1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/TargetLibraryInfo.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/DIBuilder.h" 20 #include "llvm/IR/PatternMatch.h" 21 #include "llvm/Support/KnownBits.h" 22 using namespace llvm; 23 using namespace PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Analyze 'Val', seeing if it is a simple linear expression. 28 /// If so, decompose it, returning some value X, such that Val is 29 /// X*Scale+Offset. 30 /// 31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 32 uint64_t &Offset) { 33 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 34 Offset = CI->getZExtValue(); 35 Scale = 0; 36 return ConstantInt::get(Val->getType(), 0); 37 } 38 39 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 40 // Cannot look past anything that might overflow. 41 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 42 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 43 Scale = 1; 44 Offset = 0; 45 return Val; 46 } 47 48 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 49 if (I->getOpcode() == Instruction::Shl) { 50 // This is a value scaled by '1 << the shift amt'. 51 Scale = UINT64_C(1) << RHS->getZExtValue(); 52 Offset = 0; 53 return I->getOperand(0); 54 } 55 56 if (I->getOpcode() == Instruction::Mul) { 57 // This value is scaled by 'RHS'. 58 Scale = RHS->getZExtValue(); 59 Offset = 0; 60 return I->getOperand(0); 61 } 62 63 if (I->getOpcode() == Instruction::Add) { 64 // We have X+C. Check to see if we really have (X*C2)+C1, 65 // where C1 is divisible by C2. 66 unsigned SubScale; 67 Value *SubVal = 68 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 69 Offset += RHS->getZExtValue(); 70 Scale = SubScale; 71 return SubVal; 72 } 73 } 74 } 75 76 // Otherwise, we can't look past this. 77 Scale = 1; 78 Offset = 0; 79 return Val; 80 } 81 82 /// If we find a cast of an allocation instruction, try to eliminate the cast by 83 /// moving the type information into the alloc. 84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 85 AllocaInst &AI) { 86 PointerType *PTy = cast<PointerType>(CI.getType()); 87 88 BuilderTy AllocaBuilder(Builder); 89 AllocaBuilder.SetInsertPoint(&AI); 90 91 // Get the type really allocated and the type casted to. 92 Type *AllocElTy = AI.getAllocatedType(); 93 Type *CastElTy = PTy->getElementType(); 94 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 95 96 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 97 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 98 if (CastElTyAlign < AllocElTyAlign) return nullptr; 99 100 // If the allocation has multiple uses, only promote it if we are strictly 101 // increasing the alignment of the resultant allocation. If we keep it the 102 // same, we open the door to infinite loops of various kinds. 103 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 104 105 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 106 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 107 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 108 109 // If the allocation has multiple uses, only promote it if we're not 110 // shrinking the amount of memory being allocated. 111 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 112 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 113 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 114 115 // See if we can satisfy the modulus by pulling a scale out of the array 116 // size argument. 117 unsigned ArraySizeScale; 118 uint64_t ArrayOffset; 119 Value *NumElements = // See if the array size is a decomposable linear expr. 120 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 121 122 // If we can now satisfy the modulus, by using a non-1 scale, we really can 123 // do the xform. 124 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 125 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 126 127 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 128 Value *Amt = nullptr; 129 if (Scale == 1) { 130 Amt = NumElements; 131 } else { 132 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 133 // Insert before the alloca, not before the cast. 134 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 135 } 136 137 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 138 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 139 Offset, true); 140 Amt = AllocaBuilder.CreateAdd(Amt, Off); 141 } 142 143 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 144 New->setAlignment(AI.getAlignment()); 145 New->takeName(&AI); 146 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 147 148 // If the allocation has multiple real uses, insert a cast and change all 149 // things that used it to use the new cast. This will also hack on CI, but it 150 // will die soon. 151 if (!AI.hasOneUse()) { 152 // New is the allocation instruction, pointer typed. AI is the original 153 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 154 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 155 replaceInstUsesWith(AI, NewCast); 156 } 157 return replaceInstUsesWith(CI, New); 158 } 159 160 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 161 /// true for, actually insert the code to evaluate the expression. 162 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 163 bool isSigned) { 164 if (Constant *C = dyn_cast<Constant>(V)) { 165 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 166 // If we got a constantexpr back, try to simplify it with DL info. 167 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 168 C = FoldedC; 169 return C; 170 } 171 172 // Otherwise, it must be an instruction. 173 Instruction *I = cast<Instruction>(V); 174 Instruction *Res = nullptr; 175 unsigned Opc = I->getOpcode(); 176 switch (Opc) { 177 case Instruction::Add: 178 case Instruction::Sub: 179 case Instruction::Mul: 180 case Instruction::And: 181 case Instruction::Or: 182 case Instruction::Xor: 183 case Instruction::AShr: 184 case Instruction::LShr: 185 case Instruction::Shl: 186 case Instruction::UDiv: 187 case Instruction::URem: { 188 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 189 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 190 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 191 break; 192 } 193 case Instruction::Trunc: 194 case Instruction::ZExt: 195 case Instruction::SExt: 196 // If the source type of the cast is the type we're trying for then we can 197 // just return the source. There's no need to insert it because it is not 198 // new. 199 if (I->getOperand(0)->getType() == Ty) 200 return I->getOperand(0); 201 202 // Otherwise, must be the same type of cast, so just reinsert a new one. 203 // This also handles the case of zext(trunc(x)) -> zext(x). 204 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 205 Opc == Instruction::SExt); 206 break; 207 case Instruction::Select: { 208 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 209 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 210 Res = SelectInst::Create(I->getOperand(0), True, False); 211 break; 212 } 213 case Instruction::PHI: { 214 PHINode *OPN = cast<PHINode>(I); 215 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 216 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 217 Value *V = 218 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 219 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 220 } 221 Res = NPN; 222 break; 223 } 224 default: 225 // TODO: Can handle more cases here. 226 llvm_unreachable("Unreachable!"); 227 } 228 229 Res->takeName(I); 230 return InsertNewInstWith(Res, *I); 231 } 232 233 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 234 const CastInst *CI2) { 235 Type *SrcTy = CI1->getSrcTy(); 236 Type *MidTy = CI1->getDestTy(); 237 Type *DstTy = CI2->getDestTy(); 238 239 Instruction::CastOps firstOp = CI1->getOpcode(); 240 Instruction::CastOps secondOp = CI2->getOpcode(); 241 Type *SrcIntPtrTy = 242 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 243 Type *MidIntPtrTy = 244 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 245 Type *DstIntPtrTy = 246 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 247 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 248 DstTy, SrcIntPtrTy, MidIntPtrTy, 249 DstIntPtrTy); 250 251 // We don't want to form an inttoptr or ptrtoint that converts to an integer 252 // type that differs from the pointer size. 253 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 254 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 255 Res = 0; 256 257 return Instruction::CastOps(Res); 258 } 259 260 /// Implement the transforms common to all CastInst visitors. 261 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 262 Value *Src = CI.getOperand(0); 263 264 // Try to eliminate a cast of a cast. 265 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 266 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 267 // The first cast (CSrc) is eliminable so we need to fix up or replace 268 // the second cast (CI). CSrc will then have a good chance of being dead. 269 auto *Ty = CI.getType(); 270 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); 271 // Point debug users of the dying cast to the new one. 272 if (CSrc->hasOneUse()) 273 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); 274 return Res; 275 } 276 } 277 278 if (auto *Sel = dyn_cast<SelectInst>(Src)) { 279 // We are casting a select. Try to fold the cast into the select, but only 280 // if the select does not have a compare instruction with matching operand 281 // types. Creating a select with operands that are different sizes than its 282 // condition may inhibit other folds and lead to worse codegen. 283 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); 284 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType()) 285 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { 286 replaceAllDbgUsesWith(*Sel, *NV, CI, DT); 287 return NV; 288 } 289 } 290 291 // If we are casting a PHI, then fold the cast into the PHI. 292 if (auto *PN = dyn_cast<PHINode>(Src)) { 293 // Don't do this if it would create a PHI node with an illegal type from a 294 // legal type. 295 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 296 shouldChangeType(CI.getType(), Src->getType())) 297 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 298 return NV; 299 } 300 301 return nullptr; 302 } 303 304 /// Constants and extensions/truncates from the destination type are always 305 /// free to be evaluated in that type. This is a helper for canEvaluate*. 306 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 307 if (isa<Constant>(V)) 308 return true; 309 Value *X; 310 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 311 X->getType() == Ty) 312 return true; 313 314 return false; 315 } 316 317 /// Filter out values that we can not evaluate in the destination type for free. 318 /// This is a helper for canEvaluate*. 319 static bool canNotEvaluateInType(Value *V, Type *Ty) { 320 assert(!isa<Constant>(V) && "Constant should already be handled."); 321 if (!isa<Instruction>(V)) 322 return true; 323 // We don't extend or shrink something that has multiple uses -- doing so 324 // would require duplicating the instruction which isn't profitable. 325 if (!V->hasOneUse()) 326 return true; 327 328 return false; 329 } 330 331 /// Return true if we can evaluate the specified expression tree as type Ty 332 /// instead of its larger type, and arrive with the same value. 333 /// This is used by code that tries to eliminate truncates. 334 /// 335 /// Ty will always be a type smaller than V. We should return true if trunc(V) 336 /// can be computed by computing V in the smaller type. If V is an instruction, 337 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 338 /// makes sense if x and y can be efficiently truncated. 339 /// 340 /// This function works on both vectors and scalars. 341 /// 342 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 343 Instruction *CxtI) { 344 if (canAlwaysEvaluateInType(V, Ty)) 345 return true; 346 if (canNotEvaluateInType(V, Ty)) 347 return false; 348 349 auto *I = cast<Instruction>(V); 350 Type *OrigTy = V->getType(); 351 switch (I->getOpcode()) { 352 case Instruction::Add: 353 case Instruction::Sub: 354 case Instruction::Mul: 355 case Instruction::And: 356 case Instruction::Or: 357 case Instruction::Xor: 358 // These operators can all arbitrarily be extended or truncated. 359 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 360 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 361 362 case Instruction::UDiv: 363 case Instruction::URem: { 364 // UDiv and URem can be truncated if all the truncated bits are zero. 365 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 366 uint32_t BitWidth = Ty->getScalarSizeInBits(); 367 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 368 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 369 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 370 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 371 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 372 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 373 } 374 break; 375 } 376 case Instruction::Shl: { 377 // If we are truncating the result of this SHL, and if it's a shift of a 378 // constant amount, we can always perform a SHL in a smaller type. 379 const APInt *Amt; 380 if (match(I->getOperand(1), m_APInt(Amt))) { 381 uint32_t BitWidth = Ty->getScalarSizeInBits(); 382 if (Amt->getLimitedValue(BitWidth) < BitWidth) 383 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 384 } 385 break; 386 } 387 case Instruction::LShr: { 388 // If this is a truncate of a logical shr, we can truncate it to a smaller 389 // lshr iff we know that the bits we would otherwise be shifting in are 390 // already zeros. 391 const APInt *Amt; 392 if (match(I->getOperand(1), m_APInt(Amt))) { 393 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 394 uint32_t BitWidth = Ty->getScalarSizeInBits(); 395 if (Amt->getLimitedValue(BitWidth) < BitWidth && 396 IC.MaskedValueIsZero(I->getOperand(0), 397 APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) { 398 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 399 } 400 } 401 break; 402 } 403 case Instruction::AShr: { 404 // If this is a truncate of an arithmetic shr, we can truncate it to a 405 // smaller ashr iff we know that all the bits from the sign bit of the 406 // original type and the sign bit of the truncate type are similar. 407 // TODO: It is enough to check that the bits we would be shifting in are 408 // similar to sign bit of the truncate type. 409 const APInt *Amt; 410 if (match(I->getOperand(1), m_APInt(Amt))) { 411 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 412 uint32_t BitWidth = Ty->getScalarSizeInBits(); 413 if (Amt->getLimitedValue(BitWidth) < BitWidth && 414 OrigBitWidth - BitWidth < 415 IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 416 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 417 } 418 break; 419 } 420 case Instruction::Trunc: 421 // trunc(trunc(x)) -> trunc(x) 422 return true; 423 case Instruction::ZExt: 424 case Instruction::SExt: 425 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 426 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 427 return true; 428 case Instruction::Select: { 429 SelectInst *SI = cast<SelectInst>(I); 430 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 431 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 432 } 433 case Instruction::PHI: { 434 // We can change a phi if we can change all operands. Note that we never 435 // get into trouble with cyclic PHIs here because we only consider 436 // instructions with a single use. 437 PHINode *PN = cast<PHINode>(I); 438 for (Value *IncValue : PN->incoming_values()) 439 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 440 return false; 441 return true; 442 } 443 default: 444 // TODO: Can handle more cases here. 445 break; 446 } 447 448 return false; 449 } 450 451 /// Given a vector that is bitcast to an integer, optionally logically 452 /// right-shifted, and truncated, convert it to an extractelement. 453 /// Example (big endian): 454 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 455 /// ---> 456 /// extractelement <4 x i32> %X, 1 457 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) { 458 Value *TruncOp = Trunc.getOperand(0); 459 Type *DestType = Trunc.getType(); 460 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 461 return nullptr; 462 463 Value *VecInput = nullptr; 464 ConstantInt *ShiftVal = nullptr; 465 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 466 m_LShr(m_BitCast(m_Value(VecInput)), 467 m_ConstantInt(ShiftVal)))) || 468 !isa<VectorType>(VecInput->getType())) 469 return nullptr; 470 471 VectorType *VecType = cast<VectorType>(VecInput->getType()); 472 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 473 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 474 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 475 476 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 477 return nullptr; 478 479 // If the element type of the vector doesn't match the result type, 480 // bitcast it to a vector type that we can extract from. 481 unsigned NumVecElts = VecWidth / DestWidth; 482 if (VecType->getElementType() != DestType) { 483 VecType = VectorType::get(DestType, NumVecElts); 484 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 485 } 486 487 unsigned Elt = ShiftAmount / DestWidth; 488 if (IC.getDataLayout().isBigEndian()) 489 Elt = NumVecElts - 1 - Elt; 490 491 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 492 } 493 494 /// Rotate left/right may occur in a wider type than necessary because of type 495 /// promotion rules. Try to narrow the inputs and convert to funnel shift. 496 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) { 497 assert((isa<VectorType>(Trunc.getSrcTy()) || 498 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 499 "Don't narrow to an illegal scalar type"); 500 501 // Bail out on strange types. It is possible to handle some of these patterns 502 // even with non-power-of-2 sizes, but it is not a likely scenario. 503 Type *DestTy = Trunc.getType(); 504 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 505 if (!isPowerOf2_32(NarrowWidth)) 506 return nullptr; 507 508 // First, find an or'd pair of opposite shifts with the same shifted operand: 509 // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)) 510 Value *Or0, *Or1; 511 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 512 return nullptr; 513 514 Value *ShVal, *ShAmt0, *ShAmt1; 515 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || 516 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) 517 return nullptr; 518 519 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 520 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 521 if (ShiftOpcode0 == ShiftOpcode1) 522 return nullptr; 523 524 // Match the shift amount operands for a rotate pattern. This always matches 525 // a subtraction on the R operand. 526 auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * { 527 // The shift amounts may add up to the narrow bit width: 528 // (shl ShVal, L) | (lshr ShVal, Width - L) 529 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) 530 return L; 531 532 // The shift amount may be masked with negation: 533 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1))) 534 Value *X; 535 unsigned Mask = Width - 1; 536 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 537 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 538 return X; 539 540 // Same as above, but the shift amount may be extended after masking: 541 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 542 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 543 return X; 544 545 return nullptr; 546 }; 547 548 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); 549 bool SubIsOnLHS = false; 550 if (!ShAmt) { 551 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); 552 SubIsOnLHS = true; 553 } 554 if (!ShAmt) 555 return nullptr; 556 557 // The shifted value must have high zeros in the wide type. Typically, this 558 // will be a zext, but it could also be the result of an 'and' or 'shift'. 559 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 560 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 561 if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc)) 562 return nullptr; 563 564 // We have an unnecessarily wide rotate! 565 // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt)) 566 // Narrow the inputs and convert to funnel shift intrinsic: 567 // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt)) 568 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 569 Value *X = Builder.CreateTrunc(ShVal, DestTy); 570 bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) || 571 (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl); 572 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 573 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy); 574 return IntrinsicInst::Create(F, { X, X, NarrowShAmt }); 575 } 576 577 /// Try to narrow the width of math or bitwise logic instructions by pulling a 578 /// truncate ahead of binary operators. 579 /// TODO: Transforms for truncated shifts should be moved into here. 580 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) { 581 Type *SrcTy = Trunc.getSrcTy(); 582 Type *DestTy = Trunc.getType(); 583 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 584 return nullptr; 585 586 BinaryOperator *BinOp; 587 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 588 return nullptr; 589 590 Value *BinOp0 = BinOp->getOperand(0); 591 Value *BinOp1 = BinOp->getOperand(1); 592 switch (BinOp->getOpcode()) { 593 case Instruction::And: 594 case Instruction::Or: 595 case Instruction::Xor: 596 case Instruction::Add: 597 case Instruction::Sub: 598 case Instruction::Mul: { 599 Constant *C; 600 if (match(BinOp0, m_Constant(C))) { 601 // trunc (binop C, X) --> binop (trunc C', X) 602 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 603 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 604 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 605 } 606 if (match(BinOp1, m_Constant(C))) { 607 // trunc (binop X, C) --> binop (trunc X, C') 608 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 609 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 610 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 611 } 612 Value *X; 613 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 614 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 615 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 616 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 617 } 618 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 619 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 620 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 621 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 622 } 623 break; 624 } 625 626 default: break; 627 } 628 629 if (Instruction *NarrowOr = narrowRotate(Trunc)) 630 return NarrowOr; 631 632 return nullptr; 633 } 634 635 /// Try to narrow the width of a splat shuffle. This could be generalized to any 636 /// shuffle with a constant operand, but we limit the transform to avoid 637 /// creating a shuffle type that targets may not be able to lower effectively. 638 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 639 InstCombiner::BuilderTy &Builder) { 640 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 641 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && 642 Shuf->getMask()->getSplatValue() && 643 Shuf->getType() == Shuf->getOperand(0)->getType()) { 644 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 645 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 646 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 647 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask()); 648 } 649 650 return nullptr; 651 } 652 653 /// Try to narrow the width of an insert element. This could be generalized for 654 /// any vector constant, but we limit the transform to insertion into undef to 655 /// avoid potential backend problems from unsupported insertion widths. This 656 /// could also be extended to handle the case of inserting a scalar constant 657 /// into a vector variable. 658 static Instruction *shrinkInsertElt(CastInst &Trunc, 659 InstCombiner::BuilderTy &Builder) { 660 Instruction::CastOps Opcode = Trunc.getOpcode(); 661 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 662 "Unexpected instruction for shrinking"); 663 664 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 665 if (!InsElt || !InsElt->hasOneUse()) 666 return nullptr; 667 668 Type *DestTy = Trunc.getType(); 669 Type *DestScalarTy = DestTy->getScalarType(); 670 Value *VecOp = InsElt->getOperand(0); 671 Value *ScalarOp = InsElt->getOperand(1); 672 Value *Index = InsElt->getOperand(2); 673 674 if (isa<UndefValue>(VecOp)) { 675 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 676 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 677 UndefValue *NarrowUndef = UndefValue::get(DestTy); 678 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 679 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 680 } 681 682 return nullptr; 683 } 684 685 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 686 if (Instruction *Result = commonCastTransforms(CI)) 687 return Result; 688 689 Value *Src = CI.getOperand(0); 690 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 691 692 // Attempt to truncate the entire input expression tree to the destination 693 // type. Only do this if the dest type is a simple type, don't convert the 694 // expression tree to something weird like i93 unless the source is also 695 // strange. 696 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 697 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 698 699 // If this cast is a truncate, evaluting in a different type always 700 // eliminates the cast, so it is always a win. 701 LLVM_DEBUG( 702 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 703 " to avoid cast: " 704 << CI << '\n'); 705 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 706 assert(Res->getType() == DestTy); 707 return replaceInstUsesWith(CI, Res); 708 } 709 710 // Test if the trunc is the user of a select which is part of a 711 // minimum or maximum operation. If so, don't do any more simplification. 712 // Even simplifying demanded bits can break the canonical form of a 713 // min/max. 714 Value *LHS, *RHS; 715 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 716 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 717 return nullptr; 718 719 // See if we can simplify any instructions used by the input whose sole 720 // purpose is to compute bits we don't care about. 721 if (SimplifyDemandedInstructionBits(CI)) 722 return &CI; 723 724 if (DestTy->getScalarSizeInBits() == 1) { 725 Value *Zero = Constant::getNullValue(Src->getType()); 726 if (DestTy->isIntegerTy()) { 727 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). 728 // TODO: We canonicalize to more instructions here because we are probably 729 // lacking equivalent analysis for trunc relative to icmp. There may also 730 // be codegen concerns. If those trunc limitations were removed, we could 731 // remove this transform. 732 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); 733 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 734 } 735 736 // For vectors, we do not canonicalize all truncs to icmp, so optimize 737 // patterns that would be covered within visitICmpInst. 738 Value *X; 739 const APInt *C; 740 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 741 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 742 APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C); 743 Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC)); 744 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 745 } 746 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_APInt(C)), 747 m_Deferred(X))))) { 748 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 749 APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C) | 1; 750 Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC)); 751 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 752 } 753 } 754 755 // FIXME: Maybe combine the next two transforms to handle the no cast case 756 // more efficiently. Support vector types. Cleanup code by using m_OneUse. 757 758 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 759 Value *A = nullptr; ConstantInt *Cst = nullptr; 760 if (Src->hasOneUse() && 761 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 762 // We have three types to worry about here, the type of A, the source of 763 // the truncate (MidSize), and the destination of the truncate. We know that 764 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 765 // between ASize and ResultSize. 766 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 767 768 // If the shift amount is larger than the size of A, then the result is 769 // known to be zero because all the input bits got shifted out. 770 if (Cst->getZExtValue() >= ASize) 771 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 772 773 // Since we're doing an lshr and a zero extend, and know that the shift 774 // amount is smaller than ASize, it is always safe to do the shift in A's 775 // type, then zero extend or truncate to the result. 776 Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue()); 777 Shift->takeName(Src); 778 return CastInst::CreateIntegerCast(Shift, DestTy, false); 779 } 780 781 // FIXME: We should canonicalize to zext/trunc and remove this transform. 782 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 783 // conversion. 784 // It works because bits coming from sign extension have the same value as 785 // the sign bit of the original value; performing ashr instead of lshr 786 // generates bits of the same value as the sign bit. 787 if (Src->hasOneUse() && 788 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) { 789 Value *SExt = cast<Instruction>(Src)->getOperand(0); 790 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits(); 791 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 792 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits(); 793 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize); 794 unsigned ShiftAmt = Cst->getZExtValue(); 795 796 // This optimization can be only performed when zero bits generated by 797 // the original lshr aren't pulled into the value after truncation, so we 798 // can only shift by values no larger than the number of extension bits. 799 // FIXME: Instead of bailing when the shift is too large, use and to clear 800 // the extra bits. 801 if (ShiftAmt <= MaxAmt) { 802 if (CISize == ASize) 803 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(), 804 std::min(ShiftAmt, ASize - 1))); 805 if (SExt->hasOneUse()) { 806 Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1)); 807 Shift->takeName(Src); 808 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 809 } 810 } 811 } 812 813 if (Instruction *I = narrowBinOp(CI)) 814 return I; 815 816 if (Instruction *I = shrinkSplatShuffle(CI, Builder)) 817 return I; 818 819 if (Instruction *I = shrinkInsertElt(CI, Builder)) 820 return I; 821 822 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 823 shouldChangeType(SrcTy, DestTy)) { 824 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 825 // dest type is native and cst < dest size. 826 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 827 !match(A, m_Shr(m_Value(), m_Constant()))) { 828 // Skip shifts of shift by constants. It undoes a combine in 829 // FoldShiftByConstant and is the extend in reg pattern. 830 const unsigned DestSize = DestTy->getScalarSizeInBits(); 831 if (Cst->getValue().ult(DestSize)) { 832 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 833 834 return BinaryOperator::Create( 835 Instruction::Shl, NewTrunc, 836 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 837 } 838 } 839 } 840 841 if (Instruction *I = foldVecTruncToExtElt(CI, *this)) 842 return I; 843 844 return nullptr; 845 } 846 847 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, 848 bool DoTransform) { 849 // If we are just checking for a icmp eq of a single bit and zext'ing it 850 // to an integer, then shift the bit to the appropriate place and then 851 // cast to integer to avoid the comparison. 852 const APInt *Op1CV; 853 if (match(ICI->getOperand(1), m_APInt(Op1CV))) { 854 855 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 856 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 857 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) || 858 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) { 859 if (!DoTransform) return ICI; 860 861 Value *In = ICI->getOperand(0); 862 Value *Sh = ConstantInt::get(In->getType(), 863 In->getType()->getScalarSizeInBits() - 1); 864 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 865 if (In->getType() != CI.getType()) 866 In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/); 867 868 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 869 Constant *One = ConstantInt::get(In->getType(), 1); 870 In = Builder.CreateXor(In, One, In->getName() + ".not"); 871 } 872 873 return replaceInstUsesWith(CI, In); 874 } 875 876 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 877 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 878 // zext (X == 1) to i32 --> X iff X has only the low bit set. 879 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 880 // zext (X != 0) to i32 --> X iff X has only the low bit set. 881 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 882 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 883 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 884 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) && 885 // This only works for EQ and NE 886 ICI->isEquality()) { 887 // If Op1C some other power of two, convert: 888 KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI); 889 890 APInt KnownZeroMask(~Known.Zero); 891 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 892 if (!DoTransform) return ICI; 893 894 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 895 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) { 896 // (X&4) == 2 --> false 897 // (X&4) != 2 --> true 898 Constant *Res = ConstantInt::get(CI.getType(), isNE); 899 return replaceInstUsesWith(CI, Res); 900 } 901 902 uint32_t ShAmt = KnownZeroMask.logBase2(); 903 Value *In = ICI->getOperand(0); 904 if (ShAmt) { 905 // Perform a logical shr by shiftamt. 906 // Insert the shift to put the result in the low bit. 907 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 908 In->getName() + ".lobit"); 909 } 910 911 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit. 912 Constant *One = ConstantInt::get(In->getType(), 1); 913 In = Builder.CreateXor(In, One); 914 } 915 916 if (CI.getType() == In->getType()) 917 return replaceInstUsesWith(CI, In); 918 919 Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false); 920 return replaceInstUsesWith(CI, IntCast); 921 } 922 } 923 } 924 925 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 926 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 927 // may lead to additional simplifications. 928 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 929 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 930 Value *LHS = ICI->getOperand(0); 931 Value *RHS = ICI->getOperand(1); 932 933 KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI); 934 KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI); 935 936 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 937 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 938 APInt UnknownBit = ~KnownBits; 939 if (UnknownBit.countPopulation() == 1) { 940 if (!DoTransform) return ICI; 941 942 Value *Result = Builder.CreateXor(LHS, RHS); 943 944 // Mask off any bits that are set and won't be shifted away. 945 if (KnownLHS.One.uge(UnknownBit)) 946 Result = Builder.CreateAnd(Result, 947 ConstantInt::get(ITy, UnknownBit)); 948 949 // Shift the bit we're testing down to the lsb. 950 Result = Builder.CreateLShr( 951 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 952 953 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 954 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 955 Result->takeName(ICI); 956 return replaceInstUsesWith(CI, Result); 957 } 958 } 959 } 960 } 961 962 return nullptr; 963 } 964 965 /// Determine if the specified value can be computed in the specified wider type 966 /// and produce the same low bits. If not, return false. 967 /// 968 /// If this function returns true, it can also return a non-zero number of bits 969 /// (in BitsToClear) which indicates that the value it computes is correct for 970 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 971 /// out. For example, to promote something like: 972 /// 973 /// %B = trunc i64 %A to i32 974 /// %C = lshr i32 %B, 8 975 /// %E = zext i32 %C to i64 976 /// 977 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 978 /// set to 8 to indicate that the promoted value needs to have bits 24-31 979 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 980 /// clear the top bits anyway, doing this has no extra cost. 981 /// 982 /// This function works on both vectors and scalars. 983 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 984 InstCombiner &IC, Instruction *CxtI) { 985 BitsToClear = 0; 986 if (canAlwaysEvaluateInType(V, Ty)) 987 return true; 988 if (canNotEvaluateInType(V, Ty)) 989 return false; 990 991 auto *I = cast<Instruction>(V); 992 unsigned Tmp; 993 switch (I->getOpcode()) { 994 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 995 case Instruction::SExt: // zext(sext(x)) -> sext(x). 996 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 997 return true; 998 case Instruction::And: 999 case Instruction::Or: 1000 case Instruction::Xor: 1001 case Instruction::Add: 1002 case Instruction::Sub: 1003 case Instruction::Mul: 1004 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 1005 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 1006 return false; 1007 // These can all be promoted if neither operand has 'bits to clear'. 1008 if (BitsToClear == 0 && Tmp == 0) 1009 return true; 1010 1011 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 1012 // other side, BitsToClear is ok. 1013 if (Tmp == 0 && I->isBitwiseLogicOp()) { 1014 // We use MaskedValueIsZero here for generality, but the case we care 1015 // about the most is constant RHS. 1016 unsigned VSize = V->getType()->getScalarSizeInBits(); 1017 if (IC.MaskedValueIsZero(I->getOperand(1), 1018 APInt::getHighBitsSet(VSize, BitsToClear), 1019 0, CxtI)) { 1020 // If this is an And instruction and all of the BitsToClear are 1021 // known to be zero we can reset BitsToClear. 1022 if (I->getOpcode() == Instruction::And) 1023 BitsToClear = 0; 1024 return true; 1025 } 1026 } 1027 1028 // Otherwise, we don't know how to analyze this BitsToClear case yet. 1029 return false; 1030 1031 case Instruction::Shl: { 1032 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1033 // upper bits we can reduce BitsToClear by the shift amount. 1034 const APInt *Amt; 1035 if (match(I->getOperand(1), m_APInt(Amt))) { 1036 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1037 return false; 1038 uint64_t ShiftAmt = Amt->getZExtValue(); 1039 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1040 return true; 1041 } 1042 return false; 1043 } 1044 case Instruction::LShr: { 1045 // We can promote lshr(x, cst) if we can promote x. This requires the 1046 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1047 const APInt *Amt; 1048 if (match(I->getOperand(1), m_APInt(Amt))) { 1049 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1050 return false; 1051 BitsToClear += Amt->getZExtValue(); 1052 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1053 BitsToClear = V->getType()->getScalarSizeInBits(); 1054 return true; 1055 } 1056 // Cannot promote variable LSHR. 1057 return false; 1058 } 1059 case Instruction::Select: 1060 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1061 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1062 // TODO: If important, we could handle the case when the BitsToClear are 1063 // known zero in the disagreeing side. 1064 Tmp != BitsToClear) 1065 return false; 1066 return true; 1067 1068 case Instruction::PHI: { 1069 // We can change a phi if we can change all operands. Note that we never 1070 // get into trouble with cyclic PHIs here because we only consider 1071 // instructions with a single use. 1072 PHINode *PN = cast<PHINode>(I); 1073 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1074 return false; 1075 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1076 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1077 // TODO: If important, we could handle the case when the BitsToClear 1078 // are known zero in the disagreeing input. 1079 Tmp != BitsToClear) 1080 return false; 1081 return true; 1082 } 1083 default: 1084 // TODO: Can handle more cases here. 1085 return false; 1086 } 1087 } 1088 1089 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 1090 // If this zero extend is only used by a truncate, let the truncate be 1091 // eliminated before we try to optimize this zext. 1092 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1093 return nullptr; 1094 1095 // If one of the common conversion will work, do it. 1096 if (Instruction *Result = commonCastTransforms(CI)) 1097 return Result; 1098 1099 Value *Src = CI.getOperand(0); 1100 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1101 1102 // Try to extend the entire expression tree to the wide destination type. 1103 unsigned BitsToClear; 1104 if (shouldChangeType(SrcTy, DestTy) && 1105 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1106 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1107 "Can't clear more bits than in SrcTy"); 1108 1109 // Okay, we can transform this! Insert the new expression now. 1110 LLVM_DEBUG( 1111 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1112 " to avoid zero extend: " 1113 << CI << '\n'); 1114 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1115 assert(Res->getType() == DestTy); 1116 1117 // Preserve debug values referring to Src if the zext is its last use. 1118 if (auto *SrcOp = dyn_cast<Instruction>(Src)) 1119 if (SrcOp->hasOneUse()) 1120 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT); 1121 1122 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1123 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1124 1125 // If the high bits are already filled with zeros, just replace this 1126 // cast with the result. 1127 if (MaskedValueIsZero(Res, 1128 APInt::getHighBitsSet(DestBitSize, 1129 DestBitSize-SrcBitsKept), 1130 0, &CI)) 1131 return replaceInstUsesWith(CI, Res); 1132 1133 // We need to emit an AND to clear the high bits. 1134 Constant *C = ConstantInt::get(Res->getType(), 1135 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1136 return BinaryOperator::CreateAnd(Res, C); 1137 } 1138 1139 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1140 // types and if the sizes are just right we can convert this into a logical 1141 // 'and' which will be much cheaper than the pair of casts. 1142 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1143 // TODO: Subsume this into EvaluateInDifferentType. 1144 1145 // Get the sizes of the types involved. We know that the intermediate type 1146 // will be smaller than A or C, but don't know the relation between A and C. 1147 Value *A = CSrc->getOperand(0); 1148 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1149 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1150 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1151 // If we're actually extending zero bits, then if 1152 // SrcSize < DstSize: zext(a & mask) 1153 // SrcSize == DstSize: a & mask 1154 // SrcSize > DstSize: trunc(a) & mask 1155 if (SrcSize < DstSize) { 1156 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1157 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1158 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1159 return new ZExtInst(And, CI.getType()); 1160 } 1161 1162 if (SrcSize == DstSize) { 1163 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1164 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1165 AndValue)); 1166 } 1167 if (SrcSize > DstSize) { 1168 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1169 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1170 return BinaryOperator::CreateAnd(Trunc, 1171 ConstantInt::get(Trunc->getType(), 1172 AndValue)); 1173 } 1174 } 1175 1176 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1177 return transformZExtICmp(ICI, CI); 1178 1179 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 1180 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 1181 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 1182 // of the (zext icmp) can be eliminated. If so, immediately perform the 1183 // according elimination. 1184 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 1185 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 1186 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 1187 (transformZExtICmp(LHS, CI, false) || 1188 transformZExtICmp(RHS, CI, false))) { 1189 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 1190 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); 1191 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); 1192 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); 1193 1194 // Perform the elimination. 1195 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1196 transformZExtICmp(LHS, *LZExt); 1197 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1198 transformZExtICmp(RHS, *RZExt); 1199 1200 return Or; 1201 } 1202 } 1203 1204 // zext(trunc(X) & C) -> (X & zext(C)). 1205 Constant *C; 1206 Value *X; 1207 if (SrcI && 1208 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1209 X->getType() == CI.getType()) 1210 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1211 1212 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1213 Value *And; 1214 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1215 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1216 X->getType() == CI.getType()) { 1217 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1218 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1219 } 1220 1221 return nullptr; 1222 } 1223 1224 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1225 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 1226 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1227 ICmpInst::Predicate Pred = ICI->getPredicate(); 1228 1229 // Don't bother if Op1 isn't of vector or integer type. 1230 if (!Op1->getType()->isIntOrIntVectorTy()) 1231 return nullptr; 1232 1233 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) || 1234 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) { 1235 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1236 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1237 Value *Sh = ConstantInt::get(Op0->getType(), 1238 Op0->getType()->getScalarSizeInBits() - 1); 1239 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1240 if (In->getType() != CI.getType()) 1241 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1242 1243 if (Pred == ICmpInst::ICMP_SGT) 1244 In = Builder.CreateNot(In, In->getName() + ".not"); 1245 return replaceInstUsesWith(CI, In); 1246 } 1247 1248 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1249 // If we know that only one bit of the LHS of the icmp can be set and we 1250 // have an equality comparison with zero or a power of 2, we can transform 1251 // the icmp and sext into bitwise/integer operations. 1252 if (ICI->hasOneUse() && 1253 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1254 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1255 1256 APInt KnownZeroMask(~Known.Zero); 1257 if (KnownZeroMask.isPowerOf2()) { 1258 Value *In = ICI->getOperand(0); 1259 1260 // If the icmp tests for a known zero bit we can constant fold it. 1261 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1262 Value *V = Pred == ICmpInst::ICMP_NE ? 1263 ConstantInt::getAllOnesValue(CI.getType()) : 1264 ConstantInt::getNullValue(CI.getType()); 1265 return replaceInstUsesWith(CI, V); 1266 } 1267 1268 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1269 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1270 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1271 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1272 // Perform a right shift to place the desired bit in the LSB. 1273 if (ShiftAmt) 1274 In = Builder.CreateLShr(In, 1275 ConstantInt::get(In->getType(), ShiftAmt)); 1276 1277 // At this point "In" is either 1 or 0. Subtract 1 to turn 1278 // {1, 0} -> {0, -1}. 1279 In = Builder.CreateAdd(In, 1280 ConstantInt::getAllOnesValue(In->getType()), 1281 "sext"); 1282 } else { 1283 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1284 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1285 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1286 // Perform a left shift to place the desired bit in the MSB. 1287 if (ShiftAmt) 1288 In = Builder.CreateShl(In, 1289 ConstantInt::get(In->getType(), ShiftAmt)); 1290 1291 // Distribute the bit over the whole bit width. 1292 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1293 KnownZeroMask.getBitWidth() - 1), "sext"); 1294 } 1295 1296 if (CI.getType() == In->getType()) 1297 return replaceInstUsesWith(CI, In); 1298 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1299 } 1300 } 1301 } 1302 1303 return nullptr; 1304 } 1305 1306 /// Return true if we can take the specified value and return it as type Ty 1307 /// without inserting any new casts and without changing the value of the common 1308 /// low bits. This is used by code that tries to promote integer operations to 1309 /// a wider types will allow us to eliminate the extension. 1310 /// 1311 /// This function works on both vectors and scalars. 1312 /// 1313 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1314 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1315 "Can't sign extend type to a smaller type"); 1316 if (canAlwaysEvaluateInType(V, Ty)) 1317 return true; 1318 if (canNotEvaluateInType(V, Ty)) 1319 return false; 1320 1321 auto *I = cast<Instruction>(V); 1322 switch (I->getOpcode()) { 1323 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1324 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1325 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1326 return true; 1327 case Instruction::And: 1328 case Instruction::Or: 1329 case Instruction::Xor: 1330 case Instruction::Add: 1331 case Instruction::Sub: 1332 case Instruction::Mul: 1333 // These operators can all arbitrarily be extended if their inputs can. 1334 return canEvaluateSExtd(I->getOperand(0), Ty) && 1335 canEvaluateSExtd(I->getOperand(1), Ty); 1336 1337 //case Instruction::Shl: TODO 1338 //case Instruction::LShr: TODO 1339 1340 case Instruction::Select: 1341 return canEvaluateSExtd(I->getOperand(1), Ty) && 1342 canEvaluateSExtd(I->getOperand(2), Ty); 1343 1344 case Instruction::PHI: { 1345 // We can change a phi if we can change all operands. Note that we never 1346 // get into trouble with cyclic PHIs here because we only consider 1347 // instructions with a single use. 1348 PHINode *PN = cast<PHINode>(I); 1349 for (Value *IncValue : PN->incoming_values()) 1350 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1351 return true; 1352 } 1353 default: 1354 // TODO: Can handle more cases here. 1355 break; 1356 } 1357 1358 return false; 1359 } 1360 1361 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1362 // If this sign extend is only used by a truncate, let the truncate be 1363 // eliminated before we try to optimize this sext. 1364 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1365 return nullptr; 1366 1367 if (Instruction *I = commonCastTransforms(CI)) 1368 return I; 1369 1370 Value *Src = CI.getOperand(0); 1371 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1372 1373 // If we know that the value being extended is positive, we can use a zext 1374 // instead. 1375 KnownBits Known = computeKnownBits(Src, 0, &CI); 1376 if (Known.isNonNegative()) { 1377 Value *ZExt = Builder.CreateZExt(Src, DestTy); 1378 return replaceInstUsesWith(CI, ZExt); 1379 } 1380 1381 // Try to extend the entire expression tree to the wide destination type. 1382 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { 1383 // Okay, we can transform this! Insert the new expression now. 1384 LLVM_DEBUG( 1385 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1386 " to avoid sign extend: " 1387 << CI << '\n'); 1388 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1389 assert(Res->getType() == DestTy); 1390 1391 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1392 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1393 1394 // If the high bits are already filled with sign bit, just replace this 1395 // cast with the result. 1396 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1397 return replaceInstUsesWith(CI, Res); 1398 1399 // We need to emit a shl + ashr to do the sign extend. 1400 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1401 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1402 ShAmt); 1403 } 1404 1405 // If the input is a trunc from the destination type, then turn sext(trunc(x)) 1406 // into shifts. 1407 Value *X; 1408 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { 1409 // sext(trunc(X)) --> ashr(shl(X, C), C) 1410 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1411 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1412 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1413 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1414 } 1415 1416 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1417 return transformSExtICmp(ICI, CI); 1418 1419 // If the input is a shl/ashr pair of a same constant, then this is a sign 1420 // extension from a smaller value. If we could trust arbitrary bitwidth 1421 // integers, we could turn this into a truncate to the smaller bit and then 1422 // use a sext for the whole extension. Since we don't, look deeper and check 1423 // for a truncate. If the source and dest are the same type, eliminate the 1424 // trunc and extend and just do shifts. For example, turn: 1425 // %a = trunc i32 %i to i8 1426 // %b = shl i8 %a, 6 1427 // %c = ashr i8 %b, 6 1428 // %d = sext i8 %c to i32 1429 // into: 1430 // %a = shl i32 %i, 30 1431 // %d = ashr i32 %a, 30 1432 Value *A = nullptr; 1433 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1434 ConstantInt *BA = nullptr, *CA = nullptr; 1435 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1436 m_ConstantInt(CA))) && 1437 BA == CA && A->getType() == CI.getType()) { 1438 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1439 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1440 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1441 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1442 A = Builder.CreateShl(A, ShAmtV, CI.getName()); 1443 return BinaryOperator::CreateAShr(A, ShAmtV); 1444 } 1445 1446 return nullptr; 1447 } 1448 1449 1450 /// Return a Constant* for the specified floating-point constant if it fits 1451 /// in the specified FP type without changing its value. 1452 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1453 bool losesInfo; 1454 APFloat F = CFP->getValueAPF(); 1455 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1456 return !losesInfo; 1457 } 1458 1459 static Type *shrinkFPConstant(ConstantFP *CFP) { 1460 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1461 return nullptr; // No constant folding of this. 1462 // See if the value can be truncated to half and then reextended. 1463 if (fitsInFPType(CFP, APFloat::IEEEhalf())) 1464 return Type::getHalfTy(CFP->getContext()); 1465 // See if the value can be truncated to float and then reextended. 1466 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1467 return Type::getFloatTy(CFP->getContext()); 1468 if (CFP->getType()->isDoubleTy()) 1469 return nullptr; // Won't shrink. 1470 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1471 return Type::getDoubleTy(CFP->getContext()); 1472 // Don't try to shrink to various long double types. 1473 return nullptr; 1474 } 1475 1476 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1477 // type we can safely truncate all elements to. 1478 // TODO: Make these support undef elements. 1479 static Type *shrinkFPConstantVector(Value *V) { 1480 auto *CV = dyn_cast<Constant>(V); 1481 if (!CV || !CV->getType()->isVectorTy()) 1482 return nullptr; 1483 1484 Type *MinType = nullptr; 1485 1486 unsigned NumElts = CV->getType()->getVectorNumElements(); 1487 for (unsigned i = 0; i != NumElts; ++i) { 1488 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1489 if (!CFP) 1490 return nullptr; 1491 1492 Type *T = shrinkFPConstant(CFP); 1493 if (!T) 1494 return nullptr; 1495 1496 // If we haven't found a type yet or this type has a larger mantissa than 1497 // our previous type, this is our new minimal type. 1498 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1499 MinType = T; 1500 } 1501 1502 // Make a vector type from the minimal type. 1503 return VectorType::get(MinType, NumElts); 1504 } 1505 1506 /// Find the minimum FP type we can safely truncate to. 1507 static Type *getMinimumFPType(Value *V) { 1508 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1509 return FPExt->getOperand(0)->getType(); 1510 1511 // If this value is a constant, return the constant in the smallest FP type 1512 // that can accurately represent it. This allows us to turn 1513 // (float)((double)X+2.0) into x+2.0f. 1514 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1515 if (Type *T = shrinkFPConstant(CFP)) 1516 return T; 1517 1518 // Try to shrink a vector of FP constants. 1519 if (Type *T = shrinkFPConstantVector(V)) 1520 return T; 1521 1522 return V->getType(); 1523 } 1524 1525 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) { 1526 if (Instruction *I = commonCastTransforms(FPT)) 1527 return I; 1528 1529 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1530 // simplify this expression to avoid one or more of the trunc/extend 1531 // operations if we can do so without changing the numerical results. 1532 // 1533 // The exact manner in which the widths of the operands interact to limit 1534 // what we can and cannot do safely varies from operation to operation, and 1535 // is explained below in the various case statements. 1536 Type *Ty = FPT.getType(); 1537 BinaryOperator *OpI = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1538 if (OpI && OpI->hasOneUse()) { 1539 Type *LHSMinType = getMinimumFPType(OpI->getOperand(0)); 1540 Type *RHSMinType = getMinimumFPType(OpI->getOperand(1)); 1541 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1542 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1543 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1544 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1545 unsigned DstWidth = Ty->getFPMantissaWidth(); 1546 switch (OpI->getOpcode()) { 1547 default: break; 1548 case Instruction::FAdd: 1549 case Instruction::FSub: 1550 // For addition and subtraction, the infinitely precise result can 1551 // essentially be arbitrarily wide; proving that double rounding 1552 // will not occur because the result of OpI is exact (as we will for 1553 // FMul, for example) is hopeless. However, we *can* nonetheless 1554 // frequently know that double rounding cannot occur (or that it is 1555 // innocuous) by taking advantage of the specific structure of 1556 // infinitely-precise results that admit double rounding. 1557 // 1558 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1559 // to represent both sources, we can guarantee that the double 1560 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1561 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1562 // for proof of this fact). 1563 // 1564 // Note: Figueroa does not consider the case where DstFormat != 1565 // SrcFormat. It's possible (likely even!) that this analysis 1566 // could be tightened for those cases, but they are rare (the main 1567 // case of interest here is (float)((double)float + float)). 1568 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1569 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); 1570 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); 1571 Instruction *RI = BinaryOperator::Create(OpI->getOpcode(), LHS, RHS); 1572 RI->copyFastMathFlags(OpI); 1573 return RI; 1574 } 1575 break; 1576 case Instruction::FMul: 1577 // For multiplication, the infinitely precise result has at most 1578 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1579 // that such a value can be exactly represented, then no double 1580 // rounding can possibly occur; we can safely perform the operation 1581 // in the destination format if it can represent both sources. 1582 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1583 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); 1584 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); 1585 return BinaryOperator::CreateFMulFMF(LHS, RHS, OpI); 1586 } 1587 break; 1588 case Instruction::FDiv: 1589 // For division, we use again use the bound from Figueroa's 1590 // dissertation. I am entirely certain that this bound can be 1591 // tightened in the unbalanced operand case by an analysis based on 1592 // the diophantine rational approximation bound, but the well-known 1593 // condition used here is a good conservative first pass. 1594 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1595 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1596 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); 1597 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); 1598 return BinaryOperator::CreateFDivFMF(LHS, RHS, OpI); 1599 } 1600 break; 1601 case Instruction::FRem: { 1602 // Remainder is straightforward. Remainder is always exact, so the 1603 // type of OpI doesn't enter into things at all. We simply evaluate 1604 // in whichever source type is larger, then convert to the 1605 // destination type. 1606 if (SrcWidth == OpWidth) 1607 break; 1608 Value *LHS, *RHS; 1609 if (LHSWidth == SrcWidth) { 1610 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), LHSMinType); 1611 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), LHSMinType); 1612 } else { 1613 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), RHSMinType); 1614 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), RHSMinType); 1615 } 1616 1617 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, OpI); 1618 return CastInst::CreateFPCast(ExactResult, Ty); 1619 } 1620 } 1621 1622 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1623 Value *X; 1624 if (match(OpI, m_FNeg(m_Value(X)))) { 1625 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); 1626 return BinaryOperator::CreateFNegFMF(InnerTrunc, OpI); 1627 } 1628 } 1629 1630 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1631 switch (II->getIntrinsicID()) { 1632 default: break; 1633 case Intrinsic::ceil: 1634 case Intrinsic::fabs: 1635 case Intrinsic::floor: 1636 case Intrinsic::nearbyint: 1637 case Intrinsic::rint: 1638 case Intrinsic::round: 1639 case Intrinsic::trunc: { 1640 Value *Src = II->getArgOperand(0); 1641 if (!Src->hasOneUse()) 1642 break; 1643 1644 // Except for fabs, this transformation requires the input of the unary FP 1645 // operation to be itself an fpext from the type to which we're 1646 // truncating. 1647 if (II->getIntrinsicID() != Intrinsic::fabs) { 1648 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1649 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1650 break; 1651 } 1652 1653 // Do unary FP operation on smaller type. 1654 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1655 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1656 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1657 II->getIntrinsicID(), Ty); 1658 SmallVector<OperandBundleDef, 1> OpBundles; 1659 II->getOperandBundlesAsDefs(OpBundles); 1660 CallInst *NewCI = CallInst::Create(Overload, { InnerTrunc }, OpBundles, 1661 II->getName()); 1662 NewCI->copyFastMathFlags(II); 1663 return NewCI; 1664 } 1665 } 1666 } 1667 1668 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1669 return I; 1670 1671 return nullptr; 1672 } 1673 1674 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1675 return commonCastTransforms(CI); 1676 } 1677 1678 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1679 // This is safe if the intermediate type has enough bits in its mantissa to 1680 // accurately represent all values of X. For example, this won't work with 1681 // i64 -> float -> i64. 1682 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1683 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1684 return nullptr; 1685 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1686 1687 Value *SrcI = OpI->getOperand(0); 1688 Type *FITy = FI.getType(); 1689 Type *OpITy = OpI->getType(); 1690 Type *SrcTy = SrcI->getType(); 1691 bool IsInputSigned = isa<SIToFPInst>(OpI); 1692 bool IsOutputSigned = isa<FPToSIInst>(FI); 1693 1694 // We can safely assume the conversion won't overflow the output range, 1695 // because (for example) (uint8_t)18293.f is undefined behavior. 1696 1697 // Since we can assume the conversion won't overflow, our decision as to 1698 // whether the input will fit in the float should depend on the minimum 1699 // of the input range and output range. 1700 1701 // This means this is also safe for a signed input and unsigned output, since 1702 // a negative input would lead to undefined behavior. 1703 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1704 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1705 int ActualSize = std::min(InputSize, OutputSize); 1706 1707 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1708 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1709 if (IsInputSigned && IsOutputSigned) 1710 return new SExtInst(SrcI, FITy); 1711 return new ZExtInst(SrcI, FITy); 1712 } 1713 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1714 return new TruncInst(SrcI, FITy); 1715 if (SrcTy == FITy) 1716 return replaceInstUsesWith(FI, SrcI); 1717 return new BitCastInst(SrcI, FITy); 1718 } 1719 return nullptr; 1720 } 1721 1722 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1723 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1724 if (!OpI) 1725 return commonCastTransforms(FI); 1726 1727 if (Instruction *I = FoldItoFPtoI(FI)) 1728 return I; 1729 1730 return commonCastTransforms(FI); 1731 } 1732 1733 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1734 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1735 if (!OpI) 1736 return commonCastTransforms(FI); 1737 1738 if (Instruction *I = FoldItoFPtoI(FI)) 1739 return I; 1740 1741 return commonCastTransforms(FI); 1742 } 1743 1744 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1745 return commonCastTransforms(CI); 1746 } 1747 1748 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1749 return commonCastTransforms(CI); 1750 } 1751 1752 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1753 // If the source integer type is not the intptr_t type for this target, do a 1754 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1755 // cast to be exposed to other transforms. 1756 unsigned AS = CI.getAddressSpace(); 1757 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1758 DL.getPointerSizeInBits(AS)) { 1759 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1760 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1761 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1762 1763 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 1764 return new IntToPtrInst(P, CI.getType()); 1765 } 1766 1767 if (Instruction *I = commonCastTransforms(CI)) 1768 return I; 1769 1770 return nullptr; 1771 } 1772 1773 /// Implement the transforms for cast of pointer (bitcast/ptrtoint) 1774 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1775 Value *Src = CI.getOperand(0); 1776 1777 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1778 // If casting the result of a getelementptr instruction with no offset, turn 1779 // this into a cast of the original pointer! 1780 if (GEP->hasAllZeroIndices() && 1781 // If CI is an addrspacecast and GEP changes the poiner type, merging 1782 // GEP into CI would undo canonicalizing addrspacecast with different 1783 // pointer types, causing infinite loops. 1784 (!isa<AddrSpaceCastInst>(CI) || 1785 GEP->getType() == GEP->getPointerOperandType())) { 1786 // Changing the cast operand is usually not a good idea but it is safe 1787 // here because the pointer operand is being replaced with another 1788 // pointer operand so the opcode doesn't need to change. 1789 Worklist.Add(GEP); 1790 CI.setOperand(0, GEP->getOperand(0)); 1791 return &CI; 1792 } 1793 } 1794 1795 return commonCastTransforms(CI); 1796 } 1797 1798 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1799 // If the destination integer type is not the intptr_t type for this target, 1800 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1801 // to be exposed to other transforms. 1802 1803 Type *Ty = CI.getType(); 1804 unsigned AS = CI.getPointerAddressSpace(); 1805 1806 if (Ty->getScalarSizeInBits() == DL.getIndexSizeInBits(AS)) 1807 return commonPointerCastTransforms(CI); 1808 1809 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1810 if (Ty->isVectorTy()) // Handle vectors of pointers. 1811 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1812 1813 Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy); 1814 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1815 } 1816 1817 /// This input value (which is known to have vector type) is being zero extended 1818 /// or truncated to the specified vector type. 1819 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1820 /// 1821 /// The source and destination vector types may have different element types. 1822 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1823 InstCombiner &IC) { 1824 // We can only do this optimization if the output is a multiple of the input 1825 // element size, or the input is a multiple of the output element size. 1826 // Convert the input type to have the same element type as the output. 1827 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1828 1829 if (SrcTy->getElementType() != DestTy->getElementType()) { 1830 // The input types don't need to be identical, but for now they must be the 1831 // same size. There is no specific reason we couldn't handle things like 1832 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1833 // there yet. 1834 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1835 DestTy->getElementType()->getPrimitiveSizeInBits()) 1836 return nullptr; 1837 1838 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1839 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 1840 } 1841 1842 // Now that the element types match, get the shuffle mask and RHS of the 1843 // shuffle to use, which depends on whether we're increasing or decreasing the 1844 // size of the input. 1845 SmallVector<uint32_t, 16> ShuffleMask; 1846 Value *V2; 1847 1848 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1849 // If we're shrinking the number of elements, just shuffle in the low 1850 // elements from the input and use undef as the second shuffle input. 1851 V2 = UndefValue::get(SrcTy); 1852 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1853 ShuffleMask.push_back(i); 1854 1855 } else { 1856 // If we're increasing the number of elements, shuffle in all of the 1857 // elements from InVal and fill the rest of the result elements with zeros 1858 // from a constant zero. 1859 V2 = Constant::getNullValue(SrcTy); 1860 unsigned SrcElts = SrcTy->getNumElements(); 1861 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1862 ShuffleMask.push_back(i); 1863 1864 // The excess elements reference the first element of the zero input. 1865 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1866 ShuffleMask.push_back(SrcElts); 1867 } 1868 1869 return new ShuffleVectorInst(InVal, V2, 1870 ConstantDataVector::get(V2->getContext(), 1871 ShuffleMask)); 1872 } 1873 1874 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1875 return Value % Ty->getPrimitiveSizeInBits() == 0; 1876 } 1877 1878 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1879 return Value / Ty->getPrimitiveSizeInBits(); 1880 } 1881 1882 /// V is a value which is inserted into a vector of VecEltTy. 1883 /// Look through the value to see if we can decompose it into 1884 /// insertions into the vector. See the example in the comment for 1885 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1886 /// The type of V is always a non-zero multiple of VecEltTy's size. 1887 /// Shift is the number of bits between the lsb of V and the lsb of 1888 /// the vector. 1889 /// 1890 /// This returns false if the pattern can't be matched or true if it can, 1891 /// filling in Elements with the elements found here. 1892 static bool collectInsertionElements(Value *V, unsigned Shift, 1893 SmallVectorImpl<Value *> &Elements, 1894 Type *VecEltTy, bool isBigEndian) { 1895 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1896 "Shift should be a multiple of the element type size"); 1897 1898 // Undef values never contribute useful bits to the result. 1899 if (isa<UndefValue>(V)) return true; 1900 1901 // If we got down to a value of the right type, we win, try inserting into the 1902 // right element. 1903 if (V->getType() == VecEltTy) { 1904 // Inserting null doesn't actually insert any elements. 1905 if (Constant *C = dyn_cast<Constant>(V)) 1906 if (C->isNullValue()) 1907 return true; 1908 1909 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1910 if (isBigEndian) 1911 ElementIndex = Elements.size() - ElementIndex - 1; 1912 1913 // Fail if multiple elements are inserted into this slot. 1914 if (Elements[ElementIndex]) 1915 return false; 1916 1917 Elements[ElementIndex] = V; 1918 return true; 1919 } 1920 1921 if (Constant *C = dyn_cast<Constant>(V)) { 1922 // Figure out the # elements this provides, and bitcast it or slice it up 1923 // as required. 1924 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1925 VecEltTy); 1926 // If the constant is the size of a vector element, we just need to bitcast 1927 // it to the right type so it gets properly inserted. 1928 if (NumElts == 1) 1929 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1930 Shift, Elements, VecEltTy, isBigEndian); 1931 1932 // Okay, this is a constant that covers multiple elements. Slice it up into 1933 // pieces and insert each element-sized piece into the vector. 1934 if (!isa<IntegerType>(C->getType())) 1935 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1936 C->getType()->getPrimitiveSizeInBits())); 1937 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1938 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1939 1940 for (unsigned i = 0; i != NumElts; ++i) { 1941 unsigned ShiftI = Shift+i*ElementSize; 1942 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1943 ShiftI)); 1944 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1945 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1946 isBigEndian)) 1947 return false; 1948 } 1949 return true; 1950 } 1951 1952 if (!V->hasOneUse()) return false; 1953 1954 Instruction *I = dyn_cast<Instruction>(V); 1955 if (!I) return false; 1956 switch (I->getOpcode()) { 1957 default: return false; // Unhandled case. 1958 case Instruction::BitCast: 1959 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1960 isBigEndian); 1961 case Instruction::ZExt: 1962 if (!isMultipleOfTypeSize( 1963 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1964 VecEltTy)) 1965 return false; 1966 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1967 isBigEndian); 1968 case Instruction::Or: 1969 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1970 isBigEndian) && 1971 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1972 isBigEndian); 1973 case Instruction::Shl: { 1974 // Must be shifting by a constant that is a multiple of the element size. 1975 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1976 if (!CI) return false; 1977 Shift += CI->getZExtValue(); 1978 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1979 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1980 isBigEndian); 1981 } 1982 1983 } 1984 } 1985 1986 1987 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1988 /// assemble the elements of the vector manually. 1989 /// Try to rip the code out and replace it with insertelements. This is to 1990 /// optimize code like this: 1991 /// 1992 /// %tmp37 = bitcast float %inc to i32 1993 /// %tmp38 = zext i32 %tmp37 to i64 1994 /// %tmp31 = bitcast float %inc5 to i32 1995 /// %tmp32 = zext i32 %tmp31 to i64 1996 /// %tmp33 = shl i64 %tmp32, 32 1997 /// %ins35 = or i64 %tmp33, %tmp38 1998 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1999 /// 2000 /// Into two insertelements that do "buildvector{%inc, %inc5}". 2001 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 2002 InstCombiner &IC) { 2003 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 2004 Value *IntInput = CI.getOperand(0); 2005 2006 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 2007 if (!collectInsertionElements(IntInput, 0, Elements, 2008 DestVecTy->getElementType(), 2009 IC.getDataLayout().isBigEndian())) 2010 return nullptr; 2011 2012 // If we succeeded, we know that all of the element are specified by Elements 2013 // or are zero if Elements has a null entry. Recast this as a set of 2014 // insertions. 2015 Value *Result = Constant::getNullValue(CI.getType()); 2016 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 2017 if (!Elements[i]) continue; // Unset element. 2018 2019 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 2020 IC.Builder.getInt32(i)); 2021 } 2022 2023 return Result; 2024 } 2025 2026 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 2027 /// vector followed by extract element. The backend tends to handle bitcasts of 2028 /// vectors better than bitcasts of scalars because vector registers are 2029 /// usually not type-specific like scalar integer or scalar floating-point. 2030 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 2031 InstCombiner &IC) { 2032 // TODO: Create and use a pattern matcher for ExtractElementInst. 2033 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 2034 if (!ExtElt || !ExtElt->hasOneUse()) 2035 return nullptr; 2036 2037 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2038 // type to extract from. 2039 Type *DestType = BitCast.getType(); 2040 if (!VectorType::isValidElementType(DestType)) 2041 return nullptr; 2042 2043 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 2044 auto *NewVecType = VectorType::get(DestType, NumElts); 2045 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 2046 NewVecType, "bc"); 2047 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 2048 } 2049 2050 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2051 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2052 InstCombiner::BuilderTy &Builder) { 2053 Type *DestTy = BitCast.getType(); 2054 BinaryOperator *BO; 2055 if (!DestTy->isIntOrIntVectorTy() || 2056 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2057 !BO->isBitwiseLogicOp()) 2058 return nullptr; 2059 2060 // FIXME: This transform is restricted to vector types to avoid backend 2061 // problems caused by creating potentially illegal operations. If a fix-up is 2062 // added to handle that situation, we can remove this check. 2063 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2064 return nullptr; 2065 2066 Value *X; 2067 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2068 X->getType() == DestTy && !isa<Constant>(X)) { 2069 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2070 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2071 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2072 } 2073 2074 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2075 X->getType() == DestTy && !isa<Constant>(X)) { 2076 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2077 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2078 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2079 } 2080 2081 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2082 // constant. This eases recognition of special constants for later ops. 2083 // Example: 2084 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2085 Constant *C; 2086 if (match(BO->getOperand(1), m_Constant(C))) { 2087 // bitcast (logic X, C) --> logic (bitcast X, C') 2088 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2089 Value *CastedC = ConstantExpr::getBitCast(C, DestTy); 2090 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2091 } 2092 2093 return nullptr; 2094 } 2095 2096 /// Change the type of a select if we can eliminate a bitcast. 2097 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2098 InstCombiner::BuilderTy &Builder) { 2099 Value *Cond, *TVal, *FVal; 2100 if (!match(BitCast.getOperand(0), 2101 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2102 return nullptr; 2103 2104 // A vector select must maintain the same number of elements in its operands. 2105 Type *CondTy = Cond->getType(); 2106 Type *DestTy = BitCast.getType(); 2107 if (CondTy->isVectorTy()) { 2108 if (!DestTy->isVectorTy()) 2109 return nullptr; 2110 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements()) 2111 return nullptr; 2112 } 2113 2114 // FIXME: This transform is restricted from changing the select between 2115 // scalars and vectors to avoid backend problems caused by creating 2116 // potentially illegal operations. If a fix-up is added to handle that 2117 // situation, we can remove this check. 2118 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2119 return nullptr; 2120 2121 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2122 Value *X; 2123 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2124 !isa<Constant>(X)) { 2125 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2126 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2127 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2128 } 2129 2130 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2131 !isa<Constant>(X)) { 2132 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2133 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2134 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2135 } 2136 2137 return nullptr; 2138 } 2139 2140 /// Check if all users of CI are StoreInsts. 2141 static bool hasStoreUsersOnly(CastInst &CI) { 2142 for (User *U : CI.users()) { 2143 if (!isa<StoreInst>(U)) 2144 return false; 2145 } 2146 return true; 2147 } 2148 2149 /// This function handles following case 2150 /// 2151 /// A -> B cast 2152 /// PHI 2153 /// B -> A cast 2154 /// 2155 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2156 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2157 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 2158 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2159 if (hasStoreUsersOnly(CI)) 2160 return nullptr; 2161 2162 Value *Src = CI.getOperand(0); 2163 Type *SrcTy = Src->getType(); // Type B 2164 Type *DestTy = CI.getType(); // Type A 2165 2166 SmallVector<PHINode *, 4> PhiWorklist; 2167 SmallSetVector<PHINode *, 4> OldPhiNodes; 2168 2169 // Find all of the A->B casts and PHI nodes. 2170 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so 2171 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2172 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2173 PhiWorklist.push_back(PN); 2174 OldPhiNodes.insert(PN); 2175 while (!PhiWorklist.empty()) { 2176 auto *OldPN = PhiWorklist.pop_back_val(); 2177 for (Value *IncValue : OldPN->incoming_values()) { 2178 if (isa<Constant>(IncValue)) 2179 continue; 2180 2181 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2182 // If there is a sequence of one or more load instructions, each loaded 2183 // value is used as address of later load instruction, bitcast is 2184 // necessary to change the value type, don't optimize it. For 2185 // simplicity we give up if the load address comes from another load. 2186 Value *Addr = LI->getOperand(0); 2187 if (Addr == &CI || isa<LoadInst>(Addr)) 2188 return nullptr; 2189 if (LI->hasOneUse() && LI->isSimple()) 2190 continue; 2191 // If a LoadInst has more than one use, changing the type of loaded 2192 // value may create another bitcast. 2193 return nullptr; 2194 } 2195 2196 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2197 if (OldPhiNodes.insert(PNode)) 2198 PhiWorklist.push_back(PNode); 2199 continue; 2200 } 2201 2202 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2203 // We can't handle other instructions. 2204 if (!BCI) 2205 return nullptr; 2206 2207 // Verify it's a A->B cast. 2208 Type *TyA = BCI->getOperand(0)->getType(); 2209 Type *TyB = BCI->getType(); 2210 if (TyA != DestTy || TyB != SrcTy) 2211 return nullptr; 2212 } 2213 } 2214 2215 // For each old PHI node, create a corresponding new PHI node with a type A. 2216 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2217 for (auto *OldPN : OldPhiNodes) { 2218 Builder.SetInsertPoint(OldPN); 2219 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2220 NewPNodes[OldPN] = NewPN; 2221 } 2222 2223 // Fill in the operands of new PHI nodes. 2224 for (auto *OldPN : OldPhiNodes) { 2225 PHINode *NewPN = NewPNodes[OldPN]; 2226 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2227 Value *V = OldPN->getOperand(j); 2228 Value *NewV = nullptr; 2229 if (auto *C = dyn_cast<Constant>(V)) { 2230 NewV = ConstantExpr::getBitCast(C, DestTy); 2231 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2232 Builder.SetInsertPoint(LI->getNextNode()); 2233 NewV = Builder.CreateBitCast(LI, DestTy); 2234 Worklist.Add(LI); 2235 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2236 NewV = BCI->getOperand(0); 2237 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2238 NewV = NewPNodes[PrevPN]; 2239 } 2240 assert(NewV); 2241 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2242 } 2243 } 2244 2245 // If there is a store with type B, change it to type A. 2246 for (User *U : PN->users()) { 2247 auto *SI = dyn_cast<StoreInst>(U); 2248 if (SI && SI->isSimple() && SI->getOperand(0) == PN) { 2249 Builder.SetInsertPoint(SI); 2250 auto *NewBC = 2251 cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy)); 2252 SI->setOperand(0, NewBC); 2253 Worklist.Add(SI); 2254 assert(hasStoreUsersOnly(*NewBC)); 2255 } 2256 } 2257 2258 return replaceInstUsesWith(CI, NewPNodes[PN]); 2259 } 2260 2261 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 2262 // If the operands are integer typed then apply the integer transforms, 2263 // otherwise just apply the common ones. 2264 Value *Src = CI.getOperand(0); 2265 Type *SrcTy = Src->getType(); 2266 Type *DestTy = CI.getType(); 2267 2268 // Get rid of casts from one type to the same type. These are useless and can 2269 // be replaced by the operand. 2270 if (DestTy == Src->getType()) 2271 return replaceInstUsesWith(CI, Src); 2272 2273 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 2274 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2275 Type *DstElTy = DstPTy->getElementType(); 2276 Type *SrcElTy = SrcPTy->getElementType(); 2277 2278 // Casting pointers between the same type, but with different address spaces 2279 // is an addrspace cast rather than a bitcast. 2280 if ((DstElTy == SrcElTy) && 2281 (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace())) 2282 return new AddrSpaceCastInst(Src, DestTy); 2283 2284 // If we are casting a alloca to a pointer to a type of the same 2285 // size, rewrite the allocation instruction to allocate the "right" type. 2286 // There is no need to modify malloc calls because it is their bitcast that 2287 // needs to be cleaned up. 2288 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2289 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2290 return V; 2291 2292 // When the type pointed to is not sized the cast cannot be 2293 // turned into a gep. 2294 Type *PointeeType = 2295 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2296 if (!PointeeType->isSized()) 2297 return nullptr; 2298 2299 // If the source and destination are pointers, and this cast is equivalent 2300 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2301 // This can enhance SROA and other transforms that want type-safe pointers. 2302 unsigned NumZeros = 0; 2303 while (SrcElTy != DstElTy && 2304 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 2305 SrcElTy->getNumContainedTypes() /* not "{}" */) { 2306 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 2307 ++NumZeros; 2308 } 2309 2310 // If we found a path from the src to dest, create the getelementptr now. 2311 if (SrcElTy == DstElTy) { 2312 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2313 return GetElementPtrInst::CreateInBounds(Src, Idxs); 2314 } 2315 } 2316 2317 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 2318 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 2319 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2320 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2321 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2322 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 2323 } 2324 2325 if (isa<IntegerType>(SrcTy)) { 2326 // If this is a cast from an integer to vector, check to see if the input 2327 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2328 // the casts with a shuffle and (potentially) a bitcast. 2329 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2330 CastInst *SrcCast = cast<CastInst>(Src); 2331 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2332 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2333 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 2334 cast<VectorType>(DestTy), *this)) 2335 return I; 2336 } 2337 2338 // If the input is an 'or' instruction, we may be doing shifts and ors to 2339 // assemble the elements of the vector manually. Try to rip the code out 2340 // and replace it with insertelements. 2341 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2342 return replaceInstUsesWith(CI, V); 2343 } 2344 } 2345 2346 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 2347 if (SrcVTy->getNumElements() == 1) { 2348 // If our destination is not a vector, then make this a straight 2349 // scalar-scalar cast. 2350 if (!DestTy->isVectorTy()) { 2351 Value *Elem = 2352 Builder.CreateExtractElement(Src, 2353 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2354 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2355 } 2356 2357 // Otherwise, see if our source is an insert. If so, then use the scalar 2358 // component directly. 2359 if (InsertElementInst *IEI = 2360 dyn_cast<InsertElementInst>(CI.getOperand(0))) 2361 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 2362 DestTy); 2363 } 2364 } 2365 2366 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 2367 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2368 // a bitcast to a vector with the same # elts. 2369 if (SVI->hasOneUse() && DestTy->isVectorTy() && 2370 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 2371 SVI->getType()->getNumElements() == 2372 SVI->getOperand(0)->getType()->getVectorNumElements()) { 2373 BitCastInst *Tmp; 2374 // If either of the operands is a cast from CI.getType(), then 2375 // evaluating the shuffle in the casted destination's type will allow 2376 // us to eliminate at least one cast. 2377 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 2378 Tmp->getOperand(0)->getType() == DestTy) || 2379 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 2380 Tmp->getOperand(0)->getType() == DestTy)) { 2381 Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy); 2382 Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy); 2383 // Return a new shuffle vector. Use the same element ID's, as we 2384 // know the vector types match #elts. 2385 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 2386 } 2387 } 2388 } 2389 2390 // Handle the A->B->A cast, and there is an intervening PHI node. 2391 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2392 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2393 return I; 2394 2395 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2396 return I; 2397 2398 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2399 return I; 2400 2401 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2402 return I; 2403 2404 if (SrcTy->isPointerTy()) 2405 return commonPointerCastTransforms(CI); 2406 return commonCastTransforms(CI); 2407 } 2408 2409 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2410 // If the destination pointer element type is not the same as the source's 2411 // first do a bitcast to the destination type, and then the addrspacecast. 2412 // This allows the cast to be exposed to other transforms. 2413 Value *Src = CI.getOperand(0); 2414 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2415 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2416 2417 Type *DestElemTy = DestTy->getElementType(); 2418 if (SrcTy->getElementType() != DestElemTy) { 2419 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2420 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2421 // Handle vectors of pointers. 2422 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2423 } 2424 2425 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2426 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2427 } 2428 2429 return commonPointerCastTransforms(CI); 2430 } 2431