1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains logic for simplifying instructions based on information 11 // about how they are used. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombineInternal.h" 16 #include "llvm/Analysis/ValueTracking.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 21 using namespace llvm; 22 using namespace llvm::PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 namespace { 27 28 struct AMDGPUImageDMaskIntrinsic { 29 unsigned Intr; 30 }; 31 32 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL 33 #include "InstCombineTables.inc" 34 35 } // end anonymous namespace 36 37 /// Check to see if the specified operand of the specified instruction is a 38 /// constant integer. If so, check to see if there are any bits set in the 39 /// constant that are not demanded. If so, shrink the constant and return true. 40 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 41 const APInt &Demanded) { 42 assert(I && "No instruction?"); 43 assert(OpNo < I->getNumOperands() && "Operand index too large"); 44 45 // The operand must be a constant integer or splat integer. 46 Value *Op = I->getOperand(OpNo); 47 const APInt *C; 48 if (!match(Op, m_APInt(C))) 49 return false; 50 51 // If there are no bits set that aren't demanded, nothing to do. 52 if (C->isSubsetOf(Demanded)) 53 return false; 54 55 // This instruction is producing bits that are not demanded. Shrink the RHS. 56 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); 57 58 return true; 59 } 60 61 62 63 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if 64 /// the instruction has any properties that allow us to simplify its operands. 65 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 66 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 67 KnownBits Known(BitWidth); 68 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 69 70 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, 71 0, &Inst); 72 if (!V) return false; 73 if (V == &Inst) return true; 74 replaceInstUsesWith(Inst, V); 75 return true; 76 } 77 78 /// This form of SimplifyDemandedBits simplifies the specified instruction 79 /// operand if possible, updating it in place. It returns true if it made any 80 /// change and false otherwise. 81 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, 82 const APInt &DemandedMask, 83 KnownBits &Known, 84 unsigned Depth) { 85 Use &U = I->getOperandUse(OpNo); 86 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, 87 Depth, I); 88 if (!NewVal) return false; 89 U = NewVal; 90 return true; 91 } 92 93 94 /// This function attempts to replace V with a simpler value based on the 95 /// demanded bits. When this function is called, it is known that only the bits 96 /// set in DemandedMask of the result of V are ever used downstream. 97 /// Consequently, depending on the mask and V, it may be possible to replace V 98 /// with a constant or one of its operands. In such cases, this function does 99 /// the replacement and returns true. In all other cases, it returns false after 100 /// analyzing the expression and setting KnownOne and known to be one in the 101 /// expression. Known.Zero contains all the bits that are known to be zero in 102 /// the expression. These are provided to potentially allow the caller (which 103 /// might recursively be SimplifyDemandedBits itself) to simplify the 104 /// expression. 105 /// Known.One and Known.Zero always follow the invariant that: 106 /// Known.One & Known.Zero == 0. 107 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and 108 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note 109 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all 110 /// be the same. 111 /// 112 /// This returns null if it did not change anything and it permits no 113 /// simplification. This returns V itself if it did some simplification of V's 114 /// operands based on the information about what bits are demanded. This returns 115 /// some other non-null value if it found out that V is equal to another value 116 /// in the context where the specified bits are demanded, but not for all users. 117 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 118 KnownBits &Known, unsigned Depth, 119 Instruction *CxtI) { 120 assert(V != nullptr && "Null pointer of Value???"); 121 assert(Depth <= 6 && "Limit Search Depth"); 122 uint32_t BitWidth = DemandedMask.getBitWidth(); 123 Type *VTy = V->getType(); 124 assert( 125 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && 126 Known.getBitWidth() == BitWidth && 127 "Value *V, DemandedMask and Known must have same BitWidth"); 128 129 if (isa<Constant>(V)) { 130 computeKnownBits(V, Known, Depth, CxtI); 131 return nullptr; 132 } 133 134 Known.resetAll(); 135 if (DemandedMask.isNullValue()) // Not demanding any bits from V. 136 return UndefValue::get(VTy); 137 138 if (Depth == 6) // Limit search depth. 139 return nullptr; 140 141 Instruction *I = dyn_cast<Instruction>(V); 142 if (!I) { 143 computeKnownBits(V, Known, Depth, CxtI); 144 return nullptr; // Only analyze instructions. 145 } 146 147 // If there are multiple uses of this value and we aren't at the root, then 148 // we can't do any simplifications of the operands, because DemandedMask 149 // only reflects the bits demanded by *one* of the users. 150 if (Depth != 0 && !I->hasOneUse()) 151 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); 152 153 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); 154 155 // If this is the root being simplified, allow it to have multiple uses, 156 // just set the DemandedMask to all bits so that we can try to simplify the 157 // operands. This allows visitTruncInst (for example) to simplify the 158 // operand of a trunc without duplicating all the logic below. 159 if (Depth == 0 && !V->hasOneUse()) 160 DemandedMask.setAllBits(); 161 162 switch (I->getOpcode()) { 163 default: 164 computeKnownBits(I, Known, Depth, CxtI); 165 break; 166 case Instruction::And: { 167 // If either the LHS or the RHS are Zero, the result is zero. 168 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 169 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, 170 Depth + 1)) 171 return I; 172 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 173 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 174 175 // Output known-0 are known to be clear if zero in either the LHS | RHS. 176 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 177 // Output known-1 bits are only known if set in both the LHS & RHS. 178 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 179 180 // If the client is only demanding bits that we know, return the known 181 // constant. 182 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 183 return Constant::getIntegerValue(VTy, IKnownOne); 184 185 // If all of the demanded bits are known 1 on one side, return the other. 186 // These bits cannot contribute to the result of the 'and'. 187 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 188 return I->getOperand(0); 189 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 190 return I->getOperand(1); 191 192 // If the RHS is a constant, see if we can simplify it. 193 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) 194 return I; 195 196 Known.Zero = std::move(IKnownZero); 197 Known.One = std::move(IKnownOne); 198 break; 199 } 200 case Instruction::Or: { 201 // If either the LHS or the RHS are One, the result is One. 202 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 203 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, 204 Depth + 1)) 205 return I; 206 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 207 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 208 209 // Output known-0 bits are only known if clear in both the LHS & RHS. 210 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 211 // Output known-1 are known. to be set if s.et in either the LHS | RHS. 212 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 213 214 // If the client is only demanding bits that we know, return the known 215 // constant. 216 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 217 return Constant::getIntegerValue(VTy, IKnownOne); 218 219 // If all of the demanded bits are known zero on one side, return the other. 220 // These bits cannot contribute to the result of the 'or'. 221 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 222 return I->getOperand(0); 223 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 224 return I->getOperand(1); 225 226 // If the RHS is a constant, see if we can simplify it. 227 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 228 return I; 229 230 Known.Zero = std::move(IKnownZero); 231 Known.One = std::move(IKnownOne); 232 break; 233 } 234 case Instruction::Xor: { 235 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || 236 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) 237 return I; 238 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 239 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 240 241 // Output known-0 bits are known if clear or set in both the LHS & RHS. 242 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 243 (RHSKnown.One & LHSKnown.One); 244 // Output known-1 are known to be set if set in only one of the LHS, RHS. 245 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 246 (RHSKnown.One & LHSKnown.Zero); 247 248 // If the client is only demanding bits that we know, return the known 249 // constant. 250 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 251 return Constant::getIntegerValue(VTy, IKnownOne); 252 253 // If all of the demanded bits are known zero on one side, return the other. 254 // These bits cannot contribute to the result of the 'xor'. 255 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 256 return I->getOperand(0); 257 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 258 return I->getOperand(1); 259 260 // If all of the demanded bits are known to be zero on one side or the 261 // other, turn this into an *inclusive* or. 262 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 263 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { 264 Instruction *Or = 265 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 266 I->getName()); 267 return InsertNewInstWith(Or, *I); 268 } 269 270 // If all of the demanded bits on one side are known, and all of the set 271 // bits on that side are also known to be set on the other side, turn this 272 // into an AND, as we know the bits will be cleared. 273 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 274 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && 275 RHSKnown.One.isSubsetOf(LHSKnown.One)) { 276 Constant *AndC = Constant::getIntegerValue(VTy, 277 ~RHSKnown.One & DemandedMask); 278 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 279 return InsertNewInstWith(And, *I); 280 } 281 282 // If the RHS is a constant, see if we can simplify it. 283 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 284 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 285 return I; 286 287 // If our LHS is an 'and' and if it has one use, and if any of the bits we 288 // are flipping are known to be set, then the xor is just resetting those 289 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 290 // simplifying both of them. 291 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 292 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 293 isa<ConstantInt>(I->getOperand(1)) && 294 isa<ConstantInt>(LHSInst->getOperand(1)) && 295 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { 296 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 297 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 298 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); 299 300 Constant *AndC = 301 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 302 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 303 InsertNewInstWith(NewAnd, *I); 304 305 Constant *XorC = 306 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 307 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 308 return InsertNewInstWith(NewXor, *I); 309 } 310 311 // Output known-0 bits are known if clear or set in both the LHS & RHS. 312 Known.Zero = std::move(IKnownZero); 313 // Output known-1 are known to be set if set in only one of the LHS, RHS. 314 Known.One = std::move(IKnownOne); 315 break; 316 } 317 case Instruction::Select: { 318 Value *LHS, *RHS; 319 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 320 if (SPF == SPF_UMAX) { 321 // UMax(A, C) == A if ... 322 // The lowest non-zero bit of DemandMask is higher than the highest 323 // non-zero bit of C. 324 const APInt *C; 325 unsigned CTZ = DemandedMask.countTrailingZeros(); 326 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) 327 return LHS; 328 } else if (SPF == SPF_UMIN) { 329 // UMin(A, C) == A if ... 330 // The lowest non-zero bit of DemandMask is higher than the highest 331 // non-one bit of C. 332 // This comes from using DeMorgans on the above umax example. 333 const APInt *C; 334 unsigned CTZ = DemandedMask.countTrailingZeros(); 335 if (match(RHS, m_APInt(C)) && 336 CTZ >= C->getBitWidth() - C->countLeadingOnes()) 337 return LHS; 338 } 339 340 // If this is a select as part of any other min/max pattern, don't simplify 341 // any further in case we break the structure. 342 if (SPF != SPF_UNKNOWN) 343 return nullptr; 344 345 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || 346 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) 347 return I; 348 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); 349 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); 350 351 // If the operands are constants, see if we can simplify them. 352 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 353 ShrinkDemandedConstant(I, 2, DemandedMask)) 354 return I; 355 356 // Only known if known in both the LHS and RHS. 357 Known.One = RHSKnown.One & LHSKnown.One; 358 Known.Zero = RHSKnown.Zero & LHSKnown.Zero; 359 break; 360 } 361 case Instruction::ZExt: 362 case Instruction::Trunc: { 363 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 364 365 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); 366 KnownBits InputKnown(SrcBitWidth); 367 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) 368 return I; 369 Known = InputKnown.zextOrTrunc(BitWidth); 370 // Any top bits are known to be zero. 371 if (BitWidth > SrcBitWidth) 372 Known.Zero.setBitsFrom(SrcBitWidth); 373 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 374 break; 375 } 376 case Instruction::BitCast: 377 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 378 return nullptr; // vector->int or fp->int? 379 380 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 381 if (VectorType *SrcVTy = 382 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 383 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 384 // Don't touch a bitcast between vectors of different element counts. 385 return nullptr; 386 } else 387 // Don't touch a scalar-to-vector bitcast. 388 return nullptr; 389 } else if (I->getOperand(0)->getType()->isVectorTy()) 390 // Don't touch a vector-to-scalar bitcast. 391 return nullptr; 392 393 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) 394 return I; 395 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 396 break; 397 case Instruction::SExt: { 398 // Compute the bits in the result that are not present in the input. 399 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 400 401 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); 402 403 // If any of the sign extended bits are demanded, we know that the sign 404 // bit is demanded. 405 if (DemandedMask.getActiveBits() > SrcBitWidth) 406 InputDemandedBits.setBit(SrcBitWidth-1); 407 408 KnownBits InputKnown(SrcBitWidth); 409 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) 410 return I; 411 412 // If the input sign bit is known zero, or if the NewBits are not demanded 413 // convert this into a zero extension. 414 if (InputKnown.isNonNegative() || 415 DemandedMask.getActiveBits() <= SrcBitWidth) { 416 // Convert to ZExt cast. 417 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 418 return InsertNewInstWith(NewCast, *I); 419 } 420 421 // If the sign bit of the input is known set or clear, then we know the 422 // top bits of the result. 423 Known = InputKnown.sext(BitWidth); 424 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 425 break; 426 } 427 case Instruction::Add: 428 case Instruction::Sub: { 429 /// If the high-bits of an ADD/SUB are not demanded, then we do not care 430 /// about the high bits of the operands. 431 unsigned NLZ = DemandedMask.countLeadingZeros(); 432 // Right fill the mask of bits for this ADD/SUB to demand the most 433 // significant bit and all those below it. 434 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 435 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || 436 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || 437 ShrinkDemandedConstant(I, 1, DemandedFromOps) || 438 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { 439 if (NLZ > 0) { 440 // Disable the nsw and nuw flags here: We can no longer guarantee that 441 // we won't wrap after simplification. Removing the nsw/nuw flags is 442 // legal here because the top bit is not demanded. 443 BinaryOperator &BinOP = *cast<BinaryOperator>(I); 444 BinOP.setHasNoSignedWrap(false); 445 BinOP.setHasNoUnsignedWrap(false); 446 } 447 return I; 448 } 449 450 // If we are known to be adding/subtracting zeros to every bit below 451 // the highest demanded bit, we just return the other side. 452 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) 453 return I->getOperand(0); 454 // We can't do this with the LHS for subtraction, unless we are only 455 // demanding the LSB. 456 if ((I->getOpcode() == Instruction::Add || 457 DemandedFromOps.isOneValue()) && 458 DemandedFromOps.isSubsetOf(LHSKnown.Zero)) 459 return I->getOperand(1); 460 461 // Otherwise just compute the known bits of the result. 462 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 463 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, 464 NSW, LHSKnown, RHSKnown); 465 break; 466 } 467 case Instruction::Shl: { 468 const APInt *SA; 469 if (match(I->getOperand(1), m_APInt(SA))) { 470 const APInt *ShrAmt; 471 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) 472 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) 473 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, 474 DemandedMask, Known)) 475 return R; 476 477 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 478 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 479 480 // If the shift is NUW/NSW, then it does demand the high bits. 481 ShlOperator *IOp = cast<ShlOperator>(I); 482 if (IOp->hasNoSignedWrap()) 483 DemandedMaskIn.setHighBits(ShiftAmt+1); 484 else if (IOp->hasNoUnsignedWrap()) 485 DemandedMaskIn.setHighBits(ShiftAmt); 486 487 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 488 return I; 489 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 490 Known.Zero <<= ShiftAmt; 491 Known.One <<= ShiftAmt; 492 // low bits known zero. 493 if (ShiftAmt) 494 Known.Zero.setLowBits(ShiftAmt); 495 } 496 break; 497 } 498 case Instruction::LShr: { 499 const APInt *SA; 500 if (match(I->getOperand(1), m_APInt(SA))) { 501 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 502 503 // Unsigned shift right. 504 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 505 506 // If the shift is exact, then it does demand the low bits (and knows that 507 // they are zero). 508 if (cast<LShrOperator>(I)->isExact()) 509 DemandedMaskIn.setLowBits(ShiftAmt); 510 511 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 512 return I; 513 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 514 Known.Zero.lshrInPlace(ShiftAmt); 515 Known.One.lshrInPlace(ShiftAmt); 516 if (ShiftAmt) 517 Known.Zero.setHighBits(ShiftAmt); // high bits known zero. 518 } 519 break; 520 } 521 case Instruction::AShr: { 522 // If this is an arithmetic shift right and only the low-bit is set, we can 523 // always convert this into a logical shr, even if the shift amount is 524 // variable. The low bit of the shift cannot be an input sign bit unless 525 // the shift amount is >= the size of the datatype, which is undefined. 526 if (DemandedMask.isOneValue()) { 527 // Perform the logical shift right. 528 Instruction *NewVal = BinaryOperator::CreateLShr( 529 I->getOperand(0), I->getOperand(1), I->getName()); 530 return InsertNewInstWith(NewVal, *I); 531 } 532 533 // If the sign bit is the only bit demanded by this ashr, then there is no 534 // need to do it, the shift doesn't change the high bit. 535 if (DemandedMask.isSignMask()) 536 return I->getOperand(0); 537 538 const APInt *SA; 539 if (match(I->getOperand(1), m_APInt(SA))) { 540 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 541 542 // Signed shift right. 543 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 544 // If any of the high bits are demanded, we should set the sign bit as 545 // demanded. 546 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 547 DemandedMaskIn.setSignBit(); 548 549 // If the shift is exact, then it does demand the low bits (and knows that 550 // they are zero). 551 if (cast<AShrOperator>(I)->isExact()) 552 DemandedMaskIn.setLowBits(ShiftAmt); 553 554 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) 555 return I; 556 557 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); 558 559 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 560 // Compute the new bits that are at the top now plus sign bits. 561 APInt HighBits(APInt::getHighBitsSet( 562 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); 563 Known.Zero.lshrInPlace(ShiftAmt); 564 Known.One.lshrInPlace(ShiftAmt); 565 566 // If the input sign bit is known to be zero, or if none of the top bits 567 // are demanded, turn this into an unsigned shift right. 568 assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); 569 if (Known.Zero[BitWidth-ShiftAmt-1] || 570 !DemandedMask.intersects(HighBits)) { 571 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), 572 I->getOperand(1)); 573 LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); 574 return InsertNewInstWith(LShr, *I); 575 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. 576 Known.One |= HighBits; 577 } 578 } 579 break; 580 } 581 case Instruction::UDiv: { 582 // UDiv doesn't demand low bits that are zero in the divisor. 583 const APInt *SA; 584 if (match(I->getOperand(1), m_APInt(SA))) { 585 // If the shift is exact, then it does demand the low bits. 586 if (cast<UDivOperator>(I)->isExact()) 587 break; 588 589 // FIXME: Take the demanded mask of the result into account. 590 unsigned RHSTrailingZeros = SA->countTrailingZeros(); 591 APInt DemandedMaskIn = 592 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); 593 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) 594 return I; 595 596 // Propagate zero bits from the input. 597 Known.Zero.setHighBits(std::min( 598 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); 599 } 600 break; 601 } 602 case Instruction::SRem: 603 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 604 // X % -1 demands all the bits because we don't want to introduce 605 // INT_MIN % -1 (== undef) by accident. 606 if (Rem->isMinusOne()) 607 break; 608 APInt RA = Rem->getValue().abs(); 609 if (RA.isPowerOf2()) { 610 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 611 return I->getOperand(0); 612 613 APInt LowBits = RA - 1; 614 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); 615 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) 616 return I; 617 618 // The low bits of LHS are unchanged by the srem. 619 Known.Zero = LHSKnown.Zero & LowBits; 620 Known.One = LHSKnown.One & LowBits; 621 622 // If LHS is non-negative or has all low bits zero, then the upper bits 623 // are all zero. 624 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) 625 Known.Zero |= ~LowBits; 626 627 // If LHS is negative and not all low bits are zero, then the upper bits 628 // are all one. 629 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) 630 Known.One |= ~LowBits; 631 632 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 633 break; 634 } 635 } 636 637 // The sign bit is the LHS's sign bit, except when the result of the 638 // remainder is zero. 639 if (DemandedMask.isSignBitSet()) { 640 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); 641 // If it's known zero, our sign bit is also zero. 642 if (LHSKnown.isNonNegative()) 643 Known.makeNonNegative(); 644 } 645 break; 646 case Instruction::URem: { 647 KnownBits Known2(BitWidth); 648 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 649 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || 650 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) 651 return I; 652 653 unsigned Leaders = Known2.countMinLeadingZeros(); 654 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 655 break; 656 } 657 case Instruction::Call: 658 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 659 switch (II->getIntrinsicID()) { 660 default: break; 661 case Intrinsic::bswap: { 662 // If the only bits demanded come from one byte of the bswap result, 663 // just shift the input byte into position to eliminate the bswap. 664 unsigned NLZ = DemandedMask.countLeadingZeros(); 665 unsigned NTZ = DemandedMask.countTrailingZeros(); 666 667 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 668 // we need all the bits down to bit 8. Likewise, round NLZ. If we 669 // have 14 leading zeros, round to 8. 670 NLZ &= ~7; 671 NTZ &= ~7; 672 // If we need exactly one byte, we can do this transformation. 673 if (BitWidth-NLZ-NTZ == 8) { 674 unsigned ResultBit = NTZ; 675 unsigned InputBit = BitWidth-NTZ-8; 676 677 // Replace this with either a left or right shift to get the byte into 678 // the right place. 679 Instruction *NewVal; 680 if (InputBit > ResultBit) 681 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 682 ConstantInt::get(I->getType(), InputBit-ResultBit)); 683 else 684 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 685 ConstantInt::get(I->getType(), ResultBit-InputBit)); 686 NewVal->takeName(I); 687 return InsertNewInstWith(NewVal, *I); 688 } 689 690 // TODO: Could compute known zero/one bits based on the input. 691 break; 692 } 693 case Intrinsic::fshr: 694 case Intrinsic::fshl: { 695 const APInt *SA; 696 if (!match(I->getOperand(2), m_APInt(SA))) 697 break; 698 699 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 700 // defined, so no need to special-case zero shifts here. 701 uint64_t ShiftAmt = SA->urem(BitWidth); 702 if (II->getIntrinsicID() == Intrinsic::fshr) 703 ShiftAmt = BitWidth - ShiftAmt; 704 705 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); 706 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); 707 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || 708 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) 709 return I; 710 711 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | 712 RHSKnown.Zero.lshr(BitWidth - ShiftAmt); 713 Known.One = LHSKnown.One.shl(ShiftAmt) | 714 RHSKnown.One.lshr(BitWidth - ShiftAmt); 715 break; 716 } 717 case Intrinsic::x86_mmx_pmovmskb: 718 case Intrinsic::x86_sse_movmsk_ps: 719 case Intrinsic::x86_sse2_movmsk_pd: 720 case Intrinsic::x86_sse2_pmovmskb_128: 721 case Intrinsic::x86_avx_movmsk_ps_256: 722 case Intrinsic::x86_avx_movmsk_pd_256: 723 case Intrinsic::x86_avx2_pmovmskb: { 724 // MOVMSK copies the vector elements' sign bits to the low bits 725 // and zeros the high bits. 726 unsigned ArgWidth; 727 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { 728 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. 729 } else { 730 auto Arg = II->getArgOperand(0); 731 auto ArgType = cast<VectorType>(Arg->getType()); 732 ArgWidth = ArgType->getNumElements(); 733 } 734 735 // If we don't need any of low bits then return zero, 736 // we know that DemandedMask is non-zero already. 737 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); 738 if (DemandedElts.isNullValue()) 739 return ConstantInt::getNullValue(VTy); 740 741 // We know that the upper bits are set to zero. 742 Known.Zero.setBitsFrom(ArgWidth); 743 return nullptr; 744 } 745 case Intrinsic::x86_sse42_crc32_64_64: 746 Known.Zero.setBitsFrom(32); 747 return nullptr; 748 } 749 } 750 computeKnownBits(V, Known, Depth, CxtI); 751 break; 752 } 753 754 // If the client is only demanding bits that we know, return the known 755 // constant. 756 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 757 return Constant::getIntegerValue(VTy, Known.One); 758 return nullptr; 759 } 760 761 /// Helper routine of SimplifyDemandedUseBits. It computes Known 762 /// bits. It also tries to handle simplifications that can be done based on 763 /// DemandedMask, but without modifying the Instruction. 764 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, 765 const APInt &DemandedMask, 766 KnownBits &Known, 767 unsigned Depth, 768 Instruction *CxtI) { 769 unsigned BitWidth = DemandedMask.getBitWidth(); 770 Type *ITy = I->getType(); 771 772 KnownBits LHSKnown(BitWidth); 773 KnownBits RHSKnown(BitWidth); 774 775 // Despite the fact that we can't simplify this instruction in all User's 776 // context, we can at least compute the known bits, and we can 777 // do simplifications that apply to *just* the one user if we know that 778 // this instruction has a simpler value in that context. 779 switch (I->getOpcode()) { 780 case Instruction::And: { 781 // If either the LHS or the RHS are Zero, the result is zero. 782 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 783 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 784 CxtI); 785 786 // Output known-0 are known to be clear if zero in either the LHS | RHS. 787 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; 788 // Output known-1 bits are only known if set in both the LHS & RHS. 789 APInt IKnownOne = RHSKnown.One & LHSKnown.One; 790 791 // If the client is only demanding bits that we know, return the known 792 // constant. 793 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 794 return Constant::getIntegerValue(ITy, IKnownOne); 795 796 // If all of the demanded bits are known 1 on one side, return the other. 797 // These bits cannot contribute to the result of the 'and' in this 798 // context. 799 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 800 return I->getOperand(0); 801 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 802 return I->getOperand(1); 803 804 Known.Zero = std::move(IKnownZero); 805 Known.One = std::move(IKnownOne); 806 break; 807 } 808 case Instruction::Or: { 809 // We can simplify (X|Y) -> X or Y in the user's context if we know that 810 // only bits from X or Y are demanded. 811 812 // If either the LHS or the RHS are One, the result is One. 813 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 814 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 815 CxtI); 816 817 // Output known-0 bits are only known if clear in both the LHS & RHS. 818 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; 819 // Output known-1 are known to be set if set in either the LHS | RHS. 820 APInt IKnownOne = RHSKnown.One | LHSKnown.One; 821 822 // If the client is only demanding bits that we know, return the known 823 // constant. 824 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 825 return Constant::getIntegerValue(ITy, IKnownOne); 826 827 // If all of the demanded bits are known zero on one side, return the 828 // other. These bits cannot contribute to the result of the 'or' in this 829 // context. 830 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 831 return I->getOperand(0); 832 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 833 return I->getOperand(1); 834 835 Known.Zero = std::move(IKnownZero); 836 Known.One = std::move(IKnownOne); 837 break; 838 } 839 case Instruction::Xor: { 840 // We can simplify (X^Y) -> X or Y in the user's context if we know that 841 // only bits from X or Y are demanded. 842 843 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); 844 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, 845 CxtI); 846 847 // Output known-0 bits are known if clear or set in both the LHS & RHS. 848 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | 849 (RHSKnown.One & LHSKnown.One); 850 // Output known-1 are known to be set if set in only one of the LHS, RHS. 851 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | 852 (RHSKnown.One & LHSKnown.Zero); 853 854 // If the client is only demanding bits that we know, return the known 855 // constant. 856 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) 857 return Constant::getIntegerValue(ITy, IKnownOne); 858 859 // If all of the demanded bits are known zero on one side, return the 860 // other. 861 if (DemandedMask.isSubsetOf(RHSKnown.Zero)) 862 return I->getOperand(0); 863 if (DemandedMask.isSubsetOf(LHSKnown.Zero)) 864 return I->getOperand(1); 865 866 // Output known-0 bits are known if clear or set in both the LHS & RHS. 867 Known.Zero = std::move(IKnownZero); 868 // Output known-1 are known to be set if set in only one of the LHS, RHS. 869 Known.One = std::move(IKnownOne); 870 break; 871 } 872 default: 873 // Compute the Known bits to simplify things downstream. 874 computeKnownBits(I, Known, Depth, CxtI); 875 876 // If this user is only demanding bits that we know, return the known 877 // constant. 878 if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) 879 return Constant::getIntegerValue(ITy, Known.One); 880 881 break; 882 } 883 884 return nullptr; 885 } 886 887 888 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 889 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 890 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 891 /// of "C2-C1". 892 /// 893 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 894 /// ..., bn}, without considering the specific value X is holding. 895 /// This transformation is legal iff one of following conditions is hold: 896 /// 1) All the bit in S are 0, in this case E1 == E2. 897 /// 2) We don't care those bits in S, per the input DemandedMask. 898 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 899 /// rest bits. 900 /// 901 /// Currently we only test condition 2). 902 /// 903 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 904 /// not successful. 905 Value * 906 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, 907 Instruction *Shl, const APInt &ShlOp1, 908 const APInt &DemandedMask, 909 KnownBits &Known) { 910 if (!ShlOp1 || !ShrOp1) 911 return nullptr; // No-op. 912 913 Value *VarX = Shr->getOperand(0); 914 Type *Ty = VarX->getType(); 915 unsigned BitWidth = Ty->getScalarSizeInBits(); 916 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 917 return nullptr; // Undef. 918 919 unsigned ShlAmt = ShlOp1.getZExtValue(); 920 unsigned ShrAmt = ShrOp1.getZExtValue(); 921 922 Known.One.clearAllBits(); 923 Known.Zero.setLowBits(ShlAmt - 1); 924 Known.Zero &= DemandedMask; 925 926 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 927 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 928 929 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 930 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 931 (BitMask1.ashr(ShrAmt) << ShlAmt); 932 933 if (ShrAmt <= ShlAmt) { 934 BitMask2 <<= (ShlAmt - ShrAmt); 935 } else { 936 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 937 BitMask2.ashr(ShrAmt - ShlAmt); 938 } 939 940 // Check if condition-2 (see the comment to this function) is satified. 941 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 942 if (ShrAmt == ShlAmt) 943 return VarX; 944 945 if (!Shr->hasOneUse()) 946 return nullptr; 947 948 BinaryOperator *New; 949 if (ShrAmt < ShlAmt) { 950 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 951 New = BinaryOperator::CreateShl(VarX, Amt); 952 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 953 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 954 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 955 } else { 956 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 957 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 958 BinaryOperator::CreateAShr(VarX, Amt); 959 if (cast<BinaryOperator>(Shr)->isExact()) 960 New->setIsExact(true); 961 } 962 963 return InsertNewInstWith(New, *Shl); 964 } 965 966 return nullptr; 967 } 968 969 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. 970 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II, 971 APInt DemandedElts, 972 int DMaskIdx, 973 int TFCIdx) { 974 unsigned VWidth = II->getType()->getVectorNumElements(); 975 if (VWidth == 1) 976 return nullptr; 977 978 // Need to change to new instruction format 979 ConstantInt *TFC = nullptr; 980 bool TFELWEEnabled = false; 981 if (TFCIdx > 0) { 982 TFC = dyn_cast<ConstantInt>(II->getArgOperand(TFCIdx)); 983 TFELWEEnabled = TFC->getZExtValue() & 0x1 // TFE 984 || TFC->getZExtValue() & 0x2; // LWE 985 } 986 987 if (TFELWEEnabled) 988 return nullptr; // TFE not yet supported 989 990 ConstantInt *NewDMask = nullptr; 991 992 if (DMaskIdx < 0) { 993 // Pretend that a prefix of elements is demanded to simplify the code 994 // below. 995 DemandedElts = (1 << DemandedElts.getActiveBits()) - 1; 996 } else { 997 ConstantInt *DMask = dyn_cast<ConstantInt>(II->getArgOperand(DMaskIdx)); 998 if (!DMask) 999 return nullptr; // non-constant dmask is not supported by codegen 1000 1001 unsigned DMaskVal = DMask->getZExtValue() & 0xf; 1002 1003 // Mask off values that are undefined because the dmask doesn't cover them 1004 DemandedElts &= (1 << countPopulation(DMaskVal)) - 1; 1005 1006 unsigned NewDMaskVal = 0; 1007 unsigned OrigLoadIdx = 0; 1008 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { 1009 const unsigned Bit = 1 << SrcIdx; 1010 if (!!(DMaskVal & Bit)) { 1011 if (!!DemandedElts[OrigLoadIdx]) 1012 NewDMaskVal |= Bit; 1013 OrigLoadIdx++; 1014 } 1015 } 1016 1017 if (DMaskVal != NewDMaskVal) 1018 NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal); 1019 } 1020 1021 // TODO: Handle 3 vectors when supported in code gen. 1022 unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countPopulation()); 1023 if (!NewNumElts) 1024 return UndefValue::get(II->getType()); 1025 1026 if (NewNumElts >= VWidth && DemandedElts.isMask()) { 1027 if (NewDMask) 1028 II->setArgOperand(DMaskIdx, NewDMask); 1029 return nullptr; 1030 } 1031 1032 // Determine the overload types of the original intrinsic. 1033 auto IID = II->getIntrinsicID(); 1034 SmallVector<Intrinsic::IITDescriptor, 16> Table; 1035 getIntrinsicInfoTableEntries(IID, Table); 1036 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1037 1038 FunctionType *FTy = II->getCalledFunction()->getFunctionType(); 1039 SmallVector<Type *, 6> OverloadTys; 1040 Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, OverloadTys); 1041 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1042 Intrinsic::matchIntrinsicType(FTy->getParamType(i), TableRef, OverloadTys); 1043 1044 // Get the new return type overload of the intrinsic. 1045 Module *M = II->getParent()->getParent()->getParent(); 1046 Type *EltTy = II->getType()->getVectorElementType(); 1047 Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts); 1048 1049 OverloadTys[0] = NewTy; 1050 Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys); 1051 1052 SmallVector<Value *, 16> Args; 1053 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I) 1054 Args.push_back(II->getArgOperand(I)); 1055 1056 if (NewDMask) 1057 Args[DMaskIdx] = NewDMask; 1058 1059 IRBuilderBase::InsertPointGuard Guard(Builder); 1060 Builder.SetInsertPoint(II); 1061 1062 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); 1063 NewCall->takeName(II); 1064 NewCall->copyMetadata(*II); 1065 1066 if (NewNumElts == 1) { 1067 return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall, 1068 DemandedElts.countTrailingZeros()); 1069 } 1070 1071 SmallVector<uint32_t, 8> EltMask; 1072 unsigned NewLoadIdx = 0; 1073 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { 1074 if (!!DemandedElts[OrigLoadIdx]) 1075 EltMask.push_back(NewLoadIdx++); 1076 else 1077 EltMask.push_back(NewNumElts); 1078 } 1079 1080 Value *Shuffle = 1081 Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask); 1082 1083 return Shuffle; 1084 } 1085 1086 /// The specified value produces a vector with any number of elements. 1087 /// DemandedElts contains the set of elements that are actually used by the 1088 /// caller. This method analyzes which elements of the operand are undef and 1089 /// returns that information in UndefElts. 1090 /// 1091 /// If the information about demanded elements can be used to simplify the 1092 /// operation, the operation is simplified, then the resultant value is 1093 /// returned. This returns null if no change was made. 1094 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 1095 APInt &UndefElts, 1096 unsigned Depth) { 1097 unsigned VWidth = V->getType()->getVectorNumElements(); 1098 APInt EltMask(APInt::getAllOnesValue(VWidth)); 1099 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 1100 1101 if (isa<UndefValue>(V)) { 1102 // If the entire vector is undefined, just return this info. 1103 UndefElts = EltMask; 1104 return nullptr; 1105 } 1106 1107 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. 1108 UndefElts = EltMask; 1109 return UndefValue::get(V->getType()); 1110 } 1111 1112 UndefElts = 0; 1113 1114 if (auto *C = dyn_cast<Constant>(V)) { 1115 // Check if this is identity. If so, return 0 since we are not simplifying 1116 // anything. 1117 if (DemandedElts.isAllOnesValue()) 1118 return nullptr; 1119 1120 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 1121 Constant *Undef = UndefValue::get(EltTy); 1122 SmallVector<Constant*, 16> Elts; 1123 for (unsigned i = 0; i != VWidth; ++i) { 1124 if (!DemandedElts[i]) { // If not demanded, set to undef. 1125 Elts.push_back(Undef); 1126 UndefElts.setBit(i); 1127 continue; 1128 } 1129 1130 Constant *Elt = C->getAggregateElement(i); 1131 if (!Elt) return nullptr; 1132 1133 if (isa<UndefValue>(Elt)) { // Already undef. 1134 Elts.push_back(Undef); 1135 UndefElts.setBit(i); 1136 } else { // Otherwise, defined. 1137 Elts.push_back(Elt); 1138 } 1139 } 1140 1141 // If we changed the constant, return it. 1142 Constant *NewCV = ConstantVector::get(Elts); 1143 return NewCV != C ? NewCV : nullptr; 1144 } 1145 1146 // Limit search depth. 1147 if (Depth == 10) 1148 return nullptr; 1149 1150 // If multiple users are using the root value, proceed with 1151 // simplification conservatively assuming that all elements 1152 // are needed. 1153 if (!V->hasOneUse()) { 1154 // Quit if we find multiple users of a non-root value though. 1155 // They'll be handled when it's their turn to be visited by 1156 // the main instcombine process. 1157 if (Depth != 0) 1158 // TODO: Just compute the UndefElts information recursively. 1159 return nullptr; 1160 1161 // Conservatively assume that all elements are needed. 1162 DemandedElts = EltMask; 1163 } 1164 1165 Instruction *I = dyn_cast<Instruction>(V); 1166 if (!I) return nullptr; // Only analyze instructions. 1167 1168 bool MadeChange = false; 1169 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, 1170 APInt Demanded, APInt &Undef) { 1171 auto *II = dyn_cast<IntrinsicInst>(Inst); 1172 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); 1173 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { 1174 if (II) 1175 II->setArgOperand(OpNum, V); 1176 else 1177 Inst->setOperand(OpNum, V); 1178 MadeChange = true; 1179 } 1180 }; 1181 1182 APInt UndefElts2(VWidth, 0); 1183 APInt UndefElts3(VWidth, 0); 1184 switch (I->getOpcode()) { 1185 default: break; 1186 1187 case Instruction::InsertElement: { 1188 // If this is a variable index, we don't know which element it overwrites. 1189 // demand exactly the same input as we produce. 1190 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1191 if (!Idx) { 1192 // Note that we can't propagate undef elt info, because we don't know 1193 // which elt is getting updated. 1194 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); 1195 break; 1196 } 1197 1198 // The element inserted overwrites whatever was there, so the input demanded 1199 // set is simpler than the output set. 1200 unsigned IdxNo = Idx->getZExtValue(); 1201 APInt PreInsertDemandedElts = DemandedElts; 1202 if (IdxNo < VWidth) 1203 PreInsertDemandedElts.clearBit(IdxNo); 1204 1205 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); 1206 1207 // If this is inserting an element that isn't demanded, remove this 1208 // insertelement. 1209 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1210 Worklist.Add(I); 1211 return I->getOperand(0); 1212 } 1213 1214 // The inserted element is defined. 1215 UndefElts.clearBit(IdxNo); 1216 break; 1217 } 1218 case Instruction::ShuffleVector: { 1219 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1220 unsigned LHSVWidth = 1221 Shuffle->getOperand(0)->getType()->getVectorNumElements(); 1222 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 1223 for (unsigned i = 0; i < VWidth; i++) { 1224 if (DemandedElts[i]) { 1225 unsigned MaskVal = Shuffle->getMaskValue(i); 1226 if (MaskVal != -1u) { 1227 assert(MaskVal < LHSVWidth * 2 && 1228 "shufflevector mask index out of range!"); 1229 if (MaskVal < LHSVWidth) 1230 LeftDemanded.setBit(MaskVal); 1231 else 1232 RightDemanded.setBit(MaskVal - LHSVWidth); 1233 } 1234 } 1235 } 1236 1237 APInt LHSUndefElts(LHSVWidth, 0); 1238 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); 1239 1240 APInt RHSUndefElts(LHSVWidth, 0); 1241 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); 1242 1243 bool NewUndefElts = false; 1244 unsigned LHSIdx = -1u, LHSValIdx = -1u; 1245 unsigned RHSIdx = -1u, RHSValIdx = -1u; 1246 bool LHSUniform = true; 1247 bool RHSUniform = true; 1248 for (unsigned i = 0; i < VWidth; i++) { 1249 unsigned MaskVal = Shuffle->getMaskValue(i); 1250 if (MaskVal == -1u) { 1251 UndefElts.setBit(i); 1252 } else if (!DemandedElts[i]) { 1253 NewUndefElts = true; 1254 UndefElts.setBit(i); 1255 } else if (MaskVal < LHSVWidth) { 1256 if (LHSUndefElts[MaskVal]) { 1257 NewUndefElts = true; 1258 UndefElts.setBit(i); 1259 } else { 1260 LHSIdx = LHSIdx == -1u ? i : LHSVWidth; 1261 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth; 1262 LHSUniform = LHSUniform && (MaskVal == i); 1263 } 1264 } else { 1265 if (RHSUndefElts[MaskVal - LHSVWidth]) { 1266 NewUndefElts = true; 1267 UndefElts.setBit(i); 1268 } else { 1269 RHSIdx = RHSIdx == -1u ? i : LHSVWidth; 1270 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth; 1271 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i); 1272 } 1273 } 1274 } 1275 1276 // Try to transform shuffle with constant vector and single element from 1277 // this constant vector to single insertelement instruction. 1278 // shufflevector V, C, <v1, v2, .., ci, .., vm> -> 1279 // insertelement V, C[ci], ci-n 1280 if (LHSVWidth == Shuffle->getType()->getNumElements()) { 1281 Value *Op = nullptr; 1282 Constant *Value = nullptr; 1283 unsigned Idx = -1u; 1284 1285 // Find constant vector with the single element in shuffle (LHS or RHS). 1286 if (LHSIdx < LHSVWidth && RHSUniform) { 1287 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { 1288 Op = Shuffle->getOperand(1); 1289 Value = CV->getOperand(LHSValIdx); 1290 Idx = LHSIdx; 1291 } 1292 } 1293 if (RHSIdx < LHSVWidth && LHSUniform) { 1294 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { 1295 Op = Shuffle->getOperand(0); 1296 Value = CV->getOperand(RHSValIdx); 1297 Idx = RHSIdx; 1298 } 1299 } 1300 // Found constant vector with single element - convert to insertelement. 1301 if (Op && Value) { 1302 Instruction *New = InsertElementInst::Create( 1303 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), 1304 Shuffle->getName()); 1305 InsertNewInstWith(New, *Shuffle); 1306 return New; 1307 } 1308 } 1309 if (NewUndefElts) { 1310 // Add additional discovered undefs. 1311 SmallVector<Constant*, 16> Elts; 1312 for (unsigned i = 0; i < VWidth; ++i) { 1313 if (UndefElts[i]) 1314 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1315 else 1316 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1317 Shuffle->getMaskValue(i))); 1318 } 1319 I->setOperand(2, ConstantVector::get(Elts)); 1320 MadeChange = true; 1321 } 1322 break; 1323 } 1324 case Instruction::Select: { 1325 // If this is a vector select, try to transform the select condition based 1326 // on the current demanded elements. 1327 SelectInst *Sel = cast<SelectInst>(I); 1328 if (Sel->getCondition()->getType()->isVectorTy()) { 1329 // TODO: We are not doing anything with UndefElts based on this call. 1330 // It is overwritten below based on the other select operands. If an 1331 // element of the select condition is known undef, then we are free to 1332 // choose the output value from either arm of the select. If we know that 1333 // one of those values is undef, then the output can be undef. 1334 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1335 } 1336 1337 // Next, see if we can transform the arms of the select. 1338 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); 1339 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { 1340 for (unsigned i = 0; i < VWidth; i++) { 1341 // isNullValue() always returns false when called on a ConstantExpr. 1342 // Skip constant expressions to avoid propagating incorrect information. 1343 Constant *CElt = CV->getAggregateElement(i); 1344 if (isa<ConstantExpr>(CElt)) 1345 continue; 1346 // TODO: If a select condition element is undef, we can demand from 1347 // either side. If one side is known undef, choosing that side would 1348 // propagate undef. 1349 if (CElt->isNullValue()) 1350 DemandedLHS.clearBit(i); 1351 else 1352 DemandedRHS.clearBit(i); 1353 } 1354 } 1355 1356 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); 1357 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); 1358 1359 // Output elements are undefined if the element from each arm is undefined. 1360 // TODO: This can be improved. See comment in select condition handling. 1361 UndefElts = UndefElts2 & UndefElts3; 1362 break; 1363 } 1364 case Instruction::BitCast: { 1365 // Vector->vector casts only. 1366 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1367 if (!VTy) break; 1368 unsigned InVWidth = VTy->getNumElements(); 1369 APInt InputDemandedElts(InVWidth, 0); 1370 UndefElts2 = APInt(InVWidth, 0); 1371 unsigned Ratio; 1372 1373 if (VWidth == InVWidth) { 1374 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1375 // elements as are demanded of us. 1376 Ratio = 1; 1377 InputDemandedElts = DemandedElts; 1378 } else if ((VWidth % InVWidth) == 0) { 1379 // If the number of elements in the output is a multiple of the number of 1380 // elements in the input then an input element is live if any of the 1381 // corresponding output elements are live. 1382 Ratio = VWidth / InVWidth; 1383 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1384 if (DemandedElts[OutIdx]) 1385 InputDemandedElts.setBit(OutIdx / Ratio); 1386 } else if ((InVWidth % VWidth) == 0) { 1387 // If the number of elements in the input is a multiple of the number of 1388 // elements in the output then an input element is live if the 1389 // corresponding output element is live. 1390 Ratio = InVWidth / VWidth; 1391 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1392 if (DemandedElts[InIdx / Ratio]) 1393 InputDemandedElts.setBit(InIdx); 1394 } else { 1395 // Unsupported so far. 1396 break; 1397 } 1398 1399 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); 1400 1401 if (VWidth == InVWidth) { 1402 UndefElts = UndefElts2; 1403 } else if ((VWidth % InVWidth) == 0) { 1404 // If the number of elements in the output is a multiple of the number of 1405 // elements in the input then an output element is undef if the 1406 // corresponding input element is undef. 1407 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1408 if (UndefElts2[OutIdx / Ratio]) 1409 UndefElts.setBit(OutIdx); 1410 } else if ((InVWidth % VWidth) == 0) { 1411 // If the number of elements in the input is a multiple of the number of 1412 // elements in the output then an output element is undef if all of the 1413 // corresponding input elements are undef. 1414 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1415 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); 1416 if (SubUndef.countPopulation() == Ratio) 1417 UndefElts.setBit(OutIdx); 1418 } 1419 } else { 1420 llvm_unreachable("Unimp"); 1421 } 1422 break; 1423 } 1424 case Instruction::FPTrunc: 1425 case Instruction::FPExt: 1426 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1427 break; 1428 1429 case Instruction::Call: { 1430 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1431 if (!II) break; 1432 switch (II->getIntrinsicID()) { 1433 case Intrinsic::x86_xop_vfrcz_ss: 1434 case Intrinsic::x86_xop_vfrcz_sd: 1435 // The instructions for these intrinsics are speced to zero upper bits not 1436 // pass them through like other scalar intrinsics. So we shouldn't just 1437 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. 1438 // Instead we should return a zero vector. 1439 if (!DemandedElts[0]) { 1440 Worklist.Add(II); 1441 return ConstantAggregateZero::get(II->getType()); 1442 } 1443 1444 // Only the lower element is used. 1445 DemandedElts = 1; 1446 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1447 1448 // Only the lower element is undefined. The high elements are zero. 1449 UndefElts = UndefElts[0]; 1450 break; 1451 1452 // Unary scalar-as-vector operations that work column-wise. 1453 case Intrinsic::x86_sse_rcp_ss: 1454 case Intrinsic::x86_sse_rsqrt_ss: 1455 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1456 1457 // If lowest element of a scalar op isn't used then use Arg0. 1458 if (!DemandedElts[0]) { 1459 Worklist.Add(II); 1460 return II->getArgOperand(0); 1461 } 1462 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions 1463 // checks). 1464 break; 1465 1466 // Binary scalar-as-vector operations that work column-wise. The high 1467 // elements come from operand 0. The low element is a function of both 1468 // operands. 1469 case Intrinsic::x86_sse_min_ss: 1470 case Intrinsic::x86_sse_max_ss: 1471 case Intrinsic::x86_sse_cmp_ss: 1472 case Intrinsic::x86_sse2_min_sd: 1473 case Intrinsic::x86_sse2_max_sd: 1474 case Intrinsic::x86_sse2_cmp_sd: { 1475 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1476 1477 // If lowest element of a scalar op isn't used then use Arg0. 1478 if (!DemandedElts[0]) { 1479 Worklist.Add(II); 1480 return II->getArgOperand(0); 1481 } 1482 1483 // Only lower element is used for operand 1. 1484 DemandedElts = 1; 1485 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1486 1487 // Lower element is undefined if both lower elements are undefined. 1488 // Consider things like undef&0. The result is known zero, not undef. 1489 if (!UndefElts2[0]) 1490 UndefElts.clearBit(0); 1491 1492 break; 1493 } 1494 1495 // Binary scalar-as-vector operations that work column-wise. The high 1496 // elements come from operand 0 and the low element comes from operand 1. 1497 case Intrinsic::x86_sse41_round_ss: 1498 case Intrinsic::x86_sse41_round_sd: { 1499 // Don't use the low element of operand 0. 1500 APInt DemandedElts2 = DemandedElts; 1501 DemandedElts2.clearBit(0); 1502 simplifyAndSetOp(II, 0, DemandedElts2, UndefElts); 1503 1504 // If lowest element of a scalar op isn't used then use Arg0. 1505 if (!DemandedElts[0]) { 1506 Worklist.Add(II); 1507 return II->getArgOperand(0); 1508 } 1509 1510 // Only lower element is used for operand 1. 1511 DemandedElts = 1; 1512 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1513 1514 // Take the high undef elements from operand 0 and take the lower element 1515 // from operand 1. 1516 UndefElts.clearBit(0); 1517 UndefElts |= UndefElts2[0]; 1518 break; 1519 } 1520 1521 // Three input scalar-as-vector operations that work column-wise. The high 1522 // elements come from operand 0 and the low element is a function of all 1523 // three inputs. 1524 case Intrinsic::x86_avx512_mask_add_ss_round: 1525 case Intrinsic::x86_avx512_mask_div_ss_round: 1526 case Intrinsic::x86_avx512_mask_mul_ss_round: 1527 case Intrinsic::x86_avx512_mask_sub_ss_round: 1528 case Intrinsic::x86_avx512_mask_max_ss_round: 1529 case Intrinsic::x86_avx512_mask_min_ss_round: 1530 case Intrinsic::x86_avx512_mask_add_sd_round: 1531 case Intrinsic::x86_avx512_mask_div_sd_round: 1532 case Intrinsic::x86_avx512_mask_mul_sd_round: 1533 case Intrinsic::x86_avx512_mask_sub_sd_round: 1534 case Intrinsic::x86_avx512_mask_max_sd_round: 1535 case Intrinsic::x86_avx512_mask_min_sd_round: 1536 simplifyAndSetOp(II, 0, DemandedElts, UndefElts); 1537 1538 // If lowest element of a scalar op isn't used then use Arg0. 1539 if (!DemandedElts[0]) { 1540 Worklist.Add(II); 1541 return II->getArgOperand(0); 1542 } 1543 1544 // Only lower element is used for operand 1 and 2. 1545 DemandedElts = 1; 1546 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); 1547 simplifyAndSetOp(II, 2, DemandedElts, UndefElts3); 1548 1549 // Lower element is undefined if all three lower elements are undefined. 1550 // Consider things like undef&0. The result is known zero, not undef. 1551 if (!UndefElts2[0] || !UndefElts3[0]) 1552 UndefElts.clearBit(0); 1553 1554 break; 1555 1556 case Intrinsic::x86_sse2_packssdw_128: 1557 case Intrinsic::x86_sse2_packsswb_128: 1558 case Intrinsic::x86_sse2_packuswb_128: 1559 case Intrinsic::x86_sse41_packusdw: 1560 case Intrinsic::x86_avx2_packssdw: 1561 case Intrinsic::x86_avx2_packsswb: 1562 case Intrinsic::x86_avx2_packusdw: 1563 case Intrinsic::x86_avx2_packuswb: 1564 case Intrinsic::x86_avx512_packssdw_512: 1565 case Intrinsic::x86_avx512_packsswb_512: 1566 case Intrinsic::x86_avx512_packusdw_512: 1567 case Intrinsic::x86_avx512_packuswb_512: { 1568 auto *Ty0 = II->getArgOperand(0)->getType(); 1569 unsigned InnerVWidth = Ty0->getVectorNumElements(); 1570 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); 1571 1572 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; 1573 unsigned VWidthPerLane = VWidth / NumLanes; 1574 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; 1575 1576 // Per lane, pack the elements of the first input and then the second. 1577 // e.g. 1578 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) 1579 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) 1580 for (int OpNum = 0; OpNum != 2; ++OpNum) { 1581 APInt OpDemandedElts(InnerVWidth, 0); 1582 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1583 unsigned LaneIdx = Lane * VWidthPerLane; 1584 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { 1585 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; 1586 if (DemandedElts[Idx]) 1587 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); 1588 } 1589 } 1590 1591 // Demand elements from the operand. 1592 APInt OpUndefElts(InnerVWidth, 0); 1593 simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts); 1594 1595 // Pack the operand's UNDEF elements, one lane at a time. 1596 OpUndefElts = OpUndefElts.zext(VWidth); 1597 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1598 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); 1599 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); 1600 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); 1601 UndefElts |= LaneElts; 1602 } 1603 } 1604 break; 1605 } 1606 1607 // PSHUFB 1608 case Intrinsic::x86_ssse3_pshuf_b_128: 1609 case Intrinsic::x86_avx2_pshuf_b: 1610 case Intrinsic::x86_avx512_pshuf_b_512: 1611 // PERMILVAR 1612 case Intrinsic::x86_avx_vpermilvar_ps: 1613 case Intrinsic::x86_avx_vpermilvar_ps_256: 1614 case Intrinsic::x86_avx512_vpermilvar_ps_512: 1615 case Intrinsic::x86_avx_vpermilvar_pd: 1616 case Intrinsic::x86_avx_vpermilvar_pd_256: 1617 case Intrinsic::x86_avx512_vpermilvar_pd_512: 1618 // PERMV 1619 case Intrinsic::x86_avx2_permd: 1620 case Intrinsic::x86_avx2_permps: { 1621 simplifyAndSetOp(II, 1, DemandedElts, UndefElts); 1622 break; 1623 } 1624 1625 // SSE4A instructions leave the upper 64-bits of the 128-bit result 1626 // in an undefined state. 1627 case Intrinsic::x86_sse4a_extrq: 1628 case Intrinsic::x86_sse4a_extrqi: 1629 case Intrinsic::x86_sse4a_insertq: 1630 case Intrinsic::x86_sse4a_insertqi: 1631 UndefElts.setHighBits(VWidth / 2); 1632 break; 1633 case Intrinsic::amdgcn_buffer_load: 1634 case Intrinsic::amdgcn_buffer_load_format: 1635 case Intrinsic::amdgcn_raw_buffer_load: 1636 case Intrinsic::amdgcn_raw_buffer_load_format: 1637 case Intrinsic::amdgcn_struct_buffer_load: 1638 case Intrinsic::amdgcn_struct_buffer_load_format: 1639 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts); 1640 default: { 1641 if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID())) 1642 return simplifyAMDGCNMemoryIntrinsicDemanded( 1643 II, DemandedElts, 0, II->getNumArgOperands() - 2); 1644 1645 break; 1646 } 1647 } // switch on IntrinsicID 1648 break; 1649 } // case Call 1650 } // switch on Opcode 1651 1652 // TODO: We bail completely on integer div/rem and shifts because they have 1653 // UB/poison potential, but that should be refined. 1654 BinaryOperator *BO; 1655 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { 1656 simplifyAndSetOp(I, 0, DemandedElts, UndefElts); 1657 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); 1658 1659 // Any change to an instruction with potential poison must clear those flags 1660 // because we can not guarantee those constraints now. Other analysis may 1661 // determine that it is safe to re-apply the flags. 1662 if (MadeChange) 1663 BO->dropPoisonGeneratingFlags(); 1664 1665 // Output elements are undefined if both are undefined. Consider things 1666 // like undef & 0. The result is known zero, not undef. 1667 UndefElts &= UndefElts2; 1668 } 1669 1670 return MadeChange ? I : nullptr; 1671 } 1672