1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitSelect function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/CmpInstAnalysis.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/KnownBits.h" 41 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 42 #include <cassert> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 51 SelectPatternFlavor SPF, Value *A, Value *B) { 52 CmpInst::Predicate Pred = getMinMaxPred(SPF); 53 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 54 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 55 } 56 57 /// Replace a select operand based on an equality comparison with the identity 58 /// constant of a binop. 59 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 60 const TargetLibraryInfo &TLI) { 61 // The select condition must be an equality compare with a constant operand. 62 Value *X; 63 Constant *C; 64 CmpInst::Predicate Pred; 65 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 66 return nullptr; 67 68 bool IsEq; 69 if (ICmpInst::isEquality(Pred)) 70 IsEq = Pred == ICmpInst::ICMP_EQ; 71 else if (Pred == FCmpInst::FCMP_OEQ) 72 IsEq = true; 73 else if (Pred == FCmpInst::FCMP_UNE) 74 IsEq = false; 75 else 76 return nullptr; 77 78 // A select operand must be a binop. 79 BinaryOperator *BO; 80 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 81 return nullptr; 82 83 // The compare constant must be the identity constant for that binop. 84 // If this a floating-point compare with 0.0, any zero constant will do. 85 Type *Ty = BO->getType(); 86 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 87 if (IdC != C) { 88 if (!IdC || !CmpInst::isFPPredicate(Pred)) 89 return nullptr; 90 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 91 return nullptr; 92 } 93 94 // Last, match the compare variable operand with a binop operand. 95 Value *Y; 96 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 97 return nullptr; 98 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 99 return nullptr; 100 101 // +0.0 compares equal to -0.0, and so it does not behave as required for this 102 // transform. Bail out if we can not exclude that possibility. 103 if (isa<FPMathOperator>(BO)) 104 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 105 return nullptr; 106 107 // BO = binop Y, X 108 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 109 // => 110 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 111 Sel.setOperand(IsEq ? 1 : 2, Y); 112 return &Sel; 113 } 114 115 /// This folds: 116 /// select (icmp eq (and X, C1)), TC, FC 117 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 118 /// To something like: 119 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 120 /// Or: 121 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 122 /// With some variations depending if FC is larger than TC, or the shift 123 /// isn't needed, or the bit widths don't match. 124 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 125 InstCombiner::BuilderTy &Builder) { 126 const APInt *SelTC, *SelFC; 127 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 128 !match(Sel.getFalseValue(), m_APInt(SelFC))) 129 return nullptr; 130 131 // If this is a vector select, we need a vector compare. 132 Type *SelType = Sel.getType(); 133 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 134 return nullptr; 135 136 Value *V; 137 APInt AndMask; 138 bool CreateAnd = false; 139 ICmpInst::Predicate Pred = Cmp->getPredicate(); 140 if (ICmpInst::isEquality(Pred)) { 141 if (!match(Cmp->getOperand(1), m_Zero())) 142 return nullptr; 143 144 V = Cmp->getOperand(0); 145 const APInt *AndRHS; 146 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 147 return nullptr; 148 149 AndMask = *AndRHS; 150 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 151 Pred, V, AndMask)) { 152 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 153 if (!AndMask.isPowerOf2()) 154 return nullptr; 155 156 CreateAnd = true; 157 } else { 158 return nullptr; 159 } 160 161 // In general, when both constants are non-zero, we would need an offset to 162 // replace the select. This would require more instructions than we started 163 // with. But there's one special-case that we handle here because it can 164 // simplify/reduce the instructions. 165 APInt TC = *SelTC; 166 APInt FC = *SelFC; 167 if (!TC.isNullValue() && !FC.isNullValue()) { 168 // If the select constants differ by exactly one bit and that's the same 169 // bit that is masked and checked by the select condition, the select can 170 // be replaced by bitwise logic to set/clear one bit of the constant result. 171 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 172 return nullptr; 173 if (CreateAnd) { 174 // If we have to create an 'and', then we must kill the cmp to not 175 // increase the instruction count. 176 if (!Cmp->hasOneUse()) 177 return nullptr; 178 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 179 } 180 bool ExtraBitInTC = TC.ugt(FC); 181 if (Pred == ICmpInst::ICMP_EQ) { 182 // If the masked bit in V is clear, clear or set the bit in the result: 183 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 184 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 185 Constant *C = ConstantInt::get(SelType, TC); 186 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 187 } 188 if (Pred == ICmpInst::ICMP_NE) { 189 // If the masked bit in V is set, set or clear the bit in the result: 190 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 191 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 192 Constant *C = ConstantInt::get(SelType, FC); 193 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 194 } 195 llvm_unreachable("Only expecting equality predicates"); 196 } 197 198 // Make sure one of the select arms is a power-of-2. 199 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 200 return nullptr; 201 202 // Determine which shift is needed to transform result of the 'and' into the 203 // desired result. 204 const APInt &ValC = !TC.isNullValue() ? TC : FC; 205 unsigned ValZeros = ValC.logBase2(); 206 unsigned AndZeros = AndMask.logBase2(); 207 208 // Insert the 'and' instruction on the input to the truncate. 209 if (CreateAnd) 210 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 211 212 // If types don't match, we can still convert the select by introducing a zext 213 // or a trunc of the 'and'. 214 if (ValZeros > AndZeros) { 215 V = Builder.CreateZExtOrTrunc(V, SelType); 216 V = Builder.CreateShl(V, ValZeros - AndZeros); 217 } else if (ValZeros < AndZeros) { 218 V = Builder.CreateLShr(V, AndZeros - ValZeros); 219 V = Builder.CreateZExtOrTrunc(V, SelType); 220 } else { 221 V = Builder.CreateZExtOrTrunc(V, SelType); 222 } 223 224 // Okay, now we know that everything is set up, we just don't know whether we 225 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 226 bool ShouldNotVal = !TC.isNullValue(); 227 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 228 if (ShouldNotVal) 229 V = Builder.CreateXor(V, ValC); 230 231 return V; 232 } 233 234 /// We want to turn code that looks like this: 235 /// %C = or %A, %B 236 /// %D = select %cond, %C, %A 237 /// into: 238 /// %C = select %cond, %B, 0 239 /// %D = or %A, %C 240 /// 241 /// Assuming that the specified instruction is an operand to the select, return 242 /// a bitmask indicating which operands of this instruction are foldable if they 243 /// equal the other incoming value of the select. 244 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 245 switch (I->getOpcode()) { 246 case Instruction::Add: 247 case Instruction::Mul: 248 case Instruction::And: 249 case Instruction::Or: 250 case Instruction::Xor: 251 return 3; // Can fold through either operand. 252 case Instruction::Sub: // Can only fold on the amount subtracted. 253 case Instruction::Shl: // Can only fold on the shift amount. 254 case Instruction::LShr: 255 case Instruction::AShr: 256 return 1; 257 default: 258 return 0; // Cannot fold 259 } 260 } 261 262 /// For the same transformation as the previous function, return the identity 263 /// constant that goes into the select. 264 static APInt getSelectFoldableConstant(BinaryOperator *I) { 265 switch (I->getOpcode()) { 266 default: llvm_unreachable("This cannot happen!"); 267 case Instruction::Add: 268 case Instruction::Sub: 269 case Instruction::Or: 270 case Instruction::Xor: 271 case Instruction::Shl: 272 case Instruction::LShr: 273 case Instruction::AShr: 274 return APInt::getNullValue(I->getType()->getScalarSizeInBits()); 275 case Instruction::And: 276 return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); 277 case Instruction::Mul: 278 return APInt(I->getType()->getScalarSizeInBits(), 1); 279 } 280 } 281 282 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 283 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 284 Instruction *FI) { 285 // Don't break up min/max patterns. The hasOneUse checks below prevent that 286 // for most cases, but vector min/max with bitcasts can be transformed. If the 287 // one-use restrictions are eased for other patterns, we still don't want to 288 // obfuscate min/max. 289 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 290 match(&SI, m_SMax(m_Value(), m_Value())) || 291 match(&SI, m_UMin(m_Value(), m_Value())) || 292 match(&SI, m_UMax(m_Value(), m_Value())))) 293 return nullptr; 294 295 // If this is a cast from the same type, merge. 296 if (TI->getNumOperands() == 1 && TI->isCast()) { 297 Type *FIOpndTy = FI->getOperand(0)->getType(); 298 if (TI->getOperand(0)->getType() != FIOpndTy) 299 return nullptr; 300 301 // The select condition may be a vector. We may only change the operand 302 // type if the vector width remains the same (and matches the condition). 303 Type *CondTy = SI.getCondition()->getType(); 304 if (CondTy->isVectorTy()) { 305 if (!FIOpndTy->isVectorTy()) 306 return nullptr; 307 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 308 return nullptr; 309 310 // TODO: If the backend knew how to deal with casts better, we could 311 // remove this limitation. For now, there's too much potential to create 312 // worse codegen by promoting the select ahead of size-altering casts 313 // (PR28160). 314 // 315 // Note that ValueTracking's matchSelectPattern() looks through casts 316 // without checking 'hasOneUse' when it matches min/max patterns, so this 317 // transform may end up happening anyway. 318 if (TI->getOpcode() != Instruction::BitCast && 319 (!TI->hasOneUse() || !FI->hasOneUse())) 320 return nullptr; 321 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 322 // TODO: The one-use restrictions for a scalar select could be eased if 323 // the fold of a select in visitLoadInst() was enhanced to match a pattern 324 // that includes a cast. 325 return nullptr; 326 } 327 328 // Fold this by inserting a select from the input values. 329 Value *NewSI = 330 Builder.CreateSelect(SI.getCondition(), TI->getOperand(0), 331 FI->getOperand(0), SI.getName() + ".v", &SI); 332 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 333 TI->getType()); 334 } 335 336 // Only handle binary operators (including two-operand getelementptr) with 337 // one-use here. As with the cast case above, it may be possible to relax the 338 // one-use constraint, but that needs be examined carefully since it may not 339 // reduce the total number of instructions. 340 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 341 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 342 !TI->hasOneUse() || !FI->hasOneUse()) 343 return nullptr; 344 345 // Figure out if the operations have any operands in common. 346 Value *MatchOp, *OtherOpT, *OtherOpF; 347 bool MatchIsOpZero; 348 if (TI->getOperand(0) == FI->getOperand(0)) { 349 MatchOp = TI->getOperand(0); 350 OtherOpT = TI->getOperand(1); 351 OtherOpF = FI->getOperand(1); 352 MatchIsOpZero = true; 353 } else if (TI->getOperand(1) == FI->getOperand(1)) { 354 MatchOp = TI->getOperand(1); 355 OtherOpT = TI->getOperand(0); 356 OtherOpF = FI->getOperand(0); 357 MatchIsOpZero = false; 358 } else if (!TI->isCommutative()) { 359 return nullptr; 360 } else if (TI->getOperand(0) == FI->getOperand(1)) { 361 MatchOp = TI->getOperand(0); 362 OtherOpT = TI->getOperand(1); 363 OtherOpF = FI->getOperand(0); 364 MatchIsOpZero = true; 365 } else if (TI->getOperand(1) == FI->getOperand(0)) { 366 MatchOp = TI->getOperand(1); 367 OtherOpT = TI->getOperand(0); 368 OtherOpF = FI->getOperand(1); 369 MatchIsOpZero = true; 370 } else { 371 return nullptr; 372 } 373 374 // If the select condition is a vector, the operands of the original select's 375 // operands also must be vectors. This may not be the case for getelementptr 376 // for example. 377 if (SI.getCondition()->getType()->isVectorTy() && 378 (!OtherOpT->getType()->isVectorTy() || 379 !OtherOpF->getType()->isVectorTy())) 380 return nullptr; 381 382 // If we reach here, they do have operations in common. 383 Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, 384 SI.getName() + ".v", &SI); 385 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 386 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 387 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 388 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 389 NewBO->copyIRFlags(TI); 390 NewBO->andIRFlags(FI); 391 return NewBO; 392 } 393 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 394 auto *FGEP = cast<GetElementPtrInst>(FI); 395 Type *ElementType = TGEP->getResultElementType(); 396 return TGEP->isInBounds() && FGEP->isInBounds() 397 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 398 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 399 } 400 llvm_unreachable("Expected BinaryOperator or GEP"); 401 return nullptr; 402 } 403 404 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 405 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 406 return false; 407 return C1I.isOneValue() || C1I.isAllOnesValue() || 408 C2I.isOneValue() || C2I.isAllOnesValue(); 409 } 410 411 /// Try to fold the select into one of the operands to allow further 412 /// optimization. 413 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 414 Value *FalseVal) { 415 // See the comment above GetSelectFoldableOperands for a description of the 416 // transformation we are doing here. 417 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 418 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 419 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 420 unsigned OpToFold = 0; 421 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 422 OpToFold = 1; 423 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 424 OpToFold = 2; 425 } 426 427 if (OpToFold) { 428 APInt CI = getSelectFoldableConstant(TVI); 429 Value *OOp = TVI->getOperand(2-OpToFold); 430 // Avoid creating select between 2 constants unless it's selecting 431 // between 0, 1 and -1. 432 const APInt *OOpC; 433 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 434 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 435 Value *C = ConstantInt::get(OOp->getType(), CI); 436 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 437 NewSel->takeName(TVI); 438 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 439 FalseVal, NewSel); 440 BO->copyIRFlags(TVI); 441 return BO; 442 } 443 } 444 } 445 } 446 } 447 448 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 449 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 450 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 451 unsigned OpToFold = 0; 452 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 453 OpToFold = 1; 454 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 455 OpToFold = 2; 456 } 457 458 if (OpToFold) { 459 APInt CI = getSelectFoldableConstant(FVI); 460 Value *OOp = FVI->getOperand(2-OpToFold); 461 // Avoid creating select between 2 constants unless it's selecting 462 // between 0, 1 and -1. 463 const APInt *OOpC; 464 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 465 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 466 Value *C = ConstantInt::get(OOp->getType(), CI); 467 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 468 NewSel->takeName(FVI); 469 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 470 TrueVal, NewSel); 471 BO->copyIRFlags(FVI); 472 return BO; 473 } 474 } 475 } 476 } 477 } 478 479 return nullptr; 480 } 481 482 /// We want to turn: 483 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 484 /// into: 485 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 486 /// Note: 487 /// Z may be 0 if lshr is missing. 488 /// Worst-case scenario is that we will replace 5 instructions with 5 different 489 /// instructions, but we got rid of select. 490 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 491 Value *TVal, Value *FVal, 492 InstCombiner::BuilderTy &Builder) { 493 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 494 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 495 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 496 return nullptr; 497 498 // The TrueVal has general form of: and %B, 1 499 Value *B; 500 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 501 return nullptr; 502 503 // Where %B may be optionally shifted: lshr %X, %Z. 504 Value *X, *Z; 505 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 506 if (!HasShift) 507 X = B; 508 509 Value *Y; 510 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 511 return nullptr; 512 513 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 514 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 515 Constant *One = ConstantInt::get(SelType, 1); 516 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 517 Value *FullMask = Builder.CreateOr(Y, MaskB); 518 Value *MaskedX = Builder.CreateAnd(X, FullMask); 519 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 520 return new ZExtInst(ICmpNeZero, SelType); 521 } 522 523 /// We want to turn: 524 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 525 /// into: 526 /// (or (shl (and X, C1), C3), Y) 527 /// iff: 528 /// C1 and C2 are both powers of 2 529 /// where: 530 /// C3 = Log(C2) - Log(C1) 531 /// 532 /// This transform handles cases where: 533 /// 1. The icmp predicate is inverted 534 /// 2. The select operands are reversed 535 /// 3. The magnitude of C2 and C1 are flipped 536 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 537 Value *FalseVal, 538 InstCombiner::BuilderTy &Builder) { 539 // Only handle integer compares. Also, if this is a vector select, we need a 540 // vector compare. 541 if (!TrueVal->getType()->isIntOrIntVectorTy() || 542 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 543 return nullptr; 544 545 Value *CmpLHS = IC->getOperand(0); 546 Value *CmpRHS = IC->getOperand(1); 547 548 Value *V; 549 unsigned C1Log; 550 bool IsEqualZero; 551 bool NeedAnd = false; 552 if (IC->isEquality()) { 553 if (!match(CmpRHS, m_Zero())) 554 return nullptr; 555 556 const APInt *C1; 557 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 558 return nullptr; 559 560 V = CmpLHS; 561 C1Log = C1->logBase2(); 562 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 563 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 564 IC->getPredicate() == ICmpInst::ICMP_SGT) { 565 // We also need to recognize (icmp slt (trunc (X)), 0) and 566 // (icmp sgt (trunc (X)), -1). 567 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 568 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 569 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 570 return nullptr; 571 572 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 573 return nullptr; 574 575 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 576 NeedAnd = true; 577 } else { 578 return nullptr; 579 } 580 581 const APInt *C2; 582 bool OrOnTrueVal = false; 583 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 584 if (!OrOnFalseVal) 585 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 586 587 if (!OrOnFalseVal && !OrOnTrueVal) 588 return nullptr; 589 590 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 591 592 unsigned C2Log = C2->logBase2(); 593 594 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 595 bool NeedShift = C1Log != C2Log; 596 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 597 V->getType()->getScalarSizeInBits(); 598 599 // Make sure we don't create more instructions than we save. 600 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 601 if ((NeedShift + NeedXor + NeedZExtTrunc) > 602 (IC->hasOneUse() + Or->hasOneUse())) 603 return nullptr; 604 605 if (NeedAnd) { 606 // Insert the AND instruction on the input to the truncate. 607 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 608 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 609 } 610 611 if (C2Log > C1Log) { 612 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 613 V = Builder.CreateShl(V, C2Log - C1Log); 614 } else if (C1Log > C2Log) { 615 V = Builder.CreateLShr(V, C1Log - C2Log); 616 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 617 } else 618 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 619 620 if (NeedXor) 621 V = Builder.CreateXor(V, *C2); 622 623 return Builder.CreateOr(V, Y); 624 } 625 626 /// Transform patterns such as: (a > b) ? a - b : 0 627 /// into: ((a > b) ? a : b) - b) 628 /// This produces a canonical max pattern that is more easily recognized by the 629 /// backend and converted into saturated subtraction instructions if those 630 /// exist. 631 /// There are 8 commuted/swapped variants of this pattern. 632 /// TODO: Also support a - UMIN(a,b) patterns. 633 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 634 const Value *TrueVal, 635 const Value *FalseVal, 636 InstCombiner::BuilderTy &Builder) { 637 ICmpInst::Predicate Pred = ICI->getPredicate(); 638 if (!ICmpInst::isUnsigned(Pred)) 639 return nullptr; 640 641 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 642 if (match(TrueVal, m_Zero())) { 643 Pred = ICmpInst::getInversePredicate(Pred); 644 std::swap(TrueVal, FalseVal); 645 } 646 if (!match(FalseVal, m_Zero())) 647 return nullptr; 648 649 Value *A = ICI->getOperand(0); 650 Value *B = ICI->getOperand(1); 651 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 652 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 653 std::swap(A, B); 654 Pred = ICmpInst::getSwappedPredicate(Pred); 655 } 656 657 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 658 "Unexpected isUnsigned predicate!"); 659 660 // Account for swapped form of subtraction: ((a > b) ? b - a : 0). 661 bool IsNegative = false; 662 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A)))) 663 IsNegative = true; 664 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B)))) 665 return nullptr; 666 667 // If sub is used anywhere else, we wouldn't be able to eliminate it 668 // afterwards. 669 if (!TrueVal->hasOneUse()) 670 return nullptr; 671 672 // All checks passed, convert to canonical unsigned saturated subtraction 673 // form: sub(max()). 674 // (a > b) ? a - b : 0 -> ((a > b) ? a : b) - b) 675 Value *Max = Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 676 return IsNegative ? Builder.CreateSub(B, Max) : Builder.CreateSub(Max, B); 677 } 678 679 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 680 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 681 /// 682 /// For example, we can fold the following code sequence: 683 /// \code 684 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 685 /// %1 = icmp ne i32 %x, 0 686 /// %2 = select i1 %1, i32 %0, i32 32 687 /// \code 688 /// 689 /// into: 690 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 691 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 692 InstCombiner::BuilderTy &Builder) { 693 ICmpInst::Predicate Pred = ICI->getPredicate(); 694 Value *CmpLHS = ICI->getOperand(0); 695 Value *CmpRHS = ICI->getOperand(1); 696 697 // Check if the condition value compares a value for equality against zero. 698 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 699 return nullptr; 700 701 Value *Count = FalseVal; 702 Value *ValueOnZero = TrueVal; 703 if (Pred == ICmpInst::ICMP_NE) 704 std::swap(Count, ValueOnZero); 705 706 // Skip zero extend/truncate. 707 Value *V = nullptr; 708 if (match(Count, m_ZExt(m_Value(V))) || 709 match(Count, m_Trunc(m_Value(V)))) 710 Count = V; 711 712 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 713 // input to the cttz/ctlz is used as LHS for the compare instruction. 714 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 715 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 716 return nullptr; 717 718 IntrinsicInst *II = cast<IntrinsicInst>(Count); 719 720 // Check if the value propagated on zero is a constant number equal to the 721 // sizeof in bits of 'Count'. 722 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 723 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 724 // Explicitly clear the 'undef_on_zero' flag. 725 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 726 NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext())); 727 Builder.Insert(NewI); 728 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 729 } 730 731 // If the ValueOnZero is not the bitwidth, we can at least make use of the 732 // fact that the cttz/ctlz result will not be used if the input is zero, so 733 // it's okay to relax it to undef for that case. 734 if (II->hasOneUse() && !match(II->getArgOperand(1), m_One())) 735 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 736 737 return nullptr; 738 } 739 740 /// Return true if we find and adjust an icmp+select pattern where the compare 741 /// is with a constant that can be incremented or decremented to match the 742 /// minimum or maximum idiom. 743 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 744 ICmpInst::Predicate Pred = Cmp.getPredicate(); 745 Value *CmpLHS = Cmp.getOperand(0); 746 Value *CmpRHS = Cmp.getOperand(1); 747 Value *TrueVal = Sel.getTrueValue(); 748 Value *FalseVal = Sel.getFalseValue(); 749 750 // We may move or edit the compare, so make sure the select is the only user. 751 const APInt *CmpC; 752 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 753 return false; 754 755 // These transforms only work for selects of integers or vector selects of 756 // integer vectors. 757 Type *SelTy = Sel.getType(); 758 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 759 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 760 return false; 761 762 Constant *AdjustedRHS; 763 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 764 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 765 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 766 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 767 else 768 return false; 769 770 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 771 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 772 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 773 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 774 ; // Nothing to do here. Values match without any sign/zero extension. 775 } 776 // Types do not match. Instead of calculating this with mixed types, promote 777 // all to the larger type. This enables scalar evolution to analyze this 778 // expression. 779 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 780 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 781 782 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 783 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 784 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 785 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 786 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 787 CmpLHS = TrueVal; 788 AdjustedRHS = SextRHS; 789 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 790 SextRHS == TrueVal) { 791 CmpLHS = FalseVal; 792 AdjustedRHS = SextRHS; 793 } else if (Cmp.isUnsigned()) { 794 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 795 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 796 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 797 // zext + signed compare cannot be changed: 798 // 0xff <s 0x00, but 0x00ff >s 0x0000 799 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 800 CmpLHS = TrueVal; 801 AdjustedRHS = ZextRHS; 802 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 803 ZextRHS == TrueVal) { 804 CmpLHS = FalseVal; 805 AdjustedRHS = ZextRHS; 806 } else { 807 return false; 808 } 809 } else { 810 return false; 811 } 812 } else { 813 return false; 814 } 815 816 Pred = ICmpInst::getSwappedPredicate(Pred); 817 CmpRHS = AdjustedRHS; 818 std::swap(FalseVal, TrueVal); 819 Cmp.setPredicate(Pred); 820 Cmp.setOperand(0, CmpLHS); 821 Cmp.setOperand(1, CmpRHS); 822 Sel.setOperand(1, TrueVal); 823 Sel.setOperand(2, FalseVal); 824 Sel.swapProfMetadata(); 825 826 // Move the compare instruction right before the select instruction. Otherwise 827 // the sext/zext value may be defined after the compare instruction uses it. 828 Cmp.moveBefore(&Sel); 829 830 return true; 831 } 832 833 /// If this is an integer min/max (icmp + select) with a constant operand, 834 /// create the canonical icmp for the min/max operation and canonicalize the 835 /// constant to the 'false' operand of the select: 836 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 837 /// Note: if C1 != C2, this will change the icmp constant to the existing 838 /// constant operand of the select. 839 static Instruction * 840 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, 841 InstCombiner::BuilderTy &Builder) { 842 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 843 return nullptr; 844 845 // Canonicalize the compare predicate based on whether we have min or max. 846 Value *LHS, *RHS; 847 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 848 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 849 return nullptr; 850 851 // Is this already canonical? 852 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 853 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 854 Cmp.getPredicate() == CanonicalPred) 855 return nullptr; 856 857 // Create the canonical compare and plug it into the select. 858 Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS)); 859 860 // If the select operands did not change, we're done. 861 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 862 return &Sel; 863 864 // If we are swapping the select operands, swap the metadata too. 865 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 866 "Unexpected results from matchSelectPattern"); 867 Sel.setTrueValue(LHS); 868 Sel.setFalseValue(RHS); 869 Sel.swapProfMetadata(); 870 return &Sel; 871 } 872 873 /// There are many select variants for each of ABS/NABS. 874 /// In matchSelectPattern(), there are different compare constants, compare 875 /// predicates/operands and select operands. 876 /// In isKnownNegation(), there are different formats of negated operands. 877 /// Canonicalize all these variants to 1 pattern. 878 /// This makes CSE more likely. 879 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 880 InstCombiner::BuilderTy &Builder) { 881 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 882 return nullptr; 883 884 // Choose a sign-bit check for the compare (likely simpler for codegen). 885 // ABS: (X <s 0) ? -X : X 886 // NABS: (X <s 0) ? X : -X 887 Value *LHS, *RHS; 888 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 889 if (SPF != SelectPatternFlavor::SPF_ABS && 890 SPF != SelectPatternFlavor::SPF_NABS) 891 return nullptr; 892 893 Value *TVal = Sel.getTrueValue(); 894 Value *FVal = Sel.getFalseValue(); 895 assert(isKnownNegation(TVal, FVal) && 896 "Unexpected result from matchSelectPattern"); 897 898 // The compare may use the negated abs()/nabs() operand, or it may use 899 // negation in non-canonical form such as: sub A, B. 900 bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) || 901 match(Cmp.getOperand(0), m_Neg(m_Specific(FVal))); 902 903 bool CmpCanonicalized = !CmpUsesNegatedOp && 904 match(Cmp.getOperand(1), m_ZeroInt()) && 905 Cmp.getPredicate() == ICmpInst::ICMP_SLT; 906 bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS))); 907 908 // Is this already canonical? 909 if (CmpCanonicalized && RHSCanonicalized) 910 return nullptr; 911 912 // If RHS is used by other instructions except compare and select, don't 913 // canonicalize it to not increase the instruction count. 914 if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp))) 915 return nullptr; 916 917 // Create the canonical compare: icmp slt LHS 0. 918 if (!CmpCanonicalized) { 919 Cmp.setPredicate(ICmpInst::ICMP_SLT); 920 Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType())); 921 if (CmpUsesNegatedOp) 922 Cmp.setOperand(0, LHS); 923 } 924 925 // Create the canonical RHS: RHS = sub (0, LHS). 926 if (!RHSCanonicalized) { 927 assert(RHS->hasOneUse() && "RHS use number is not right"); 928 RHS = Builder.CreateNeg(LHS); 929 if (TVal == LHS) { 930 Sel.setFalseValue(RHS); 931 FVal = RHS; 932 } else { 933 Sel.setTrueValue(RHS); 934 TVal = RHS; 935 } 936 } 937 938 // If the select operands do not change, we're done. 939 if (SPF == SelectPatternFlavor::SPF_NABS) { 940 if (TVal == LHS) 941 return &Sel; 942 assert(FVal == LHS && "Unexpected results from matchSelectPattern"); 943 } else { 944 if (FVal == LHS) 945 return &Sel; 946 assert(TVal == LHS && "Unexpected results from matchSelectPattern"); 947 } 948 949 // We are swapping the select operands, so swap the metadata too. 950 Sel.setTrueValue(FVal); 951 Sel.setFalseValue(TVal); 952 Sel.swapProfMetadata(); 953 return &Sel; 954 } 955 956 /// Visit a SelectInst that has an ICmpInst as its first operand. 957 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 958 ICmpInst *ICI) { 959 Value *TrueVal = SI.getTrueValue(); 960 Value *FalseVal = SI.getFalseValue(); 961 962 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder)) 963 return NewSel; 964 965 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder)) 966 return NewAbs; 967 968 bool Changed = adjustMinMax(SI, *ICI); 969 970 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 971 return replaceInstUsesWith(SI, V); 972 973 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 974 ICmpInst::Predicate Pred = ICI->getPredicate(); 975 Value *CmpLHS = ICI->getOperand(0); 976 Value *CmpRHS = ICI->getOperand(1); 977 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 978 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 979 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 980 SI.setOperand(1, CmpRHS); 981 Changed = true; 982 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 983 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 984 SI.setOperand(2, CmpRHS); 985 Changed = true; 986 } 987 } 988 989 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 990 // decomposeBitTestICmp() might help. 991 { 992 unsigned BitWidth = 993 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 994 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 995 Value *X; 996 const APInt *Y, *C; 997 bool TrueWhenUnset; 998 bool IsBitTest = false; 999 if (ICmpInst::isEquality(Pred) && 1000 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1001 match(CmpRHS, m_Zero())) { 1002 IsBitTest = true; 1003 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1004 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1005 X = CmpLHS; 1006 Y = &MinSignedValue; 1007 IsBitTest = true; 1008 TrueWhenUnset = false; 1009 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1010 X = CmpLHS; 1011 Y = &MinSignedValue; 1012 IsBitTest = true; 1013 TrueWhenUnset = true; 1014 } 1015 if (IsBitTest) { 1016 Value *V = nullptr; 1017 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1018 if (TrueWhenUnset && TrueVal == X && 1019 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1020 V = Builder.CreateAnd(X, ~(*Y)); 1021 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1022 else if (!TrueWhenUnset && FalseVal == X && 1023 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1024 V = Builder.CreateAnd(X, ~(*Y)); 1025 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1026 else if (TrueWhenUnset && FalseVal == X && 1027 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1028 V = Builder.CreateOr(X, *Y); 1029 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1030 else if (!TrueWhenUnset && TrueVal == X && 1031 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1032 V = Builder.CreateOr(X, *Y); 1033 1034 if (V) 1035 return replaceInstUsesWith(SI, V); 1036 } 1037 } 1038 1039 if (Instruction *V = 1040 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1041 return V; 1042 1043 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1044 return replaceInstUsesWith(SI, V); 1045 1046 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1047 return replaceInstUsesWith(SI, V); 1048 1049 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1050 return replaceInstUsesWith(SI, V); 1051 1052 return Changed ? &SI : nullptr; 1053 } 1054 1055 /// SI is a select whose condition is a PHI node (but the two may be in 1056 /// different blocks). See if the true/false values (V) are live in all of the 1057 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1058 /// 1059 /// X = phi [ C1, BB1], [C2, BB2] 1060 /// Y = add 1061 /// Z = select X, Y, 0 1062 /// 1063 /// because Y is not live in BB1/BB2. 1064 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1065 const SelectInst &SI) { 1066 // If the value is a non-instruction value like a constant or argument, it 1067 // can always be mapped. 1068 const Instruction *I = dyn_cast<Instruction>(V); 1069 if (!I) return true; 1070 1071 // If V is a PHI node defined in the same block as the condition PHI, we can 1072 // map the arguments. 1073 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1074 1075 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1076 if (VP->getParent() == CondPHI->getParent()) 1077 return true; 1078 1079 // Otherwise, if the PHI and select are defined in the same block and if V is 1080 // defined in a different block, then we can transform it. 1081 if (SI.getParent() == CondPHI->getParent() && 1082 I->getParent() != CondPHI->getParent()) 1083 return true; 1084 1085 // Otherwise we have a 'hard' case and we can't tell without doing more 1086 // detailed dominator based analysis, punt. 1087 return false; 1088 } 1089 1090 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1091 /// SPF2(SPF1(A, B), C) 1092 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 1093 SelectPatternFlavor SPF1, 1094 Value *A, Value *B, 1095 Instruction &Outer, 1096 SelectPatternFlavor SPF2, Value *C) { 1097 if (Outer.getType() != Inner->getType()) 1098 return nullptr; 1099 1100 if (C == A || C == B) { 1101 // MAX(MAX(A, B), B) -> MAX(A, B) 1102 // MIN(MIN(a, b), a) -> MIN(a, b) 1103 // TODO: This could be done in instsimplify. 1104 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1105 return replaceInstUsesWith(Outer, Inner); 1106 1107 // MAX(MIN(a, b), a) -> a 1108 // MIN(MAX(a, b), a) -> a 1109 // TODO: This could be done in instsimplify. 1110 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1111 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1112 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1113 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1114 return replaceInstUsesWith(Outer, C); 1115 } 1116 1117 if (SPF1 == SPF2) { 1118 const APInt *CB, *CC; 1119 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1120 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1121 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1122 // TODO: This could be done in instsimplify. 1123 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1124 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1125 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1126 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1127 return replaceInstUsesWith(Outer, Inner); 1128 1129 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1130 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1131 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1132 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1133 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1134 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1135 Outer.replaceUsesOfWith(Inner, A); 1136 return &Outer; 1137 } 1138 } 1139 } 1140 1141 // ABS(ABS(X)) -> ABS(X) 1142 // NABS(NABS(X)) -> NABS(X) 1143 // TODO: This could be done in instsimplify. 1144 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1145 return replaceInstUsesWith(Outer, Inner); 1146 } 1147 1148 // ABS(NABS(X)) -> ABS(X) 1149 // NABS(ABS(X)) -> NABS(X) 1150 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1151 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1152 SelectInst *SI = cast<SelectInst>(Inner); 1153 Value *NewSI = 1154 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1155 SI->getTrueValue(), SI->getName(), SI); 1156 return replaceInstUsesWith(Outer, NewSI); 1157 } 1158 1159 auto IsFreeOrProfitableToInvert = 1160 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1161 if (match(V, m_Not(m_Value(NotV)))) { 1162 // If V has at most 2 uses then we can get rid of the xor operation 1163 // entirely. 1164 ElidesXor |= !V->hasNUsesOrMore(3); 1165 return true; 1166 } 1167 1168 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1169 NotV = nullptr; 1170 return true; 1171 } 1172 1173 return false; 1174 }; 1175 1176 Value *NotA, *NotB, *NotC; 1177 bool ElidesXor = false; 1178 1179 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1180 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1181 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1182 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1183 // 1184 // This transform is performance neutral if we can elide at least one xor from 1185 // the set of three operands, since we'll be tacking on an xor at the very 1186 // end. 1187 if (SelectPatternResult::isMinOrMax(SPF1) && 1188 SelectPatternResult::isMinOrMax(SPF2) && 1189 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1190 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1191 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1192 if (!NotA) 1193 NotA = Builder.CreateNot(A); 1194 if (!NotB) 1195 NotB = Builder.CreateNot(B); 1196 if (!NotC) 1197 NotC = Builder.CreateNot(C); 1198 1199 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1200 NotB); 1201 Value *NewOuter = Builder.CreateNot( 1202 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1203 return replaceInstUsesWith(Outer, NewOuter); 1204 } 1205 1206 return nullptr; 1207 } 1208 1209 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1210 /// This is even legal for FP. 1211 static Instruction *foldAddSubSelect(SelectInst &SI, 1212 InstCombiner::BuilderTy &Builder) { 1213 Value *CondVal = SI.getCondition(); 1214 Value *TrueVal = SI.getTrueValue(); 1215 Value *FalseVal = SI.getFalseValue(); 1216 auto *TI = dyn_cast<Instruction>(TrueVal); 1217 auto *FI = dyn_cast<Instruction>(FalseVal); 1218 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1219 return nullptr; 1220 1221 Instruction *AddOp = nullptr, *SubOp = nullptr; 1222 if ((TI->getOpcode() == Instruction::Sub && 1223 FI->getOpcode() == Instruction::Add) || 1224 (TI->getOpcode() == Instruction::FSub && 1225 FI->getOpcode() == Instruction::FAdd)) { 1226 AddOp = FI; 1227 SubOp = TI; 1228 } else if ((FI->getOpcode() == Instruction::Sub && 1229 TI->getOpcode() == Instruction::Add) || 1230 (FI->getOpcode() == Instruction::FSub && 1231 TI->getOpcode() == Instruction::FAdd)) { 1232 AddOp = TI; 1233 SubOp = FI; 1234 } 1235 1236 if (AddOp) { 1237 Value *OtherAddOp = nullptr; 1238 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1239 OtherAddOp = AddOp->getOperand(1); 1240 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1241 OtherAddOp = AddOp->getOperand(0); 1242 } 1243 1244 if (OtherAddOp) { 1245 // So at this point we know we have (Y -> OtherAddOp): 1246 // select C, (add X, Y), (sub X, Z) 1247 Value *NegVal; // Compute -Z 1248 if (SI.getType()->isFPOrFPVectorTy()) { 1249 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1250 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1251 FastMathFlags Flags = AddOp->getFastMathFlags(); 1252 Flags &= SubOp->getFastMathFlags(); 1253 NegInst->setFastMathFlags(Flags); 1254 } 1255 } else { 1256 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1257 } 1258 1259 Value *NewTrueOp = OtherAddOp; 1260 Value *NewFalseOp = NegVal; 1261 if (AddOp != TI) 1262 std::swap(NewTrueOp, NewFalseOp); 1263 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1264 SI.getName() + ".p", &SI); 1265 1266 if (SI.getType()->isFPOrFPVectorTy()) { 1267 Instruction *RI = 1268 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1269 1270 FastMathFlags Flags = AddOp->getFastMathFlags(); 1271 Flags &= SubOp->getFastMathFlags(); 1272 RI->setFastMathFlags(Flags); 1273 return RI; 1274 } else 1275 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1276 } 1277 } 1278 return nullptr; 1279 } 1280 1281 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 1282 Constant *C; 1283 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1284 !match(Sel.getFalseValue(), m_Constant(C))) 1285 return nullptr; 1286 1287 Instruction *ExtInst; 1288 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1289 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1290 return nullptr; 1291 1292 auto ExtOpcode = ExtInst->getOpcode(); 1293 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1294 return nullptr; 1295 1296 // If we are extending from a boolean type or if we can create a select that 1297 // has the same size operands as its condition, try to narrow the select. 1298 Value *X = ExtInst->getOperand(0); 1299 Type *SmallType = X->getType(); 1300 Value *Cond = Sel.getCondition(); 1301 auto *Cmp = dyn_cast<CmpInst>(Cond); 1302 if (!SmallType->isIntOrIntVectorTy(1) && 1303 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1304 return nullptr; 1305 1306 // If the constant is the same after truncation to the smaller type and 1307 // extension to the original type, we can narrow the select. 1308 Type *SelType = Sel.getType(); 1309 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1310 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1311 if (ExtC == C) { 1312 Value *TruncCVal = cast<Value>(TruncC); 1313 if (ExtInst == Sel.getFalseValue()) 1314 std::swap(X, TruncCVal); 1315 1316 // select Cond, (ext X), C --> ext(select Cond, X, C') 1317 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1318 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1319 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1320 } 1321 1322 // If one arm of the select is the extend of the condition, replace that arm 1323 // with the extension of the appropriate known bool value. 1324 if (Cond == X) { 1325 if (ExtInst == Sel.getTrueValue()) { 1326 // select X, (sext X), C --> select X, -1, C 1327 // select X, (zext X), C --> select X, 1, C 1328 Constant *One = ConstantInt::getTrue(SmallType); 1329 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1330 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1331 } else { 1332 // select X, C, (sext X) --> select X, C, 0 1333 // select X, C, (zext X) --> select X, C, 0 1334 Constant *Zero = ConstantInt::getNullValue(SelType); 1335 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1336 } 1337 } 1338 1339 return nullptr; 1340 } 1341 1342 /// Try to transform a vector select with a constant condition vector into a 1343 /// shuffle for easier combining with other shuffles and insert/extract. 1344 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1345 Value *CondVal = SI.getCondition(); 1346 Constant *CondC; 1347 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1348 return nullptr; 1349 1350 unsigned NumElts = CondVal->getType()->getVectorNumElements(); 1351 SmallVector<Constant *, 16> Mask; 1352 Mask.reserve(NumElts); 1353 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); 1354 for (unsigned i = 0; i != NumElts; ++i) { 1355 Constant *Elt = CondC->getAggregateElement(i); 1356 if (!Elt) 1357 return nullptr; 1358 1359 if (Elt->isOneValue()) { 1360 // If the select condition element is true, choose from the 1st vector. 1361 Mask.push_back(ConstantInt::get(Int32Ty, i)); 1362 } else if (Elt->isNullValue()) { 1363 // If the select condition element is false, choose from the 2nd vector. 1364 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); 1365 } else if (isa<UndefValue>(Elt)) { 1366 // Undef in a select condition (choose one of the operands) does not mean 1367 // the same thing as undef in a shuffle mask (any value is acceptable), so 1368 // give up. 1369 return nullptr; 1370 } else { 1371 // Bail out on a constant expression. 1372 return nullptr; 1373 } 1374 } 1375 1376 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), 1377 ConstantVector::get(Mask)); 1378 } 1379 1380 /// Reuse bitcasted operands between a compare and select: 1381 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1382 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 1383 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 1384 InstCombiner::BuilderTy &Builder) { 1385 Value *Cond = Sel.getCondition(); 1386 Value *TVal = Sel.getTrueValue(); 1387 Value *FVal = Sel.getFalseValue(); 1388 1389 CmpInst::Predicate Pred; 1390 Value *A, *B; 1391 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 1392 return nullptr; 1393 1394 // The select condition is a compare instruction. If the select's true/false 1395 // values are already the same as the compare operands, there's nothing to do. 1396 if (TVal == A || TVal == B || FVal == A || FVal == B) 1397 return nullptr; 1398 1399 Value *C, *D; 1400 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 1401 return nullptr; 1402 1403 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 1404 Value *TSrc, *FSrc; 1405 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 1406 !match(FVal, m_BitCast(m_Value(FSrc)))) 1407 return nullptr; 1408 1409 // If the select true/false values are *different bitcasts* of the same source 1410 // operands, make the select operands the same as the compare operands and 1411 // cast the result. This is the canonical select form for min/max. 1412 Value *NewSel; 1413 if (TSrc == C && FSrc == D) { 1414 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1415 // bitcast (select (cmp A, B), A, B) 1416 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 1417 } else if (TSrc == D && FSrc == C) { 1418 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 1419 // bitcast (select (cmp A, B), B, A) 1420 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 1421 } else { 1422 return nullptr; 1423 } 1424 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 1425 } 1426 1427 /// Try to eliminate select instructions that test the returned flag of cmpxchg 1428 /// instructions. 1429 /// 1430 /// If a select instruction tests the returned flag of a cmpxchg instruction and 1431 /// selects between the returned value of the cmpxchg instruction its compare 1432 /// operand, the result of the select will always be equal to its false value. 1433 /// For example: 1434 /// 1435 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1436 /// %1 = extractvalue { i64, i1 } %0, 1 1437 /// %2 = extractvalue { i64, i1 } %0, 0 1438 /// %3 = select i1 %1, i64 %compare, i64 %2 1439 /// ret i64 %3 1440 /// 1441 /// The returned value of the cmpxchg instruction (%2) is the original value 1442 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 1443 /// must have been equal to %compare. Thus, the result of the select is always 1444 /// equal to %2, and the code can be simplified to: 1445 /// 1446 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1447 /// %1 = extractvalue { i64, i1 } %0, 0 1448 /// ret i64 %1 1449 /// 1450 static Instruction *foldSelectCmpXchg(SelectInst &SI) { 1451 // A helper that determines if V is an extractvalue instruction whose 1452 // aggregate operand is a cmpxchg instruction and whose single index is equal 1453 // to I. If such conditions are true, the helper returns the cmpxchg 1454 // instruction; otherwise, a nullptr is returned. 1455 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 1456 auto *Extract = dyn_cast<ExtractValueInst>(V); 1457 if (!Extract) 1458 return nullptr; 1459 if (Extract->getIndices()[0] != I) 1460 return nullptr; 1461 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 1462 }; 1463 1464 // If the select has a single user, and this user is a select instruction that 1465 // we can simplify, skip the cmpxchg simplification for now. 1466 if (SI.hasOneUse()) 1467 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 1468 if (Select->getCondition() == SI.getCondition()) 1469 if (Select->getFalseValue() == SI.getTrueValue() || 1470 Select->getTrueValue() == SI.getFalseValue()) 1471 return nullptr; 1472 1473 // Ensure the select condition is the returned flag of a cmpxchg instruction. 1474 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 1475 if (!CmpXchg) 1476 return nullptr; 1477 1478 // Check the true value case: The true value of the select is the returned 1479 // value of the same cmpxchg used by the condition, and the false value is the 1480 // cmpxchg instruction's compare operand. 1481 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 1482 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) { 1483 SI.setTrueValue(SI.getFalseValue()); 1484 return &SI; 1485 } 1486 1487 // Check the false value case: The false value of the select is the returned 1488 // value of the same cmpxchg used by the condition, and the true value is the 1489 // cmpxchg instruction's compare operand. 1490 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 1491 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) { 1492 SI.setTrueValue(SI.getFalseValue()); 1493 return &SI; 1494 } 1495 1496 return nullptr; 1497 } 1498 1499 /// Reduce a sequence of min/max with a common operand. 1500 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 1501 Value *RHS, 1502 InstCombiner::BuilderTy &Builder) { 1503 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 1504 // TODO: Allow FP min/max with nnan/nsz. 1505 if (!LHS->getType()->isIntOrIntVectorTy()) 1506 return nullptr; 1507 1508 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 1509 Value *A, *B, *C, *D; 1510 SelectPatternResult L = matchSelectPattern(LHS, A, B); 1511 SelectPatternResult R = matchSelectPattern(RHS, C, D); 1512 if (SPF != L.Flavor || L.Flavor != R.Flavor) 1513 return nullptr; 1514 1515 // Look for a common operand. The use checks are different than usual because 1516 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 1517 // the select. 1518 Value *MinMaxOp = nullptr; 1519 Value *ThirdOp = nullptr; 1520 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 1521 // If the LHS is only used in this chain and the RHS is used outside of it, 1522 // reuse the RHS min/max because that will eliminate the LHS. 1523 if (D == A || C == A) { 1524 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 1525 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 1526 MinMaxOp = RHS; 1527 ThirdOp = B; 1528 } else if (D == B || C == B) { 1529 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 1530 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 1531 MinMaxOp = RHS; 1532 ThirdOp = A; 1533 } 1534 } else if (!RHS->hasNUsesOrMore(3)) { 1535 // Reuse the LHS. This will eliminate the RHS. 1536 if (D == A || D == B) { 1537 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 1538 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 1539 MinMaxOp = LHS; 1540 ThirdOp = C; 1541 } else if (C == A || C == B) { 1542 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 1543 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 1544 MinMaxOp = LHS; 1545 ThirdOp = D; 1546 } 1547 } 1548 if (!MinMaxOp || !ThirdOp) 1549 return nullptr; 1550 1551 CmpInst::Predicate P = getMinMaxPred(SPF); 1552 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 1553 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 1554 } 1555 1556 /// Try to reduce a rotate pattern that includes a compare and select into a 1557 /// funnel shift intrinsic. Example: 1558 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 1559 /// --> call llvm.fshl.i32(a, a, b) 1560 static Instruction *foldSelectRotate(SelectInst &Sel) { 1561 // The false value of the select must be a rotate of the true value. 1562 Value *Or0, *Or1; 1563 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 1564 return nullptr; 1565 1566 Value *TVal = Sel.getTrueValue(); 1567 Value *SA0, *SA1; 1568 if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) || 1569 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1))))) 1570 return nullptr; 1571 1572 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 1573 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 1574 if (ShiftOpcode0 == ShiftOpcode1) 1575 return nullptr; 1576 1577 // We have one of these patterns so far: 1578 // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1)) 1579 // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1)) 1580 // This must be a power-of-2 rotate for a bitmasking transform to be valid. 1581 unsigned Width = Sel.getType()->getScalarSizeInBits(); 1582 if (!isPowerOf2_32(Width)) 1583 return nullptr; 1584 1585 // Check the shift amounts to see if they are an opposite pair. 1586 Value *ShAmt; 1587 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 1588 ShAmt = SA0; 1589 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 1590 ShAmt = SA1; 1591 else 1592 return nullptr; 1593 1594 // Finally, see if the select is filtering out a shift-by-zero. 1595 Value *Cond = Sel.getCondition(); 1596 ICmpInst::Predicate Pred; 1597 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 1598 Pred != ICmpInst::ICMP_EQ) 1599 return nullptr; 1600 1601 // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way. 1602 // Convert to funnel shift intrinsic. 1603 bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) || 1604 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl); 1605 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 1606 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 1607 return IntrinsicInst::Create(F, { TVal, TVal, ShAmt }); 1608 } 1609 1610 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 1611 Value *CondVal = SI.getCondition(); 1612 Value *TrueVal = SI.getTrueValue(); 1613 Value *FalseVal = SI.getFalseValue(); 1614 Type *SelType = SI.getType(); 1615 1616 // FIXME: Remove this workaround when freeze related patches are done. 1617 // For select with undef operand which feeds into an equality comparison, 1618 // don't simplify it so loop unswitch can know the equality comparison 1619 // may have an undef operand. This is a workaround for PR31652 caused by 1620 // descrepancy about branch on undef between LoopUnswitch and GVN. 1621 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 1622 if (llvm::any_of(SI.users(), [&](User *U) { 1623 ICmpInst *CI = dyn_cast<ICmpInst>(U); 1624 if (CI && CI->isEquality()) 1625 return true; 1626 return false; 1627 })) { 1628 return nullptr; 1629 } 1630 } 1631 1632 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 1633 SQ.getWithInstruction(&SI))) 1634 return replaceInstUsesWith(SI, V); 1635 1636 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 1637 return I; 1638 1639 // Canonicalize a one-use integer compare with a non-canonical predicate by 1640 // inverting the predicate and swapping the select operands. This matches a 1641 // compare canonicalization for conditional branches. 1642 // TODO: Should we do the same for FP compares? 1643 CmpInst::Predicate Pred; 1644 if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) && 1645 !isCanonicalPredicate(Pred)) { 1646 // Swap true/false values and condition. 1647 CmpInst *Cond = cast<CmpInst>(CondVal); 1648 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 1649 SI.setOperand(1, FalseVal); 1650 SI.setOperand(2, TrueVal); 1651 SI.swapProfMetadata(); 1652 Worklist.Add(Cond); 1653 return &SI; 1654 } 1655 1656 if (SelType->isIntOrIntVectorTy(1) && 1657 TrueVal->getType() == CondVal->getType()) { 1658 if (match(TrueVal, m_One())) { 1659 // Change: A = select B, true, C --> A = or B, C 1660 return BinaryOperator::CreateOr(CondVal, FalseVal); 1661 } 1662 if (match(TrueVal, m_Zero())) { 1663 // Change: A = select B, false, C --> A = and !B, C 1664 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1665 return BinaryOperator::CreateAnd(NotCond, FalseVal); 1666 } 1667 if (match(FalseVal, m_Zero())) { 1668 // Change: A = select B, C, false --> A = and B, C 1669 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1670 } 1671 if (match(FalseVal, m_One())) { 1672 // Change: A = select B, C, true --> A = or !B, C 1673 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1674 return BinaryOperator::CreateOr(NotCond, TrueVal); 1675 } 1676 1677 // select a, a, b -> a | b 1678 // select a, b, a -> a & b 1679 if (CondVal == TrueVal) 1680 return BinaryOperator::CreateOr(CondVal, FalseVal); 1681 if (CondVal == FalseVal) 1682 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1683 1684 // select a, ~a, b -> (~a) & b 1685 // select a, b, ~a -> (~a) | b 1686 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 1687 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 1688 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 1689 return BinaryOperator::CreateOr(TrueVal, FalseVal); 1690 } 1691 1692 // Selecting between two integer or vector splat integer constants? 1693 // 1694 // Note that we don't handle a scalar select of vectors: 1695 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 1696 // because that may need 3 instructions to splat the condition value: 1697 // extend, insertelement, shufflevector. 1698 if (SelType->isIntOrIntVectorTy() && 1699 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 1700 // select C, 1, 0 -> zext C to int 1701 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 1702 return new ZExtInst(CondVal, SelType); 1703 1704 // select C, -1, 0 -> sext C to int 1705 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 1706 return new SExtInst(CondVal, SelType); 1707 1708 // select C, 0, 1 -> zext !C to int 1709 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 1710 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1711 return new ZExtInst(NotCond, SelType); 1712 } 1713 1714 // select C, 0, -1 -> sext !C to int 1715 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 1716 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1717 return new SExtInst(NotCond, SelType); 1718 } 1719 } 1720 1721 // See if we are selecting two values based on a comparison of the two values. 1722 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 1723 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 1724 // Canonicalize to use ordered comparisons by swapping the select 1725 // operands. 1726 // 1727 // e.g. 1728 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1729 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1730 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1731 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1732 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1733 Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal, 1734 FCI->getName() + ".inv"); 1735 1736 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1737 SI.getName() + ".p"); 1738 } 1739 1740 // NOTE: if we wanted to, this is where to detect MIN/MAX 1741 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1742 // Canonicalize to use ordered comparisons by swapping the select 1743 // operands. 1744 // 1745 // e.g. 1746 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1747 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1748 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1749 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1750 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1751 Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal, 1752 FCI->getName() + ".inv"); 1753 1754 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1755 SI.getName() + ".p"); 1756 } 1757 1758 // NOTE: if we wanted to, this is where to detect MIN/MAX 1759 } 1760 1761 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 1762 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 1763 // also require nnan because we do not want to unintentionally change the 1764 // sign of a NaN value. 1765 Value *X = FCI->getOperand(0); 1766 FCmpInst::Predicate Pred = FCI->getPredicate(); 1767 if (match(FCI->getOperand(1), m_AnyZeroFP()) && FCI->hasNoNaNs()) { 1768 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 1769 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 1770 if ((X == FalseVal && Pred == FCmpInst::FCMP_OLE && 1771 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) || 1772 (X == TrueVal && Pred == FCmpInst::FCMP_OGT && 1773 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(X))))) { 1774 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI); 1775 return replaceInstUsesWith(SI, Fabs); 1776 } 1777 // With nsz: 1778 // (X < +/-0.0) ? -X : X --> fabs(X) 1779 // (X <= +/-0.0) ? -X : X --> fabs(X) 1780 // (X > +/-0.0) ? X : -X --> fabs(X) 1781 // (X >= +/-0.0) ? X : -X --> fabs(X) 1782 if (FCI->hasNoSignedZeros() && 1783 ((X == FalseVal && match(TrueVal, m_FNeg(m_Specific(X))) && 1784 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE)) || 1785 (X == TrueVal && match(FalseVal, m_FNeg(m_Specific(X))) && 1786 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE)))) { 1787 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI); 1788 return replaceInstUsesWith(SI, Fabs); 1789 } 1790 } 1791 } 1792 1793 // See if we are selecting two values based on a comparison of the two values. 1794 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1795 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 1796 return Result; 1797 1798 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 1799 return Add; 1800 1801 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1802 auto *TI = dyn_cast<Instruction>(TrueVal); 1803 auto *FI = dyn_cast<Instruction>(FalseVal); 1804 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 1805 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 1806 return IV; 1807 1808 if (Instruction *I = foldSelectExtConst(SI)) 1809 return I; 1810 1811 // See if we can fold the select into one of our operands. 1812 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 1813 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 1814 return FoldI; 1815 1816 Value *LHS, *RHS; 1817 Instruction::CastOps CastOp; 1818 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 1819 auto SPF = SPR.Flavor; 1820 if (SPF) { 1821 Value *LHS2, *RHS2; 1822 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 1823 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 1824 RHS2, SI, SPF, RHS)) 1825 return R; 1826 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 1827 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 1828 RHS2, SI, SPF, LHS)) 1829 return R; 1830 // TODO. 1831 // ABS(-X) -> ABS(X) 1832 } 1833 1834 if (SelectPatternResult::isMinOrMax(SPF)) { 1835 // Canonicalize so that 1836 // - type casts are outside select patterns. 1837 // - float clamp is transformed to min/max pattern 1838 1839 bool IsCastNeeded = LHS->getType() != SelType; 1840 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 1841 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 1842 if (IsCastNeeded || 1843 (LHS->getType()->isFPOrFPVectorTy() && 1844 ((CmpLHS != LHS && CmpLHS != RHS) || 1845 (CmpRHS != LHS && CmpRHS != RHS)))) { 1846 CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered); 1847 1848 Value *Cmp; 1849 if (CmpInst::isIntPredicate(Pred)) { 1850 Cmp = Builder.CreateICmp(Pred, LHS, RHS); 1851 } else { 1852 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1853 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 1854 Builder.setFastMathFlags(FMF); 1855 Cmp = Builder.CreateFCmp(Pred, LHS, RHS); 1856 } 1857 1858 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 1859 if (!IsCastNeeded) 1860 return replaceInstUsesWith(SI, NewSI); 1861 1862 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 1863 return replaceInstUsesWith(SI, NewCast); 1864 } 1865 1866 // MAX(~a, ~b) -> ~MIN(a, b) 1867 // MAX(~a, C) -> ~MIN(a, ~C) 1868 // MIN(~a, ~b) -> ~MAX(a, b) 1869 // MIN(~a, C) -> ~MAX(a, ~C) 1870 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 1871 Value *A; 1872 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 1873 !IsFreeToInvert(A, A->hasOneUse()) && 1874 // Passing false to only consider m_Not and constants. 1875 IsFreeToInvert(Y, false)) { 1876 Value *B = Builder.CreateNot(Y); 1877 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 1878 A, B); 1879 // Copy the profile metadata. 1880 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 1881 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 1882 // Swap the metadata if the operands are swapped. 1883 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 1884 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 1885 } 1886 1887 return BinaryOperator::CreateNot(NewMinMax); 1888 } 1889 1890 return nullptr; 1891 }; 1892 1893 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 1894 return I; 1895 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 1896 return I; 1897 1898 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 1899 return I; 1900 } 1901 } 1902 1903 // See if we can fold the select into a phi node if the condition is a select. 1904 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 1905 // The true/false values have to be live in the PHI predecessor's blocks. 1906 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 1907 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 1908 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 1909 return NV; 1910 1911 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 1912 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 1913 // select(C, select(C, a, b), c) -> select(C, a, c) 1914 if (TrueSI->getCondition() == CondVal) { 1915 if (SI.getTrueValue() == TrueSI->getTrueValue()) 1916 return nullptr; 1917 SI.setOperand(1, TrueSI->getTrueValue()); 1918 return &SI; 1919 } 1920 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 1921 // We choose this as normal form to enable folding on the And and shortening 1922 // paths for the values (this helps GetUnderlyingObjects() for example). 1923 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 1924 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 1925 SI.setOperand(0, And); 1926 SI.setOperand(1, TrueSI->getTrueValue()); 1927 return &SI; 1928 } 1929 } 1930 } 1931 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 1932 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 1933 // select(C, a, select(C, b, c)) -> select(C, a, c) 1934 if (FalseSI->getCondition() == CondVal) { 1935 if (SI.getFalseValue() == FalseSI->getFalseValue()) 1936 return nullptr; 1937 SI.setOperand(2, FalseSI->getFalseValue()); 1938 return &SI; 1939 } 1940 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 1941 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 1942 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 1943 SI.setOperand(0, Or); 1944 SI.setOperand(2, FalseSI->getFalseValue()); 1945 return &SI; 1946 } 1947 } 1948 } 1949 1950 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 1951 // The select might be preventing a division by 0. 1952 switch (BO->getOpcode()) { 1953 default: 1954 return true; 1955 case Instruction::SRem: 1956 case Instruction::URem: 1957 case Instruction::SDiv: 1958 case Instruction::UDiv: 1959 return false; 1960 } 1961 }; 1962 1963 // Try to simplify a binop sandwiched between 2 selects with the same 1964 // condition. 1965 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 1966 BinaryOperator *TrueBO; 1967 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 1968 canMergeSelectThroughBinop(TrueBO)) { 1969 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 1970 if (TrueBOSI->getCondition() == CondVal) { 1971 TrueBO->setOperand(0, TrueBOSI->getTrueValue()); 1972 Worklist.Add(TrueBO); 1973 return &SI; 1974 } 1975 } 1976 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 1977 if (TrueBOSI->getCondition() == CondVal) { 1978 TrueBO->setOperand(1, TrueBOSI->getTrueValue()); 1979 Worklist.Add(TrueBO); 1980 return &SI; 1981 } 1982 } 1983 } 1984 1985 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 1986 BinaryOperator *FalseBO; 1987 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 1988 canMergeSelectThroughBinop(FalseBO)) { 1989 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 1990 if (FalseBOSI->getCondition() == CondVal) { 1991 FalseBO->setOperand(0, FalseBOSI->getFalseValue()); 1992 Worklist.Add(FalseBO); 1993 return &SI; 1994 } 1995 } 1996 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 1997 if (FalseBOSI->getCondition() == CondVal) { 1998 FalseBO->setOperand(1, FalseBOSI->getFalseValue()); 1999 Worklist.Add(FalseBO); 2000 return &SI; 2001 } 2002 } 2003 } 2004 2005 Value *NotCond; 2006 if (match(CondVal, m_Not(m_Value(NotCond)))) { 2007 SI.setOperand(0, NotCond); 2008 SI.setOperand(1, FalseVal); 2009 SI.setOperand(2, TrueVal); 2010 SI.swapProfMetadata(); 2011 return &SI; 2012 } 2013 2014 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { 2015 unsigned VWidth = VecTy->getNumElements(); 2016 APInt UndefElts(VWidth, 0); 2017 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2018 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 2019 if (V != &SI) 2020 return replaceInstUsesWith(SI, V); 2021 return &SI; 2022 } 2023 } 2024 2025 // If we can compute the condition, there's no need for a select. 2026 // Like the above fold, we are attempting to reduce compile-time cost by 2027 // putting this fold here with limitations rather than in InstSimplify. 2028 // The motivation for this call into value tracking is to take advantage of 2029 // the assumption cache, so make sure that is populated. 2030 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 2031 KnownBits Known(1); 2032 computeKnownBits(CondVal, Known, 0, &SI); 2033 if (Known.One.isOneValue()) 2034 return replaceInstUsesWith(SI, TrueVal); 2035 if (Known.Zero.isOneValue()) 2036 return replaceInstUsesWith(SI, FalseVal); 2037 } 2038 2039 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 2040 return BitCastSel; 2041 2042 // Simplify selects that test the returned flag of cmpxchg instructions. 2043 if (Instruction *Select = foldSelectCmpXchg(SI)) 2044 return Select; 2045 2046 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI)) 2047 return Select; 2048 2049 if (Instruction *Rot = foldSelectRotate(SI)) 2050 return Rot; 2051 2052 return nullptr; 2053 } 2054