1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitICmp and visitFCmp functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/IR/ConstantRange.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/KnownBits.h" 28 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 // How many times is a select replaced by one of its operands? 35 STATISTIC(NumSel, "Number of select opts"); 36 37 38 /// Compute Result = In1+In2, returning true if the result overflowed for this 39 /// type. 40 static bool addWithOverflow(APInt &Result, const APInt &In1, 41 const APInt &In2, bool IsSigned = false) { 42 bool Overflow; 43 if (IsSigned) 44 Result = In1.sadd_ov(In2, Overflow); 45 else 46 Result = In1.uadd_ov(In2, Overflow); 47 48 return Overflow; 49 } 50 51 /// Compute Result = In1-In2, returning true if the result overflowed for this 52 /// type. 53 static bool subWithOverflow(APInt &Result, const APInt &In1, 54 const APInt &In2, bool IsSigned = false) { 55 bool Overflow; 56 if (IsSigned) 57 Result = In1.ssub_ov(In2, Overflow); 58 else 59 Result = In1.usub_ov(In2, Overflow); 60 61 return Overflow; 62 } 63 64 /// Given an icmp instruction, return true if any use of this comparison is a 65 /// branch on sign bit comparison. 66 static bool hasBranchUse(ICmpInst &I) { 67 for (auto *U : I.users()) 68 if (isa<BranchInst>(U)) 69 return true; 70 return false; 71 } 72 73 /// Given an exploded icmp instruction, return true if the comparison only 74 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the 75 /// result of the comparison is true when the input value is signed. 76 static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, 77 bool &TrueIfSigned) { 78 switch (Pred) { 79 case ICmpInst::ICMP_SLT: // True if LHS s< 0 80 TrueIfSigned = true; 81 return RHS.isNullValue(); 82 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 83 TrueIfSigned = true; 84 return RHS.isAllOnesValue(); 85 case ICmpInst::ICMP_SGT: // True if LHS s> -1 86 TrueIfSigned = false; 87 return RHS.isAllOnesValue(); 88 case ICmpInst::ICMP_UGT: 89 // True if LHS u> RHS and RHS == high-bit-mask - 1 90 TrueIfSigned = true; 91 return RHS.isMaxSignedValue(); 92 case ICmpInst::ICMP_UGE: 93 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 94 TrueIfSigned = true; 95 return RHS.isSignMask(); 96 default: 97 return false; 98 } 99 } 100 101 /// Returns true if the exploded icmp can be expressed as a signed comparison 102 /// to zero and updates the predicate accordingly. 103 /// The signedness of the comparison is preserved. 104 /// TODO: Refactor with decomposeBitTestICmp()? 105 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 106 if (!ICmpInst::isSigned(Pred)) 107 return false; 108 109 if (C.isNullValue()) 110 return ICmpInst::isRelational(Pred); 111 112 if (C.isOneValue()) { 113 if (Pred == ICmpInst::ICMP_SLT) { 114 Pred = ICmpInst::ICMP_SLE; 115 return true; 116 } 117 } else if (C.isAllOnesValue()) { 118 if (Pred == ICmpInst::ICMP_SGT) { 119 Pred = ICmpInst::ICMP_SGE; 120 return true; 121 } 122 } 123 124 return false; 125 } 126 127 /// Given a signed integer type and a set of known zero and one bits, compute 128 /// the maximum and minimum values that could have the specified known zero and 129 /// known one bits, returning them in Min/Max. 130 /// TODO: Move to method on KnownBits struct? 131 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, 132 APInt &Min, APInt &Max) { 133 assert(Known.getBitWidth() == Min.getBitWidth() && 134 Known.getBitWidth() == Max.getBitWidth() && 135 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 136 APInt UnknownBits = ~(Known.Zero|Known.One); 137 138 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 139 // bit if it is unknown. 140 Min = Known.One; 141 Max = Known.One|UnknownBits; 142 143 if (UnknownBits.isNegative()) { // Sign bit is unknown 144 Min.setSignBit(); 145 Max.clearSignBit(); 146 } 147 } 148 149 /// Given an unsigned integer type and a set of known zero and one bits, compute 150 /// the maximum and minimum values that could have the specified known zero and 151 /// known one bits, returning them in Min/Max. 152 /// TODO: Move to method on KnownBits struct? 153 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, 154 APInt &Min, APInt &Max) { 155 assert(Known.getBitWidth() == Min.getBitWidth() && 156 Known.getBitWidth() == Max.getBitWidth() && 157 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 158 APInt UnknownBits = ~(Known.Zero|Known.One); 159 160 // The minimum value is when the unknown bits are all zeros. 161 Min = Known.One; 162 // The maximum value is when the unknown bits are all ones. 163 Max = Known.One|UnknownBits; 164 } 165 166 /// This is called when we see this pattern: 167 /// cmp pred (load (gep GV, ...)), cmpcst 168 /// where GV is a global variable with a constant initializer. Try to simplify 169 /// this into some simple computation that does not need the load. For example 170 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 171 /// 172 /// If AndCst is non-null, then the loaded value is masked with that constant 173 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 174 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 175 GlobalVariable *GV, 176 CmpInst &ICI, 177 ConstantInt *AndCst) { 178 Constant *Init = GV->getInitializer(); 179 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 180 return nullptr; 181 182 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 183 // Don't blow up on huge arrays. 184 if (ArrayElementCount > MaxArraySizeForCombine) 185 return nullptr; 186 187 // There are many forms of this optimization we can handle, for now, just do 188 // the simple index into a single-dimensional array. 189 // 190 // Require: GEP GV, 0, i {{, constant indices}} 191 if (GEP->getNumOperands() < 3 || 192 !isa<ConstantInt>(GEP->getOperand(1)) || 193 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 194 isa<Constant>(GEP->getOperand(2))) 195 return nullptr; 196 197 // Check that indices after the variable are constants and in-range for the 198 // type they index. Collect the indices. This is typically for arrays of 199 // structs. 200 SmallVector<unsigned, 4> LaterIndices; 201 202 Type *EltTy = Init->getType()->getArrayElementType(); 203 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 204 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 205 if (!Idx) return nullptr; // Variable index. 206 207 uint64_t IdxVal = Idx->getZExtValue(); 208 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 209 210 if (StructType *STy = dyn_cast<StructType>(EltTy)) 211 EltTy = STy->getElementType(IdxVal); 212 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 213 if (IdxVal >= ATy->getNumElements()) return nullptr; 214 EltTy = ATy->getElementType(); 215 } else { 216 return nullptr; // Unknown type. 217 } 218 219 LaterIndices.push_back(IdxVal); 220 } 221 222 enum { Overdefined = -3, Undefined = -2 }; 223 224 // Variables for our state machines. 225 226 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 227 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 228 // and 87 is the second (and last) index. FirstTrueElement is -2 when 229 // undefined, otherwise set to the first true element. SecondTrueElement is 230 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 231 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 232 233 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 234 // form "i != 47 & i != 87". Same state transitions as for true elements. 235 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 236 237 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 238 /// define a state machine that triggers for ranges of values that the index 239 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 240 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 241 /// index in the range (inclusive). We use -2 for undefined here because we 242 /// use relative comparisons and don't want 0-1 to match -1. 243 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 244 245 // MagicBitvector - This is a magic bitvector where we set a bit if the 246 // comparison is true for element 'i'. If there are 64 elements or less in 247 // the array, this will fully represent all the comparison results. 248 uint64_t MagicBitvector = 0; 249 250 // Scan the array and see if one of our patterns matches. 251 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 252 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 253 Constant *Elt = Init->getAggregateElement(i); 254 if (!Elt) return nullptr; 255 256 // If this is indexing an array of structures, get the structure element. 257 if (!LaterIndices.empty()) 258 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 259 260 // If the element is masked, handle it. 261 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 262 263 // Find out if the comparison would be true or false for the i'th element. 264 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 265 CompareRHS, DL, &TLI); 266 // If the result is undef for this element, ignore it. 267 if (isa<UndefValue>(C)) { 268 // Extend range state machines to cover this element in case there is an 269 // undef in the middle of the range. 270 if (TrueRangeEnd == (int)i-1) 271 TrueRangeEnd = i; 272 if (FalseRangeEnd == (int)i-1) 273 FalseRangeEnd = i; 274 continue; 275 } 276 277 // If we can't compute the result for any of the elements, we have to give 278 // up evaluating the entire conditional. 279 if (!isa<ConstantInt>(C)) return nullptr; 280 281 // Otherwise, we know if the comparison is true or false for this element, 282 // update our state machines. 283 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 284 285 // State machine for single/double/range index comparison. 286 if (IsTrueForElt) { 287 // Update the TrueElement state machine. 288 if (FirstTrueElement == Undefined) 289 FirstTrueElement = TrueRangeEnd = i; // First true element. 290 else { 291 // Update double-compare state machine. 292 if (SecondTrueElement == Undefined) 293 SecondTrueElement = i; 294 else 295 SecondTrueElement = Overdefined; 296 297 // Update range state machine. 298 if (TrueRangeEnd == (int)i-1) 299 TrueRangeEnd = i; 300 else 301 TrueRangeEnd = Overdefined; 302 } 303 } else { 304 // Update the FalseElement state machine. 305 if (FirstFalseElement == Undefined) 306 FirstFalseElement = FalseRangeEnd = i; // First false element. 307 else { 308 // Update double-compare state machine. 309 if (SecondFalseElement == Undefined) 310 SecondFalseElement = i; 311 else 312 SecondFalseElement = Overdefined; 313 314 // Update range state machine. 315 if (FalseRangeEnd == (int)i-1) 316 FalseRangeEnd = i; 317 else 318 FalseRangeEnd = Overdefined; 319 } 320 } 321 322 // If this element is in range, update our magic bitvector. 323 if (i < 64 && IsTrueForElt) 324 MagicBitvector |= 1ULL << i; 325 326 // If all of our states become overdefined, bail out early. Since the 327 // predicate is expensive, only check it every 8 elements. This is only 328 // really useful for really huge arrays. 329 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 330 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 331 FalseRangeEnd == Overdefined) 332 return nullptr; 333 } 334 335 // Now that we've scanned the entire array, emit our new comparison(s). We 336 // order the state machines in complexity of the generated code. 337 Value *Idx = GEP->getOperand(2); 338 339 // If the index is larger than the pointer size of the target, truncate the 340 // index down like the GEP would do implicitly. We don't have to do this for 341 // an inbounds GEP because the index can't be out of range. 342 if (!GEP->isInBounds()) { 343 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 344 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 345 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 346 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 347 } 348 349 // If the comparison is only true for one or two elements, emit direct 350 // comparisons. 351 if (SecondTrueElement != Overdefined) { 352 // None true -> false. 353 if (FirstTrueElement == Undefined) 354 return replaceInstUsesWith(ICI, Builder.getFalse()); 355 356 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 357 358 // True for one element -> 'i == 47'. 359 if (SecondTrueElement == Undefined) 360 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 361 362 // True for two elements -> 'i == 47 | i == 72'. 363 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 364 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 365 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 366 return BinaryOperator::CreateOr(C1, C2); 367 } 368 369 // If the comparison is only false for one or two elements, emit direct 370 // comparisons. 371 if (SecondFalseElement != Overdefined) { 372 // None false -> true. 373 if (FirstFalseElement == Undefined) 374 return replaceInstUsesWith(ICI, Builder.getTrue()); 375 376 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 377 378 // False for one element -> 'i != 47'. 379 if (SecondFalseElement == Undefined) 380 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 381 382 // False for two elements -> 'i != 47 & i != 72'. 383 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 384 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 385 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 386 return BinaryOperator::CreateAnd(C1, C2); 387 } 388 389 // If the comparison can be replaced with a range comparison for the elements 390 // where it is true, emit the range check. 391 if (TrueRangeEnd != Overdefined) { 392 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 393 394 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 395 if (FirstTrueElement) { 396 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 397 Idx = Builder.CreateAdd(Idx, Offs); 398 } 399 400 Value *End = ConstantInt::get(Idx->getType(), 401 TrueRangeEnd-FirstTrueElement+1); 402 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 403 } 404 405 // False range check. 406 if (FalseRangeEnd != Overdefined) { 407 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 408 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 409 if (FirstFalseElement) { 410 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 411 Idx = Builder.CreateAdd(Idx, Offs); 412 } 413 414 Value *End = ConstantInt::get(Idx->getType(), 415 FalseRangeEnd-FirstFalseElement); 416 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 417 } 418 419 // If a magic bitvector captures the entire comparison state 420 // of this load, replace it with computation that does: 421 // ((magic_cst >> i) & 1) != 0 422 { 423 Type *Ty = nullptr; 424 425 // Look for an appropriate type: 426 // - The type of Idx if the magic fits 427 // - The smallest fitting legal type 428 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 429 Ty = Idx->getType(); 430 else 431 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 432 433 if (Ty) { 434 Value *V = Builder.CreateIntCast(Idx, Ty, false); 435 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 436 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 437 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 438 } 439 } 440 441 return nullptr; 442 } 443 444 /// Return a value that can be used to compare the *offset* implied by a GEP to 445 /// zero. For example, if we have &A[i], we want to return 'i' for 446 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 447 /// are involved. The above expression would also be legal to codegen as 448 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 449 /// This latter form is less amenable to optimization though, and we are allowed 450 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 451 /// 452 /// If we can't emit an optimized form for this expression, this returns null. 453 /// 454 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 455 const DataLayout &DL) { 456 gep_type_iterator GTI = gep_type_begin(GEP); 457 458 // Check to see if this gep only has a single variable index. If so, and if 459 // any constant indices are a multiple of its scale, then we can compute this 460 // in terms of the scale of the variable index. For example, if the GEP 461 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 462 // because the expression will cross zero at the same point. 463 unsigned i, e = GEP->getNumOperands(); 464 int64_t Offset = 0; 465 for (i = 1; i != e; ++i, ++GTI) { 466 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 467 // Compute the aggregate offset of constant indices. 468 if (CI->isZero()) continue; 469 470 // Handle a struct index, which adds its field offset to the pointer. 471 if (StructType *STy = GTI.getStructTypeOrNull()) { 472 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 473 } else { 474 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 475 Offset += Size*CI->getSExtValue(); 476 } 477 } else { 478 // Found our variable index. 479 break; 480 } 481 } 482 483 // If there are no variable indices, we must have a constant offset, just 484 // evaluate it the general way. 485 if (i == e) return nullptr; 486 487 Value *VariableIdx = GEP->getOperand(i); 488 // Determine the scale factor of the variable element. For example, this is 489 // 4 if the variable index is into an array of i32. 490 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 491 492 // Verify that there are no other variable indices. If so, emit the hard way. 493 for (++i, ++GTI; i != e; ++i, ++GTI) { 494 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 495 if (!CI) return nullptr; 496 497 // Compute the aggregate offset of constant indices. 498 if (CI->isZero()) continue; 499 500 // Handle a struct index, which adds its field offset to the pointer. 501 if (StructType *STy = GTI.getStructTypeOrNull()) { 502 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 503 } else { 504 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 505 Offset += Size*CI->getSExtValue(); 506 } 507 } 508 509 // Okay, we know we have a single variable index, which must be a 510 // pointer/array/vector index. If there is no offset, life is simple, return 511 // the index. 512 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 513 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 514 if (Offset == 0) { 515 // Cast to intptrty in case a truncation occurs. If an extension is needed, 516 // we don't need to bother extending: the extension won't affect where the 517 // computation crosses zero. 518 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 519 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 520 } 521 return VariableIdx; 522 } 523 524 // Otherwise, there is an index. The computation we will do will be modulo 525 // the pointer size. 526 Offset = SignExtend64(Offset, IntPtrWidth); 527 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 528 529 // To do this transformation, any constant index must be a multiple of the 530 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 531 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 532 // multiple of the variable scale. 533 int64_t NewOffs = Offset / (int64_t)VariableScale; 534 if (Offset != NewOffs*(int64_t)VariableScale) 535 return nullptr; 536 537 // Okay, we can do this evaluation. Start by converting the index to intptr. 538 if (VariableIdx->getType() != IntPtrTy) 539 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 540 true /*Signed*/); 541 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 542 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 543 } 544 545 /// Returns true if we can rewrite Start as a GEP with pointer Base 546 /// and some integer offset. The nodes that need to be re-written 547 /// for this transformation will be added to Explored. 548 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 549 const DataLayout &DL, 550 SetVector<Value *> &Explored) { 551 SmallVector<Value *, 16> WorkList(1, Start); 552 Explored.insert(Base); 553 554 // The following traversal gives us an order which can be used 555 // when doing the final transformation. Since in the final 556 // transformation we create the PHI replacement instructions first, 557 // we don't have to get them in any particular order. 558 // 559 // However, for other instructions we will have to traverse the 560 // operands of an instruction first, which means that we have to 561 // do a post-order traversal. 562 while (!WorkList.empty()) { 563 SetVector<PHINode *> PHIs; 564 565 while (!WorkList.empty()) { 566 if (Explored.size() >= 100) 567 return false; 568 569 Value *V = WorkList.back(); 570 571 if (Explored.count(V) != 0) { 572 WorkList.pop_back(); 573 continue; 574 } 575 576 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 577 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 578 // We've found some value that we can't explore which is different from 579 // the base. Therefore we can't do this transformation. 580 return false; 581 582 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 583 auto *CI = dyn_cast<CastInst>(V); 584 if (!CI->isNoopCast(DL)) 585 return false; 586 587 if (Explored.count(CI->getOperand(0)) == 0) 588 WorkList.push_back(CI->getOperand(0)); 589 } 590 591 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 592 // We're limiting the GEP to having one index. This will preserve 593 // the original pointer type. We could handle more cases in the 594 // future. 595 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 596 GEP->getType() != Start->getType()) 597 return false; 598 599 if (Explored.count(GEP->getOperand(0)) == 0) 600 WorkList.push_back(GEP->getOperand(0)); 601 } 602 603 if (WorkList.back() == V) { 604 WorkList.pop_back(); 605 // We've finished visiting this node, mark it as such. 606 Explored.insert(V); 607 } 608 609 if (auto *PN = dyn_cast<PHINode>(V)) { 610 // We cannot transform PHIs on unsplittable basic blocks. 611 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 612 return false; 613 Explored.insert(PN); 614 PHIs.insert(PN); 615 } 616 } 617 618 // Explore the PHI nodes further. 619 for (auto *PN : PHIs) 620 for (Value *Op : PN->incoming_values()) 621 if (Explored.count(Op) == 0) 622 WorkList.push_back(Op); 623 } 624 625 // Make sure that we can do this. Since we can't insert GEPs in a basic 626 // block before a PHI node, we can't easily do this transformation if 627 // we have PHI node users of transformed instructions. 628 for (Value *Val : Explored) { 629 for (Value *Use : Val->uses()) { 630 631 auto *PHI = dyn_cast<PHINode>(Use); 632 auto *Inst = dyn_cast<Instruction>(Val); 633 634 if (Inst == Base || Inst == PHI || !Inst || !PHI || 635 Explored.count(PHI) == 0) 636 continue; 637 638 if (PHI->getParent() == Inst->getParent()) 639 return false; 640 } 641 } 642 return true; 643 } 644 645 // Sets the appropriate insert point on Builder where we can add 646 // a replacement Instruction for V (if that is possible). 647 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 648 bool Before = true) { 649 if (auto *PHI = dyn_cast<PHINode>(V)) { 650 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 651 return; 652 } 653 if (auto *I = dyn_cast<Instruction>(V)) { 654 if (!Before) 655 I = &*std::next(I->getIterator()); 656 Builder.SetInsertPoint(I); 657 return; 658 } 659 if (auto *A = dyn_cast<Argument>(V)) { 660 // Set the insertion point in the entry block. 661 BasicBlock &Entry = A->getParent()->getEntryBlock(); 662 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 663 return; 664 } 665 // Otherwise, this is a constant and we don't need to set a new 666 // insertion point. 667 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 668 } 669 670 /// Returns a re-written value of Start as an indexed GEP using Base as a 671 /// pointer. 672 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 673 const DataLayout &DL, 674 SetVector<Value *> &Explored) { 675 // Perform all the substitutions. This is a bit tricky because we can 676 // have cycles in our use-def chains. 677 // 1. Create the PHI nodes without any incoming values. 678 // 2. Create all the other values. 679 // 3. Add the edges for the PHI nodes. 680 // 4. Emit GEPs to get the original pointers. 681 // 5. Remove the original instructions. 682 Type *IndexType = IntegerType::get( 683 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 684 685 DenseMap<Value *, Value *> NewInsts; 686 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 687 688 // Create the new PHI nodes, without adding any incoming values. 689 for (Value *Val : Explored) { 690 if (Val == Base) 691 continue; 692 // Create empty phi nodes. This avoids cyclic dependencies when creating 693 // the remaining instructions. 694 if (auto *PHI = dyn_cast<PHINode>(Val)) 695 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 696 PHI->getName() + ".idx", PHI); 697 } 698 IRBuilder<> Builder(Base->getContext()); 699 700 // Create all the other instructions. 701 for (Value *Val : Explored) { 702 703 if (NewInsts.find(Val) != NewInsts.end()) 704 continue; 705 706 if (auto *CI = dyn_cast<CastInst>(Val)) { 707 NewInsts[CI] = NewInsts[CI->getOperand(0)]; 708 continue; 709 } 710 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 711 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 712 : GEP->getOperand(1); 713 setInsertionPoint(Builder, GEP); 714 // Indices might need to be sign extended. GEPs will magically do 715 // this, but we need to do it ourselves here. 716 if (Index->getType()->getScalarSizeInBits() != 717 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 718 Index = Builder.CreateSExtOrTrunc( 719 Index, NewInsts[GEP->getOperand(0)]->getType(), 720 GEP->getOperand(0)->getName() + ".sext"); 721 } 722 723 auto *Op = NewInsts[GEP->getOperand(0)]; 724 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 725 NewInsts[GEP] = Index; 726 else 727 NewInsts[GEP] = Builder.CreateNSWAdd( 728 Op, Index, GEP->getOperand(0)->getName() + ".add"); 729 continue; 730 } 731 if (isa<PHINode>(Val)) 732 continue; 733 734 llvm_unreachable("Unexpected instruction type"); 735 } 736 737 // Add the incoming values to the PHI nodes. 738 for (Value *Val : Explored) { 739 if (Val == Base) 740 continue; 741 // All the instructions have been created, we can now add edges to the 742 // phi nodes. 743 if (auto *PHI = dyn_cast<PHINode>(Val)) { 744 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 745 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 746 Value *NewIncoming = PHI->getIncomingValue(I); 747 748 if (NewInsts.find(NewIncoming) != NewInsts.end()) 749 NewIncoming = NewInsts[NewIncoming]; 750 751 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 752 } 753 } 754 } 755 756 for (Value *Val : Explored) { 757 if (Val == Base) 758 continue; 759 760 // Depending on the type, for external users we have to emit 761 // a GEP or a GEP + ptrtoint. 762 setInsertionPoint(Builder, Val, false); 763 764 // If required, create an inttoptr instruction for Base. 765 Value *NewBase = Base; 766 if (!Base->getType()->isPointerTy()) 767 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 768 Start->getName() + "to.ptr"); 769 770 Value *GEP = Builder.CreateInBoundsGEP( 771 Start->getType()->getPointerElementType(), NewBase, 772 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 773 774 if (!Val->getType()->isPointerTy()) { 775 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 776 Val->getName() + ".conv"); 777 GEP = Cast; 778 } 779 Val->replaceAllUsesWith(GEP); 780 } 781 782 return NewInsts[Start]; 783 } 784 785 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 786 /// the input Value as a constant indexed GEP. Returns a pair containing 787 /// the GEPs Pointer and Index. 788 static std::pair<Value *, Value *> 789 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 790 Type *IndexType = IntegerType::get(V->getContext(), 791 DL.getIndexTypeSizeInBits(V->getType())); 792 793 Constant *Index = ConstantInt::getNullValue(IndexType); 794 while (true) { 795 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 796 // We accept only inbouds GEPs here to exclude the possibility of 797 // overflow. 798 if (!GEP->isInBounds()) 799 break; 800 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 801 GEP->getType() == V->getType()) { 802 V = GEP->getOperand(0); 803 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 804 Index = ConstantExpr::getAdd( 805 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 806 continue; 807 } 808 break; 809 } 810 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 811 if (!CI->isNoopCast(DL)) 812 break; 813 V = CI->getOperand(0); 814 continue; 815 } 816 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 817 if (!CI->isNoopCast(DL)) 818 break; 819 V = CI->getOperand(0); 820 continue; 821 } 822 break; 823 } 824 return {V, Index}; 825 } 826 827 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 828 /// We can look through PHIs, GEPs and casts in order to determine a common base 829 /// between GEPLHS and RHS. 830 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 831 ICmpInst::Predicate Cond, 832 const DataLayout &DL) { 833 if (!GEPLHS->hasAllConstantIndices()) 834 return nullptr; 835 836 // Make sure the pointers have the same type. 837 if (GEPLHS->getType() != RHS->getType()) 838 return nullptr; 839 840 Value *PtrBase, *Index; 841 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 842 843 // The set of nodes that will take part in this transformation. 844 SetVector<Value *> Nodes; 845 846 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 847 return nullptr; 848 849 // We know we can re-write this as 850 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 851 // Since we've only looked through inbouds GEPs we know that we 852 // can't have overflow on either side. We can therefore re-write 853 // this as: 854 // OFFSET1 cmp OFFSET2 855 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 856 857 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 858 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 859 // offset. Since Index is the offset of LHS to the base pointer, we will now 860 // compare the offsets instead of comparing the pointers. 861 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 862 } 863 864 /// Fold comparisons between a GEP instruction and something else. At this point 865 /// we know that the GEP is on the LHS of the comparison. 866 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 867 ICmpInst::Predicate Cond, 868 Instruction &I) { 869 // Don't transform signed compares of GEPs into index compares. Even if the 870 // GEP is inbounds, the final add of the base pointer can have signed overflow 871 // and would change the result of the icmp. 872 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 873 // the maximum signed value for the pointer type. 874 if (ICmpInst::isSigned(Cond)) 875 return nullptr; 876 877 // Look through bitcasts and addrspacecasts. We do not however want to remove 878 // 0 GEPs. 879 if (!isa<GetElementPtrInst>(RHS)) 880 RHS = RHS->stripPointerCasts(); 881 882 Value *PtrBase = GEPLHS->getOperand(0); 883 if (PtrBase == RHS && GEPLHS->isInBounds()) { 884 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 885 // This transformation (ignoring the base and scales) is valid because we 886 // know pointers can't overflow since the gep is inbounds. See if we can 887 // output an optimized form. 888 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 889 890 // If not, synthesize the offset the hard way. 891 if (!Offset) 892 Offset = EmitGEPOffset(GEPLHS); 893 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 894 Constant::getNullValue(Offset->getType())); 895 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 896 // If the base pointers are different, but the indices are the same, just 897 // compare the base pointer. 898 if (PtrBase != GEPRHS->getOperand(0)) { 899 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 900 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 901 GEPRHS->getOperand(0)->getType(); 902 if (IndicesTheSame) 903 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 904 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 905 IndicesTheSame = false; 906 break; 907 } 908 909 // If all indices are the same, just compare the base pointers. 910 Type *BaseType = GEPLHS->getOperand(0)->getType(); 911 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 912 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 913 914 // If we're comparing GEPs with two base pointers that only differ in type 915 // and both GEPs have only constant indices or just one use, then fold 916 // the compare with the adjusted indices. 917 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 918 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 919 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 920 PtrBase->stripPointerCasts() == 921 GEPRHS->getOperand(0)->stripPointerCasts()) { 922 Value *LOffset = EmitGEPOffset(GEPLHS); 923 Value *ROffset = EmitGEPOffset(GEPRHS); 924 925 // If we looked through an addrspacecast between different sized address 926 // spaces, the LHS and RHS pointers are different sized 927 // integers. Truncate to the smaller one. 928 Type *LHSIndexTy = LOffset->getType(); 929 Type *RHSIndexTy = ROffset->getType(); 930 if (LHSIndexTy != RHSIndexTy) { 931 if (LHSIndexTy->getPrimitiveSizeInBits() < 932 RHSIndexTy->getPrimitiveSizeInBits()) { 933 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 934 } else 935 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 936 } 937 938 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 939 LOffset, ROffset); 940 return replaceInstUsesWith(I, Cmp); 941 } 942 943 // Otherwise, the base pointers are different and the indices are 944 // different. Try convert this to an indexed compare by looking through 945 // PHIs/casts. 946 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 947 } 948 949 // If one of the GEPs has all zero indices, recurse. 950 if (GEPLHS->hasAllZeroIndices()) 951 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 952 ICmpInst::getSwappedPredicate(Cond), I); 953 954 // If the other GEP has all zero indices, recurse. 955 if (GEPRHS->hasAllZeroIndices()) 956 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 957 958 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 959 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 960 // If the GEPs only differ by one index, compare it. 961 unsigned NumDifferences = 0; // Keep track of # differences. 962 unsigned DiffOperand = 0; // The operand that differs. 963 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 964 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 965 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 966 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 967 // Irreconcilable differences. 968 NumDifferences = 2; 969 break; 970 } else { 971 if (NumDifferences++) break; 972 DiffOperand = i; 973 } 974 } 975 976 if (NumDifferences == 0) // SAME GEP? 977 return replaceInstUsesWith(I, // No comparison is needed here. 978 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 979 980 else if (NumDifferences == 1 && GEPsInBounds) { 981 Value *LHSV = GEPLHS->getOperand(DiffOperand); 982 Value *RHSV = GEPRHS->getOperand(DiffOperand); 983 // Make sure we do a signed comparison here. 984 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 985 } 986 } 987 988 // Only lower this if the icmp is the only user of the GEP or if we expect 989 // the result to fold to a constant! 990 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 991 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 992 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 993 Value *L = EmitGEPOffset(GEPLHS); 994 Value *R = EmitGEPOffset(GEPRHS); 995 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 996 } 997 } 998 999 // Try convert this to an indexed compare by looking through PHIs/casts as a 1000 // last resort. 1001 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1002 } 1003 1004 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, 1005 const AllocaInst *Alloca, 1006 const Value *Other) { 1007 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1008 1009 // It would be tempting to fold away comparisons between allocas and any 1010 // pointer not based on that alloca (e.g. an argument). However, even 1011 // though such pointers cannot alias, they can still compare equal. 1012 // 1013 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1014 // doesn't escape we can argue that it's impossible to guess its value, and we 1015 // can therefore act as if any such guesses are wrong. 1016 // 1017 // The code below checks that the alloca doesn't escape, and that it's only 1018 // used in a comparison once (the current instruction). The 1019 // single-comparison-use condition ensures that we're trivially folding all 1020 // comparisons against the alloca consistently, and avoids the risk of 1021 // erroneously folding a comparison of the pointer with itself. 1022 1023 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1024 1025 SmallVector<const Use *, 32> Worklist; 1026 for (const Use &U : Alloca->uses()) { 1027 if (Worklist.size() >= MaxIter) 1028 return nullptr; 1029 Worklist.push_back(&U); 1030 } 1031 1032 unsigned NumCmps = 0; 1033 while (!Worklist.empty()) { 1034 assert(Worklist.size() <= MaxIter); 1035 const Use *U = Worklist.pop_back_val(); 1036 const Value *V = U->getUser(); 1037 --MaxIter; 1038 1039 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1040 isa<SelectInst>(V)) { 1041 // Track the uses. 1042 } else if (isa<LoadInst>(V)) { 1043 // Loading from the pointer doesn't escape it. 1044 continue; 1045 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1046 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1047 if (SI->getValueOperand() == U->get()) 1048 return nullptr; 1049 continue; 1050 } else if (isa<ICmpInst>(V)) { 1051 if (NumCmps++) 1052 return nullptr; // Found more than one cmp. 1053 continue; 1054 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1055 switch (Intrin->getIntrinsicID()) { 1056 // These intrinsics don't escape or compare the pointer. Memset is safe 1057 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1058 // we don't allow stores, so src cannot point to V. 1059 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1060 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1061 continue; 1062 default: 1063 return nullptr; 1064 } 1065 } else { 1066 return nullptr; 1067 } 1068 for (const Use &U : V->uses()) { 1069 if (Worklist.size() >= MaxIter) 1070 return nullptr; 1071 Worklist.push_back(&U); 1072 } 1073 } 1074 1075 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1076 return replaceInstUsesWith( 1077 ICI, 1078 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1079 } 1080 1081 /// Fold "icmp pred (X+C), X". 1082 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C, 1083 ICmpInst::Predicate Pred) { 1084 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1085 // so the values can never be equal. Similarly for all other "or equals" 1086 // operators. 1087 assert(!!C && "C should not be zero!"); 1088 1089 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1090 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1091 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1092 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1093 Constant *R = ConstantInt::get(X->getType(), 1094 APInt::getMaxValue(C.getBitWidth()) - C); 1095 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1096 } 1097 1098 // (X+1) >u X --> X <u (0-1) --> X != 255 1099 // (X+2) >u X --> X <u (0-2) --> X <u 254 1100 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1101 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1102 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1103 ConstantInt::get(X->getType(), -C)); 1104 1105 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1106 1107 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1108 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1109 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1110 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1111 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1112 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1113 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1114 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1115 ConstantInt::get(X->getType(), SMax - C)); 1116 1117 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1118 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1119 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1120 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1121 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1122 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1123 1124 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1125 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1126 ConstantInt::get(X->getType(), SMax - (C - 1))); 1127 } 1128 1129 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1130 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1131 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1132 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, 1133 const APInt &AP1, 1134 const APInt &AP2) { 1135 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1136 1137 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1138 if (I.getPredicate() == I.ICMP_NE) 1139 Pred = CmpInst::getInversePredicate(Pred); 1140 return new ICmpInst(Pred, LHS, RHS); 1141 }; 1142 1143 // Don't bother doing any work for cases which InstSimplify handles. 1144 if (AP2.isNullValue()) 1145 return nullptr; 1146 1147 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1148 if (IsAShr) { 1149 if (AP2.isAllOnesValue()) 1150 return nullptr; 1151 if (AP2.isNegative() != AP1.isNegative()) 1152 return nullptr; 1153 if (AP2.sgt(AP1)) 1154 return nullptr; 1155 } 1156 1157 if (!AP1) 1158 // 'A' must be large enough to shift out the highest set bit. 1159 return getICmp(I.ICMP_UGT, A, 1160 ConstantInt::get(A->getType(), AP2.logBase2())); 1161 1162 if (AP1 == AP2) 1163 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1164 1165 int Shift; 1166 if (IsAShr && AP1.isNegative()) 1167 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1168 else 1169 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1170 1171 if (Shift > 0) { 1172 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1173 // There are multiple solutions if we are comparing against -1 and the LHS 1174 // of the ashr is not a power of two. 1175 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1176 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1177 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1178 } else if (AP1 == AP2.lshr(Shift)) { 1179 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1180 } 1181 } 1182 1183 // Shifting const2 will never be equal to const1. 1184 // FIXME: This should always be handled by InstSimplify? 1185 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1186 return replaceInstUsesWith(I, TorF); 1187 } 1188 1189 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1190 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1191 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, 1192 const APInt &AP1, 1193 const APInt &AP2) { 1194 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1195 1196 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1197 if (I.getPredicate() == I.ICMP_NE) 1198 Pred = CmpInst::getInversePredicate(Pred); 1199 return new ICmpInst(Pred, LHS, RHS); 1200 }; 1201 1202 // Don't bother doing any work for cases which InstSimplify handles. 1203 if (AP2.isNullValue()) 1204 return nullptr; 1205 1206 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1207 1208 if (!AP1 && AP2TrailingZeros != 0) 1209 return getICmp( 1210 I.ICMP_UGE, A, 1211 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1212 1213 if (AP1 == AP2) 1214 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1215 1216 // Get the distance between the lowest bits that are set. 1217 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1218 1219 if (Shift > 0 && AP2.shl(Shift) == AP1) 1220 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1221 1222 // Shifting const2 will never be equal to const1. 1223 // FIXME: This should always be handled by InstSimplify? 1224 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1225 return replaceInstUsesWith(I, TorF); 1226 } 1227 1228 /// The caller has matched a pattern of the form: 1229 /// I = icmp ugt (add (add A, B), CI2), CI1 1230 /// If this is of the form: 1231 /// sum = a + b 1232 /// if (sum+128 >u 255) 1233 /// Then replace it with llvm.sadd.with.overflow.i8. 1234 /// 1235 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1236 ConstantInt *CI2, ConstantInt *CI1, 1237 InstCombiner &IC) { 1238 // The transformation we're trying to do here is to transform this into an 1239 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1240 // with a narrower add, and discard the add-with-constant that is part of the 1241 // range check (if we can't eliminate it, this isn't profitable). 1242 1243 // In order to eliminate the add-with-constant, the compare can be its only 1244 // use. 1245 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1246 if (!AddWithCst->hasOneUse()) 1247 return nullptr; 1248 1249 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1250 if (!CI2->getValue().isPowerOf2()) 1251 return nullptr; 1252 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1253 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1254 return nullptr; 1255 1256 // The width of the new add formed is 1 more than the bias. 1257 ++NewWidth; 1258 1259 // Check to see that CI1 is an all-ones value with NewWidth bits. 1260 if (CI1->getBitWidth() == NewWidth || 1261 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1262 return nullptr; 1263 1264 // This is only really a signed overflow check if the inputs have been 1265 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1266 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1267 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1268 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1269 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1270 return nullptr; 1271 1272 // In order to replace the original add with a narrower 1273 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1274 // and truncates that discard the high bits of the add. Verify that this is 1275 // the case. 1276 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1277 for (User *U : OrigAdd->users()) { 1278 if (U == AddWithCst) 1279 continue; 1280 1281 // Only accept truncates for now. We would really like a nice recursive 1282 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1283 // chain to see which bits of a value are actually demanded. If the 1284 // original add had another add which was then immediately truncated, we 1285 // could still do the transformation. 1286 TruncInst *TI = dyn_cast<TruncInst>(U); 1287 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1288 return nullptr; 1289 } 1290 1291 // If the pattern matches, truncate the inputs to the narrower type and 1292 // use the sadd_with_overflow intrinsic to efficiently compute both the 1293 // result and the overflow bit. 1294 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1295 Value *F = Intrinsic::getDeclaration(I.getModule(), 1296 Intrinsic::sadd_with_overflow, NewType); 1297 1298 InstCombiner::BuilderTy &Builder = IC.Builder; 1299 1300 // Put the new code above the original add, in case there are any uses of the 1301 // add between the add and the compare. 1302 Builder.SetInsertPoint(OrigAdd); 1303 1304 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1305 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1306 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1307 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1308 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1309 1310 // The inner add was the result of the narrow add, zero extended to the 1311 // wider type. Replace it with the result computed by the intrinsic. 1312 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1313 1314 // The original icmp gets replaced with the overflow value. 1315 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1316 } 1317 1318 // Handle (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1319 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) { 1320 CmpInst::Predicate Pred = Cmp.getPredicate(); 1321 Value *X = Cmp.getOperand(0); 1322 1323 if (match(Cmp.getOperand(1), m_Zero()) && Pred == ICmpInst::ICMP_SGT) { 1324 Value *A, *B; 1325 SelectPatternResult SPR = matchSelectPattern(X, A, B); 1326 if (SPR.Flavor == SPF_SMIN) { 1327 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1328 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1329 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1330 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1331 } 1332 } 1333 return nullptr; 1334 } 1335 1336 /// Fold icmp Pred X, C. 1337 /// TODO: This code structure does not make sense. The saturating add fold 1338 /// should be moved to some other helper and extended as noted below (it is also 1339 /// possible that code has been made unnecessary - do we canonicalize IR to 1340 /// overflow/saturating intrinsics or not?). 1341 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { 1342 // Match the following pattern, which is a common idiom when writing 1343 // overflow-safe integer arithmetic functions. The source performs an addition 1344 // in wider type and explicitly checks for overflow using comparisons against 1345 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1346 // 1347 // TODO: This could probably be generalized to handle other overflow-safe 1348 // operations if we worked out the formulas to compute the appropriate magic 1349 // constants. 1350 // 1351 // sum = a + b 1352 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1353 CmpInst::Predicate Pred = Cmp.getPredicate(); 1354 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1355 Value *A, *B; 1356 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1357 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1358 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1359 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1360 return Res; 1361 1362 return nullptr; 1363 } 1364 1365 /// Canonicalize icmp instructions based on dominating conditions. 1366 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1367 // This is a cheap/incomplete check for dominance - just match a single 1368 // predecessor with a conditional branch. 1369 BasicBlock *CmpBB = Cmp.getParent(); 1370 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1371 if (!DomBB) 1372 return nullptr; 1373 1374 Value *DomCond; 1375 BasicBlock *TrueBB, *FalseBB; 1376 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1377 return nullptr; 1378 1379 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1380 "Predecessor block does not point to successor?"); 1381 1382 // The branch should get simplified. Don't bother simplifying this condition. 1383 if (TrueBB == FalseBB) 1384 return nullptr; 1385 1386 // Try to simplify this compare to T/F based on the dominating condition. 1387 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1388 if (Imp) 1389 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1390 1391 CmpInst::Predicate Pred = Cmp.getPredicate(); 1392 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1393 ICmpInst::Predicate DomPred; 1394 const APInt *C, *DomC; 1395 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1396 match(Y, m_APInt(C))) { 1397 // We have 2 compares of a variable with constants. Calculate the constant 1398 // ranges of those compares to see if we can transform the 2nd compare: 1399 // DomBB: 1400 // DomCond = icmp DomPred X, DomC 1401 // br DomCond, CmpBB, FalseBB 1402 // CmpBB: 1403 // Cmp = icmp Pred X, C 1404 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); 1405 ConstantRange DominatingCR = 1406 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1407 : ConstantRange::makeExactICmpRegion( 1408 CmpInst::getInversePredicate(DomPred), *DomC); 1409 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1410 ConstantRange Difference = DominatingCR.difference(CR); 1411 if (Intersection.isEmptySet()) 1412 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1413 if (Difference.isEmptySet()) 1414 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1415 1416 // Canonicalizing a sign bit comparison that gets used in a branch, 1417 // pessimizes codegen by generating branch on zero instruction instead 1418 // of a test and branch. So we avoid canonicalizing in such situations 1419 // because test and branch instruction has better branch displacement 1420 // than compare and branch instruction. 1421 bool UnusedBit; 1422 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1423 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1424 return nullptr; 1425 1426 if (const APInt *EqC = Intersection.getSingleElement()) 1427 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1428 if (const APInt *NeC = Difference.getSingleElement()) 1429 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1430 } 1431 1432 return nullptr; 1433 } 1434 1435 /// Fold icmp (trunc X, Y), C. 1436 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, 1437 TruncInst *Trunc, 1438 const APInt &C) { 1439 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1440 Value *X = Trunc->getOperand(0); 1441 if (C.isOneValue() && C.getBitWidth() > 1) { 1442 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1443 Value *V = nullptr; 1444 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1445 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1446 ConstantInt::get(V->getType(), 1)); 1447 } 1448 1449 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1450 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1451 // of the high bits truncated out of x are known. 1452 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1453 SrcBits = X->getType()->getScalarSizeInBits(); 1454 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1455 1456 // If all the high bits are known, we can do this xform. 1457 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1458 // Pull in the high bits from known-ones set. 1459 APInt NewRHS = C.zext(SrcBits); 1460 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1461 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1462 } 1463 } 1464 1465 return nullptr; 1466 } 1467 1468 /// Fold icmp (xor X, Y), C. 1469 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, 1470 BinaryOperator *Xor, 1471 const APInt &C) { 1472 Value *X = Xor->getOperand(0); 1473 Value *Y = Xor->getOperand(1); 1474 const APInt *XorC; 1475 if (!match(Y, m_APInt(XorC))) 1476 return nullptr; 1477 1478 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1479 // fold the xor. 1480 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1481 bool TrueIfSigned = false; 1482 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1483 1484 // If the sign bit of the XorCst is not set, there is no change to 1485 // the operation, just stop using the Xor. 1486 if (!XorC->isNegative()) { 1487 Cmp.setOperand(0, X); 1488 Worklist.Add(Xor); 1489 return &Cmp; 1490 } 1491 1492 // Emit the opposite comparison. 1493 if (TrueIfSigned) 1494 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1495 ConstantInt::getAllOnesValue(X->getType())); 1496 else 1497 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1498 ConstantInt::getNullValue(X->getType())); 1499 } 1500 1501 if (Xor->hasOneUse()) { 1502 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1503 if (!Cmp.isEquality() && XorC->isSignMask()) { 1504 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1505 : Cmp.getSignedPredicate(); 1506 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1507 } 1508 1509 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1510 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1511 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1512 : Cmp.getSignedPredicate(); 1513 Pred = Cmp.getSwappedPredicate(Pred); 1514 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1515 } 1516 } 1517 1518 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1519 if (Pred == ICmpInst::ICMP_UGT) { 1520 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1521 if (*XorC == ~C && (C + 1).isPowerOf2()) 1522 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1523 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1524 if (*XorC == C && (C + 1).isPowerOf2()) 1525 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1526 } 1527 if (Pred == ICmpInst::ICMP_ULT) { 1528 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1529 if (*XorC == -C && C.isPowerOf2()) 1530 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1531 ConstantInt::get(X->getType(), ~C)); 1532 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1533 if (*XorC == C && (-C).isPowerOf2()) 1534 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1535 ConstantInt::get(X->getType(), ~C)); 1536 } 1537 return nullptr; 1538 } 1539 1540 /// Fold icmp (and (sh X, Y), C2), C1. 1541 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, 1542 const APInt &C1, const APInt &C2) { 1543 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1544 if (!Shift || !Shift->isShift()) 1545 return nullptr; 1546 1547 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1548 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1549 // code produced by the clang front-end, for bitfield access. 1550 // This seemingly simple opportunity to fold away a shift turns out to be 1551 // rather complicated. See PR17827 for details. 1552 unsigned ShiftOpcode = Shift->getOpcode(); 1553 bool IsShl = ShiftOpcode == Instruction::Shl; 1554 const APInt *C3; 1555 if (match(Shift->getOperand(1), m_APInt(C3))) { 1556 bool CanFold = false; 1557 if (ShiftOpcode == Instruction::Shl) { 1558 // For a left shift, we can fold if the comparison is not signed. We can 1559 // also fold a signed comparison if the mask value and comparison value 1560 // are not negative. These constraints may not be obvious, but we can 1561 // prove that they are correct using an SMT solver. 1562 if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative())) 1563 CanFold = true; 1564 } else { 1565 bool IsAshr = ShiftOpcode == Instruction::AShr; 1566 // For a logical right shift, we can fold if the comparison is not signed. 1567 // We can also fold a signed comparison if the shifted mask value and the 1568 // shifted comparison value are not negative. These constraints may not be 1569 // obvious, but we can prove that they are correct using an SMT solver. 1570 // For an arithmetic shift right we can do the same, if we ensure 1571 // the And doesn't use any bits being shifted in. Normally these would 1572 // be turned into lshr by SimplifyDemandedBits, but not if there is an 1573 // additional user. 1574 if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) { 1575 if (!Cmp.isSigned() || 1576 (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative())) 1577 CanFold = true; 1578 } 1579 } 1580 1581 if (CanFold) { 1582 APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3); 1583 APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3); 1584 // Check to see if we are shifting out any of the bits being compared. 1585 if (SameAsC1 != C1) { 1586 // If we shifted bits out, the fold is not going to work out. As a 1587 // special case, check to see if this means that the result is always 1588 // true or false now. 1589 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1590 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1591 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1592 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1593 } else { 1594 Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst)); 1595 APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3); 1596 And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst)); 1597 And->setOperand(0, Shift->getOperand(0)); 1598 Worklist.Add(Shift); // Shift is dead. 1599 return &Cmp; 1600 } 1601 } 1602 } 1603 1604 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1605 // preferable because it allows the C2 << Y expression to be hoisted out of a 1606 // loop if Y is invariant and X is not. 1607 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1608 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1609 // Compute C2 << Y. 1610 Value *NewShift = 1611 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1612 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1613 1614 // Compute X & (C2 << Y). 1615 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1616 Cmp.setOperand(0, NewAnd); 1617 return &Cmp; 1618 } 1619 1620 return nullptr; 1621 } 1622 1623 /// Fold icmp (and X, C2), C1. 1624 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, 1625 BinaryOperator *And, 1626 const APInt &C1) { 1627 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1628 // TODO: We canonicalize to the longer form for scalars because we have 1629 // better analysis/folds for icmp, and codegen may be better with icmp. 1630 if (Cmp.getPredicate() == CmpInst::ICMP_NE && Cmp.getType()->isVectorTy() && 1631 C1.isNullValue() && match(And->getOperand(1), m_One())) 1632 return new TruncInst(And->getOperand(0), Cmp.getType()); 1633 1634 const APInt *C2; 1635 if (!match(And->getOperand(1), m_APInt(C2))) 1636 return nullptr; 1637 1638 if (!And->hasOneUse()) 1639 return nullptr; 1640 1641 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1642 // the input width without changing the value produced, eliminate the cast: 1643 // 1644 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1645 // 1646 // We can do this transformation if the constants do not have their sign bits 1647 // set or if it is an equality comparison. Extending a relational comparison 1648 // when we're checking the sign bit would not work. 1649 Value *W; 1650 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1651 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1652 // TODO: Is this a good transform for vectors? Wider types may reduce 1653 // throughput. Should this transform be limited (even for scalars) by using 1654 // shouldChangeType()? 1655 if (!Cmp.getType()->isVectorTy()) { 1656 Type *WideType = W->getType(); 1657 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1658 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1659 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1660 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1661 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1662 } 1663 } 1664 1665 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1666 return I; 1667 1668 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1669 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1670 // 1671 // iff pred isn't signed 1672 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1673 match(And->getOperand(1), m_One())) { 1674 Constant *One = cast<Constant>(And->getOperand(1)); 1675 Value *Or = And->getOperand(0); 1676 Value *A, *B, *LShr; 1677 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1678 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1679 unsigned UsesRemoved = 0; 1680 if (And->hasOneUse()) 1681 ++UsesRemoved; 1682 if (Or->hasOneUse()) 1683 ++UsesRemoved; 1684 if (LShr->hasOneUse()) 1685 ++UsesRemoved; 1686 1687 // Compute A & ((1 << B) | 1) 1688 Value *NewOr = nullptr; 1689 if (auto *C = dyn_cast<Constant>(B)) { 1690 if (UsesRemoved >= 1) 1691 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1692 } else { 1693 if (UsesRemoved >= 3) 1694 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1695 /*HasNUW=*/true), 1696 One, Or->getName()); 1697 } 1698 if (NewOr) { 1699 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1700 Cmp.setOperand(0, NewAnd); 1701 return &Cmp; 1702 } 1703 } 1704 } 1705 1706 return nullptr; 1707 } 1708 1709 /// Fold icmp (and X, Y), C. 1710 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, 1711 BinaryOperator *And, 1712 const APInt &C) { 1713 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1714 return I; 1715 1716 // TODO: These all require that Y is constant too, so refactor with the above. 1717 1718 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1719 Value *X = And->getOperand(0); 1720 Value *Y = And->getOperand(1); 1721 if (auto *LI = dyn_cast<LoadInst>(X)) 1722 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1723 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1724 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1725 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1726 ConstantInt *C2 = cast<ConstantInt>(Y); 1727 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1728 return Res; 1729 } 1730 1731 if (!Cmp.isEquality()) 1732 return nullptr; 1733 1734 // X & -C == -C -> X > u ~C 1735 // X & -C != -C -> X <= u ~C 1736 // iff C is a power of 2 1737 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1738 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1739 : CmpInst::ICMP_ULE; 1740 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1741 } 1742 1743 // (X & C2) == 0 -> (trunc X) >= 0 1744 // (X & C2) != 0 -> (trunc X) < 0 1745 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1746 const APInt *C2; 1747 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1748 int32_t ExactLogBase2 = C2->exactLogBase2(); 1749 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1750 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1751 if (And->getType()->isVectorTy()) 1752 NTy = VectorType::get(NTy, And->getType()->getVectorNumElements()); 1753 Value *Trunc = Builder.CreateTrunc(X, NTy); 1754 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1755 : CmpInst::ICMP_SLT; 1756 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1757 } 1758 } 1759 1760 return nullptr; 1761 } 1762 1763 /// Fold icmp (or X, Y), C. 1764 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, 1765 const APInt &C) { 1766 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1767 if (C.isOneValue()) { 1768 // icmp slt signum(V) 1 --> icmp slt V, 1 1769 Value *V = nullptr; 1770 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1771 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1772 ConstantInt::get(V->getType(), 1)); 1773 } 1774 1775 // X | C == C --> X <=u C 1776 // X | C != C --> X >u C 1777 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1778 if (Cmp.isEquality() && Cmp.getOperand(1) == Or->getOperand(1) && 1779 (C + 1).isPowerOf2()) { 1780 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1781 return new ICmpInst(Pred, Or->getOperand(0), Or->getOperand(1)); 1782 } 1783 1784 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1785 return nullptr; 1786 1787 Value *P, *Q; 1788 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1789 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1790 // -> and (icmp eq P, null), (icmp eq Q, null). 1791 Value *CmpP = 1792 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1793 Value *CmpQ = 1794 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1795 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1796 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1797 } 1798 1799 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1800 // a shorter form that has more potential to be folded even further. 1801 Value *X1, *X2, *X3, *X4; 1802 if (match(Or->getOperand(0), m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1803 match(Or->getOperand(1), m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1804 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1805 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1806 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1807 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1808 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1809 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1810 } 1811 1812 return nullptr; 1813 } 1814 1815 /// Fold icmp (mul X, Y), C. 1816 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, 1817 BinaryOperator *Mul, 1818 const APInt &C) { 1819 const APInt *MulC; 1820 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1821 return nullptr; 1822 1823 // If this is a test of the sign bit and the multiply is sign-preserving with 1824 // a constant operand, use the multiply LHS operand instead. 1825 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1826 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1827 if (MulC->isNegative()) 1828 Pred = ICmpInst::getSwappedPredicate(Pred); 1829 return new ICmpInst(Pred, Mul->getOperand(0), 1830 Constant::getNullValue(Mul->getType())); 1831 } 1832 1833 return nullptr; 1834 } 1835 1836 /// Fold icmp (shl 1, Y), C. 1837 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1838 const APInt &C) { 1839 Value *Y; 1840 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1841 return nullptr; 1842 1843 Type *ShiftType = Shl->getType(); 1844 unsigned TypeBits = C.getBitWidth(); 1845 bool CIsPowerOf2 = C.isPowerOf2(); 1846 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1847 if (Cmp.isUnsigned()) { 1848 // (1 << Y) pred C -> Y pred Log2(C) 1849 if (!CIsPowerOf2) { 1850 // (1 << Y) < 30 -> Y <= 4 1851 // (1 << Y) <= 30 -> Y <= 4 1852 // (1 << Y) >= 30 -> Y > 4 1853 // (1 << Y) > 30 -> Y > 4 1854 if (Pred == ICmpInst::ICMP_ULT) 1855 Pred = ICmpInst::ICMP_ULE; 1856 else if (Pred == ICmpInst::ICMP_UGE) 1857 Pred = ICmpInst::ICMP_UGT; 1858 } 1859 1860 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 1861 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 1862 unsigned CLog2 = C.logBase2(); 1863 if (CLog2 == TypeBits - 1) { 1864 if (Pred == ICmpInst::ICMP_UGE) 1865 Pred = ICmpInst::ICMP_EQ; 1866 else if (Pred == ICmpInst::ICMP_ULT) 1867 Pred = ICmpInst::ICMP_NE; 1868 } 1869 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 1870 } else if (Cmp.isSigned()) { 1871 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 1872 if (C.isAllOnesValue()) { 1873 // (1 << Y) <= -1 -> Y == 31 1874 if (Pred == ICmpInst::ICMP_SLE) 1875 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1876 1877 // (1 << Y) > -1 -> Y != 31 1878 if (Pred == ICmpInst::ICMP_SGT) 1879 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1880 } else if (!C) { 1881 // (1 << Y) < 0 -> Y == 31 1882 // (1 << Y) <= 0 -> Y == 31 1883 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1884 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 1885 1886 // (1 << Y) >= 0 -> Y != 31 1887 // (1 << Y) > 0 -> Y != 31 1888 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1889 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 1890 } 1891 } else if (Cmp.isEquality() && CIsPowerOf2) { 1892 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 1893 } 1894 1895 return nullptr; 1896 } 1897 1898 /// Fold icmp (shl X, Y), C. 1899 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, 1900 BinaryOperator *Shl, 1901 const APInt &C) { 1902 const APInt *ShiftVal; 1903 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 1904 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 1905 1906 const APInt *ShiftAmt; 1907 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 1908 return foldICmpShlOne(Cmp, Shl, C); 1909 1910 // Check that the shift amount is in range. If not, don't perform undefined 1911 // shifts. When the shift is visited, it will be simplified. 1912 unsigned TypeBits = C.getBitWidth(); 1913 if (ShiftAmt->uge(TypeBits)) 1914 return nullptr; 1915 1916 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1917 Value *X = Shl->getOperand(0); 1918 Type *ShType = Shl->getType(); 1919 1920 // NSW guarantees that we are only shifting out sign bits from the high bits, 1921 // so we can ASHR the compare constant without needing a mask and eliminate 1922 // the shift. 1923 if (Shl->hasNoSignedWrap()) { 1924 if (Pred == ICmpInst::ICMP_SGT) { 1925 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 1926 APInt ShiftedC = C.ashr(*ShiftAmt); 1927 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1928 } 1929 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 1930 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 1931 APInt ShiftedC = C.ashr(*ShiftAmt); 1932 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1933 } 1934 if (Pred == ICmpInst::ICMP_SLT) { 1935 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 1936 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 1937 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 1938 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 1939 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 1940 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 1941 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1942 } 1943 // If this is a signed comparison to 0 and the shift is sign preserving, 1944 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 1945 // do that if we're sure to not continue on in this function. 1946 if (isSignTest(Pred, C)) 1947 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 1948 } 1949 1950 // NUW guarantees that we are only shifting out zero bits from the high bits, 1951 // so we can LSHR the compare constant without needing a mask and eliminate 1952 // the shift. 1953 if (Shl->hasNoUnsignedWrap()) { 1954 if (Pred == ICmpInst::ICMP_UGT) { 1955 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 1956 APInt ShiftedC = C.lshr(*ShiftAmt); 1957 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1958 } 1959 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 1960 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 1961 APInt ShiftedC = C.lshr(*ShiftAmt); 1962 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1963 } 1964 if (Pred == ICmpInst::ICMP_ULT) { 1965 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 1966 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 1967 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 1968 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 1969 assert(C.ugt(0) && "ult 0 should have been eliminated"); 1970 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 1971 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 1972 } 1973 } 1974 1975 if (Cmp.isEquality() && Shl->hasOneUse()) { 1976 // Strength-reduce the shift into an 'and'. 1977 Constant *Mask = ConstantInt::get( 1978 ShType, 1979 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 1980 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 1981 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 1982 return new ICmpInst(Pred, And, LShrC); 1983 } 1984 1985 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 1986 bool TrueIfSigned = false; 1987 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 1988 // (X << 31) <s 0 --> (X & 1) != 0 1989 Constant *Mask = ConstantInt::get( 1990 ShType, 1991 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 1992 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 1993 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 1994 And, Constant::getNullValue(ShType)); 1995 } 1996 1997 // Transform (icmp pred iM (shl iM %v, N), C) 1998 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 1999 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2000 // This enables us to get rid of the shift in favor of a trunc that may be 2001 // free on the target. It has the additional benefit of comparing to a 2002 // smaller constant that may be more target-friendly. 2003 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2004 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2005 DL.isLegalInteger(TypeBits - Amt)) { 2006 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2007 if (ShType->isVectorTy()) 2008 TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements()); 2009 Constant *NewC = 2010 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2011 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2012 } 2013 2014 return nullptr; 2015 } 2016 2017 /// Fold icmp ({al}shr X, Y), C. 2018 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, 2019 BinaryOperator *Shr, 2020 const APInt &C) { 2021 // An exact shr only shifts out zero bits, so: 2022 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2023 Value *X = Shr->getOperand(0); 2024 CmpInst::Predicate Pred = Cmp.getPredicate(); 2025 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2026 C.isNullValue()) 2027 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2028 2029 const APInt *ShiftVal; 2030 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2031 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2032 2033 const APInt *ShiftAmt; 2034 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2035 return nullptr; 2036 2037 // Check that the shift amount is in range. If not, don't perform undefined 2038 // shifts. When the shift is visited it will be simplified. 2039 unsigned TypeBits = C.getBitWidth(); 2040 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2041 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2042 return nullptr; 2043 2044 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2045 bool IsExact = Shr->isExact(); 2046 Type *ShrTy = Shr->getType(); 2047 // TODO: If we could guarantee that InstSimplify would handle all of the 2048 // constant-value-based preconditions in the folds below, then we could assert 2049 // those conditions rather than checking them. This is difficult because of 2050 // undef/poison (PR34838). 2051 if (IsAShr) { 2052 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2053 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2054 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2055 APInt ShiftedC = C.shl(ShAmtVal); 2056 if (ShiftedC.ashr(ShAmtVal) == C) 2057 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2058 } 2059 if (Pred == CmpInst::ICMP_SGT) { 2060 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2061 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2062 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2063 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2064 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2065 } 2066 } else { 2067 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2068 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2069 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2070 APInt ShiftedC = C.shl(ShAmtVal); 2071 if (ShiftedC.lshr(ShAmtVal) == C) 2072 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2073 } 2074 if (Pred == CmpInst::ICMP_UGT) { 2075 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2076 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2077 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2078 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2079 } 2080 } 2081 2082 if (!Cmp.isEquality()) 2083 return nullptr; 2084 2085 // Handle equality comparisons of shift-by-constant. 2086 2087 // If the comparison constant changes with the shift, the comparison cannot 2088 // succeed (bits of the comparison constant cannot match the shifted value). 2089 // This should be known by InstSimplify and already be folded to true/false. 2090 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2091 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2092 "Expected icmp+shr simplify did not occur."); 2093 2094 // If the bits shifted out are known zero, compare the unshifted value: 2095 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2096 if (Shr->isExact()) 2097 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2098 2099 if (Shr->hasOneUse()) { 2100 // Canonicalize the shift into an 'and': 2101 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2102 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2103 Constant *Mask = ConstantInt::get(ShrTy, Val); 2104 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2105 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2106 } 2107 2108 return nullptr; 2109 } 2110 2111 /// Fold icmp (udiv X, Y), C. 2112 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, 2113 BinaryOperator *UDiv, 2114 const APInt &C) { 2115 const APInt *C2; 2116 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2117 return nullptr; 2118 2119 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2120 2121 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2122 Value *Y = UDiv->getOperand(1); 2123 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2124 assert(!C.isMaxValue() && 2125 "icmp ugt X, UINT_MAX should have been simplified already."); 2126 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2127 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2128 } 2129 2130 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2131 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2132 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2133 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2134 ConstantInt::get(Y->getType(), C2->udiv(C))); 2135 } 2136 2137 return nullptr; 2138 } 2139 2140 /// Fold icmp ({su}div X, Y), C. 2141 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, 2142 BinaryOperator *Div, 2143 const APInt &C) { 2144 // Fold: icmp pred ([us]div X, C2), C -> range test 2145 // Fold this div into the comparison, producing a range check. 2146 // Determine, based on the divide type, what the range is being 2147 // checked. If there is an overflow on the low or high side, remember 2148 // it, otherwise compute the range [low, hi) bounding the new value. 2149 // See: InsertRangeTest above for the kinds of replacements possible. 2150 const APInt *C2; 2151 if (!match(Div->getOperand(1), m_APInt(C2))) 2152 return nullptr; 2153 2154 // FIXME: If the operand types don't match the type of the divide 2155 // then don't attempt this transform. The code below doesn't have the 2156 // logic to deal with a signed divide and an unsigned compare (and 2157 // vice versa). This is because (x /s C2) <s C produces different 2158 // results than (x /s C2) <u C or (x /u C2) <s C or even 2159 // (x /u C2) <u C. Simply casting the operands and result won't 2160 // work. :( The if statement below tests that condition and bails 2161 // if it finds it. 2162 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2163 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2164 return nullptr; 2165 2166 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2167 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2168 // division-by-constant cases should be present, we can not assert that they 2169 // have happened before we reach this icmp instruction. 2170 if (C2->isNullValue() || C2->isOneValue() || 2171 (DivIsSigned && C2->isAllOnesValue())) 2172 return nullptr; 2173 2174 // Compute Prod = C * C2. We are essentially solving an equation of 2175 // form X / C2 = C. We solve for X by multiplying C2 and C. 2176 // By solving for X, we can turn this into a range check instead of computing 2177 // a divide. 2178 APInt Prod = C * *C2; 2179 2180 // Determine if the product overflows by seeing if the product is not equal to 2181 // the divide. Make sure we do the same kind of divide as in the LHS 2182 // instruction that we're folding. 2183 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2184 2185 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2186 2187 // If the division is known to be exact, then there is no remainder from the 2188 // divide, so the covered range size is unit, otherwise it is the divisor. 2189 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2190 2191 // Figure out the interval that is being checked. For example, a comparison 2192 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2193 // Compute this interval based on the constants involved and the signedness of 2194 // the compare/divide. This computes a half-open interval, keeping track of 2195 // whether either value in the interval overflows. After analysis each 2196 // overflow variable is set to 0 if it's corresponding bound variable is valid 2197 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2198 int LoOverflow = 0, HiOverflow = 0; 2199 APInt LoBound, HiBound; 2200 2201 if (!DivIsSigned) { // udiv 2202 // e.g. X/5 op 3 --> [15, 20) 2203 LoBound = Prod; 2204 HiOverflow = LoOverflow = ProdOV; 2205 if (!HiOverflow) { 2206 // If this is not an exact divide, then many values in the range collapse 2207 // to the same result value. 2208 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2209 } 2210 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2211 if (C.isNullValue()) { // (X / pos) op 0 2212 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2213 LoBound = -(RangeSize - 1); 2214 HiBound = RangeSize; 2215 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2216 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2217 HiOverflow = LoOverflow = ProdOV; 2218 if (!HiOverflow) 2219 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2220 } else { // (X / pos) op neg 2221 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2222 HiBound = Prod + 1; 2223 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2224 if (!LoOverflow) { 2225 APInt DivNeg = -RangeSize; 2226 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2227 } 2228 } 2229 } else if (C2->isNegative()) { // Divisor is < 0. 2230 if (Div->isExact()) 2231 RangeSize.negate(); 2232 if (C.isNullValue()) { // (X / neg) op 0 2233 // e.g. X/-5 op 0 --> [-4, 5) 2234 LoBound = RangeSize + 1; 2235 HiBound = -RangeSize; 2236 if (HiBound == *C2) { // -INTMIN = INTMIN 2237 HiOverflow = 1; // [INTMIN+1, overflow) 2238 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2239 } 2240 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2241 // e.g. X/-5 op 3 --> [-19, -14) 2242 HiBound = Prod + 1; 2243 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2244 if (!LoOverflow) 2245 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2246 } else { // (X / neg) op neg 2247 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2248 LoOverflow = HiOverflow = ProdOV; 2249 if (!HiOverflow) 2250 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2251 } 2252 2253 // Dividing by a negative swaps the condition. LT <-> GT 2254 Pred = ICmpInst::getSwappedPredicate(Pred); 2255 } 2256 2257 Value *X = Div->getOperand(0); 2258 switch (Pred) { 2259 default: llvm_unreachable("Unhandled icmp opcode!"); 2260 case ICmpInst::ICMP_EQ: 2261 if (LoOverflow && HiOverflow) 2262 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2263 if (HiOverflow) 2264 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2265 ICmpInst::ICMP_UGE, X, 2266 ConstantInt::get(Div->getType(), LoBound)); 2267 if (LoOverflow) 2268 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2269 ICmpInst::ICMP_ULT, X, 2270 ConstantInt::get(Div->getType(), HiBound)); 2271 return replaceInstUsesWith( 2272 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2273 case ICmpInst::ICMP_NE: 2274 if (LoOverflow && HiOverflow) 2275 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2276 if (HiOverflow) 2277 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2278 ICmpInst::ICMP_ULT, X, 2279 ConstantInt::get(Div->getType(), LoBound)); 2280 if (LoOverflow) 2281 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2282 ICmpInst::ICMP_UGE, X, 2283 ConstantInt::get(Div->getType(), HiBound)); 2284 return replaceInstUsesWith(Cmp, 2285 insertRangeTest(X, LoBound, HiBound, 2286 DivIsSigned, false)); 2287 case ICmpInst::ICMP_ULT: 2288 case ICmpInst::ICMP_SLT: 2289 if (LoOverflow == +1) // Low bound is greater than input range. 2290 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2291 if (LoOverflow == -1) // Low bound is less than input range. 2292 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2293 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2294 case ICmpInst::ICMP_UGT: 2295 case ICmpInst::ICMP_SGT: 2296 if (HiOverflow == +1) // High bound greater than input range. 2297 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2298 if (HiOverflow == -1) // High bound less than input range. 2299 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2300 if (Pred == ICmpInst::ICMP_UGT) 2301 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2302 ConstantInt::get(Div->getType(), HiBound)); 2303 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2304 ConstantInt::get(Div->getType(), HiBound)); 2305 } 2306 2307 return nullptr; 2308 } 2309 2310 /// Fold icmp (sub X, Y), C. 2311 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, 2312 BinaryOperator *Sub, 2313 const APInt &C) { 2314 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2315 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2316 2317 // The following transforms are only worth it if the only user of the subtract 2318 // is the icmp. 2319 if (!Sub->hasOneUse()) 2320 return nullptr; 2321 2322 if (Sub->hasNoSignedWrap()) { 2323 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2324 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2325 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2326 2327 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2328 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2329 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2330 2331 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2332 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2333 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2334 2335 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2336 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2337 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2338 } 2339 2340 const APInt *C2; 2341 if (!match(X, m_APInt(C2))) 2342 return nullptr; 2343 2344 // C2 - Y <u C -> (Y | (C - 1)) == C2 2345 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2346 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2347 (*C2 & (C - 1)) == (C - 1)) 2348 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2349 2350 // C2 - Y >u C -> (Y | C) != C2 2351 // iff C2 & C == C and C + 1 is a power of 2 2352 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2353 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2354 2355 return nullptr; 2356 } 2357 2358 /// Fold icmp (add X, Y), C. 2359 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, 2360 BinaryOperator *Add, 2361 const APInt &C) { 2362 Value *Y = Add->getOperand(1); 2363 const APInt *C2; 2364 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2365 return nullptr; 2366 2367 // Fold icmp pred (add X, C2), C. 2368 Value *X = Add->getOperand(0); 2369 Type *Ty = Add->getType(); 2370 CmpInst::Predicate Pred = Cmp.getPredicate(); 2371 2372 if (!Add->hasOneUse()) 2373 return nullptr; 2374 2375 // If the add does not wrap, we can always adjust the compare by subtracting 2376 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2377 // are canonicalized to SGT/SLT/UGT/ULT. 2378 if ((Add->hasNoSignedWrap() && 2379 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2380 (Add->hasNoUnsignedWrap() && 2381 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2382 bool Overflow; 2383 APInt NewC = 2384 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2385 // If there is overflow, the result must be true or false. 2386 // TODO: Can we assert there is no overflow because InstSimplify always 2387 // handles those cases? 2388 if (!Overflow) 2389 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2390 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2391 } 2392 2393 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2394 const APInt &Upper = CR.getUpper(); 2395 const APInt &Lower = CR.getLower(); 2396 if (Cmp.isSigned()) { 2397 if (Lower.isSignMask()) 2398 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2399 if (Upper.isSignMask()) 2400 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2401 } else { 2402 if (Lower.isMinValue()) 2403 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2404 if (Upper.isMinValue()) 2405 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2406 } 2407 2408 // X+C <u C2 -> (X & -C2) == C 2409 // iff C & (C2-1) == 0 2410 // C2 is a power of 2 2411 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2412 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2413 ConstantExpr::getNeg(cast<Constant>(Y))); 2414 2415 // X+C >u C2 -> (X & ~C2) != C 2416 // iff C & C2 == 0 2417 // C2+1 is a power of 2 2418 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2419 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2420 ConstantExpr::getNeg(cast<Constant>(Y))); 2421 2422 return nullptr; 2423 } 2424 2425 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2426 Value *&RHS, ConstantInt *&Less, 2427 ConstantInt *&Equal, 2428 ConstantInt *&Greater) { 2429 // TODO: Generalize this to work with other comparison idioms or ensure 2430 // they get canonicalized into this form. 2431 2432 // select i1 (a == b), i32 Equal, i32 (select i1 (a < b), i32 Less, i32 2433 // Greater), where Equal, Less and Greater are placeholders for any three 2434 // constants. 2435 ICmpInst::Predicate PredA, PredB; 2436 if (match(SI->getTrueValue(), m_ConstantInt(Equal)) && 2437 match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) && 2438 PredA == ICmpInst::ICMP_EQ && 2439 match(SI->getFalseValue(), 2440 m_Select(m_ICmp(PredB, m_Specific(LHS), m_Specific(RHS)), 2441 m_ConstantInt(Less), m_ConstantInt(Greater))) && 2442 PredB == ICmpInst::ICMP_SLT) { 2443 return true; 2444 } 2445 return false; 2446 } 2447 2448 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp, 2449 SelectInst *Select, 2450 ConstantInt *C) { 2451 2452 assert(C && "Cmp RHS should be a constant int!"); 2453 // If we're testing a constant value against the result of a three way 2454 // comparison, the result can be expressed directly in terms of the 2455 // original values being compared. Note: We could possibly be more 2456 // aggressive here and remove the hasOneUse test. The original select is 2457 // really likely to simplify or sink when we remove a test of the result. 2458 Value *OrigLHS, *OrigRHS; 2459 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2460 if (Cmp.hasOneUse() && 2461 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2462 C3GreaterThan)) { 2463 assert(C1LessThan && C2Equal && C3GreaterThan); 2464 2465 bool TrueWhenLessThan = 2466 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2467 ->isAllOnesValue(); 2468 bool TrueWhenEqual = 2469 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2470 ->isAllOnesValue(); 2471 bool TrueWhenGreaterThan = 2472 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2473 ->isAllOnesValue(); 2474 2475 // This generates the new instruction that will replace the original Cmp 2476 // Instruction. Instead of enumerating the various combinations when 2477 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2478 // false, we rely on chaining of ORs and future passes of InstCombine to 2479 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2480 2481 // When none of the three constants satisfy the predicate for the RHS (C), 2482 // the entire original Cmp can be simplified to a false. 2483 Value *Cond = Builder.getFalse(); 2484 if (TrueWhenLessThan) 2485 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, OrigLHS, OrigRHS)); 2486 if (TrueWhenEqual) 2487 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, OrigLHS, OrigRHS)); 2488 if (TrueWhenGreaterThan) 2489 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, OrigLHS, OrigRHS)); 2490 2491 return replaceInstUsesWith(Cmp, Cond); 2492 } 2493 return nullptr; 2494 } 2495 2496 Instruction *InstCombiner::foldICmpBitCastConstant(ICmpInst &Cmp, 2497 BitCastInst *Bitcast, 2498 const APInt &C) { 2499 // Folding: icmp <pred> iN X, C 2500 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2501 // and C is a splat of a K-bit pattern 2502 // and SC is a constant vector = <C', C', C', ..., C'> 2503 // Into: 2504 // %E = extractelement <M x iK> %vec, i32 C' 2505 // icmp <pred> iK %E, trunc(C) 2506 if (!Bitcast->getType()->isIntegerTy() || 2507 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2508 return nullptr; 2509 2510 Value *BCIOp = Bitcast->getOperand(0); 2511 Value *Vec = nullptr; // 1st vector arg of the shufflevector 2512 Constant *Mask = nullptr; // Mask arg of the shufflevector 2513 if (match(BCIOp, 2514 m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) { 2515 // Check whether every element of Mask is the same constant 2516 if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) { 2517 auto *VecTy = cast<VectorType>(BCIOp->getType()); 2518 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2519 auto Pred = Cmp.getPredicate(); 2520 if (C.isSplat(EltTy->getBitWidth())) { 2521 // Fold the icmp based on the value of C 2522 // If C is M copies of an iK sized bit pattern, 2523 // then: 2524 // => %E = extractelement <N x iK> %vec, i32 Elem 2525 // icmp <pred> iK %SplatVal, <pattern> 2526 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2527 Value *NewC = ConstantInt::get(EltTy, C.trunc(EltTy->getBitWidth())); 2528 return new ICmpInst(Pred, Extract, NewC); 2529 } 2530 } 2531 } 2532 return nullptr; 2533 } 2534 2535 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2536 /// where X is some kind of instruction. 2537 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { 2538 const APInt *C; 2539 if (!match(Cmp.getOperand(1), m_APInt(C))) 2540 return nullptr; 2541 2542 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2543 switch (BO->getOpcode()) { 2544 case Instruction::Xor: 2545 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2546 return I; 2547 break; 2548 case Instruction::And: 2549 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2550 return I; 2551 break; 2552 case Instruction::Or: 2553 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2554 return I; 2555 break; 2556 case Instruction::Mul: 2557 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2558 return I; 2559 break; 2560 case Instruction::Shl: 2561 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2562 return I; 2563 break; 2564 case Instruction::LShr: 2565 case Instruction::AShr: 2566 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2567 return I; 2568 break; 2569 case Instruction::UDiv: 2570 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2571 return I; 2572 LLVM_FALLTHROUGH; 2573 case Instruction::SDiv: 2574 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2575 return I; 2576 break; 2577 case Instruction::Sub: 2578 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2579 return I; 2580 break; 2581 case Instruction::Add: 2582 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2583 return I; 2584 break; 2585 default: 2586 break; 2587 } 2588 // TODO: These folds could be refactored to be part of the above calls. 2589 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2590 return I; 2591 } 2592 2593 // Match against CmpInst LHS being instructions other than binary operators. 2594 2595 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2596 // For now, we only support constant integers while folding the 2597 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2598 // similar to the cases handled by binary ops above. 2599 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2600 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2601 return I; 2602 } 2603 2604 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2605 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2606 return I; 2607 } 2608 2609 if (auto *BCI = dyn_cast<BitCastInst>(Cmp.getOperand(0))) { 2610 if (Instruction *I = foldICmpBitCastConstant(Cmp, BCI, *C)) 2611 return I; 2612 } 2613 2614 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, *C)) 2615 return I; 2616 2617 return nullptr; 2618 } 2619 2620 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2621 /// icmp eq/ne BO, C. 2622 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, 2623 BinaryOperator *BO, 2624 const APInt &C) { 2625 // TODO: Some of these folds could work with arbitrary constants, but this 2626 // function is limited to scalar and vector splat constants. 2627 if (!Cmp.isEquality()) 2628 return nullptr; 2629 2630 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2631 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2632 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2633 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2634 2635 switch (BO->getOpcode()) { 2636 case Instruction::SRem: 2637 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2638 if (C.isNullValue() && BO->hasOneUse()) { 2639 const APInt *BOC; 2640 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2641 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2642 return new ICmpInst(Pred, NewRem, 2643 Constant::getNullValue(BO->getType())); 2644 } 2645 } 2646 break; 2647 case Instruction::Add: { 2648 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2649 const APInt *BOC; 2650 if (match(BOp1, m_APInt(BOC))) { 2651 if (BO->hasOneUse()) { 2652 Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1)); 2653 return new ICmpInst(Pred, BOp0, SubC); 2654 } 2655 } else if (C.isNullValue()) { 2656 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2657 // efficiently invertible, or if the add has just this one use. 2658 if (Value *NegVal = dyn_castNegVal(BOp1)) 2659 return new ICmpInst(Pred, BOp0, NegVal); 2660 if (Value *NegVal = dyn_castNegVal(BOp0)) 2661 return new ICmpInst(Pred, NegVal, BOp1); 2662 if (BO->hasOneUse()) { 2663 Value *Neg = Builder.CreateNeg(BOp1); 2664 Neg->takeName(BO); 2665 return new ICmpInst(Pred, BOp0, Neg); 2666 } 2667 } 2668 break; 2669 } 2670 case Instruction::Xor: 2671 if (BO->hasOneUse()) { 2672 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2673 // For the xor case, we can xor two constants together, eliminating 2674 // the explicit xor. 2675 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 2676 } else if (C.isNullValue()) { 2677 // Replace ((xor A, B) != 0) with (A != B) 2678 return new ICmpInst(Pred, BOp0, BOp1); 2679 } 2680 } 2681 break; 2682 case Instruction::Sub: 2683 if (BO->hasOneUse()) { 2684 const APInt *BOC; 2685 if (match(BOp0, m_APInt(BOC))) { 2686 // Replace ((sub BOC, B) != C) with (B != BOC-C). 2687 Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS); 2688 return new ICmpInst(Pred, BOp1, SubC); 2689 } else if (C.isNullValue()) { 2690 // Replace ((sub A, B) != 0) with (A != B). 2691 return new ICmpInst(Pred, BOp0, BOp1); 2692 } 2693 } 2694 break; 2695 case Instruction::Or: { 2696 const APInt *BOC; 2697 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 2698 // Comparing if all bits outside of a constant mask are set? 2699 // Replace (X | C) == -1 with (X & ~C) == ~C. 2700 // This removes the -1 constant. 2701 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 2702 Value *And = Builder.CreateAnd(BOp0, NotBOC); 2703 return new ICmpInst(Pred, And, NotBOC); 2704 } 2705 break; 2706 } 2707 case Instruction::And: { 2708 const APInt *BOC; 2709 if (match(BOp1, m_APInt(BOC))) { 2710 // If we have ((X & C) == C), turn it into ((X & C) != 0). 2711 if (C == *BOC && C.isPowerOf2()) 2712 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 2713 BO, Constant::getNullValue(RHS->getType())); 2714 2715 // Don't perform the following transforms if the AND has multiple uses 2716 if (!BO->hasOneUse()) 2717 break; 2718 2719 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 2720 if (BOC->isSignMask()) { 2721 Constant *Zero = Constant::getNullValue(BOp0->getType()); 2722 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 2723 return new ICmpInst(NewPred, BOp0, Zero); 2724 } 2725 2726 // ((X & ~7) == 0) --> X < 8 2727 if (C.isNullValue() && (~(*BOC) + 1).isPowerOf2()) { 2728 Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1)); 2729 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 2730 return new ICmpInst(NewPred, BOp0, NegBOC); 2731 } 2732 } 2733 break; 2734 } 2735 case Instruction::Mul: 2736 if (C.isNullValue() && BO->hasNoSignedWrap()) { 2737 const APInt *BOC; 2738 if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) { 2739 // The trivial case (mul X, 0) is handled by InstSimplify. 2740 // General case : (mul X, C) != 0 iff X != 0 2741 // (mul X, C) == 0 iff X == 0 2742 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); 2743 } 2744 } 2745 break; 2746 case Instruction::UDiv: 2747 if (C.isNullValue()) { 2748 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 2749 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 2750 return new ICmpInst(NewPred, BOp1, BOp0); 2751 } 2752 break; 2753 default: 2754 break; 2755 } 2756 return nullptr; 2757 } 2758 2759 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 2760 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 2761 const APInt &C) { 2762 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)); 2763 if (!II || !Cmp.isEquality()) 2764 return nullptr; 2765 2766 // Handle icmp {eq|ne} <intrinsic>, Constant. 2767 Type *Ty = II->getType(); 2768 unsigned BitWidth = C.getBitWidth(); 2769 switch (II->getIntrinsicID()) { 2770 case Intrinsic::bswap: 2771 Worklist.Add(II); 2772 Cmp.setOperand(0, II->getArgOperand(0)); 2773 Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap())); 2774 return &Cmp; 2775 2776 case Intrinsic::ctlz: 2777 case Intrinsic::cttz: { 2778 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 2779 if (C == BitWidth) { 2780 Worklist.Add(II); 2781 Cmp.setOperand(0, II->getArgOperand(0)); 2782 Cmp.setOperand(1, ConstantInt::getNullValue(Ty)); 2783 return &Cmp; 2784 } 2785 2786 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 2787 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 2788 // Limit to one use to ensure we don't increase instruction count. 2789 unsigned Num = C.getLimitedValue(BitWidth); 2790 if (Num != BitWidth && II->hasOneUse()) { 2791 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 2792 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 2793 : APInt::getHighBitsSet(BitWidth, Num + 1); 2794 APInt Mask2 = IsTrailing 2795 ? APInt::getOneBitSet(BitWidth, Num) 2796 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 2797 Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1)); 2798 Cmp.setOperand(1, ConstantInt::get(Ty, Mask2)); 2799 Worklist.Add(II); 2800 return &Cmp; 2801 } 2802 break; 2803 } 2804 2805 case Intrinsic::ctpop: { 2806 // popcount(A) == 0 -> A == 0 and likewise for != 2807 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 2808 bool IsZero = C.isNullValue(); 2809 if (IsZero || C == BitWidth) { 2810 Worklist.Add(II); 2811 Cmp.setOperand(0, II->getArgOperand(0)); 2812 auto *NewOp = 2813 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty); 2814 Cmp.setOperand(1, NewOp); 2815 return &Cmp; 2816 } 2817 break; 2818 } 2819 default: 2820 break; 2821 } 2822 2823 return nullptr; 2824 } 2825 2826 /// Handle icmp with constant (but not simple integer constant) RHS. 2827 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { 2828 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2829 Constant *RHSC = dyn_cast<Constant>(Op1); 2830 Instruction *LHSI = dyn_cast<Instruction>(Op0); 2831 if (!RHSC || !LHSI) 2832 return nullptr; 2833 2834 switch (LHSI->getOpcode()) { 2835 case Instruction::GetElementPtr: 2836 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 2837 if (RHSC->isNullValue() && 2838 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 2839 return new ICmpInst( 2840 I.getPredicate(), LHSI->getOperand(0), 2841 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2842 break; 2843 case Instruction::PHI: 2844 // Only fold icmp into the PHI if the phi and icmp are in the same 2845 // block. If in the same block, we're encouraging jump threading. If 2846 // not, we are just pessimizing the code by making an i1 phi. 2847 if (LHSI->getParent() == I.getParent()) 2848 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 2849 return NV; 2850 break; 2851 case Instruction::Select: { 2852 // If either operand of the select is a constant, we can fold the 2853 // comparison into the select arms, which will cause one to be 2854 // constant folded and the select turned into a bitwise or. 2855 Value *Op1 = nullptr, *Op2 = nullptr; 2856 ConstantInt *CI = nullptr; 2857 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 2858 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2859 CI = dyn_cast<ConstantInt>(Op1); 2860 } 2861 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 2862 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 2863 CI = dyn_cast<ConstantInt>(Op2); 2864 } 2865 2866 // We only want to perform this transformation if it will not lead to 2867 // additional code. This is true if either both sides of the select 2868 // fold to a constant (in which case the icmp is replaced with a select 2869 // which will usually simplify) or this is the only user of the 2870 // select (in which case we are trading a select+icmp for a simpler 2871 // select+icmp) or all uses of the select can be replaced based on 2872 // dominance information ("Global cases"). 2873 bool Transform = false; 2874 if (Op1 && Op2) 2875 Transform = true; 2876 else if (Op1 || Op2) { 2877 // Local case 2878 if (LHSI->hasOneUse()) 2879 Transform = true; 2880 // Global cases 2881 else if (CI && !CI->isZero()) 2882 // When Op1 is constant try replacing select with second operand. 2883 // Otherwise Op2 is constant and try replacing select with first 2884 // operand. 2885 Transform = 2886 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 2887 } 2888 if (Transform) { 2889 if (!Op1) 2890 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 2891 I.getName()); 2892 if (!Op2) 2893 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 2894 I.getName()); 2895 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 2896 } 2897 break; 2898 } 2899 case Instruction::IntToPtr: 2900 // icmp pred inttoptr(X), null -> icmp pred X, 0 2901 if (RHSC->isNullValue() && 2902 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 2903 return new ICmpInst( 2904 I.getPredicate(), LHSI->getOperand(0), 2905 Constant::getNullValue(LHSI->getOperand(0)->getType())); 2906 break; 2907 2908 case Instruction::Load: 2909 // Try to optimize things like "A[i] > 4" to index computations. 2910 if (GetElementPtrInst *GEP = 2911 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 2912 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 2913 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 2914 !cast<LoadInst>(LHSI)->isVolatile()) 2915 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 2916 return Res; 2917 } 2918 break; 2919 } 2920 2921 return nullptr; 2922 } 2923 2924 /// Some comparisons can be simplified. 2925 /// In this case, we are looking for comparisons that look like 2926 /// a check for a lossy truncation. 2927 /// Folds: 2928 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 2929 /// Where Mask is some pattern that produces all-ones in low bits: 2930 /// (-1 >> y) 2931 /// ((-1 << y) >> y) <- non-canonical, has extra uses 2932 /// ~(-1 << y) 2933 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 2934 /// The Mask can be a constant, too. 2935 /// For some predicates, the operands are commutative. 2936 /// For others, x can only be on a specific side. 2937 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 2938 InstCombiner::BuilderTy &Builder) { 2939 ICmpInst::Predicate SrcPred; 2940 Value *X, *M, *Y; 2941 auto m_VariableMask = m_CombineOr( 2942 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 2943 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 2944 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 2945 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 2946 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 2947 if (!match(&I, m_c_ICmp(SrcPred, 2948 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 2949 m_Deferred(X)))) 2950 return nullptr; 2951 2952 ICmpInst::Predicate DstPred; 2953 switch (SrcPred) { 2954 case ICmpInst::Predicate::ICMP_EQ: 2955 // x & (-1 >> y) == x -> x u<= (-1 >> y) 2956 DstPred = ICmpInst::Predicate::ICMP_ULE; 2957 break; 2958 case ICmpInst::Predicate::ICMP_NE: 2959 // x & (-1 >> y) != x -> x u> (-1 >> y) 2960 DstPred = ICmpInst::Predicate::ICMP_UGT; 2961 break; 2962 case ICmpInst::Predicate::ICMP_UGT: 2963 // x u> x & (-1 >> y) -> x u> (-1 >> y) 2964 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 2965 DstPred = ICmpInst::Predicate::ICMP_UGT; 2966 break; 2967 case ICmpInst::Predicate::ICMP_UGE: 2968 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 2969 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 2970 DstPred = ICmpInst::Predicate::ICMP_ULE; 2971 break; 2972 case ICmpInst::Predicate::ICMP_ULT: 2973 // x & (-1 >> y) u< x -> x u> (-1 >> y) 2974 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 2975 DstPred = ICmpInst::Predicate::ICMP_UGT; 2976 break; 2977 case ICmpInst::Predicate::ICMP_ULE: 2978 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 2979 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 2980 DstPred = ICmpInst::Predicate::ICMP_ULE; 2981 break; 2982 case ICmpInst::Predicate::ICMP_SGT: 2983 // x s> x & (-1 >> y) -> x s> (-1 >> y) 2984 if (X != I.getOperand(0)) // X must be on LHS of comparison! 2985 return nullptr; // Ignore the other case. 2986 DstPred = ICmpInst::Predicate::ICMP_SGT; 2987 break; 2988 case ICmpInst::Predicate::ICMP_SGE: 2989 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 2990 if (X != I.getOperand(1)) // X must be on RHS of comparison! 2991 return nullptr; // Ignore the other case. 2992 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 2993 return nullptr; 2994 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 2995 return nullptr; 2996 DstPred = ICmpInst::Predicate::ICMP_SLE; 2997 break; 2998 case ICmpInst::Predicate::ICMP_SLT: 2999 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3000 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3001 return nullptr; // Ignore the other case. 3002 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3003 return nullptr; 3004 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3005 return nullptr; 3006 DstPred = ICmpInst::Predicate::ICMP_SGT; 3007 break; 3008 case ICmpInst::Predicate::ICMP_SLE: 3009 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3010 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3011 return nullptr; // Ignore the other case. 3012 DstPred = ICmpInst::Predicate::ICMP_SLE; 3013 break; 3014 default: 3015 llvm_unreachable("All possible folds are handled."); 3016 } 3017 3018 return Builder.CreateICmp(DstPred, X, M); 3019 } 3020 3021 /// Some comparisons can be simplified. 3022 /// In this case, we are looking for comparisons that look like 3023 /// a check for a lossy signed truncation. 3024 /// Folds: (MaskedBits is a constant.) 3025 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3026 /// Into: 3027 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3028 /// Where KeptBits = bitwidth(%x) - MaskedBits 3029 static Value * 3030 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3031 InstCombiner::BuilderTy &Builder) { 3032 ICmpInst::Predicate SrcPred; 3033 Value *X; 3034 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3035 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3036 if (!match(&I, m_c_ICmp(SrcPred, 3037 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3038 m_APInt(C1))), 3039 m_Deferred(X)))) 3040 return nullptr; 3041 3042 // Potential handling of non-splats: for each element: 3043 // * if both are undef, replace with constant 0. 3044 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3045 // * if both are not undef, and are different, bailout. 3046 // * else, only one is undef, then pick the non-undef one. 3047 3048 // The shift amount must be equal. 3049 if (*C0 != *C1) 3050 return nullptr; 3051 const APInt &MaskedBits = *C0; 3052 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3053 3054 ICmpInst::Predicate DstPred; 3055 switch (SrcPred) { 3056 case ICmpInst::Predicate::ICMP_EQ: 3057 // ((%x << MaskedBits) a>> MaskedBits) == %x 3058 // => 3059 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3060 DstPred = ICmpInst::Predicate::ICMP_ULT; 3061 break; 3062 case ICmpInst::Predicate::ICMP_NE: 3063 // ((%x << MaskedBits) a>> MaskedBits) != %x 3064 // => 3065 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3066 DstPred = ICmpInst::Predicate::ICMP_UGE; 3067 break; 3068 // FIXME: are more folds possible? 3069 default: 3070 return nullptr; 3071 } 3072 3073 auto *XType = X->getType(); 3074 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3075 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3076 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3077 3078 // KeptBits = bitwidth(%x) - MaskedBits 3079 const APInt KeptBits = BitWidth - MaskedBits; 3080 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3081 // ICmpCst = (1 << KeptBits) 3082 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3083 assert(ICmpCst.isPowerOf2()); 3084 // AddCst = (1 << (KeptBits-1)) 3085 const APInt AddCst = ICmpCst.lshr(1); 3086 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3087 3088 // T0 = add %x, AddCst 3089 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3090 // T1 = T0 DstPred ICmpCst 3091 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3092 3093 return T1; 3094 } 3095 3096 /// Try to fold icmp (binop), X or icmp X, (binop). 3097 /// TODO: A large part of this logic is duplicated in InstSimplify's 3098 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3099 /// duplication. 3100 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) { 3101 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3102 3103 // Special logic for binary operators. 3104 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3105 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3106 if (!BO0 && !BO1) 3107 return nullptr; 3108 3109 const CmpInst::Predicate Pred = I.getPredicate(); 3110 Value *X; 3111 3112 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3113 // (Op1 + X) <u Op1 --> ~Op1 <u X 3114 // Op0 >u (Op0 + X) --> X >u ~Op0 3115 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3116 Pred == ICmpInst::ICMP_ULT) 3117 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3118 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3119 Pred == ICmpInst::ICMP_UGT) 3120 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3121 3122 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3123 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3124 NoOp0WrapProblem = 3125 ICmpInst::isEquality(Pred) || 3126 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3127 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3128 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3129 NoOp1WrapProblem = 3130 ICmpInst::isEquality(Pred) || 3131 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3132 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3133 3134 // Analyze the case when either Op0 or Op1 is an add instruction. 3135 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3136 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3137 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3138 A = BO0->getOperand(0); 3139 B = BO0->getOperand(1); 3140 } 3141 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3142 C = BO1->getOperand(0); 3143 D = BO1->getOperand(1); 3144 } 3145 3146 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3147 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3148 return new ICmpInst(Pred, A == Op1 ? B : A, 3149 Constant::getNullValue(Op1->getType())); 3150 3151 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3152 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3153 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3154 C == Op0 ? D : C); 3155 3156 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 3157 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3158 NoOp1WrapProblem && 3159 // Try not to increase register pressure. 3160 BO0->hasOneUse() && BO1->hasOneUse()) { 3161 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3162 Value *Y, *Z; 3163 if (A == C) { 3164 // C + B == C + D -> B == D 3165 Y = B; 3166 Z = D; 3167 } else if (A == D) { 3168 // D + B == C + D -> B == C 3169 Y = B; 3170 Z = C; 3171 } else if (B == C) { 3172 // A + C == C + D -> A == D 3173 Y = A; 3174 Z = D; 3175 } else { 3176 assert(B == D); 3177 // A + D == C + D -> A == C 3178 Y = A; 3179 Z = C; 3180 } 3181 return new ICmpInst(Pred, Y, Z); 3182 } 3183 3184 // icmp slt (X + -1), Y -> icmp sle X, Y 3185 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3186 match(B, m_AllOnes())) 3187 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3188 3189 // icmp sge (X + -1), Y -> icmp sgt X, Y 3190 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3191 match(B, m_AllOnes())) 3192 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3193 3194 // icmp sle (X + 1), Y -> icmp slt X, Y 3195 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3196 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3197 3198 // icmp sgt (X + 1), Y -> icmp sge X, Y 3199 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3200 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3201 3202 // icmp sgt X, (Y + -1) -> icmp sge X, Y 3203 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3204 match(D, m_AllOnes())) 3205 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3206 3207 // icmp sle X, (Y + -1) -> icmp slt X, Y 3208 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3209 match(D, m_AllOnes())) 3210 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3211 3212 // icmp sge X, (Y + 1) -> icmp sgt X, Y 3213 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3214 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3215 3216 // icmp slt X, (Y + 1) -> icmp sle X, Y 3217 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3218 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3219 3220 // TODO: The subtraction-related identities shown below also hold, but 3221 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3222 // wouldn't happen even if they were implemented. 3223 // 3224 // icmp ult (X - 1), Y -> icmp ule X, Y 3225 // icmp uge (X - 1), Y -> icmp ugt X, Y 3226 // icmp ugt X, (Y - 1) -> icmp uge X, Y 3227 // icmp ule X, (Y - 1) -> icmp ult X, Y 3228 3229 // icmp ule (X + 1), Y -> icmp ult X, Y 3230 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3231 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3232 3233 // icmp ugt (X + 1), Y -> icmp uge X, Y 3234 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3235 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3236 3237 // icmp uge X, (Y + 1) -> icmp ugt X, Y 3238 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3239 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3240 3241 // icmp ult X, (Y + 1) -> icmp ule X, Y 3242 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3243 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3244 3245 // if C1 has greater magnitude than C2: 3246 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 3247 // s.t. C3 = C1 - C2 3248 // 3249 // if C2 has greater magnitude than C1: 3250 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 3251 // s.t. C3 = C2 - C1 3252 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3253 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3254 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3255 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3256 const APInt &AP1 = C1->getValue(); 3257 const APInt &AP2 = C2->getValue(); 3258 if (AP1.isNegative() == AP2.isNegative()) { 3259 APInt AP1Abs = C1->getValue().abs(); 3260 APInt AP2Abs = C2->getValue().abs(); 3261 if (AP1Abs.uge(AP2Abs)) { 3262 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3263 Value *NewAdd = Builder.CreateNSWAdd(A, C3); 3264 return new ICmpInst(Pred, NewAdd, C); 3265 } else { 3266 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3267 Value *NewAdd = Builder.CreateNSWAdd(C, C3); 3268 return new ICmpInst(Pred, A, NewAdd); 3269 } 3270 } 3271 } 3272 3273 // Analyze the case when either Op0 or Op1 is a sub instruction. 3274 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3275 A = nullptr; 3276 B = nullptr; 3277 C = nullptr; 3278 D = nullptr; 3279 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3280 A = BO0->getOperand(0); 3281 B = BO0->getOperand(1); 3282 } 3283 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3284 C = BO1->getOperand(0); 3285 D = BO1->getOperand(1); 3286 } 3287 3288 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 3289 if (A == Op1 && NoOp0WrapProblem) 3290 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3291 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 3292 if (C == Op0 && NoOp1WrapProblem) 3293 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3294 3295 // (A - B) >u A --> A <u B 3296 if (A == Op1 && Pred == ICmpInst::ICMP_UGT) 3297 return new ICmpInst(ICmpInst::ICMP_ULT, A, B); 3298 // C <u (C - D) --> C <u D 3299 if (C == Op0 && Pred == ICmpInst::ICMP_ULT) 3300 return new ICmpInst(ICmpInst::ICMP_ULT, C, D); 3301 3302 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 3303 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 3304 // Try not to increase register pressure. 3305 BO0->hasOneUse() && BO1->hasOneUse()) 3306 return new ICmpInst(Pred, A, C); 3307 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 3308 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 3309 // Try not to increase register pressure. 3310 BO0->hasOneUse() && BO1->hasOneUse()) 3311 return new ICmpInst(Pred, D, B); 3312 3313 // icmp (0-X) < cst --> x > -cst 3314 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3315 Value *X; 3316 if (match(BO0, m_Neg(m_Value(X)))) 3317 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 3318 if (RHSC->isNotMinSignedValue()) 3319 return new ICmpInst(I.getSwappedPredicate(), X, 3320 ConstantExpr::getNeg(RHSC)); 3321 } 3322 3323 BinaryOperator *SRem = nullptr; 3324 // icmp (srem X, Y), Y 3325 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 3326 SRem = BO0; 3327 // icmp Y, (srem X, Y) 3328 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3329 Op0 == BO1->getOperand(1)) 3330 SRem = BO1; 3331 if (SRem) { 3332 // We don't check hasOneUse to avoid increasing register pressure because 3333 // the value we use is the same value this instruction was already using. 3334 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3335 default: 3336 break; 3337 case ICmpInst::ICMP_EQ: 3338 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3339 case ICmpInst::ICMP_NE: 3340 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3341 case ICmpInst::ICMP_SGT: 3342 case ICmpInst::ICMP_SGE: 3343 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3344 Constant::getAllOnesValue(SRem->getType())); 3345 case ICmpInst::ICMP_SLT: 3346 case ICmpInst::ICMP_SLE: 3347 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3348 Constant::getNullValue(SRem->getType())); 3349 } 3350 } 3351 3352 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 3353 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 3354 switch (BO0->getOpcode()) { 3355 default: 3356 break; 3357 case Instruction::Add: 3358 case Instruction::Sub: 3359 case Instruction::Xor: { 3360 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3361 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3362 3363 const APInt *C; 3364 if (match(BO0->getOperand(1), m_APInt(C))) { 3365 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 3366 if (C->isSignMask()) { 3367 ICmpInst::Predicate NewPred = 3368 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3369 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3370 } 3371 3372 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 3373 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 3374 ICmpInst::Predicate NewPred = 3375 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3376 NewPred = I.getSwappedPredicate(NewPred); 3377 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3378 } 3379 } 3380 break; 3381 } 3382 case Instruction::Mul: { 3383 if (!I.isEquality()) 3384 break; 3385 3386 const APInt *C; 3387 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 3388 !C->isOneValue()) { 3389 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 3390 // Mask = -1 >> count-trailing-zeros(C). 3391 if (unsigned TZs = C->countTrailingZeros()) { 3392 Constant *Mask = ConstantInt::get( 3393 BO0->getType(), 3394 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 3395 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 3396 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 3397 return new ICmpInst(Pred, And1, And2); 3398 } 3399 // If there are no trailing zeros in the multiplier, just eliminate 3400 // the multiplies (no masking is needed): 3401 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y 3402 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3403 } 3404 break; 3405 } 3406 case Instruction::UDiv: 3407 case Instruction::LShr: 3408 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 3409 break; 3410 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3411 3412 case Instruction::SDiv: 3413 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 3414 break; 3415 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3416 3417 case Instruction::AShr: 3418 if (!BO0->isExact() || !BO1->isExact()) 3419 break; 3420 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3421 3422 case Instruction::Shl: { 3423 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 3424 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 3425 if (!NUW && !NSW) 3426 break; 3427 if (!NSW && I.isSigned()) 3428 break; 3429 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3430 } 3431 } 3432 } 3433 3434 if (BO0) { 3435 // Transform A & (L - 1) `ult` L --> L != 0 3436 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 3437 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 3438 3439 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 3440 auto *Zero = Constant::getNullValue(BO0->getType()); 3441 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 3442 } 3443 } 3444 3445 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 3446 return replaceInstUsesWith(I, V); 3447 3448 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 3449 return replaceInstUsesWith(I, V); 3450 3451 return nullptr; 3452 } 3453 3454 /// Fold icmp Pred min|max(X, Y), X. 3455 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 3456 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3457 Value *Op0 = Cmp.getOperand(0); 3458 Value *X = Cmp.getOperand(1); 3459 3460 // Canonicalize minimum or maximum operand to LHS of the icmp. 3461 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 3462 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 3463 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 3464 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 3465 std::swap(Op0, X); 3466 Pred = Cmp.getSwappedPredicate(); 3467 } 3468 3469 Value *Y; 3470 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 3471 // smin(X, Y) == X --> X s<= Y 3472 // smin(X, Y) s>= X --> X s<= Y 3473 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 3474 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 3475 3476 // smin(X, Y) != X --> X s> Y 3477 // smin(X, Y) s< X --> X s> Y 3478 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 3479 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 3480 3481 // These cases should be handled in InstSimplify: 3482 // smin(X, Y) s<= X --> true 3483 // smin(X, Y) s> X --> false 3484 return nullptr; 3485 } 3486 3487 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 3488 // smax(X, Y) == X --> X s>= Y 3489 // smax(X, Y) s<= X --> X s>= Y 3490 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 3491 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 3492 3493 // smax(X, Y) != X --> X s< Y 3494 // smax(X, Y) s> X --> X s< Y 3495 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 3496 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 3497 3498 // These cases should be handled in InstSimplify: 3499 // smax(X, Y) s>= X --> true 3500 // smax(X, Y) s< X --> false 3501 return nullptr; 3502 } 3503 3504 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 3505 // umin(X, Y) == X --> X u<= Y 3506 // umin(X, Y) u>= X --> X u<= Y 3507 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 3508 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 3509 3510 // umin(X, Y) != X --> X u> Y 3511 // umin(X, Y) u< X --> X u> Y 3512 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 3513 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 3514 3515 // These cases should be handled in InstSimplify: 3516 // umin(X, Y) u<= X --> true 3517 // umin(X, Y) u> X --> false 3518 return nullptr; 3519 } 3520 3521 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 3522 // umax(X, Y) == X --> X u>= Y 3523 // umax(X, Y) u<= X --> X u>= Y 3524 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 3525 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 3526 3527 // umax(X, Y) != X --> X u< Y 3528 // umax(X, Y) u> X --> X u< Y 3529 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 3530 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 3531 3532 // These cases should be handled in InstSimplify: 3533 // umax(X, Y) u>= X --> true 3534 // umax(X, Y) u< X --> false 3535 return nullptr; 3536 } 3537 3538 return nullptr; 3539 } 3540 3541 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { 3542 if (!I.isEquality()) 3543 return nullptr; 3544 3545 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3546 const CmpInst::Predicate Pred = I.getPredicate(); 3547 Value *A, *B, *C, *D; 3548 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 3549 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 3550 Value *OtherVal = A == Op1 ? B : A; 3551 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 3552 } 3553 3554 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 3555 // A^c1 == C^c2 --> A == C^(c1^c2) 3556 ConstantInt *C1, *C2; 3557 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 3558 Op1->hasOneUse()) { 3559 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 3560 Value *Xor = Builder.CreateXor(C, NC); 3561 return new ICmpInst(Pred, A, Xor); 3562 } 3563 3564 // A^B == A^D -> B == D 3565 if (A == C) 3566 return new ICmpInst(Pred, B, D); 3567 if (A == D) 3568 return new ICmpInst(Pred, B, C); 3569 if (B == C) 3570 return new ICmpInst(Pred, A, D); 3571 if (B == D) 3572 return new ICmpInst(Pred, A, C); 3573 } 3574 } 3575 3576 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 3577 // A == (A^B) -> B == 0 3578 Value *OtherVal = A == Op0 ? B : A; 3579 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 3580 } 3581 3582 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 3583 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 3584 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 3585 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 3586 3587 if (A == C) { 3588 X = B; 3589 Y = D; 3590 Z = A; 3591 } else if (A == D) { 3592 X = B; 3593 Y = C; 3594 Z = A; 3595 } else if (B == C) { 3596 X = A; 3597 Y = D; 3598 Z = B; 3599 } else if (B == D) { 3600 X = A; 3601 Y = C; 3602 Z = B; 3603 } 3604 3605 if (X) { // Build (X^Y) & Z 3606 Op1 = Builder.CreateXor(X, Y); 3607 Op1 = Builder.CreateAnd(Op1, Z); 3608 I.setOperand(0, Op1); 3609 I.setOperand(1, Constant::getNullValue(Op1->getType())); 3610 return &I; 3611 } 3612 } 3613 3614 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 3615 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 3616 ConstantInt *Cst1; 3617 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 3618 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 3619 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 3620 match(Op1, m_ZExt(m_Value(A))))) { 3621 APInt Pow2 = Cst1->getValue() + 1; 3622 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 3623 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 3624 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 3625 } 3626 3627 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 3628 // For lshr and ashr pairs. 3629 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 3630 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 3631 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 3632 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 3633 unsigned TypeBits = Cst1->getBitWidth(); 3634 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3635 if (ShAmt < TypeBits && ShAmt != 0) { 3636 ICmpInst::Predicate NewPred = 3637 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 3638 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 3639 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 3640 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 3641 } 3642 } 3643 3644 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 3645 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 3646 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 3647 unsigned TypeBits = Cst1->getBitWidth(); 3648 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 3649 if (ShAmt < TypeBits && ShAmt != 0) { 3650 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 3651 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 3652 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 3653 I.getName() + ".mask"); 3654 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 3655 } 3656 } 3657 3658 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 3659 // "icmp (and X, mask), cst" 3660 uint64_t ShAmt = 0; 3661 if (Op0->hasOneUse() && 3662 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 3663 match(Op1, m_ConstantInt(Cst1)) && 3664 // Only do this when A has multiple uses. This is most important to do 3665 // when it exposes other optimizations. 3666 !A->hasOneUse()) { 3667 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 3668 3669 if (ShAmt < ASize) { 3670 APInt MaskV = 3671 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 3672 MaskV <<= ShAmt; 3673 3674 APInt CmpV = Cst1->getValue().zext(ASize); 3675 CmpV <<= ShAmt; 3676 3677 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 3678 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 3679 } 3680 } 3681 3682 // If both operands are byte-swapped or bit-reversed, just compare the 3683 // original values. 3684 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 3685 // and handle more intrinsics. 3686 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 3687 (match(Op0, m_BitReverse(m_Value(A))) && 3688 match(Op1, m_BitReverse(m_Value(B))))) 3689 return new ICmpInst(Pred, A, B); 3690 3691 return nullptr; 3692 } 3693 3694 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so 3695 /// far. 3696 Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) { 3697 const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0)); 3698 Value *LHSCIOp = LHSCI->getOperand(0); 3699 Type *SrcTy = LHSCIOp->getType(); 3700 Type *DestTy = LHSCI->getType(); 3701 Value *RHSCIOp; 3702 3703 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 3704 // integer type is the same size as the pointer type. 3705 const auto& CompatibleSizes = [&](Type* SrcTy, Type* DestTy) -> bool { 3706 if (isa<VectorType>(SrcTy)) { 3707 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 3708 DestTy = cast<VectorType>(DestTy)->getElementType(); 3709 } 3710 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 3711 }; 3712 if (LHSCI->getOpcode() == Instruction::PtrToInt && 3713 CompatibleSizes(SrcTy, DestTy)) { 3714 Value *RHSOp = nullptr; 3715 if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 3716 Value *RHSCIOp = RHSC->getOperand(0); 3717 if (RHSCIOp->getType()->getPointerAddressSpace() == 3718 LHSCIOp->getType()->getPointerAddressSpace()) { 3719 RHSOp = RHSC->getOperand(0); 3720 // If the pointer types don't match, insert a bitcast. 3721 if (LHSCIOp->getType() != RHSOp->getType()) 3722 RHSOp = Builder.CreateBitCast(RHSOp, LHSCIOp->getType()); 3723 } 3724 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 3725 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 3726 } 3727 3728 if (RHSOp) 3729 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp); 3730 } 3731 3732 // The code below only handles extension cast instructions, so far. 3733 // Enforce this. 3734 if (LHSCI->getOpcode() != Instruction::ZExt && 3735 LHSCI->getOpcode() != Instruction::SExt) 3736 return nullptr; 3737 3738 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 3739 bool isSignedCmp = ICmp.isSigned(); 3740 3741 if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) { 3742 // Not an extension from the same type? 3743 RHSCIOp = CI->getOperand(0); 3744 if (RHSCIOp->getType() != LHSCIOp->getType()) 3745 return nullptr; 3746 3747 // If the signedness of the two casts doesn't agree (i.e. one is a sext 3748 // and the other is a zext), then we can't handle this. 3749 if (CI->getOpcode() != LHSCI->getOpcode()) 3750 return nullptr; 3751 3752 // Deal with equality cases early. 3753 if (ICmp.isEquality()) 3754 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 3755 3756 // A signed comparison of sign extended values simplifies into a 3757 // signed comparison. 3758 if (isSignedCmp && isSignedExt) 3759 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 3760 3761 // The other three cases all fold into an unsigned comparison. 3762 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 3763 } 3764 3765 // If we aren't dealing with a constant on the RHS, exit early. 3766 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 3767 if (!C) 3768 return nullptr; 3769 3770 // Compute the constant that would happen if we truncated to SrcTy then 3771 // re-extended to DestTy. 3772 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 3773 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); 3774 3775 // If the re-extended constant didn't change... 3776 if (Res2 == C) { 3777 // Deal with equality cases early. 3778 if (ICmp.isEquality()) 3779 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 3780 3781 // A signed comparison of sign extended values simplifies into a 3782 // signed comparison. 3783 if (isSignedExt && isSignedCmp) 3784 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 3785 3786 // The other three cases all fold into an unsigned comparison. 3787 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1); 3788 } 3789 3790 // The re-extended constant changed, partly changed (in the case of a vector), 3791 // or could not be determined to be equal (in the case of a constant 3792 // expression), so the constant cannot be represented in the shorter type. 3793 // Consequently, we cannot emit a simple comparison. 3794 // All the cases that fold to true or false will have already been handled 3795 // by SimplifyICmpInst, so only deal with the tricky case. 3796 3797 if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C)) 3798 return nullptr; 3799 3800 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 3801 // should have been folded away previously and not enter in here. 3802 3803 // We're performing an unsigned comp with a sign extended value. 3804 // This is true if the input is >= 0. [aka >s -1] 3805 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 3806 Value *Result = Builder.CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName()); 3807 3808 // Finally, return the value computed. 3809 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 3810 return replaceInstUsesWith(ICmp, Result); 3811 3812 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 3813 return BinaryOperator::CreateNot(Result); 3814 } 3815 3816 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, 3817 Value *RHS, Instruction &OrigI, 3818 Value *&Result, Constant *&Overflow) { 3819 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 3820 std::swap(LHS, RHS); 3821 3822 auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) { 3823 Result = OpResult; 3824 Overflow = OverflowVal; 3825 if (ReuseName) 3826 Result->takeName(&OrigI); 3827 return true; 3828 }; 3829 3830 // If the overflow check was an add followed by a compare, the insertion point 3831 // may be pointing to the compare. We want to insert the new instructions 3832 // before the add in case there are uses of the add between the add and the 3833 // compare. 3834 Builder.SetInsertPoint(&OrigI); 3835 3836 switch (OCF) { 3837 case OCF_INVALID: 3838 llvm_unreachable("bad overflow check kind!"); 3839 3840 case OCF_UNSIGNED_ADD: { 3841 OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI); 3842 if (OR == OverflowResult::NeverOverflows) 3843 return SetResult(Builder.CreateNUWAdd(LHS, RHS), Builder.getFalse(), 3844 true); 3845 3846 if (OR == OverflowResult::AlwaysOverflows) 3847 return SetResult(Builder.CreateAdd(LHS, RHS), Builder.getTrue(), true); 3848 3849 // Fall through uadd into sadd 3850 LLVM_FALLTHROUGH; 3851 } 3852 case OCF_SIGNED_ADD: { 3853 // X + 0 -> {X, false} 3854 if (match(RHS, m_Zero())) 3855 return SetResult(LHS, Builder.getFalse(), false); 3856 3857 // We can strength reduce this signed add into a regular add if we can prove 3858 // that it will never overflow. 3859 if (OCF == OCF_SIGNED_ADD) 3860 if (willNotOverflowSignedAdd(LHS, RHS, OrigI)) 3861 return SetResult(Builder.CreateNSWAdd(LHS, RHS), Builder.getFalse(), 3862 true); 3863 break; 3864 } 3865 3866 case OCF_UNSIGNED_SUB: 3867 case OCF_SIGNED_SUB: { 3868 // X - 0 -> {X, false} 3869 if (match(RHS, m_Zero())) 3870 return SetResult(LHS, Builder.getFalse(), false); 3871 3872 if (OCF == OCF_SIGNED_SUB) { 3873 if (willNotOverflowSignedSub(LHS, RHS, OrigI)) 3874 return SetResult(Builder.CreateNSWSub(LHS, RHS), Builder.getFalse(), 3875 true); 3876 } else { 3877 if (willNotOverflowUnsignedSub(LHS, RHS, OrigI)) 3878 return SetResult(Builder.CreateNUWSub(LHS, RHS), Builder.getFalse(), 3879 true); 3880 } 3881 break; 3882 } 3883 3884 case OCF_UNSIGNED_MUL: { 3885 OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI); 3886 if (OR == OverflowResult::NeverOverflows) 3887 return SetResult(Builder.CreateNUWMul(LHS, RHS), Builder.getFalse(), 3888 true); 3889 if (OR == OverflowResult::AlwaysOverflows) 3890 return SetResult(Builder.CreateMul(LHS, RHS), Builder.getTrue(), true); 3891 LLVM_FALLTHROUGH; 3892 } 3893 case OCF_SIGNED_MUL: 3894 // X * undef -> undef 3895 if (isa<UndefValue>(RHS)) 3896 return SetResult(RHS, UndefValue::get(Builder.getInt1Ty()), false); 3897 3898 // X * 0 -> {0, false} 3899 if (match(RHS, m_Zero())) 3900 return SetResult(RHS, Builder.getFalse(), false); 3901 3902 // X * 1 -> {X, false} 3903 if (match(RHS, m_One())) 3904 return SetResult(LHS, Builder.getFalse(), false); 3905 3906 if (OCF == OCF_SIGNED_MUL) 3907 if (willNotOverflowSignedMul(LHS, RHS, OrigI)) 3908 return SetResult(Builder.CreateNSWMul(LHS, RHS), Builder.getFalse(), 3909 true); 3910 break; 3911 } 3912 3913 return false; 3914 } 3915 3916 /// Recognize and process idiom involving test for multiplication 3917 /// overflow. 3918 /// 3919 /// The caller has matched a pattern of the form: 3920 /// I = cmp u (mul(zext A, zext B), V 3921 /// The function checks if this is a test for overflow and if so replaces 3922 /// multiplication with call to 'mul.with.overflow' intrinsic. 3923 /// 3924 /// \param I Compare instruction. 3925 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 3926 /// the compare instruction. Must be of integer type. 3927 /// \param OtherVal The other argument of compare instruction. 3928 /// \returns Instruction which must replace the compare instruction, NULL if no 3929 /// replacement required. 3930 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 3931 Value *OtherVal, InstCombiner &IC) { 3932 // Don't bother doing this transformation for pointers, don't do it for 3933 // vectors. 3934 if (!isa<IntegerType>(MulVal->getType())) 3935 return nullptr; 3936 3937 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 3938 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 3939 auto *MulInstr = dyn_cast<Instruction>(MulVal); 3940 if (!MulInstr) 3941 return nullptr; 3942 assert(MulInstr->getOpcode() == Instruction::Mul); 3943 3944 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 3945 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 3946 assert(LHS->getOpcode() == Instruction::ZExt); 3947 assert(RHS->getOpcode() == Instruction::ZExt); 3948 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 3949 3950 // Calculate type and width of the result produced by mul.with.overflow. 3951 Type *TyA = A->getType(), *TyB = B->getType(); 3952 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 3953 WidthB = TyB->getPrimitiveSizeInBits(); 3954 unsigned MulWidth; 3955 Type *MulType; 3956 if (WidthB > WidthA) { 3957 MulWidth = WidthB; 3958 MulType = TyB; 3959 } else { 3960 MulWidth = WidthA; 3961 MulType = TyA; 3962 } 3963 3964 // In order to replace the original mul with a narrower mul.with.overflow, 3965 // all uses must ignore upper bits of the product. The number of used low 3966 // bits must be not greater than the width of mul.with.overflow. 3967 if (MulVal->hasNUsesOrMore(2)) 3968 for (User *U : MulVal->users()) { 3969 if (U == &I) 3970 continue; 3971 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 3972 // Check if truncation ignores bits above MulWidth. 3973 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 3974 if (TruncWidth > MulWidth) 3975 return nullptr; 3976 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 3977 // Check if AND ignores bits above MulWidth. 3978 if (BO->getOpcode() != Instruction::And) 3979 return nullptr; 3980 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 3981 const APInt &CVal = CI->getValue(); 3982 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 3983 return nullptr; 3984 } else { 3985 // In this case we could have the operand of the binary operation 3986 // being defined in another block, and performing the replacement 3987 // could break the dominance relation. 3988 return nullptr; 3989 } 3990 } else { 3991 // Other uses prohibit this transformation. 3992 return nullptr; 3993 } 3994 } 3995 3996 // Recognize patterns 3997 switch (I.getPredicate()) { 3998 case ICmpInst::ICMP_EQ: 3999 case ICmpInst::ICMP_NE: 4000 // Recognize pattern: 4001 // mulval = mul(zext A, zext B) 4002 // cmp eq/neq mulval, zext trunc mulval 4003 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 4004 if (Zext->hasOneUse()) { 4005 Value *ZextArg = Zext->getOperand(0); 4006 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 4007 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 4008 break; //Recognized 4009 } 4010 4011 // Recognize pattern: 4012 // mulval = mul(zext A, zext B) 4013 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4014 ConstantInt *CI; 4015 Value *ValToMask; 4016 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4017 if (ValToMask != MulVal) 4018 return nullptr; 4019 const APInt &CVal = CI->getValue() + 1; 4020 if (CVal.isPowerOf2()) { 4021 unsigned MaskWidth = CVal.logBase2(); 4022 if (MaskWidth == MulWidth) 4023 break; // Recognized 4024 } 4025 } 4026 return nullptr; 4027 4028 case ICmpInst::ICMP_UGT: 4029 // Recognize pattern: 4030 // mulval = mul(zext A, zext B) 4031 // cmp ugt mulval, max 4032 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4033 APInt MaxVal = APInt::getMaxValue(MulWidth); 4034 MaxVal = MaxVal.zext(CI->getBitWidth()); 4035 if (MaxVal.eq(CI->getValue())) 4036 break; // Recognized 4037 } 4038 return nullptr; 4039 4040 case ICmpInst::ICMP_UGE: 4041 // Recognize pattern: 4042 // mulval = mul(zext A, zext B) 4043 // cmp uge mulval, max+1 4044 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4045 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4046 if (MaxVal.eq(CI->getValue())) 4047 break; // Recognized 4048 } 4049 return nullptr; 4050 4051 case ICmpInst::ICMP_ULE: 4052 // Recognize pattern: 4053 // mulval = mul(zext A, zext B) 4054 // cmp ule mulval, max 4055 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4056 APInt MaxVal = APInt::getMaxValue(MulWidth); 4057 MaxVal = MaxVal.zext(CI->getBitWidth()); 4058 if (MaxVal.eq(CI->getValue())) 4059 break; // Recognized 4060 } 4061 return nullptr; 4062 4063 case ICmpInst::ICMP_ULT: 4064 // Recognize pattern: 4065 // mulval = mul(zext A, zext B) 4066 // cmp ule mulval, max + 1 4067 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4068 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4069 if (MaxVal.eq(CI->getValue())) 4070 break; // Recognized 4071 } 4072 return nullptr; 4073 4074 default: 4075 return nullptr; 4076 } 4077 4078 InstCombiner::BuilderTy &Builder = IC.Builder; 4079 Builder.SetInsertPoint(MulInstr); 4080 4081 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4082 Value *MulA = A, *MulB = B; 4083 if (WidthA < MulWidth) 4084 MulA = Builder.CreateZExt(A, MulType); 4085 if (WidthB < MulWidth) 4086 MulB = Builder.CreateZExt(B, MulType); 4087 Value *F = Intrinsic::getDeclaration(I.getModule(), 4088 Intrinsic::umul_with_overflow, MulType); 4089 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4090 IC.Worklist.Add(MulInstr); 4091 4092 // If there are uses of mul result other than the comparison, we know that 4093 // they are truncation or binary AND. Change them to use result of 4094 // mul.with.overflow and adjust properly mask/size. 4095 if (MulVal->hasNUsesOrMore(2)) { 4096 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4097 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { 4098 User *U = *UI++; 4099 if (U == &I || U == OtherVal) 4100 continue; 4101 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4102 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4103 IC.replaceInstUsesWith(*TI, Mul); 4104 else 4105 TI->setOperand(0, Mul); 4106 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4107 assert(BO->getOpcode() == Instruction::And); 4108 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4109 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4110 APInt ShortMask = CI->getValue().trunc(MulWidth); 4111 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4112 Instruction *Zext = 4113 cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType())); 4114 IC.Worklist.Add(Zext); 4115 IC.replaceInstUsesWith(*BO, Zext); 4116 } else { 4117 llvm_unreachable("Unexpected Binary operation"); 4118 } 4119 IC.Worklist.Add(cast<Instruction>(U)); 4120 } 4121 } 4122 if (isa<Instruction>(OtherVal)) 4123 IC.Worklist.Add(cast<Instruction>(OtherVal)); 4124 4125 // The original icmp gets replaced with the overflow value, maybe inverted 4126 // depending on predicate. 4127 bool Inverse = false; 4128 switch (I.getPredicate()) { 4129 case ICmpInst::ICMP_NE: 4130 break; 4131 case ICmpInst::ICMP_EQ: 4132 Inverse = true; 4133 break; 4134 case ICmpInst::ICMP_UGT: 4135 case ICmpInst::ICMP_UGE: 4136 if (I.getOperand(0) == MulVal) 4137 break; 4138 Inverse = true; 4139 break; 4140 case ICmpInst::ICMP_ULT: 4141 case ICmpInst::ICMP_ULE: 4142 if (I.getOperand(1) == MulVal) 4143 break; 4144 Inverse = true; 4145 break; 4146 default: 4147 llvm_unreachable("Unexpected predicate"); 4148 } 4149 if (Inverse) { 4150 Value *Res = Builder.CreateExtractValue(Call, 1); 4151 return BinaryOperator::CreateNot(Res); 4152 } 4153 4154 return ExtractValueInst::Create(Call, 1); 4155 } 4156 4157 /// When performing a comparison against a constant, it is possible that not all 4158 /// the bits in the LHS are demanded. This helper method computes the mask that 4159 /// IS demanded. 4160 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4161 const APInt *RHS; 4162 if (!match(I.getOperand(1), m_APInt(RHS))) 4163 return APInt::getAllOnesValue(BitWidth); 4164 4165 // If this is a normal comparison, it demands all bits. If it is a sign bit 4166 // comparison, it only demands the sign bit. 4167 bool UnusedBit; 4168 if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4169 return APInt::getSignMask(BitWidth); 4170 4171 switch (I.getPredicate()) { 4172 // For a UGT comparison, we don't care about any bits that 4173 // correspond to the trailing ones of the comparand. The value of these 4174 // bits doesn't impact the outcome of the comparison, because any value 4175 // greater than the RHS must differ in a bit higher than these due to carry. 4176 case ICmpInst::ICMP_UGT: 4177 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4178 4179 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4180 // Any value less than the RHS must differ in a higher bit because of carries. 4181 case ICmpInst::ICMP_ULT: 4182 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4183 4184 default: 4185 return APInt::getAllOnesValue(BitWidth); 4186 } 4187 } 4188 4189 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4190 /// should be swapped. 4191 /// The decision is based on how many times these two operands are reused 4192 /// as subtract operands and their positions in those instructions. 4193 /// The rationale is that several architectures use the same instruction for 4194 /// both subtract and cmp. Thus, it is better if the order of those operands 4195 /// match. 4196 /// \return true if Op0 and Op1 should be swapped. 4197 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4198 // Filter out pointer values as those cannot appear directly in subtract. 4199 // FIXME: we may want to go through inttoptrs or bitcasts. 4200 if (Op0->getType()->isPointerTy()) 4201 return false; 4202 // If a subtract already has the same operands as a compare, swapping would be 4203 // bad. If a subtract has the same operands as a compare but in reverse order, 4204 // then swapping is good. 4205 int GoodToSwap = 0; 4206 for (const User *U : Op0->users()) { 4207 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4208 GoodToSwap++; 4209 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4210 GoodToSwap--; 4211 } 4212 return GoodToSwap > 0; 4213 } 4214 4215 /// Check that one use is in the same block as the definition and all 4216 /// other uses are in blocks dominated by a given block. 4217 /// 4218 /// \param DI Definition 4219 /// \param UI Use 4220 /// \param DB Block that must dominate all uses of \p DI outside 4221 /// the parent block 4222 /// \return true when \p UI is the only use of \p DI in the parent block 4223 /// and all other uses of \p DI are in blocks dominated by \p DB. 4224 /// 4225 bool InstCombiner::dominatesAllUses(const Instruction *DI, 4226 const Instruction *UI, 4227 const BasicBlock *DB) const { 4228 assert(DI && UI && "Instruction not defined\n"); 4229 // Ignore incomplete definitions. 4230 if (!DI->getParent()) 4231 return false; 4232 // DI and UI must be in the same block. 4233 if (DI->getParent() != UI->getParent()) 4234 return false; 4235 // Protect from self-referencing blocks. 4236 if (DI->getParent() == DB) 4237 return false; 4238 for (const User *U : DI->users()) { 4239 auto *Usr = cast<Instruction>(U); 4240 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4241 return false; 4242 } 4243 return true; 4244 } 4245 4246 /// Return true when the instruction sequence within a block is select-cmp-br. 4247 static bool isChainSelectCmpBranch(const SelectInst *SI) { 4248 const BasicBlock *BB = SI->getParent(); 4249 if (!BB) 4250 return false; 4251 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 4252 if (!BI || BI->getNumSuccessors() != 2) 4253 return false; 4254 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 4255 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 4256 return false; 4257 return true; 4258 } 4259 4260 /// True when a select result is replaced by one of its operands 4261 /// in select-icmp sequence. This will eventually result in the elimination 4262 /// of the select. 4263 /// 4264 /// \param SI Select instruction 4265 /// \param Icmp Compare instruction 4266 /// \param SIOpd Operand that replaces the select 4267 /// 4268 /// Notes: 4269 /// - The replacement is global and requires dominator information 4270 /// - The caller is responsible for the actual replacement 4271 /// 4272 /// Example: 4273 /// 4274 /// entry: 4275 /// %4 = select i1 %3, %C* %0, %C* null 4276 /// %5 = icmp eq %C* %4, null 4277 /// br i1 %5, label %9, label %7 4278 /// ... 4279 /// ; <label>:7 ; preds = %entry 4280 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 4281 /// ... 4282 /// 4283 /// can be transformed to 4284 /// 4285 /// %5 = icmp eq %C* %0, null 4286 /// %6 = select i1 %3, i1 %5, i1 true 4287 /// br i1 %6, label %9, label %7 4288 /// ... 4289 /// ; <label>:7 ; preds = %entry 4290 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4291 /// 4292 /// Similar when the first operand of the select is a constant or/and 4293 /// the compare is for not equal rather than equal. 4294 /// 4295 /// NOTE: The function is only called when the select and compare constants 4296 /// are equal, the optimization can work only for EQ predicates. This is not a 4297 /// major restriction since a NE compare should be 'normalized' to an equal 4298 /// compare, which usually happens in the combiner and test case 4299 /// select-cmp-br.ll checks for it. 4300 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 4301 const ICmpInst *Icmp, 4302 const unsigned SIOpd) { 4303 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4304 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4305 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4306 // The check for the single predecessor is not the best that can be 4307 // done. But it protects efficiently against cases like when SI's 4308 // home block has two successors, Succ and Succ1, and Succ1 predecessor 4309 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 4310 // replaced can be reached on either path. So the uniqueness check 4311 // guarantees that the path all uses of SI (outside SI's parent) are on 4312 // is disjoint from all other paths out of SI. But that information 4313 // is more expensive to compute, and the trade-off here is in favor 4314 // of compile-time. It should also be noticed that we check for a single 4315 // predecessor and not only uniqueness. This to handle the situation when 4316 // Succ and Succ1 points to the same basic block. 4317 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 4318 NumSel++; 4319 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 4320 return true; 4321 } 4322 } 4323 return false; 4324 } 4325 4326 /// Try to fold the comparison based on range information we can get by checking 4327 /// whether bits are known to be zero or one in the inputs. 4328 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { 4329 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4330 Type *Ty = Op0->getType(); 4331 ICmpInst::Predicate Pred = I.getPredicate(); 4332 4333 // Get scalar or pointer size. 4334 unsigned BitWidth = Ty->isIntOrIntVectorTy() 4335 ? Ty->getScalarSizeInBits() 4336 : DL.getIndexTypeSizeInBits(Ty->getScalarType()); 4337 4338 if (!BitWidth) 4339 return nullptr; 4340 4341 KnownBits Op0Known(BitWidth); 4342 KnownBits Op1Known(BitWidth); 4343 4344 if (SimplifyDemandedBits(&I, 0, 4345 getDemandedBitsLHSMask(I, BitWidth), 4346 Op0Known, 0)) 4347 return &I; 4348 4349 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 4350 Op1Known, 0)) 4351 return &I; 4352 4353 // Given the known and unknown bits, compute a range that the LHS could be 4354 // in. Compute the Min, Max and RHS values based on the known bits. For the 4355 // EQ and NE we use unsigned values. 4356 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 4357 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 4358 if (I.isSigned()) { 4359 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4360 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4361 } else { 4362 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4363 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4364 } 4365 4366 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 4367 // out that the LHS or RHS is a constant. Constant fold this now, so that 4368 // code below can assume that Min != Max. 4369 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 4370 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 4371 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 4372 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 4373 4374 // Based on the range information we know about the LHS, see if we can 4375 // simplify this comparison. For example, (x&4) < 8 is always true. 4376 switch (Pred) { 4377 default: 4378 llvm_unreachable("Unknown icmp opcode!"); 4379 case ICmpInst::ICMP_EQ: 4380 case ICmpInst::ICMP_NE: { 4381 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 4382 return Pred == CmpInst::ICMP_EQ 4383 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 4384 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4385 } 4386 4387 // If all bits are known zero except for one, then we know at most one bit 4388 // is set. If the comparison is against zero, then this is a check to see if 4389 // *that* bit is set. 4390 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 4391 if (Op1Known.isZero()) { 4392 // If the LHS is an AND with the same constant, look through it. 4393 Value *LHS = nullptr; 4394 const APInt *LHSC; 4395 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 4396 *LHSC != Op0KnownZeroInverted) 4397 LHS = Op0; 4398 4399 Value *X; 4400 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 4401 APInt ValToCheck = Op0KnownZeroInverted; 4402 Type *XTy = X->getType(); 4403 if (ValToCheck.isPowerOf2()) { 4404 // ((1 << X) & 8) == 0 -> X != 3 4405 // ((1 << X) & 8) != 0 -> X == 3 4406 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4407 auto NewPred = ICmpInst::getInversePredicate(Pred); 4408 return new ICmpInst(NewPred, X, CmpC); 4409 } else if ((++ValToCheck).isPowerOf2()) { 4410 // ((1 << X) & 7) == 0 -> X >= 3 4411 // ((1 << X) & 7) != 0 -> X < 3 4412 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 4413 auto NewPred = 4414 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 4415 return new ICmpInst(NewPred, X, CmpC); 4416 } 4417 } 4418 4419 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 4420 const APInt *CI; 4421 if (Op0KnownZeroInverted.isOneValue() && 4422 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 4423 // ((8 >>u X) & 1) == 0 -> X != 3 4424 // ((8 >>u X) & 1) != 0 -> X == 3 4425 unsigned CmpVal = CI->countTrailingZeros(); 4426 auto NewPred = ICmpInst::getInversePredicate(Pred); 4427 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 4428 } 4429 } 4430 break; 4431 } 4432 case ICmpInst::ICMP_ULT: { 4433 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 4434 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4435 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 4436 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4437 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 4438 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4439 4440 const APInt *CmpC; 4441 if (match(Op1, m_APInt(CmpC))) { 4442 // A <u C -> A == C-1 if min(A)+1 == C 4443 if (*CmpC == Op0Min + 1) 4444 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4445 ConstantInt::get(Op1->getType(), *CmpC - 1)); 4446 // X <u C --> X == 0, if the number of zero bits in the bottom of X 4447 // exceeds the log2 of C. 4448 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 4449 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4450 Constant::getNullValue(Op1->getType())); 4451 } 4452 break; 4453 } 4454 case ICmpInst::ICMP_UGT: { 4455 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 4456 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4457 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 4458 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4459 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 4460 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4461 4462 const APInt *CmpC; 4463 if (match(Op1, m_APInt(CmpC))) { 4464 // A >u C -> A == C+1 if max(a)-1 == C 4465 if (*CmpC == Op0Max - 1) 4466 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4467 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4468 // X >u C --> X != 0, if the number of zero bits in the bottom of X 4469 // exceeds the log2 of C. 4470 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 4471 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 4472 Constant::getNullValue(Op1->getType())); 4473 } 4474 break; 4475 } 4476 case ICmpInst::ICMP_SLT: { 4477 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 4478 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4479 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 4480 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4481 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 4482 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4483 const APInt *CmpC; 4484 if (match(Op1, m_APInt(CmpC))) { 4485 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 4486 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4487 ConstantInt::get(Op1->getType(), *CmpC - 1)); 4488 } 4489 break; 4490 } 4491 case ICmpInst::ICMP_SGT: { 4492 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 4493 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4494 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 4495 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4496 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 4497 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4498 const APInt *CmpC; 4499 if (match(Op1, m_APInt(CmpC))) { 4500 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 4501 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 4502 ConstantInt::get(Op1->getType(), *CmpC + 1)); 4503 } 4504 break; 4505 } 4506 case ICmpInst::ICMP_SGE: 4507 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 4508 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 4509 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4510 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 4511 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4512 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 4513 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4514 break; 4515 case ICmpInst::ICMP_SLE: 4516 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 4517 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 4518 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4519 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 4520 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4521 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 4522 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4523 break; 4524 case ICmpInst::ICMP_UGE: 4525 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 4526 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 4527 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4528 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 4529 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4530 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 4531 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4532 break; 4533 case ICmpInst::ICMP_ULE: 4534 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 4535 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 4536 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4537 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 4538 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4539 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 4540 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4541 break; 4542 } 4543 4544 // Turn a signed comparison into an unsigned one if both operands are known to 4545 // have the same sign. 4546 if (I.isSigned() && 4547 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 4548 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 4549 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 4550 4551 return nullptr; 4552 } 4553 4554 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 4555 /// it into the appropriate icmp lt or icmp gt instruction. This transform 4556 /// allows them to be folded in visitICmpInst. 4557 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 4558 ICmpInst::Predicate Pred = I.getPredicate(); 4559 if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE && 4560 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE) 4561 return nullptr; 4562 4563 Value *Op0 = I.getOperand(0); 4564 Value *Op1 = I.getOperand(1); 4565 auto *Op1C = dyn_cast<Constant>(Op1); 4566 if (!Op1C) 4567 return nullptr; 4568 4569 // Check if the constant operand can be safely incremented/decremented without 4570 // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled 4571 // the edge cases for us, so we just assert on them. For vectors, we must 4572 // handle the edge cases. 4573 Type *Op1Type = Op1->getType(); 4574 bool IsSigned = I.isSigned(); 4575 bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE); 4576 auto *CI = dyn_cast<ConstantInt>(Op1C); 4577 if (CI) { 4578 // A <= MAX -> TRUE ; A >= MIN -> TRUE 4579 assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned)); 4580 } else if (Op1Type->isVectorTy()) { 4581 // TODO? If the edge cases for vectors were guaranteed to be handled as they 4582 // are for scalar, we could remove the min/max checks. However, to do that, 4583 // we would have to use insertelement/shufflevector to replace edge values. 4584 unsigned NumElts = Op1Type->getVectorNumElements(); 4585 for (unsigned i = 0; i != NumElts; ++i) { 4586 Constant *Elt = Op1C->getAggregateElement(i); 4587 if (!Elt) 4588 return nullptr; 4589 4590 if (isa<UndefValue>(Elt)) 4591 continue; 4592 4593 // Bail out if we can't determine if this constant is min/max or if we 4594 // know that this constant is min/max. 4595 auto *CI = dyn_cast<ConstantInt>(Elt); 4596 if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned))) 4597 return nullptr; 4598 } 4599 } else { 4600 // ConstantExpr? 4601 return nullptr; 4602 } 4603 4604 // Increment or decrement the constant and set the new comparison predicate: 4605 // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT 4606 Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true); 4607 CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT; 4608 NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred; 4609 return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne)); 4610 } 4611 4612 /// Integer compare with boolean values can always be turned into bitwise ops. 4613 static Instruction *canonicalizeICmpBool(ICmpInst &I, 4614 InstCombiner::BuilderTy &Builder) { 4615 Value *A = I.getOperand(0), *B = I.getOperand(1); 4616 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 4617 4618 // A boolean compared to true/false can be simplified to Op0/true/false in 4619 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 4620 // Cases not handled by InstSimplify are always 'not' of Op0. 4621 if (match(B, m_Zero())) { 4622 switch (I.getPredicate()) { 4623 case CmpInst::ICMP_EQ: // A == 0 -> !A 4624 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 4625 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 4626 return BinaryOperator::CreateNot(A); 4627 default: 4628 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 4629 } 4630 } else if (match(B, m_One())) { 4631 switch (I.getPredicate()) { 4632 case CmpInst::ICMP_NE: // A != 1 -> !A 4633 case CmpInst::ICMP_ULT: // A <u 1 -> !A 4634 case CmpInst::ICMP_SGT: // A >s -1 -> !A 4635 return BinaryOperator::CreateNot(A); 4636 default: 4637 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 4638 } 4639 } 4640 4641 switch (I.getPredicate()) { 4642 default: 4643 llvm_unreachable("Invalid icmp instruction!"); 4644 case ICmpInst::ICMP_EQ: 4645 // icmp eq i1 A, B -> ~(A ^ B) 4646 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 4647 4648 case ICmpInst::ICMP_NE: 4649 // icmp ne i1 A, B -> A ^ B 4650 return BinaryOperator::CreateXor(A, B); 4651 4652 case ICmpInst::ICMP_UGT: 4653 // icmp ugt -> icmp ult 4654 std::swap(A, B); 4655 LLVM_FALLTHROUGH; 4656 case ICmpInst::ICMP_ULT: 4657 // icmp ult i1 A, B -> ~A & B 4658 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 4659 4660 case ICmpInst::ICMP_SGT: 4661 // icmp sgt -> icmp slt 4662 std::swap(A, B); 4663 LLVM_FALLTHROUGH; 4664 case ICmpInst::ICMP_SLT: 4665 // icmp slt i1 A, B -> A & ~B 4666 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 4667 4668 case ICmpInst::ICMP_UGE: 4669 // icmp uge -> icmp ule 4670 std::swap(A, B); 4671 LLVM_FALLTHROUGH; 4672 case ICmpInst::ICMP_ULE: 4673 // icmp ule i1 A, B -> ~A | B 4674 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 4675 4676 case ICmpInst::ICMP_SGE: 4677 // icmp sge -> icmp sle 4678 std::swap(A, B); 4679 LLVM_FALLTHROUGH; 4680 case ICmpInst::ICMP_SLE: 4681 // icmp sle i1 A, B -> A | ~B 4682 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 4683 } 4684 } 4685 4686 // Transform pattern like: 4687 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 4688 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 4689 // Into: 4690 // (X l>> Y) != 0 4691 // (X l>> Y) == 0 4692 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 4693 InstCombiner::BuilderTy &Builder) { 4694 ICmpInst::Predicate Pred, NewPred; 4695 Value *X, *Y; 4696 if (match(&Cmp, 4697 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 4698 // We want X to be the icmp's second operand, so swap predicate if it isn't. 4699 if (Cmp.getOperand(0) == X) 4700 Pred = Cmp.getSwappedPredicate(); 4701 4702 switch (Pred) { 4703 case ICmpInst::ICMP_ULE: 4704 NewPred = ICmpInst::ICMP_NE; 4705 break; 4706 case ICmpInst::ICMP_UGT: 4707 NewPred = ICmpInst::ICMP_EQ; 4708 break; 4709 default: 4710 return nullptr; 4711 } 4712 } else if (match(&Cmp, m_c_ICmp(Pred, 4713 m_OneUse(m_CombineOr( 4714 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 4715 m_Add(m_Shl(m_One(), m_Value(Y)), 4716 m_AllOnes()))), 4717 m_Value(X)))) { 4718 // The variant with 'add' is not canonical, (the variant with 'not' is) 4719 // we only get it because it has extra uses, and can't be canonicalized, 4720 4721 // We want X to be the icmp's second operand, so swap predicate if it isn't. 4722 if (Cmp.getOperand(0) == X) 4723 Pred = Cmp.getSwappedPredicate(); 4724 4725 switch (Pred) { 4726 case ICmpInst::ICMP_ULT: 4727 NewPred = ICmpInst::ICMP_NE; 4728 break; 4729 case ICmpInst::ICMP_UGE: 4730 NewPred = ICmpInst::ICMP_EQ; 4731 break; 4732 default: 4733 return nullptr; 4734 } 4735 } else 4736 return nullptr; 4737 4738 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 4739 Constant *Zero = Constant::getNullValue(NewX->getType()); 4740 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 4741 } 4742 4743 static Instruction *foldVectorCmp(CmpInst &Cmp, 4744 InstCombiner::BuilderTy &Builder) { 4745 // If both arguments of the cmp are shuffles that use the same mask and 4746 // shuffle within a single vector, move the shuffle after the cmp. 4747 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 4748 Value *V1, *V2; 4749 Constant *M; 4750 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) && 4751 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) && 4752 V1->getType() == V2->getType() && 4753 (LHS->hasOneUse() || RHS->hasOneUse())) { 4754 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 4755 CmpInst::Predicate P = Cmp.getPredicate(); 4756 Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2) 4757 : Builder.CreateFCmp(P, V1, V2); 4758 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 4759 } 4760 return nullptr; 4761 } 4762 4763 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 4764 bool Changed = false; 4765 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4766 unsigned Op0Cplxity = getComplexity(Op0); 4767 unsigned Op1Cplxity = getComplexity(Op1); 4768 4769 /// Orders the operands of the compare so that they are listed from most 4770 /// complex to least complex. This puts constants before unary operators, 4771 /// before binary operators. 4772 if (Op0Cplxity < Op1Cplxity || 4773 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 4774 I.swapOperands(); 4775 std::swap(Op0, Op1); 4776 Changed = true; 4777 } 4778 4779 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, 4780 SQ.getWithInstruction(&I))) 4781 return replaceInstUsesWith(I, V); 4782 4783 // Comparing -val or val with non-zero is the same as just comparing val 4784 // ie, abs(val) != 0 -> val != 0 4785 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 4786 Value *Cond, *SelectTrue, *SelectFalse; 4787 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 4788 m_Value(SelectFalse)))) { 4789 if (Value *V = dyn_castNegVal(SelectTrue)) { 4790 if (V == SelectFalse) 4791 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 4792 } 4793 else if (Value *V = dyn_castNegVal(SelectFalse)) { 4794 if (V == SelectTrue) 4795 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 4796 } 4797 } 4798 } 4799 4800 if (Op0->getType()->isIntOrIntVectorTy(1)) 4801 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 4802 return Res; 4803 4804 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) 4805 return NewICmp; 4806 4807 if (Instruction *Res = foldICmpWithConstant(I)) 4808 return Res; 4809 4810 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 4811 return Res; 4812 4813 if (Instruction *Res = foldICmpUsingKnownBits(I)) 4814 return Res; 4815 4816 // Test if the ICmpInst instruction is used exclusively by a select as 4817 // part of a minimum or maximum operation. If so, refrain from doing 4818 // any other folding. This helps out other analyses which understand 4819 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 4820 // and CodeGen. And in this case, at least one of the comparison 4821 // operands has at least one user besides the compare (the select), 4822 // which would often largely negate the benefit of folding anyway. 4823 // 4824 // Do the same for the other patterns recognized by matchSelectPattern. 4825 if (I.hasOneUse()) 4826 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 4827 Value *A, *B; 4828 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 4829 if (SPR.Flavor != SPF_UNKNOWN) 4830 return nullptr; 4831 } 4832 4833 // Do this after checking for min/max to prevent infinite looping. 4834 if (Instruction *Res = foldICmpWithZero(I)) 4835 return Res; 4836 4837 // FIXME: We only do this after checking for min/max to prevent infinite 4838 // looping caused by a reverse canonicalization of these patterns for min/max. 4839 // FIXME: The organization of folds is a mess. These would naturally go into 4840 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 4841 // down here after the min/max restriction. 4842 ICmpInst::Predicate Pred = I.getPredicate(); 4843 const APInt *C; 4844 if (match(Op1, m_APInt(C))) { 4845 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 4846 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 4847 Constant *Zero = Constant::getNullValue(Op0->getType()); 4848 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 4849 } 4850 4851 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 4852 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 4853 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 4854 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 4855 } 4856 } 4857 4858 if (Instruction *Res = foldICmpInstWithConstant(I)) 4859 return Res; 4860 4861 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 4862 return Res; 4863 4864 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 4865 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 4866 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 4867 return NI; 4868 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 4869 if (Instruction *NI = foldGEPICmp(GEP, Op0, 4870 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 4871 return NI; 4872 4873 // Try to optimize equality comparisons against alloca-based pointers. 4874 if (Op0->getType()->isPointerTy() && I.isEquality()) { 4875 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 4876 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 4877 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 4878 return New; 4879 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 4880 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 4881 return New; 4882 } 4883 4884 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 4885 Value *X; 4886 if (match(Op0, m_BitCast(m_SIToFP(m_Value(X))))) { 4887 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 4888 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 4889 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 4890 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 4891 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 4892 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 4893 match(Op1, m_Zero())) 4894 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 4895 4896 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 4897 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 4898 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 4899 4900 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 4901 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 4902 return new ICmpInst(Pred, X, ConstantInt::getAllOnesValue(X->getType())); 4903 } 4904 4905 // Zero-equality checks are preserved through unsigned floating-point casts: 4906 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 4907 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 4908 if (match(Op0, m_BitCast(m_UIToFP(m_Value(X))))) 4909 if (I.isEquality() && match(Op1, m_Zero())) 4910 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 4911 4912 // Test to see if the operands of the icmp are casted versions of other 4913 // values. If the ptr->ptr cast can be stripped off both arguments, we do so 4914 // now. 4915 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { 4916 if (Op0->getType()->isPointerTy() && 4917 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 4918 // We keep moving the cast from the left operand over to the right 4919 // operand, where it can often be eliminated completely. 4920 Op0 = CI->getOperand(0); 4921 4922 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 4923 // so eliminate it as well. 4924 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) 4925 Op1 = CI2->getOperand(0); 4926 4927 // If Op1 is a constant, we can fold the cast into the constant. 4928 if (Op0->getType() != Op1->getType()) { 4929 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 4930 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); 4931 } else { 4932 // Otherwise, cast the RHS right before the icmp 4933 Op1 = Builder.CreateBitCast(Op1, Op0->getType()); 4934 } 4935 } 4936 return new ICmpInst(I.getPredicate(), Op0, Op1); 4937 } 4938 } 4939 4940 if (isa<CastInst>(Op0)) { 4941 // Handle the special case of: icmp (cast bool to X), <cst> 4942 // This comes up when you have code like 4943 // int X = A < B; 4944 // if (X) ... 4945 // For generality, we handle any zero-extension of any operand comparison 4946 // with a constant or another cast from the same type. 4947 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 4948 if (Instruction *R = foldICmpWithCastAndCast(I)) 4949 return R; 4950 } 4951 4952 if (Instruction *Res = foldICmpBinOp(I)) 4953 return Res; 4954 4955 if (Instruction *Res = foldICmpWithMinMax(I)) 4956 return Res; 4957 4958 { 4959 Value *A, *B; 4960 // Transform (A & ~B) == 0 --> (A & B) != 0 4961 // and (A & ~B) != 0 --> (A & B) == 0 4962 // if A is a power of 2. 4963 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 4964 match(Op1, m_Zero()) && 4965 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 4966 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 4967 Op1); 4968 4969 // ~X < ~Y --> Y < X 4970 // ~X < C --> X > ~C 4971 if (match(Op0, m_Not(m_Value(A)))) { 4972 if (match(Op1, m_Not(m_Value(B)))) 4973 return new ICmpInst(I.getPredicate(), B, A); 4974 4975 const APInt *C; 4976 if (match(Op1, m_APInt(C))) 4977 return new ICmpInst(I.getSwappedPredicate(), A, 4978 ConstantInt::get(Op1->getType(), ~(*C))); 4979 } 4980 4981 Instruction *AddI = nullptr; 4982 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 4983 m_Instruction(AddI))) && 4984 isa<IntegerType>(A->getType())) { 4985 Value *Result; 4986 Constant *Overflow; 4987 if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result, 4988 Overflow)) { 4989 replaceInstUsesWith(*AddI, Result); 4990 return replaceInstUsesWith(I, Overflow); 4991 } 4992 } 4993 4994 // (zext a) * (zext b) --> llvm.umul.with.overflow. 4995 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 4996 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 4997 return R; 4998 } 4999 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5000 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5001 return R; 5002 } 5003 } 5004 5005 if (Instruction *Res = foldICmpEquality(I)) 5006 return Res; 5007 5008 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5009 // an i1 which indicates whether or not we successfully did the swap. 5010 // 5011 // Replace comparisons between the old value and the expected value with the 5012 // indicator that 'cmpxchg' returns. 5013 // 5014 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5015 // spuriously fail. In those cases, the old value may equal the expected 5016 // value but it is possible for the swap to not occur. 5017 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5018 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5019 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5020 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5021 !ACXI->isWeak()) 5022 return ExtractValueInst::Create(ACXI, 1); 5023 5024 { 5025 Value *X; 5026 const APInt *C; 5027 // icmp X+Cst, X 5028 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5029 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5030 5031 // icmp X, X+Cst 5032 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5033 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5034 } 5035 5036 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5037 return Res; 5038 5039 if (I.getType()->isVectorTy()) 5040 if (Instruction *Res = foldVectorCmp(I, Builder)) 5041 return Res; 5042 5043 return Changed ? &I : nullptr; 5044 } 5045 5046 /// Fold fcmp ([us]itofp x, cst) if possible. 5047 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, 5048 Constant *RHSC) { 5049 if (!isa<ConstantFP>(RHSC)) return nullptr; 5050 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5051 5052 // Get the width of the mantissa. We don't want to hack on conversions that 5053 // might lose information from the integer, e.g. "i64 -> float" 5054 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5055 if (MantissaWidth == -1) return nullptr; // Unknown. 5056 5057 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5058 5059 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5060 5061 if (I.isEquality()) { 5062 FCmpInst::Predicate P = I.getPredicate(); 5063 bool IsExact = false; 5064 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5065 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5066 5067 // If the floating point constant isn't an integer value, we know if we will 5068 // ever compare equal / not equal to it. 5069 if (!IsExact) { 5070 // TODO: Can never be -0.0 and other non-representable values 5071 APFloat RHSRoundInt(RHS); 5072 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5073 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { 5074 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5075 return replaceInstUsesWith(I, Builder.getFalse()); 5076 5077 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5078 return replaceInstUsesWith(I, Builder.getTrue()); 5079 } 5080 } 5081 5082 // TODO: If the constant is exactly representable, is it always OK to do 5083 // equality compares as integer? 5084 } 5085 5086 // Check to see that the input is converted from an integer type that is small 5087 // enough that preserves all bits. TODO: check here for "known" sign bits. 5088 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5089 unsigned InputSize = IntTy->getScalarSizeInBits(); 5090 5091 // Following test does NOT adjust InputSize downwards for signed inputs, 5092 // because the most negative value still requires all the mantissa bits 5093 // to distinguish it from one less than that value. 5094 if ((int)InputSize > MantissaWidth) { 5095 // Conversion would lose accuracy. Check if loss can impact comparison. 5096 int Exp = ilogb(RHS); 5097 if (Exp == APFloat::IEK_Inf) { 5098 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5099 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5100 // Conversion could create infinity. 5101 return nullptr; 5102 } else { 5103 // Note that if RHS is zero or NaN, then Exp is negative 5104 // and first condition is trivially false. 5105 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5106 // Conversion could affect comparison. 5107 return nullptr; 5108 } 5109 } 5110 5111 // Otherwise, we can potentially simplify the comparison. We know that it 5112 // will always come through as an integer value and we know the constant is 5113 // not a NAN (it would have been previously simplified). 5114 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5115 5116 ICmpInst::Predicate Pred; 5117 switch (I.getPredicate()) { 5118 default: llvm_unreachable("Unexpected predicate!"); 5119 case FCmpInst::FCMP_UEQ: 5120 case FCmpInst::FCMP_OEQ: 5121 Pred = ICmpInst::ICMP_EQ; 5122 break; 5123 case FCmpInst::FCMP_UGT: 5124 case FCmpInst::FCMP_OGT: 5125 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5126 break; 5127 case FCmpInst::FCMP_UGE: 5128 case FCmpInst::FCMP_OGE: 5129 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5130 break; 5131 case FCmpInst::FCMP_ULT: 5132 case FCmpInst::FCMP_OLT: 5133 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5134 break; 5135 case FCmpInst::FCMP_ULE: 5136 case FCmpInst::FCMP_OLE: 5137 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5138 break; 5139 case FCmpInst::FCMP_UNE: 5140 case FCmpInst::FCMP_ONE: 5141 Pred = ICmpInst::ICMP_NE; 5142 break; 5143 case FCmpInst::FCMP_ORD: 5144 return replaceInstUsesWith(I, Builder.getTrue()); 5145 case FCmpInst::FCMP_UNO: 5146 return replaceInstUsesWith(I, Builder.getFalse()); 5147 } 5148 5149 // Now we know that the APFloat is a normal number, zero or inf. 5150 5151 // See if the FP constant is too large for the integer. For example, 5152 // comparing an i8 to 300.0. 5153 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5154 5155 if (!LHSUnsigned) { 5156 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5157 // and large values. 5158 APFloat SMax(RHS.getSemantics()); 5159 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5160 APFloat::rmNearestTiesToEven); 5161 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 5162 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5163 Pred == ICmpInst::ICMP_SLE) 5164 return replaceInstUsesWith(I, Builder.getTrue()); 5165 return replaceInstUsesWith(I, Builder.getFalse()); 5166 } 5167 } else { 5168 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5169 // +INF and large values. 5170 APFloat UMax(RHS.getSemantics()); 5171 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5172 APFloat::rmNearestTiesToEven); 5173 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 5174 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5175 Pred == ICmpInst::ICMP_ULE) 5176 return replaceInstUsesWith(I, Builder.getTrue()); 5177 return replaceInstUsesWith(I, Builder.getFalse()); 5178 } 5179 } 5180 5181 if (!LHSUnsigned) { 5182 // See if the RHS value is < SignedMin. 5183 APFloat SMin(RHS.getSemantics()); 5184 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5185 APFloat::rmNearestTiesToEven); 5186 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 5187 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 5188 Pred == ICmpInst::ICMP_SGE) 5189 return replaceInstUsesWith(I, Builder.getTrue()); 5190 return replaceInstUsesWith(I, Builder.getFalse()); 5191 } 5192 } else { 5193 // See if the RHS value is < UnsignedMin. 5194 APFloat SMin(RHS.getSemantics()); 5195 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 5196 APFloat::rmNearestTiesToEven); 5197 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 5198 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 5199 Pred == ICmpInst::ICMP_UGE) 5200 return replaceInstUsesWith(I, Builder.getTrue()); 5201 return replaceInstUsesWith(I, Builder.getFalse()); 5202 } 5203 } 5204 5205 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 5206 // [0, UMAX], but it may still be fractional. See if it is fractional by 5207 // casting the FP value to the integer value and back, checking for equality. 5208 // Don't do this for zero, because -0.0 is not fractional. 5209 Constant *RHSInt = LHSUnsigned 5210 ? ConstantExpr::getFPToUI(RHSC, IntTy) 5211 : ConstantExpr::getFPToSI(RHSC, IntTy); 5212 if (!RHS.isZero()) { 5213 bool Equal = LHSUnsigned 5214 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 5215 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 5216 if (!Equal) { 5217 // If we had a comparison against a fractional value, we have to adjust 5218 // the compare predicate and sometimes the value. RHSC is rounded towards 5219 // zero at this point. 5220 switch (Pred) { 5221 default: llvm_unreachable("Unexpected integer comparison!"); 5222 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 5223 return replaceInstUsesWith(I, Builder.getTrue()); 5224 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 5225 return replaceInstUsesWith(I, Builder.getFalse()); 5226 case ICmpInst::ICMP_ULE: 5227 // (float)int <= 4.4 --> int <= 4 5228 // (float)int <= -4.4 --> false 5229 if (RHS.isNegative()) 5230 return replaceInstUsesWith(I, Builder.getFalse()); 5231 break; 5232 case ICmpInst::ICMP_SLE: 5233 // (float)int <= 4.4 --> int <= 4 5234 // (float)int <= -4.4 --> int < -4 5235 if (RHS.isNegative()) 5236 Pred = ICmpInst::ICMP_SLT; 5237 break; 5238 case ICmpInst::ICMP_ULT: 5239 // (float)int < -4.4 --> false 5240 // (float)int < 4.4 --> int <= 4 5241 if (RHS.isNegative()) 5242 return replaceInstUsesWith(I, Builder.getFalse()); 5243 Pred = ICmpInst::ICMP_ULE; 5244 break; 5245 case ICmpInst::ICMP_SLT: 5246 // (float)int < -4.4 --> int < -4 5247 // (float)int < 4.4 --> int <= 4 5248 if (!RHS.isNegative()) 5249 Pred = ICmpInst::ICMP_SLE; 5250 break; 5251 case ICmpInst::ICMP_UGT: 5252 // (float)int > 4.4 --> int > 4 5253 // (float)int > -4.4 --> true 5254 if (RHS.isNegative()) 5255 return replaceInstUsesWith(I, Builder.getTrue()); 5256 break; 5257 case ICmpInst::ICMP_SGT: 5258 // (float)int > 4.4 --> int > 4 5259 // (float)int > -4.4 --> int >= -4 5260 if (RHS.isNegative()) 5261 Pred = ICmpInst::ICMP_SGE; 5262 break; 5263 case ICmpInst::ICMP_UGE: 5264 // (float)int >= -4.4 --> true 5265 // (float)int >= 4.4 --> int > 4 5266 if (RHS.isNegative()) 5267 return replaceInstUsesWith(I, Builder.getTrue()); 5268 Pred = ICmpInst::ICMP_UGT; 5269 break; 5270 case ICmpInst::ICMP_SGE: 5271 // (float)int >= -4.4 --> int >= -4 5272 // (float)int >= 4.4 --> int > 4 5273 if (!RHS.isNegative()) 5274 Pred = ICmpInst::ICMP_SGT; 5275 break; 5276 } 5277 } 5278 } 5279 5280 // Lower this FP comparison into an appropriate integer version of the 5281 // comparison. 5282 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 5283 } 5284 5285 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 5286 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 5287 Constant *RHSC) { 5288 // When C is not 0.0 and infinities are not allowed: 5289 // (C / X) < 0.0 is a sign-bit test of X 5290 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 5291 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 5292 // 5293 // Proof: 5294 // Multiply (C / X) < 0.0 by X * X / C. 5295 // - X is non zero, if it is the flag 'ninf' is violated. 5296 // - C defines the sign of X * X * C. Thus it also defines whether to swap 5297 // the predicate. C is also non zero by definition. 5298 // 5299 // Thus X * X / C is non zero and the transformation is valid. [qed] 5300 5301 FCmpInst::Predicate Pred = I.getPredicate(); 5302 5303 // Check that predicates are valid. 5304 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 5305 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 5306 return nullptr; 5307 5308 // Check that RHS operand is zero. 5309 if (!match(RHSC, m_AnyZeroFP())) 5310 return nullptr; 5311 5312 // Check fastmath flags ('ninf'). 5313 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 5314 return nullptr; 5315 5316 // Check the properties of the dividend. It must not be zero to avoid a 5317 // division by zero (see Proof). 5318 const APFloat *C; 5319 if (!match(LHSI->getOperand(0), m_APFloat(C))) 5320 return nullptr; 5321 5322 if (C->isZero()) 5323 return nullptr; 5324 5325 // Get swapped predicate if necessary. 5326 if (C->isNegative()) 5327 Pred = I.getSwappedPredicate(); 5328 5329 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 5330 } 5331 5332 /// Optimize fabs(X) compared with zero. 5333 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) { 5334 Value *X; 5335 if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) || 5336 !match(I.getOperand(1), m_PosZeroFP())) 5337 return nullptr; 5338 5339 auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 5340 I->setPredicate(P); 5341 I->setOperand(0, X); 5342 return I; 5343 }; 5344 5345 switch (I.getPredicate()) { 5346 case FCmpInst::FCMP_UGE: 5347 case FCmpInst::FCMP_OLT: 5348 // fabs(X) >= 0.0 --> true 5349 // fabs(X) < 0.0 --> false 5350 llvm_unreachable("fcmp should have simplified"); 5351 5352 case FCmpInst::FCMP_OGT: 5353 // fabs(X) > 0.0 --> X != 0.0 5354 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 5355 5356 case FCmpInst::FCMP_UGT: 5357 // fabs(X) u> 0.0 --> X u!= 0.0 5358 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 5359 5360 case FCmpInst::FCMP_OLE: 5361 // fabs(X) <= 0.0 --> X == 0.0 5362 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 5363 5364 case FCmpInst::FCMP_ULE: 5365 // fabs(X) u<= 0.0 --> X u== 0.0 5366 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 5367 5368 case FCmpInst::FCMP_OGE: 5369 // fabs(X) >= 0.0 --> !isnan(X) 5370 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5371 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 5372 5373 case FCmpInst::FCMP_ULT: 5374 // fabs(X) u< 0.0 --> isnan(X) 5375 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 5376 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 5377 5378 case FCmpInst::FCMP_OEQ: 5379 case FCmpInst::FCMP_UEQ: 5380 case FCmpInst::FCMP_ONE: 5381 case FCmpInst::FCMP_UNE: 5382 case FCmpInst::FCMP_ORD: 5383 case FCmpInst::FCMP_UNO: 5384 // Look through the fabs() because it doesn't change anything but the sign. 5385 // fabs(X) == 0.0 --> X == 0.0, 5386 // fabs(X) != 0.0 --> X != 0.0 5387 // isnan(fabs(X)) --> isnan(X) 5388 // !isnan(fabs(X) --> !isnan(X) 5389 return replacePredAndOp0(&I, I.getPredicate(), X); 5390 5391 default: 5392 return nullptr; 5393 } 5394 } 5395 5396 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 5397 bool Changed = false; 5398 5399 /// Orders the operands of the compare so that they are listed from most 5400 /// complex to least complex. This puts constants before unary operators, 5401 /// before binary operators. 5402 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 5403 I.swapOperands(); 5404 Changed = true; 5405 } 5406 5407 const CmpInst::Predicate Pred = I.getPredicate(); 5408 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5409 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 5410 SQ.getWithInstruction(&I))) 5411 return replaceInstUsesWith(I, V); 5412 5413 // Simplify 'fcmp pred X, X' 5414 if (Op0 == Op1) { 5415 switch (Pred) { 5416 default: break; 5417 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 5418 case FCmpInst::FCMP_ULT: // True if unordered or less than 5419 case FCmpInst::FCMP_UGT: // True if unordered or greater than 5420 case FCmpInst::FCMP_UNE: // True if unordered or not equal 5421 // Canonicalize these to be 'fcmp uno %X, 0.0'. 5422 I.setPredicate(FCmpInst::FCMP_UNO); 5423 I.setOperand(1, Constant::getNullValue(Op0->getType())); 5424 return &I; 5425 5426 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 5427 case FCmpInst::FCMP_OEQ: // True if ordered and equal 5428 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 5429 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 5430 // Canonicalize these to be 'fcmp ord %X, 0.0'. 5431 I.setPredicate(FCmpInst::FCMP_ORD); 5432 I.setOperand(1, Constant::getNullValue(Op0->getType())); 5433 return &I; 5434 } 5435 } 5436 5437 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 5438 // then canonicalize the operand to 0.0. 5439 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 5440 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) { 5441 I.setOperand(0, ConstantFP::getNullValue(Op0->getType())); 5442 return &I; 5443 } 5444 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) { 5445 I.setOperand(1, ConstantFP::getNullValue(Op0->getType())); 5446 return &I; 5447 } 5448 } 5449 5450 // Test if the FCmpInst instruction is used exclusively by a select as 5451 // part of a minimum or maximum operation. If so, refrain from doing 5452 // any other folding. This helps out other analyses which understand 5453 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5454 // and CodeGen. And in this case, at least one of the comparison 5455 // operands has at least one user besides the compare (the select), 5456 // which would often largely negate the benefit of folding anyway. 5457 if (I.hasOneUse()) 5458 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5459 Value *A, *B; 5460 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5461 if (SPR.Flavor != SPF_UNKNOWN) 5462 return nullptr; 5463 } 5464 5465 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 5466 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 5467 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) { 5468 I.setOperand(1, ConstantFP::getNullValue(Op1->getType())); 5469 return &I; 5470 } 5471 5472 // Handle fcmp with instruction LHS and constant RHS. 5473 Instruction *LHSI; 5474 Constant *RHSC; 5475 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 5476 switch (LHSI->getOpcode()) { 5477 case Instruction::PHI: 5478 // Only fold fcmp into the PHI if the phi and fcmp are in the same 5479 // block. If in the same block, we're encouraging jump threading. If 5480 // not, we are just pessimizing the code by making an i1 phi. 5481 if (LHSI->getParent() == I.getParent()) 5482 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 5483 return NV; 5484 break; 5485 case Instruction::SIToFP: 5486 case Instruction::UIToFP: 5487 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 5488 return NV; 5489 break; 5490 case Instruction::FDiv: 5491 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 5492 return NV; 5493 break; 5494 case Instruction::Load: 5495 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 5496 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 5497 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 5498 !cast<LoadInst>(LHSI)->isVolatile()) 5499 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 5500 return Res; 5501 break; 5502 } 5503 } 5504 5505 if (Instruction *R = foldFabsWithFcmpZero(I)) 5506 return R; 5507 5508 Value *X, *Y; 5509 if (match(Op0, m_FNeg(m_Value(X)))) { 5510 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 5511 if (match(Op1, m_FNeg(m_Value(Y)))) 5512 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 5513 5514 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 5515 Constant *C; 5516 if (match(Op1, m_Constant(C))) { 5517 Constant *NegC = ConstantExpr::getFNeg(C); 5518 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 5519 } 5520 } 5521 5522 if (match(Op0, m_FPExt(m_Value(X)))) { 5523 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 5524 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 5525 return new FCmpInst(Pred, X, Y, "", &I); 5526 5527 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 5528 const APFloat *C; 5529 if (match(Op1, m_APFloat(C))) { 5530 const fltSemantics &FPSem = 5531 X->getType()->getScalarType()->getFltSemantics(); 5532 bool Lossy; 5533 APFloat TruncC = *C; 5534 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 5535 5536 // Avoid lossy conversions and denormals. 5537 // Zero is a special case that's OK to convert. 5538 APFloat Fabs = TruncC; 5539 Fabs.clearSign(); 5540 if (!Lossy && 5541 ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) != 5542 APFloat::cmpLessThan) || Fabs.isZero())) { 5543 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 5544 return new FCmpInst(Pred, X, NewC, "", &I); 5545 } 5546 } 5547 } 5548 5549 if (I.getType()->isVectorTy()) 5550 if (Instruction *Res = foldVectorCmp(I, Builder)) 5551 return Res; 5552 5553 return Changed ? &I : nullptr; 5554 } 5555