1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/MapVector.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/Transforms/Utils/Local.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/MDBuilder.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 34 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 35 36 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 37 /// some part of a constant global variable. This intentionally only accepts 38 /// constant expressions because we can't rewrite arbitrary instructions. 39 static bool pointsToConstantGlobal(Value *V) { 40 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 41 return GV->isConstant(); 42 43 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 44 if (CE->getOpcode() == Instruction::BitCast || 45 CE->getOpcode() == Instruction::AddrSpaceCast || 46 CE->getOpcode() == Instruction::GetElementPtr) 47 return pointsToConstantGlobal(CE->getOperand(0)); 48 } 49 return false; 50 } 51 52 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 53 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 54 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 55 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 56 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 57 /// the alloca, and if the source pointer is a pointer to a constant global, we 58 /// can optimize this. 59 static bool 60 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 61 SmallVectorImpl<Instruction *> &ToDelete) { 62 // We track lifetime intrinsics as we encounter them. If we decide to go 63 // ahead and replace the value with the global, this lets the caller quickly 64 // eliminate the markers. 65 66 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 67 ValuesToInspect.emplace_back(V, false); 68 while (!ValuesToInspect.empty()) { 69 auto ValuePair = ValuesToInspect.pop_back_val(); 70 const bool IsOffset = ValuePair.second; 71 for (auto &U : ValuePair.first->uses()) { 72 auto *I = cast<Instruction>(U.getUser()); 73 74 if (auto *LI = dyn_cast<LoadInst>(I)) { 75 // Ignore non-volatile loads, they are always ok. 76 if (!LI->isSimple()) return false; 77 continue; 78 } 79 80 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 81 // If uses of the bitcast are ok, we are ok. 82 ValuesToInspect.emplace_back(I, IsOffset); 83 continue; 84 } 85 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 86 // If the GEP has all zero indices, it doesn't offset the pointer. If it 87 // doesn't, it does. 88 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 89 continue; 90 } 91 92 if (auto CS = CallSite(I)) { 93 // If this is the function being called then we treat it like a load and 94 // ignore it. 95 if (CS.isCallee(&U)) 96 continue; 97 98 unsigned DataOpNo = CS.getDataOperandNo(&U); 99 bool IsArgOperand = CS.isArgOperand(&U); 100 101 // Inalloca arguments are clobbered by the call. 102 if (IsArgOperand && CS.isInAllocaArgument(DataOpNo)) 103 return false; 104 105 // If this is a readonly/readnone call site, then we know it is just a 106 // load (but one that potentially returns the value itself), so we can 107 // ignore it if we know that the value isn't captured. 108 if (CS.onlyReadsMemory() && 109 (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo))) 110 continue; 111 112 // If this is being passed as a byval argument, the caller is making a 113 // copy, so it is only a read of the alloca. 114 if (IsArgOperand && CS.isByValArgument(DataOpNo)) 115 continue; 116 } 117 118 // Lifetime intrinsics can be handled by the caller. 119 if (I->isLifetimeStartOrEnd()) { 120 assert(I->use_empty() && "Lifetime markers have no result to use!"); 121 ToDelete.push_back(I); 122 continue; 123 } 124 125 // If this is isn't our memcpy/memmove, reject it as something we can't 126 // handle. 127 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 128 if (!MI) 129 return false; 130 131 // If the transfer is using the alloca as a source of the transfer, then 132 // ignore it since it is a load (unless the transfer is volatile). 133 if (U.getOperandNo() == 1) { 134 if (MI->isVolatile()) return false; 135 continue; 136 } 137 138 // If we already have seen a copy, reject the second one. 139 if (TheCopy) return false; 140 141 // If the pointer has been offset from the start of the alloca, we can't 142 // safely handle this. 143 if (IsOffset) return false; 144 145 // If the memintrinsic isn't using the alloca as the dest, reject it. 146 if (U.getOperandNo() != 0) return false; 147 148 // If the source of the memcpy/move is not a constant global, reject it. 149 if (!pointsToConstantGlobal(MI->getSource())) 150 return false; 151 152 // Otherwise, the transform is safe. Remember the copy instruction. 153 TheCopy = MI; 154 } 155 } 156 return true; 157 } 158 159 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 160 /// modified by a copy from a constant global. If we can prove this, we can 161 /// replace any uses of the alloca with uses of the global directly. 162 static MemTransferInst * 163 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 164 SmallVectorImpl<Instruction *> &ToDelete) { 165 MemTransferInst *TheCopy = nullptr; 166 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 167 return TheCopy; 168 return nullptr; 169 } 170 171 /// Returns true if V is dereferenceable for size of alloca. 172 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 173 const DataLayout &DL) { 174 if (AI->isArrayAllocation()) 175 return false; 176 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 177 if (!AllocaSize) 178 return false; 179 return isDereferenceableAndAlignedPointer(V, AI->getAlignment(), 180 APInt(64, AllocaSize), DL); 181 } 182 183 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 184 // Check for array size of 1 (scalar allocation). 185 if (!AI.isArrayAllocation()) { 186 // i32 1 is the canonical array size for scalar allocations. 187 if (AI.getArraySize()->getType()->isIntegerTy(32)) 188 return nullptr; 189 190 // Canonicalize it. 191 Value *V = IC.Builder.getInt32(1); 192 AI.setOperand(0, V); 193 return &AI; 194 } 195 196 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 197 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 198 if (C->getValue().getActiveBits() <= 64) { 199 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 200 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 201 New->setAlignment(AI.getAlignment()); 202 203 // Scan to the end of the allocation instructions, to skip over a block of 204 // allocas if possible...also skip interleaved debug info 205 // 206 BasicBlock::iterator It(New); 207 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 208 ++It; 209 210 // Now that I is pointing to the first non-allocation-inst in the block, 211 // insert our getelementptr instruction... 212 // 213 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 214 Value *NullIdx = Constant::getNullValue(IdxTy); 215 Value *Idx[2] = {NullIdx, NullIdx}; 216 Instruction *GEP = 217 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 218 IC.InsertNewInstBefore(GEP, *It); 219 220 // Now make everything use the getelementptr instead of the original 221 // allocation. 222 return IC.replaceInstUsesWith(AI, GEP); 223 } 224 } 225 226 if (isa<UndefValue>(AI.getArraySize())) 227 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 228 229 // Ensure that the alloca array size argument has type intptr_t, so that 230 // any casting is exposed early. 231 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 232 if (AI.getArraySize()->getType() != IntPtrTy) { 233 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 234 AI.setOperand(0, V); 235 return &AI; 236 } 237 238 return nullptr; 239 } 240 241 namespace { 242 // If I and V are pointers in different address space, it is not allowed to 243 // use replaceAllUsesWith since I and V have different types. A 244 // non-target-specific transformation should not use addrspacecast on V since 245 // the two address space may be disjoint depending on target. 246 // 247 // This class chases down uses of the old pointer until reaching the load 248 // instructions, then replaces the old pointer in the load instructions with 249 // the new pointer. If during the chasing it sees bitcast or GEP, it will 250 // create new bitcast or GEP with the new pointer and use them in the load 251 // instruction. 252 class PointerReplacer { 253 public: 254 PointerReplacer(InstCombiner &IC) : IC(IC) {} 255 void replacePointer(Instruction &I, Value *V); 256 257 private: 258 void findLoadAndReplace(Instruction &I); 259 void replace(Instruction *I); 260 Value *getReplacement(Value *I); 261 262 SmallVector<Instruction *, 4> Path; 263 MapVector<Value *, Value *> WorkMap; 264 InstCombiner &IC; 265 }; 266 } // end anonymous namespace 267 268 void PointerReplacer::findLoadAndReplace(Instruction &I) { 269 for (auto U : I.users()) { 270 auto *Inst = dyn_cast<Instruction>(&*U); 271 if (!Inst) 272 return; 273 LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); 274 if (isa<LoadInst>(Inst)) { 275 for (auto P : Path) 276 replace(P); 277 replace(Inst); 278 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 279 Path.push_back(Inst); 280 findLoadAndReplace(*Inst); 281 Path.pop_back(); 282 } else { 283 return; 284 } 285 } 286 } 287 288 Value *PointerReplacer::getReplacement(Value *V) { 289 auto Loc = WorkMap.find(V); 290 if (Loc != WorkMap.end()) 291 return Loc->second; 292 return nullptr; 293 } 294 295 void PointerReplacer::replace(Instruction *I) { 296 if (getReplacement(I)) 297 return; 298 299 if (auto *LT = dyn_cast<LoadInst>(I)) { 300 auto *V = getReplacement(LT->getPointerOperand()); 301 assert(V && "Operand not replaced"); 302 auto *NewI = new LoadInst(V); 303 NewI->takeName(LT); 304 IC.InsertNewInstWith(NewI, *LT); 305 IC.replaceInstUsesWith(*LT, NewI); 306 WorkMap[LT] = NewI; 307 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 308 auto *V = getReplacement(GEP->getPointerOperand()); 309 assert(V && "Operand not replaced"); 310 SmallVector<Value *, 8> Indices; 311 Indices.append(GEP->idx_begin(), GEP->idx_end()); 312 auto *NewI = GetElementPtrInst::Create( 313 V->getType()->getPointerElementType(), V, Indices); 314 IC.InsertNewInstWith(NewI, *GEP); 315 NewI->takeName(GEP); 316 WorkMap[GEP] = NewI; 317 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 318 auto *V = getReplacement(BC->getOperand(0)); 319 assert(V && "Operand not replaced"); 320 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 321 V->getType()->getPointerAddressSpace()); 322 auto *NewI = new BitCastInst(V, NewT); 323 IC.InsertNewInstWith(NewI, *BC); 324 NewI->takeName(BC); 325 WorkMap[BC] = NewI; 326 } else { 327 llvm_unreachable("should never reach here"); 328 } 329 } 330 331 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 332 #ifndef NDEBUG 333 auto *PT = cast<PointerType>(I.getType()); 334 auto *NT = cast<PointerType>(V->getType()); 335 assert(PT != NT && PT->getElementType() == NT->getElementType() && 336 "Invalid usage"); 337 #endif 338 WorkMap[&I] = V; 339 findLoadAndReplace(I); 340 } 341 342 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 343 if (auto *I = simplifyAllocaArraySize(*this, AI)) 344 return I; 345 346 if (AI.getAllocatedType()->isSized()) { 347 // If the alignment is 0 (unspecified), assign it the preferred alignment. 348 if (AI.getAlignment() == 0) 349 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 350 351 // Move all alloca's of zero byte objects to the entry block and merge them 352 // together. Note that we only do this for alloca's, because malloc should 353 // allocate and return a unique pointer, even for a zero byte allocation. 354 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 355 // For a zero sized alloca there is no point in doing an array allocation. 356 // This is helpful if the array size is a complicated expression not used 357 // elsewhere. 358 if (AI.isArrayAllocation()) { 359 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 360 return &AI; 361 } 362 363 // Get the first instruction in the entry block. 364 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 365 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 366 if (FirstInst != &AI) { 367 // If the entry block doesn't start with a zero-size alloca then move 368 // this one to the start of the entry block. There is no problem with 369 // dominance as the array size was forced to a constant earlier already. 370 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 371 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 372 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 373 AI.moveBefore(FirstInst); 374 return &AI; 375 } 376 377 // If the alignment of the entry block alloca is 0 (unspecified), 378 // assign it the preferred alignment. 379 if (EntryAI->getAlignment() == 0) 380 EntryAI->setAlignment( 381 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 382 // Replace this zero-sized alloca with the one at the start of the entry 383 // block after ensuring that the address will be aligned enough for both 384 // types. 385 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 386 AI.getAlignment()); 387 EntryAI->setAlignment(MaxAlign); 388 if (AI.getType() != EntryAI->getType()) 389 return new BitCastInst(EntryAI, AI.getType()); 390 return replaceInstUsesWith(AI, EntryAI); 391 } 392 } 393 } 394 395 if (AI.getAlignment()) { 396 // Check to see if this allocation is only modified by a memcpy/memmove from 397 // a constant global whose alignment is equal to or exceeds that of the 398 // allocation. If this is the case, we can change all users to use 399 // the constant global instead. This is commonly produced by the CFE by 400 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 401 // is only subsequently read. 402 SmallVector<Instruction *, 4> ToDelete; 403 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 404 unsigned SourceAlign = getOrEnforceKnownAlignment( 405 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); 406 if (AI.getAlignment() <= SourceAlign && 407 isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) { 408 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 409 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 410 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 411 eraseInstFromFunction(*ToDelete[i]); 412 Constant *TheSrc = cast<Constant>(Copy->getSource()); 413 auto *SrcTy = TheSrc->getType(); 414 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), 415 SrcTy->getPointerAddressSpace()); 416 Constant *Cast = 417 ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy); 418 if (AI.getType()->getPointerAddressSpace() == 419 SrcTy->getPointerAddressSpace()) { 420 Instruction *NewI = replaceInstUsesWith(AI, Cast); 421 eraseInstFromFunction(*Copy); 422 ++NumGlobalCopies; 423 return NewI; 424 } else { 425 PointerReplacer PtrReplacer(*this); 426 PtrReplacer.replacePointer(AI, Cast); 427 ++NumGlobalCopies; 428 } 429 } 430 } 431 } 432 433 // At last, use the generic allocation site handler to aggressively remove 434 // unused allocas. 435 return visitAllocSite(AI); 436 } 437 438 // Are we allowed to form a atomic load or store of this type? 439 static bool isSupportedAtomicType(Type *Ty) { 440 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 441 } 442 443 /// Helper to combine a load to a new type. 444 /// 445 /// This just does the work of combining a load to a new type. It handles 446 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 447 /// loaded *value* type. This will convert it to a pointer, cast the operand to 448 /// that pointer type, load it, etc. 449 /// 450 /// Note that this will create all of the instructions with whatever insert 451 /// point the \c InstCombiner currently is using. 452 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 453 const Twine &Suffix = "") { 454 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 455 "can't fold an atomic load to requested type"); 456 457 Value *Ptr = LI.getPointerOperand(); 458 unsigned AS = LI.getPointerAddressSpace(); 459 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 460 LI.getAllMetadata(MD); 461 462 Value *NewPtr = nullptr; 463 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 464 NewPtr->getType()->getPointerElementType() == NewTy && 465 NewPtr->getType()->getPointerAddressSpace() == AS)) 466 NewPtr = IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)); 467 468 LoadInst *NewLoad = IC.Builder.CreateAlignedLoad( 469 NewPtr, LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); 470 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 471 MDBuilder MDB(NewLoad->getContext()); 472 for (const auto &MDPair : MD) { 473 unsigned ID = MDPair.first; 474 MDNode *N = MDPair.second; 475 // Note, essentially every kind of metadata should be preserved here! This 476 // routine is supposed to clone a load instruction changing *only its type*. 477 // The only metadata it makes sense to drop is metadata which is invalidated 478 // when the pointer type changes. This should essentially never be the case 479 // in LLVM, but we explicitly switch over only known metadata to be 480 // conservatively correct. If you are adding metadata to LLVM which pertains 481 // to loads, you almost certainly want to add it here. 482 switch (ID) { 483 case LLVMContext::MD_dbg: 484 case LLVMContext::MD_tbaa: 485 case LLVMContext::MD_prof: 486 case LLVMContext::MD_fpmath: 487 case LLVMContext::MD_tbaa_struct: 488 case LLVMContext::MD_invariant_load: 489 case LLVMContext::MD_alias_scope: 490 case LLVMContext::MD_noalias: 491 case LLVMContext::MD_nontemporal: 492 case LLVMContext::MD_mem_parallel_loop_access: 493 case LLVMContext::MD_access_group: 494 // All of these directly apply. 495 NewLoad->setMetadata(ID, N); 496 break; 497 498 case LLVMContext::MD_nonnull: 499 copyNonnullMetadata(LI, N, *NewLoad); 500 break; 501 case LLVMContext::MD_align: 502 case LLVMContext::MD_dereferenceable: 503 case LLVMContext::MD_dereferenceable_or_null: 504 // These only directly apply if the new type is also a pointer. 505 if (NewTy->isPointerTy()) 506 NewLoad->setMetadata(ID, N); 507 break; 508 case LLVMContext::MD_range: 509 copyRangeMetadata(IC.getDataLayout(), LI, N, *NewLoad); 510 break; 511 } 512 } 513 return NewLoad; 514 } 515 516 /// Combine a store to a new type. 517 /// 518 /// Returns the newly created store instruction. 519 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 520 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 521 "can't fold an atomic store of requested type"); 522 523 Value *Ptr = SI.getPointerOperand(); 524 unsigned AS = SI.getPointerAddressSpace(); 525 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 526 SI.getAllMetadata(MD); 527 528 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 529 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 530 SI.getAlignment(), SI.isVolatile()); 531 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 532 for (const auto &MDPair : MD) { 533 unsigned ID = MDPair.first; 534 MDNode *N = MDPair.second; 535 // Note, essentially every kind of metadata should be preserved here! This 536 // routine is supposed to clone a store instruction changing *only its 537 // type*. The only metadata it makes sense to drop is metadata which is 538 // invalidated when the pointer type changes. This should essentially 539 // never be the case in LLVM, but we explicitly switch over only known 540 // metadata to be conservatively correct. If you are adding metadata to 541 // LLVM which pertains to stores, you almost certainly want to add it 542 // here. 543 switch (ID) { 544 case LLVMContext::MD_dbg: 545 case LLVMContext::MD_tbaa: 546 case LLVMContext::MD_prof: 547 case LLVMContext::MD_fpmath: 548 case LLVMContext::MD_tbaa_struct: 549 case LLVMContext::MD_alias_scope: 550 case LLVMContext::MD_noalias: 551 case LLVMContext::MD_nontemporal: 552 case LLVMContext::MD_mem_parallel_loop_access: 553 case LLVMContext::MD_access_group: 554 // All of these directly apply. 555 NewStore->setMetadata(ID, N); 556 break; 557 case LLVMContext::MD_invariant_load: 558 case LLVMContext::MD_nonnull: 559 case LLVMContext::MD_range: 560 case LLVMContext::MD_align: 561 case LLVMContext::MD_dereferenceable: 562 case LLVMContext::MD_dereferenceable_or_null: 563 // These don't apply for stores. 564 break; 565 } 566 } 567 568 return NewStore; 569 } 570 571 /// Returns true if instruction represent minmax pattern like: 572 /// select ((cmp load V1, load V2), V1, V2). 573 static bool isMinMaxWithLoads(Value *V) { 574 assert(V->getType()->isPointerTy() && "Expected pointer type."); 575 // Ignore possible ty* to ixx* bitcast. 576 V = peekThroughBitcast(V); 577 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 578 // pattern. 579 CmpInst::Predicate Pred; 580 Instruction *L1; 581 Instruction *L2; 582 Value *LHS; 583 Value *RHS; 584 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 585 m_Value(LHS), m_Value(RHS)))) 586 return false; 587 return (match(L1, m_Load(m_Specific(LHS))) && 588 match(L2, m_Load(m_Specific(RHS)))) || 589 (match(L1, m_Load(m_Specific(RHS))) && 590 match(L2, m_Load(m_Specific(LHS)))); 591 } 592 593 /// Combine loads to match the type of their uses' value after looking 594 /// through intervening bitcasts. 595 /// 596 /// The core idea here is that if the result of a load is used in an operation, 597 /// we should load the type most conducive to that operation. For example, when 598 /// loading an integer and converting that immediately to a pointer, we should 599 /// instead directly load a pointer. 600 /// 601 /// However, this routine must never change the width of a load or the number of 602 /// loads as that would introduce a semantic change. This combine is expected to 603 /// be a semantic no-op which just allows loads to more closely model the types 604 /// of their consuming operations. 605 /// 606 /// Currently, we also refuse to change the precise type used for an atomic load 607 /// or a volatile load. This is debatable, and might be reasonable to change 608 /// later. However, it is risky in case some backend or other part of LLVM is 609 /// relying on the exact type loaded to select appropriate atomic operations. 610 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 611 // FIXME: We could probably with some care handle both volatile and ordered 612 // atomic loads here but it isn't clear that this is important. 613 if (!LI.isUnordered()) 614 return nullptr; 615 616 if (LI.use_empty()) 617 return nullptr; 618 619 // swifterror values can't be bitcasted. 620 if (LI.getPointerOperand()->isSwiftError()) 621 return nullptr; 622 623 Type *Ty = LI.getType(); 624 const DataLayout &DL = IC.getDataLayout(); 625 626 // Try to canonicalize loads which are only ever stored to operate over 627 // integers instead of any other type. We only do this when the loaded type 628 // is sized and has a size exactly the same as its store size and the store 629 // size is a legal integer type. 630 // Do not perform canonicalization if minmax pattern is found (to avoid 631 // infinite loop). 632 if (!Ty->isIntegerTy() && Ty->isSized() && 633 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 634 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) && 635 !DL.isNonIntegralPointerType(Ty) && 636 !isMinMaxWithLoads( 637 peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) { 638 if (all_of(LI.users(), [&LI](User *U) { 639 auto *SI = dyn_cast<StoreInst>(U); 640 return SI && SI->getPointerOperand() != &LI && 641 !SI->getPointerOperand()->isSwiftError(); 642 })) { 643 LoadInst *NewLoad = combineLoadToNewType( 644 IC, LI, 645 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 646 // Replace all the stores with stores of the newly loaded value. 647 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 648 auto *SI = cast<StoreInst>(*UI++); 649 IC.Builder.SetInsertPoint(SI); 650 combineStoreToNewValue(IC, *SI, NewLoad); 651 IC.eraseInstFromFunction(*SI); 652 } 653 assert(LI.use_empty() && "Failed to remove all users of the load!"); 654 // Return the old load so the combiner can delete it safely. 655 return &LI; 656 } 657 } 658 659 // Fold away bit casts of the loaded value by loading the desired type. 660 // We can do this for BitCastInsts as well as casts from and to pointer types, 661 // as long as those are noops (i.e., the source or dest type have the same 662 // bitwidth as the target's pointers). 663 if (LI.hasOneUse()) 664 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 665 if (CI->isNoopCast(DL)) 666 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 667 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 668 CI->replaceAllUsesWith(NewLoad); 669 IC.eraseInstFromFunction(*CI); 670 return &LI; 671 } 672 673 // FIXME: We should also canonicalize loads of vectors when their elements are 674 // cast to other types. 675 return nullptr; 676 } 677 678 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 679 // FIXME: We could probably with some care handle both volatile and atomic 680 // stores here but it isn't clear that this is important. 681 if (!LI.isSimple()) 682 return nullptr; 683 684 Type *T = LI.getType(); 685 if (!T->isAggregateType()) 686 return nullptr; 687 688 StringRef Name = LI.getName(); 689 assert(LI.getAlignment() && "Alignment must be set at this point"); 690 691 if (auto *ST = dyn_cast<StructType>(T)) { 692 // If the struct only have one element, we unpack. 693 auto NumElements = ST->getNumElements(); 694 if (NumElements == 1) { 695 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 696 ".unpack"); 697 AAMDNodes AAMD; 698 LI.getAAMetadata(AAMD); 699 NewLoad->setAAMetadata(AAMD); 700 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 701 UndefValue::get(T), NewLoad, 0, Name)); 702 } 703 704 // We don't want to break loads with padding here as we'd loose 705 // the knowledge that padding exists for the rest of the pipeline. 706 const DataLayout &DL = IC.getDataLayout(); 707 auto *SL = DL.getStructLayout(ST); 708 if (SL->hasPadding()) 709 return nullptr; 710 711 auto Align = LI.getAlignment(); 712 if (!Align) 713 Align = DL.getABITypeAlignment(ST); 714 715 auto *Addr = LI.getPointerOperand(); 716 auto *IdxType = Type::getInt32Ty(T->getContext()); 717 auto *Zero = ConstantInt::get(IdxType, 0); 718 719 Value *V = UndefValue::get(T); 720 for (unsigned i = 0; i < NumElements; i++) { 721 Value *Indices[2] = { 722 Zero, 723 ConstantInt::get(IdxType, i), 724 }; 725 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 726 Name + ".elt"); 727 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 728 auto *L = IC.Builder.CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack"); 729 // Propagate AA metadata. It'll still be valid on the narrowed load. 730 AAMDNodes AAMD; 731 LI.getAAMetadata(AAMD); 732 L->setAAMetadata(AAMD); 733 V = IC.Builder.CreateInsertValue(V, L, i); 734 } 735 736 V->setName(Name); 737 return IC.replaceInstUsesWith(LI, V); 738 } 739 740 if (auto *AT = dyn_cast<ArrayType>(T)) { 741 auto *ET = AT->getElementType(); 742 auto NumElements = AT->getNumElements(); 743 if (NumElements == 1) { 744 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 745 AAMDNodes AAMD; 746 LI.getAAMetadata(AAMD); 747 NewLoad->setAAMetadata(AAMD); 748 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 749 UndefValue::get(T), NewLoad, 0, Name)); 750 } 751 752 // Bail out if the array is too large. Ideally we would like to optimize 753 // arrays of arbitrary size but this has a terrible impact on compile time. 754 // The threshold here is chosen arbitrarily, maybe needs a little bit of 755 // tuning. 756 if (NumElements > IC.MaxArraySizeForCombine) 757 return nullptr; 758 759 const DataLayout &DL = IC.getDataLayout(); 760 auto EltSize = DL.getTypeAllocSize(ET); 761 auto Align = LI.getAlignment(); 762 if (!Align) 763 Align = DL.getABITypeAlignment(T); 764 765 auto *Addr = LI.getPointerOperand(); 766 auto *IdxType = Type::getInt64Ty(T->getContext()); 767 auto *Zero = ConstantInt::get(IdxType, 0); 768 769 Value *V = UndefValue::get(T); 770 uint64_t Offset = 0; 771 for (uint64_t i = 0; i < NumElements; i++) { 772 Value *Indices[2] = { 773 Zero, 774 ConstantInt::get(IdxType, i), 775 }; 776 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 777 Name + ".elt"); 778 auto *L = IC.Builder.CreateAlignedLoad(Ptr, MinAlign(Align, Offset), 779 Name + ".unpack"); 780 AAMDNodes AAMD; 781 LI.getAAMetadata(AAMD); 782 L->setAAMetadata(AAMD); 783 V = IC.Builder.CreateInsertValue(V, L, i); 784 Offset += EltSize; 785 } 786 787 V->setName(Name); 788 return IC.replaceInstUsesWith(LI, V); 789 } 790 791 return nullptr; 792 } 793 794 // If we can determine that all possible objects pointed to by the provided 795 // pointer value are, not only dereferenceable, but also definitively less than 796 // or equal to the provided maximum size, then return true. Otherwise, return 797 // false (constant global values and allocas fall into this category). 798 // 799 // FIXME: This should probably live in ValueTracking (or similar). 800 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 801 const DataLayout &DL) { 802 SmallPtrSet<Value *, 4> Visited; 803 SmallVector<Value *, 4> Worklist(1, V); 804 805 do { 806 Value *P = Worklist.pop_back_val(); 807 P = P->stripPointerCasts(); 808 809 if (!Visited.insert(P).second) 810 continue; 811 812 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 813 Worklist.push_back(SI->getTrueValue()); 814 Worklist.push_back(SI->getFalseValue()); 815 continue; 816 } 817 818 if (PHINode *PN = dyn_cast<PHINode>(P)) { 819 for (Value *IncValue : PN->incoming_values()) 820 Worklist.push_back(IncValue); 821 continue; 822 } 823 824 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 825 if (GA->isInterposable()) 826 return false; 827 Worklist.push_back(GA->getAliasee()); 828 continue; 829 } 830 831 // If we know how big this object is, and it is less than MaxSize, continue 832 // searching. Otherwise, return false. 833 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 834 if (!AI->getAllocatedType()->isSized()) 835 return false; 836 837 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 838 if (!CS) 839 return false; 840 841 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 842 // Make sure that, even if the multiplication below would wrap as an 843 // uint64_t, we still do the right thing. 844 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 845 return false; 846 continue; 847 } 848 849 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 850 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 851 return false; 852 853 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 854 if (InitSize > MaxSize) 855 return false; 856 continue; 857 } 858 859 return false; 860 } while (!Worklist.empty()); 861 862 return true; 863 } 864 865 // If we're indexing into an object of a known size, and the outer index is 866 // not a constant, but having any value but zero would lead to undefined 867 // behavior, replace it with zero. 868 // 869 // For example, if we have: 870 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 871 // ... 872 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 873 // ... = load i32* %arrayidx, align 4 874 // Then we know that we can replace %x in the GEP with i64 0. 875 // 876 // FIXME: We could fold any GEP index to zero that would cause UB if it were 877 // not zero. Currently, we only handle the first such index. Also, we could 878 // also search through non-zero constant indices if we kept track of the 879 // offsets those indices implied. 880 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 881 Instruction *MemI, unsigned &Idx) { 882 if (GEPI->getNumOperands() < 2) 883 return false; 884 885 // Find the first non-zero index of a GEP. If all indices are zero, return 886 // one past the last index. 887 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 888 unsigned I = 1; 889 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 890 Value *V = GEPI->getOperand(I); 891 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 892 if (CI->isZero()) 893 continue; 894 895 break; 896 } 897 898 return I; 899 }; 900 901 // Skip through initial 'zero' indices, and find the corresponding pointer 902 // type. See if the next index is not a constant. 903 Idx = FirstNZIdx(GEPI); 904 if (Idx == GEPI->getNumOperands()) 905 return false; 906 if (isa<Constant>(GEPI->getOperand(Idx))) 907 return false; 908 909 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 910 Type *AllocTy = 911 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 912 if (!AllocTy || !AllocTy->isSized()) 913 return false; 914 const DataLayout &DL = IC.getDataLayout(); 915 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 916 917 // If there are more indices after the one we might replace with a zero, make 918 // sure they're all non-negative. If any of them are negative, the overall 919 // address being computed might be before the base address determined by the 920 // first non-zero index. 921 auto IsAllNonNegative = [&]() { 922 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 923 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 924 if (Known.isNonNegative()) 925 continue; 926 return false; 927 } 928 929 return true; 930 }; 931 932 // FIXME: If the GEP is not inbounds, and there are extra indices after the 933 // one we'll replace, those could cause the address computation to wrap 934 // (rendering the IsAllNonNegative() check below insufficient). We can do 935 // better, ignoring zero indices (and other indices we can prove small 936 // enough not to wrap). 937 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 938 return false; 939 940 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 941 // also known to be dereferenceable. 942 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 943 IsAllNonNegative(); 944 } 945 946 // If we're indexing into an object with a variable index for the memory 947 // access, but the object has only one element, we can assume that the index 948 // will always be zero. If we replace the GEP, return it. 949 template <typename T> 950 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 951 T &MemI) { 952 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 953 unsigned Idx; 954 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 955 Instruction *NewGEPI = GEPI->clone(); 956 NewGEPI->setOperand(Idx, 957 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 958 NewGEPI->insertBefore(GEPI); 959 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 960 return NewGEPI; 961 } 962 } 963 964 return nullptr; 965 } 966 967 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 968 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 969 return false; 970 971 auto *Ptr = SI.getPointerOperand(); 972 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 973 Ptr = GEPI->getOperand(0); 974 return (isa<ConstantPointerNull>(Ptr) && 975 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 976 } 977 978 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 979 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 980 const Value *GEPI0 = GEPI->getOperand(0); 981 if (isa<ConstantPointerNull>(GEPI0) && 982 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 983 return true; 984 } 985 if (isa<UndefValue>(Op) || 986 (isa<ConstantPointerNull>(Op) && 987 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 988 return true; 989 return false; 990 } 991 992 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 993 Value *Op = LI.getOperand(0); 994 995 // Try to canonicalize the loaded type. 996 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 997 return Res; 998 999 // Attempt to improve the alignment. 1000 unsigned KnownAlign = getOrEnforceKnownAlignment( 1001 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); 1002 unsigned LoadAlign = LI.getAlignment(); 1003 unsigned EffectiveLoadAlign = 1004 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 1005 1006 if (KnownAlign > EffectiveLoadAlign) 1007 LI.setAlignment(KnownAlign); 1008 else if (LoadAlign == 0) 1009 LI.setAlignment(EffectiveLoadAlign); 1010 1011 // Replace GEP indices if possible. 1012 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 1013 Worklist.Add(NewGEPI); 1014 return &LI; 1015 } 1016 1017 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 1018 return Res; 1019 1020 // Do really simple store-to-load forwarding and load CSE, to catch cases 1021 // where there are several consecutive memory accesses to the same location, 1022 // separated by a few arithmetic operations. 1023 BasicBlock::iterator BBI(LI); 1024 bool IsLoadCSE = false; 1025 if (Value *AvailableVal = FindAvailableLoadedValue( 1026 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1027 if (IsLoadCSE) 1028 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 1029 1030 return replaceInstUsesWith( 1031 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 1032 LI.getName() + ".cast")); 1033 } 1034 1035 // None of the following transforms are legal for volatile/ordered atomic 1036 // loads. Most of them do apply for unordered atomics. 1037 if (!LI.isUnordered()) return nullptr; 1038 1039 // load(gep null, ...) -> unreachable 1040 // load null/undef -> unreachable 1041 // TODO: Consider a target hook for valid address spaces for this xforms. 1042 if (canSimplifyNullLoadOrGEP(LI, Op)) { 1043 // Insert a new store to null instruction before the load to indicate 1044 // that this code is not reachable. We do this instead of inserting 1045 // an unreachable instruction directly because we cannot modify the 1046 // CFG. 1047 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), 1048 Constant::getNullValue(Op->getType()), &LI); 1049 SI->setDebugLoc(LI.getDebugLoc()); 1050 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 1051 } 1052 1053 if (Op->hasOneUse()) { 1054 // Change select and PHI nodes to select values instead of addresses: this 1055 // helps alias analysis out a lot, allows many others simplifications, and 1056 // exposes redundancy in the code. 1057 // 1058 // Note that we cannot do the transformation unless we know that the 1059 // introduced loads cannot trap! Something like this is valid as long as 1060 // the condition is always false: load (select bool %C, int* null, int* %G), 1061 // but it would not be valid if we transformed it to load from null 1062 // unconditionally. 1063 // 1064 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1065 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1066 unsigned Align = LI.getAlignment(); 1067 if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) && 1068 isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) { 1069 LoadInst *V1 = Builder.CreateLoad(SI->getOperand(1), 1070 SI->getOperand(1)->getName()+".val"); 1071 LoadInst *V2 = Builder.CreateLoad(SI->getOperand(2), 1072 SI->getOperand(2)->getName()+".val"); 1073 assert(LI.isUnordered() && "implied by above"); 1074 V1->setAlignment(Align); 1075 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1076 V2->setAlignment(Align); 1077 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1078 return SelectInst::Create(SI->getCondition(), V1, V2); 1079 } 1080 1081 // load (select (cond, null, P)) -> load P 1082 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1083 !NullPointerIsDefined(SI->getFunction(), 1084 LI.getPointerAddressSpace())) { 1085 LI.setOperand(0, SI->getOperand(2)); 1086 return &LI; 1087 } 1088 1089 // load (select (cond, P, null)) -> load P 1090 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1091 !NullPointerIsDefined(SI->getFunction(), 1092 LI.getPointerAddressSpace())) { 1093 LI.setOperand(0, SI->getOperand(1)); 1094 return &LI; 1095 } 1096 } 1097 } 1098 return nullptr; 1099 } 1100 1101 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1102 /// 1103 /// \returns underlying value that was "cast", or nullptr otherwise. 1104 /// 1105 /// For example, if we have: 1106 /// 1107 /// %E0 = extractelement <2 x double> %U, i32 0 1108 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1109 /// %E1 = extractelement <2 x double> %U, i32 1 1110 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1111 /// 1112 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1113 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1114 /// Note that %U may contain non-undef values where %V1 has undef. 1115 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 1116 Value *U = nullptr; 1117 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1118 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1119 if (!E) 1120 return nullptr; 1121 auto *W = E->getVectorOperand(); 1122 if (!U) 1123 U = W; 1124 else if (U != W) 1125 return nullptr; 1126 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1127 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1128 return nullptr; 1129 V = IV->getAggregateOperand(); 1130 } 1131 if (!isa<UndefValue>(V) ||!U) 1132 return nullptr; 1133 1134 auto *UT = cast<VectorType>(U->getType()); 1135 auto *VT = V->getType(); 1136 // Check that types UT and VT are bitwise isomorphic. 1137 const auto &DL = IC.getDataLayout(); 1138 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1139 return nullptr; 1140 } 1141 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1142 if (AT->getNumElements() != UT->getNumElements()) 1143 return nullptr; 1144 } else { 1145 auto *ST = cast<StructType>(VT); 1146 if (ST->getNumElements() != UT->getNumElements()) 1147 return nullptr; 1148 for (const auto *EltT : ST->elements()) { 1149 if (EltT != UT->getElementType()) 1150 return nullptr; 1151 } 1152 } 1153 return U; 1154 } 1155 1156 /// Combine stores to match the type of value being stored. 1157 /// 1158 /// The core idea here is that the memory does not have any intrinsic type and 1159 /// where we can we should match the type of a store to the type of value being 1160 /// stored. 1161 /// 1162 /// However, this routine must never change the width of a store or the number of 1163 /// stores as that would introduce a semantic change. This combine is expected to 1164 /// be a semantic no-op which just allows stores to more closely model the types 1165 /// of their incoming values. 1166 /// 1167 /// Currently, we also refuse to change the precise type used for an atomic or 1168 /// volatile store. This is debatable, and might be reasonable to change later. 1169 /// However, it is risky in case some backend or other part of LLVM is relying 1170 /// on the exact type stored to select appropriate atomic operations. 1171 /// 1172 /// \returns true if the store was successfully combined away. This indicates 1173 /// the caller must erase the store instruction. We have to let the caller erase 1174 /// the store instruction as otherwise there is no way to signal whether it was 1175 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1176 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1177 // FIXME: We could probably with some care handle both volatile and ordered 1178 // atomic stores here but it isn't clear that this is important. 1179 if (!SI.isUnordered()) 1180 return false; 1181 1182 // swifterror values can't be bitcasted. 1183 if (SI.getPointerOperand()->isSwiftError()) 1184 return false; 1185 1186 Value *V = SI.getValueOperand(); 1187 1188 // Fold away bit casts of the stored value by storing the original type. 1189 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1190 V = BC->getOperand(0); 1191 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1192 combineStoreToNewValue(IC, SI, V); 1193 return true; 1194 } 1195 } 1196 1197 if (Value *U = likeBitCastFromVector(IC, V)) 1198 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1199 combineStoreToNewValue(IC, SI, U); 1200 return true; 1201 } 1202 1203 // FIXME: We should also canonicalize stores of vectors when their elements 1204 // are cast to other types. 1205 return false; 1206 } 1207 1208 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1209 // FIXME: We could probably with some care handle both volatile and atomic 1210 // stores here but it isn't clear that this is important. 1211 if (!SI.isSimple()) 1212 return false; 1213 1214 Value *V = SI.getValueOperand(); 1215 Type *T = V->getType(); 1216 1217 if (!T->isAggregateType()) 1218 return false; 1219 1220 if (auto *ST = dyn_cast<StructType>(T)) { 1221 // If the struct only have one element, we unpack. 1222 unsigned Count = ST->getNumElements(); 1223 if (Count == 1) { 1224 V = IC.Builder.CreateExtractValue(V, 0); 1225 combineStoreToNewValue(IC, SI, V); 1226 return true; 1227 } 1228 1229 // We don't want to break loads with padding here as we'd loose 1230 // the knowledge that padding exists for the rest of the pipeline. 1231 const DataLayout &DL = IC.getDataLayout(); 1232 auto *SL = DL.getStructLayout(ST); 1233 if (SL->hasPadding()) 1234 return false; 1235 1236 auto Align = SI.getAlignment(); 1237 if (!Align) 1238 Align = DL.getABITypeAlignment(ST); 1239 1240 SmallString<16> EltName = V->getName(); 1241 EltName += ".elt"; 1242 auto *Addr = SI.getPointerOperand(); 1243 SmallString<16> AddrName = Addr->getName(); 1244 AddrName += ".repack"; 1245 1246 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1247 auto *Zero = ConstantInt::get(IdxType, 0); 1248 for (unsigned i = 0; i < Count; i++) { 1249 Value *Indices[2] = { 1250 Zero, 1251 ConstantInt::get(IdxType, i), 1252 }; 1253 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1254 AddrName); 1255 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1256 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1257 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1258 AAMDNodes AAMD; 1259 SI.getAAMetadata(AAMD); 1260 NS->setAAMetadata(AAMD); 1261 } 1262 1263 return true; 1264 } 1265 1266 if (auto *AT = dyn_cast<ArrayType>(T)) { 1267 // If the array only have one element, we unpack. 1268 auto NumElements = AT->getNumElements(); 1269 if (NumElements == 1) { 1270 V = IC.Builder.CreateExtractValue(V, 0); 1271 combineStoreToNewValue(IC, SI, V); 1272 return true; 1273 } 1274 1275 // Bail out if the array is too large. Ideally we would like to optimize 1276 // arrays of arbitrary size but this has a terrible impact on compile time. 1277 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1278 // tuning. 1279 if (NumElements > IC.MaxArraySizeForCombine) 1280 return false; 1281 1282 const DataLayout &DL = IC.getDataLayout(); 1283 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1284 auto Align = SI.getAlignment(); 1285 if (!Align) 1286 Align = DL.getABITypeAlignment(T); 1287 1288 SmallString<16> EltName = V->getName(); 1289 EltName += ".elt"; 1290 auto *Addr = SI.getPointerOperand(); 1291 SmallString<16> AddrName = Addr->getName(); 1292 AddrName += ".repack"; 1293 1294 auto *IdxType = Type::getInt64Ty(T->getContext()); 1295 auto *Zero = ConstantInt::get(IdxType, 0); 1296 1297 uint64_t Offset = 0; 1298 for (uint64_t i = 0; i < NumElements; i++) { 1299 Value *Indices[2] = { 1300 Zero, 1301 ConstantInt::get(IdxType, i), 1302 }; 1303 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1304 AddrName); 1305 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1306 auto EltAlign = MinAlign(Align, Offset); 1307 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1308 AAMDNodes AAMD; 1309 SI.getAAMetadata(AAMD); 1310 NS->setAAMetadata(AAMD); 1311 Offset += EltSize; 1312 } 1313 1314 return true; 1315 } 1316 1317 return false; 1318 } 1319 1320 /// equivalentAddressValues - Test if A and B will obviously have the same 1321 /// value. This includes recognizing that %t0 and %t1 will have the same 1322 /// value in code like this: 1323 /// %t0 = getelementptr \@a, 0, 3 1324 /// store i32 0, i32* %t0 1325 /// %t1 = getelementptr \@a, 0, 3 1326 /// %t2 = load i32* %t1 1327 /// 1328 static bool equivalentAddressValues(Value *A, Value *B) { 1329 // Test if the values are trivially equivalent. 1330 if (A == B) return true; 1331 1332 // Test if the values come form identical arithmetic instructions. 1333 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1334 // its only used to compare two uses within the same basic block, which 1335 // means that they'll always either have the same value or one of them 1336 // will have an undefined value. 1337 if (isa<BinaryOperator>(A) || 1338 isa<CastInst>(A) || 1339 isa<PHINode>(A) || 1340 isa<GetElementPtrInst>(A)) 1341 if (Instruction *BI = dyn_cast<Instruction>(B)) 1342 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1343 return true; 1344 1345 // Otherwise they may not be equivalent. 1346 return false; 1347 } 1348 1349 /// Converts store (bitcast (load (bitcast (select ...)))) to 1350 /// store (load (select ...)), where select is minmax: 1351 /// select ((cmp load V1, load V2), V1, V2). 1352 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC, 1353 StoreInst &SI) { 1354 // bitcast? 1355 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1356 return false; 1357 // load? integer? 1358 Value *LoadAddr; 1359 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1360 return false; 1361 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1362 if (!LI->getType()->isIntegerTy()) 1363 return false; 1364 if (!isMinMaxWithLoads(LoadAddr)) 1365 return false; 1366 1367 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1368 auto *SI = dyn_cast<StoreInst>(U); 1369 return SI && SI->getPointerOperand() != LI && 1370 peekThroughBitcast(SI->getPointerOperand()) != LoadAddr && 1371 !SI->getPointerOperand()->isSwiftError(); 1372 })) 1373 return false; 1374 1375 IC.Builder.SetInsertPoint(LI); 1376 LoadInst *NewLI = combineLoadToNewType( 1377 IC, *LI, LoadAddr->getType()->getPointerElementType()); 1378 // Replace all the stores with stores of the newly loaded value. 1379 for (auto *UI : LI->users()) { 1380 auto *USI = cast<StoreInst>(UI); 1381 IC.Builder.SetInsertPoint(USI); 1382 combineStoreToNewValue(IC, *USI, NewLI); 1383 } 1384 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 1385 IC.eraseInstFromFunction(*LI); 1386 return true; 1387 } 1388 1389 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1390 Value *Val = SI.getOperand(0); 1391 Value *Ptr = SI.getOperand(1); 1392 1393 // Try to canonicalize the stored type. 1394 if (combineStoreToValueType(*this, SI)) 1395 return eraseInstFromFunction(SI); 1396 1397 // Attempt to improve the alignment. 1398 unsigned KnownAlign = getOrEnforceKnownAlignment( 1399 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT); 1400 unsigned StoreAlign = SI.getAlignment(); 1401 unsigned EffectiveStoreAlign = 1402 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1403 1404 if (KnownAlign > EffectiveStoreAlign) 1405 SI.setAlignment(KnownAlign); 1406 else if (StoreAlign == 0) 1407 SI.setAlignment(EffectiveStoreAlign); 1408 1409 // Try to canonicalize the stored type. 1410 if (unpackStoreToAggregate(*this, SI)) 1411 return eraseInstFromFunction(SI); 1412 1413 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1414 return eraseInstFromFunction(SI); 1415 1416 // Replace GEP indices if possible. 1417 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1418 Worklist.Add(NewGEPI); 1419 return &SI; 1420 } 1421 1422 // Don't hack volatile/ordered stores. 1423 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1424 if (!SI.isUnordered()) return nullptr; 1425 1426 // If the RHS is an alloca with a single use, zapify the store, making the 1427 // alloca dead. 1428 if (Ptr->hasOneUse()) { 1429 if (isa<AllocaInst>(Ptr)) 1430 return eraseInstFromFunction(SI); 1431 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1432 if (isa<AllocaInst>(GEP->getOperand(0))) { 1433 if (GEP->getOperand(0)->hasOneUse()) 1434 return eraseInstFromFunction(SI); 1435 } 1436 } 1437 } 1438 1439 // Do really simple DSE, to catch cases where there are several consecutive 1440 // stores to the same location, separated by a few arithmetic operations. This 1441 // situation often occurs with bitfield accesses. 1442 BasicBlock::iterator BBI(SI); 1443 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1444 --ScanInsts) { 1445 --BBI; 1446 // Don't count debug info directives, lest they affect codegen, 1447 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1448 if (isa<DbgInfoIntrinsic>(BBI) || 1449 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1450 ScanInsts++; 1451 continue; 1452 } 1453 1454 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1455 // Prev store isn't volatile, and stores to the same location? 1456 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1457 SI.getOperand(1))) { 1458 ++NumDeadStore; 1459 ++BBI; 1460 eraseInstFromFunction(*PrevSI); 1461 continue; 1462 } 1463 break; 1464 } 1465 1466 // If this is a load, we have to stop. However, if the loaded value is from 1467 // the pointer we're loading and is producing the pointer we're storing, 1468 // then *this* store is dead (X = load P; store X -> P). 1469 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1470 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1471 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1472 return eraseInstFromFunction(SI); 1473 } 1474 1475 // Otherwise, this is a load from some other location. Stores before it 1476 // may not be dead. 1477 break; 1478 } 1479 1480 // Don't skip over loads, throws or things that can modify memory. 1481 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1482 break; 1483 } 1484 1485 // store X, null -> turns into 'unreachable' in SimplifyCFG 1486 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1487 if (canSimplifyNullStoreOrGEP(SI)) { 1488 if (!isa<UndefValue>(Val)) { 1489 SI.setOperand(0, UndefValue::get(Val->getType())); 1490 if (Instruction *U = dyn_cast<Instruction>(Val)) 1491 Worklist.Add(U); // Dropped a use. 1492 } 1493 return nullptr; // Do not modify these! 1494 } 1495 1496 // store undef, Ptr -> noop 1497 if (isa<UndefValue>(Val)) 1498 return eraseInstFromFunction(SI); 1499 1500 // If this store is the second-to-last instruction in the basic block 1501 // (excluding debug info and bitcasts of pointers) and if the block ends with 1502 // an unconditional branch, try to move the store to the successor block. 1503 BBI = SI.getIterator(); 1504 do { 1505 ++BBI; 1506 } while (isa<DbgInfoIntrinsic>(BBI) || 1507 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1508 1509 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1510 if (BI->isUnconditional()) 1511 mergeStoreIntoSuccessor(SI); 1512 1513 return nullptr; 1514 } 1515 1516 /// Try to transform: 1517 /// if () { *P = v1; } else { *P = v2 } 1518 /// or: 1519 /// *P = v1; if () { *P = v2; } 1520 /// into a phi node with a store in the successor. 1521 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) { 1522 assert(SI.isUnordered() && 1523 "This code has not been audited for volatile or ordered store case."); 1524 1525 // Check if the successor block has exactly 2 incoming edges. 1526 BasicBlock *StoreBB = SI.getParent(); 1527 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1528 if (!DestBB->hasNPredecessors(2)) 1529 return false; 1530 1531 // Capture the other block (the block that doesn't contain our store). 1532 pred_iterator PredIter = pred_begin(DestBB); 1533 if (*PredIter == StoreBB) 1534 ++PredIter; 1535 BasicBlock *OtherBB = *PredIter; 1536 1537 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1538 // for example, if SI is in an infinite loop. 1539 if (StoreBB == DestBB || OtherBB == DestBB) 1540 return false; 1541 1542 // Verify that the other block ends in a branch and is not otherwise empty. 1543 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1544 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1545 if (!OtherBr || BBI == OtherBB->begin()) 1546 return false; 1547 1548 // If the other block ends in an unconditional branch, check for the 'if then 1549 // else' case. There is an instruction before the branch. 1550 StoreInst *OtherStore = nullptr; 1551 if (OtherBr->isUnconditional()) { 1552 --BBI; 1553 // Skip over debugging info. 1554 while (isa<DbgInfoIntrinsic>(BBI) || 1555 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1556 if (BBI==OtherBB->begin()) 1557 return false; 1558 --BBI; 1559 } 1560 // If this isn't a store, isn't a store to the same location, or is not the 1561 // right kind of store, bail out. 1562 OtherStore = dyn_cast<StoreInst>(BBI); 1563 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1564 !SI.isSameOperationAs(OtherStore)) 1565 return false; 1566 } else { 1567 // Otherwise, the other block ended with a conditional branch. If one of the 1568 // destinations is StoreBB, then we have the if/then case. 1569 if (OtherBr->getSuccessor(0) != StoreBB && 1570 OtherBr->getSuccessor(1) != StoreBB) 1571 return false; 1572 1573 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1574 // if/then triangle. See if there is a store to the same ptr as SI that 1575 // lives in OtherBB. 1576 for (;; --BBI) { 1577 // Check to see if we find the matching store. 1578 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1579 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1580 !SI.isSameOperationAs(OtherStore)) 1581 return false; 1582 break; 1583 } 1584 // If we find something that may be using or overwriting the stored 1585 // value, or if we run out of instructions, we can't do the transform. 1586 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1587 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1588 return false; 1589 } 1590 1591 // In order to eliminate the store in OtherBr, we have to make sure nothing 1592 // reads or overwrites the stored value in StoreBB. 1593 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1594 // FIXME: This should really be AA driven. 1595 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1596 return false; 1597 } 1598 } 1599 1600 // Insert a PHI node now if we need it. 1601 Value *MergedVal = OtherStore->getOperand(0); 1602 // The debug locations of the original instructions might differ. Merge them. 1603 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1604 OtherStore->getDebugLoc()); 1605 if (MergedVal != SI.getOperand(0)) { 1606 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1607 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1608 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1609 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1610 PN->setDebugLoc(MergedLoc); 1611 } 1612 1613 // Advance to a place where it is safe to insert the new store and insert it. 1614 BBI = DestBB->getFirstInsertionPt(); 1615 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1616 SI.isVolatile(), SI.getAlignment(), 1617 SI.getOrdering(), SI.getSyncScopeID()); 1618 InsertNewInstBefore(NewSI, *BBI); 1619 NewSI->setDebugLoc(MergedLoc); 1620 1621 // If the two stores had AA tags, merge them. 1622 AAMDNodes AATags; 1623 SI.getAAMetadata(AATags); 1624 if (AATags) { 1625 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1626 NewSI->setAAMetadata(AATags); 1627 } 1628 1629 // Nuke the old stores. 1630 eraseInstFromFunction(SI); 1631 eraseInstFromFunction(*OtherStore); 1632 return true; 1633 } 1634