *> Args; 1562 1563 CallSite::arg_iterator i = CS.arg_begin(); 1564 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { 1565 Type *T = (*i)->getType(); 1566 FunctionType *ParamFT; 1567 if (isa<PointerType>(T) && 1568 (ParamFT = dyn_cast<FunctionType>( 1569 cast<PointerType>(T)->getElementType()))) { 1570 std::string TName = "dfst"; 1571 TName += utostr(FT->getNumParams() - n); 1572 TName += "$"; 1573 TName += F->getName(); 1574 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 1575 Args.push_back(T); 1576 Args.push_back( 1577 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 1578 } else { 1579 Args.push_back(*i); 1580 } 1581 } 1582 1583 i = CS.arg_begin(); 1584 const unsigned ShadowArgStart = Args.size(); 1585 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1586 Args.push_back(DFSF.getShadow(*i)); 1587 1588 if (FT->isVarArg()) { 1589 auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy, 1590 CS.arg_size() - FT->getNumParams()); 1591 auto *LabelVAAlloca = new AllocaInst( 1592 LabelVATy, getDataLayout().getAllocaAddrSpace(), 1593 "labelva", &DFSF.F->getEntryBlock().front()); 1594 1595 for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) { 1596 auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n); 1597 IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr); 1598 } 1599 1600 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 1601 } 1602 1603 if (!FT->getReturnType()->isVoidTy()) { 1604 if (!DFSF.LabelReturnAlloca) { 1605 DFSF.LabelReturnAlloca = 1606 new AllocaInst(DFSF.DFS.ShadowTy, 1607 getDataLayout().getAllocaAddrSpace(), 1608 "labelreturn", &DFSF.F->getEntryBlock().front()); 1609 } 1610 Args.push_back(DFSF.LabelReturnAlloca); 1611 } 1612 1613 for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i) 1614 Args.push_back(*i); 1615 1616 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 1617 CustomCI->setCallingConv(CI->getCallingConv()); 1618 CustomCI->setAttributes(TransformFunctionAttributes(CustomFn, 1619 CI->getContext(), CI->getAttributes())); 1620 1621 // Update the parameter attributes of the custom call instruction to 1622 // zero extend the shadow parameters. This is required for targets 1623 // which consider ShadowTy an illegal type. 1624 for (unsigned n = 0; n < FT->getNumParams(); n++) { 1625 const unsigned ArgNo = ShadowArgStart + n; 1626 if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy) 1627 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 1628 } 1629 1630 if (!FT->getReturnType()->isVoidTy()) { 1631 LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca); 1632 DFSF.setShadow(CustomCI, LabelLoad); 1633 } 1634 1635 CI->replaceAllUsesWith(CustomCI); 1636 CI->eraseFromParent(); 1637 return; 1638 } 1639 break; 1640 } 1641 } 1642 1643 FunctionType *FT = cast<FunctionType>( 1644 CS.getCalledValue()->getType()->getPointerElementType()); 1645 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1646 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) { 1647 IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)), 1648 DFSF.getArgTLS(i, CS.getInstruction())); 1649 } 1650 } 1651 1652 Instruction *Next = nullptr; 1653 if (!CS.getType()->isVoidTy()) { 1654 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1655 if (II->getNormalDest()->getSinglePredecessor()) { 1656 Next = &II->getNormalDest()->front(); 1657 } else { 1658 BasicBlock *NewBB = 1659 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 1660 Next = &NewBB->front(); 1661 } 1662 } else { 1663 assert(CS->getIterator() != CS->getParent()->end()); 1664 Next = CS->getNextNode(); 1665 } 1666 1667 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { 1668 IRBuilder<> NextIRB(Next); 1669 LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS()); 1670 DFSF.SkipInsts.insert(LI); 1671 DFSF.setShadow(CS.getInstruction(), LI); 1672 DFSF.NonZeroChecks.push_back(LI); 1673 } 1674 } 1675 1676 // Do all instrumentation for IA_Args down here to defer tampering with the 1677 // CFG in a way that SplitEdge may be able to detect. 1678 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { 1679 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); 1680 Value *Func = 1681 IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT)); 1682 std::vector<Value *> Args; 1683 1684 CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1685 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1686 Args.push_back(*i); 1687 1688 i = CS.arg_begin(); 1689 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) 1690 Args.push_back(DFSF.getShadow(*i)); 1691 1692 if (FT->isVarArg()) { 1693 unsigned VarArgSize = CS.arg_size() - FT->getNumParams(); 1694 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize); 1695 AllocaInst *VarArgShadow = 1696 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), 1697 "", &DFSF.F->getEntryBlock().front()); 1698 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); 1699 for (unsigned n = 0; i != e; ++i, ++n) { 1700 IRB.CreateStore( 1701 DFSF.getShadow(*i), 1702 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); 1703 Args.push_back(*i); 1704 } 1705 } 1706 1707 CallSite NewCS; 1708 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { 1709 NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(), 1710 Args); 1711 } else { 1712 NewCS = IRB.CreateCall(Func, Args); 1713 } 1714 NewCS.setCallingConv(CS.getCallingConv()); 1715 NewCS.setAttributes(CS.getAttributes().removeAttributes( 1716 *DFSF.DFS.Ctx, AttributeList::ReturnIndex, 1717 AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType()))); 1718 1719 if (Next) { 1720 ExtractValueInst *ExVal = 1721 ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next); 1722 DFSF.SkipInsts.insert(ExVal); 1723 ExtractValueInst *ExShadow = 1724 ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next); 1725 DFSF.SkipInsts.insert(ExShadow); 1726 DFSF.setShadow(ExVal, ExShadow); 1727 DFSF.NonZeroChecks.push_back(ExShadow); 1728 1729 CS.getInstruction()->replaceAllUsesWith(ExVal); 1730 } 1731 1732 CS.getInstruction()->eraseFromParent(); 1733 } 1734 } 1735 1736 void DFSanVisitor::visitPHINode(PHINode &PN) { 1737 PHINode *ShadowPN = 1738 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN); 1739 1740 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 1741 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy); 1742 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; 1743 ++i) { 1744 ShadowPN->addIncoming(UndefShadow, *i); 1745 } 1746 1747 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); 1748 DFSF.setShadow(&PN, ShadowPN); 1749 } 1750