1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements whole program optimization of virtual calls in cases 11 // where we know (via !type metadata) that the list of callees is fixed. This 12 // includes the following: 13 // - Single implementation devirtualization: if a virtual call has a single 14 // possible callee, replace all calls with a direct call to that callee. 15 // - Virtual constant propagation: if the virtual function's return type is an 16 // integer <=64 bits and all possible callees are readnone, for each class and 17 // each list of constant arguments: evaluate the function, store the return 18 // value alongside the virtual table, and rewrite each virtual call as a load 19 // from the virtual table. 20 // - Uniform return value optimization: if the conditions for virtual constant 21 // propagation hold and each function returns the same constant value, replace 22 // each virtual call with that constant. 23 // - Unique return value optimization for i1 return values: if the conditions 24 // for virtual constant propagation hold and a single vtable's function 25 // returns 0, or a single vtable's function returns 1, replace each virtual 26 // call with a comparison of the vptr against that vtable's address. 27 // 28 // This pass is intended to be used during the regular and thin LTO pipelines. 29 // During regular LTO, the pass determines the best optimization for each 30 // virtual call and applies the resolutions directly to virtual calls that are 31 // eligible for virtual call optimization (i.e. calls that use either of the 32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During 33 // ThinLTO, the pass operates in two phases: 34 // - Export phase: this is run during the thin link over a single merged module 35 // that contains all vtables with !type metadata that participate in the link. 36 // The pass computes a resolution for each virtual call and stores it in the 37 // type identifier summary. 38 // - Import phase: this is run during the thin backends over the individual 39 // modules. The pass applies the resolutions previously computed during the 40 // import phase to each eligible virtual call. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 45 #include "llvm/ADT/ArrayRef.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/DenseMapInfo.h" 48 #include "llvm/ADT/DenseSet.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SmallVector.h" 51 #include "llvm/ADT/iterator_range.h" 52 #include "llvm/Analysis/AliasAnalysis.h" 53 #include "llvm/Analysis/BasicAliasAnalysis.h" 54 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 55 #include "llvm/Analysis/TypeMetadataUtils.h" 56 #include "llvm/IR/CallSite.h" 57 #include "llvm/IR/Constants.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/DebugLoc.h" 60 #include "llvm/IR/DerivedTypes.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/GlobalAlias.h" 63 #include "llvm/IR/GlobalVariable.h" 64 #include "llvm/IR/IRBuilder.h" 65 #include "llvm/IR/InstrTypes.h" 66 #include "llvm/IR/Instruction.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/LLVMContext.h" 70 #include "llvm/IR/Metadata.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/ModuleSummaryIndexYAML.h" 73 #include "llvm/Pass.h" 74 #include "llvm/PassRegistry.h" 75 #include "llvm/PassSupport.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/Error.h" 78 #include "llvm/Support/FileSystem.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Transforms/IPO.h" 81 #include "llvm/Transforms/IPO/FunctionAttrs.h" 82 #include "llvm/Transforms/Utils/Evaluator.h" 83 #include <algorithm> 84 #include <cstddef> 85 #include <map> 86 #include <set> 87 #include <string> 88 89 using namespace llvm; 90 using namespace wholeprogramdevirt; 91 92 #define DEBUG_TYPE "wholeprogramdevirt" 93 94 static cl::opt<PassSummaryAction> ClSummaryAction( 95 "wholeprogramdevirt-summary-action", 96 cl::desc("What to do with the summary when running this pass"), 97 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), 98 clEnumValN(PassSummaryAction::Import, "import", 99 "Import typeid resolutions from summary and globals"), 100 clEnumValN(PassSummaryAction::Export, "export", 101 "Export typeid resolutions to summary and globals")), 102 cl::Hidden); 103 104 static cl::opt<std::string> ClReadSummary( 105 "wholeprogramdevirt-read-summary", 106 cl::desc("Read summary from given YAML file before running pass"), 107 cl::Hidden); 108 109 static cl::opt<std::string> ClWriteSummary( 110 "wholeprogramdevirt-write-summary", 111 cl::desc("Write summary to given YAML file after running pass"), 112 cl::Hidden); 113 114 // Find the minimum offset that we may store a value of size Size bits at. If 115 // IsAfter is set, look for an offset before the object, otherwise look for an 116 // offset after the object. 117 uint64_t 118 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 119 bool IsAfter, uint64_t Size) { 120 // Find a minimum offset taking into account only vtable sizes. 121 uint64_t MinByte = 0; 122 for (const VirtualCallTarget &Target : Targets) { 123 if (IsAfter) 124 MinByte = std::max(MinByte, Target.minAfterBytes()); 125 else 126 MinByte = std::max(MinByte, Target.minBeforeBytes()); 127 } 128 129 // Build a vector of arrays of bytes covering, for each target, a slice of the 130 // used region (see AccumBitVector::BytesUsed in 131 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 132 // this aligns the used regions to start at MinByte. 133 // 134 // In this example, A, B and C are vtables, # is a byte already allocated for 135 // a virtual function pointer, AAAA... (etc.) are the used regions for the 136 // vtables and Offset(X) is the value computed for the Offset variable below 137 // for X. 138 // 139 // Offset(A) 140 // | | 141 // |MinByte 142 // A: ################AAAAAAAA|AAAAAAAA 143 // B: ########BBBBBBBBBBBBBBBB|BBBB 144 // C: ########################|CCCCCCCCCCCCCCCC 145 // | Offset(B) | 146 // 147 // This code produces the slices of A, B and C that appear after the divider 148 // at MinByte. 149 std::vector<ArrayRef<uint8_t>> Used; 150 for (const VirtualCallTarget &Target : Targets) { 151 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 152 : Target.TM->Bits->Before.BytesUsed; 153 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 154 : MinByte - Target.minBeforeBytes(); 155 156 // Disregard used regions that are smaller than Offset. These are 157 // effectively all-free regions that do not need to be checked. 158 if (VTUsed.size() > Offset) 159 Used.push_back(VTUsed.slice(Offset)); 160 } 161 162 if (Size == 1) { 163 // Find a free bit in each member of Used. 164 for (unsigned I = 0;; ++I) { 165 uint8_t BitsUsed = 0; 166 for (auto &&B : Used) 167 if (I < B.size()) 168 BitsUsed |= B[I]; 169 if (BitsUsed != 0xff) 170 return (MinByte + I) * 8 + 171 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined); 172 } 173 } else { 174 // Find a free (Size/8) byte region in each member of Used. 175 // FIXME: see if alignment helps. 176 for (unsigned I = 0;; ++I) { 177 for (auto &&B : Used) { 178 unsigned Byte = 0; 179 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 180 if (B[I + Byte]) 181 goto NextI; 182 ++Byte; 183 } 184 } 185 return (MinByte + I) * 8; 186 NextI:; 187 } 188 } 189 } 190 191 void wholeprogramdevirt::setBeforeReturnValues( 192 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 193 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 194 if (BitWidth == 1) 195 OffsetByte = -(AllocBefore / 8 + 1); 196 else 197 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 198 OffsetBit = AllocBefore % 8; 199 200 for (VirtualCallTarget &Target : Targets) { 201 if (BitWidth == 1) 202 Target.setBeforeBit(AllocBefore); 203 else 204 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 205 } 206 } 207 208 void wholeprogramdevirt::setAfterReturnValues( 209 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 210 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 211 if (BitWidth == 1) 212 OffsetByte = AllocAfter / 8; 213 else 214 OffsetByte = (AllocAfter + 7) / 8; 215 OffsetBit = AllocAfter % 8; 216 217 for (VirtualCallTarget &Target : Targets) { 218 if (BitWidth == 1) 219 Target.setAfterBit(AllocAfter); 220 else 221 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 222 } 223 } 224 225 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 226 : Fn(Fn), TM(TM), 227 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 228 229 namespace { 230 231 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 232 // tables, and the ByteOffset is the offset in bytes from the address point to 233 // the virtual function pointer. 234 struct VTableSlot { 235 Metadata *TypeID; 236 uint64_t ByteOffset; 237 }; 238 239 } // end anonymous namespace 240 241 namespace llvm { 242 243 template <> struct DenseMapInfo<VTableSlot> { 244 static VTableSlot getEmptyKey() { 245 return {DenseMapInfo<Metadata *>::getEmptyKey(), 246 DenseMapInfo<uint64_t>::getEmptyKey()}; 247 } 248 static VTableSlot getTombstoneKey() { 249 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 250 DenseMapInfo<uint64_t>::getTombstoneKey()}; 251 } 252 static unsigned getHashValue(const VTableSlot &I) { 253 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 254 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 255 } 256 static bool isEqual(const VTableSlot &LHS, 257 const VTableSlot &RHS) { 258 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 259 } 260 }; 261 262 } // end namespace llvm 263 264 namespace { 265 266 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 267 // the indirect virtual call. 268 struct VirtualCallSite { 269 Value *VTable; 270 CallSite CS; 271 272 // If non-null, this field points to the associated unsafe use count stored in 273 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 274 // of that field for details. 275 unsigned *NumUnsafeUses; 276 277 void 278 emitRemark(const StringRef OptName, const StringRef TargetName, 279 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 280 Function *F = CS.getCaller(); 281 DebugLoc DLoc = CS->getDebugLoc(); 282 BasicBlock *Block = CS.getParent(); 283 284 // In the new pass manager, we can request the optimization 285 // remark emitter pass on a per-function-basis, which the 286 // OREGetter will do for us. 287 // In the old pass manager, this is harder, so we just build 288 // a optimization remark emitter on the fly, when we need it. 289 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 290 OptimizationRemarkEmitter *ORE; 291 if (OREGetter) 292 ORE = &OREGetter(F); 293 else { 294 OwnedORE = make_unique<OptimizationRemarkEmitter>(F); 295 ORE = OwnedORE.get(); 296 } 297 298 using namespace ore; 299 ORE->emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) 300 << NV("Optimization", OptName) << ": devirtualized a call to " 301 << NV("FunctionName", TargetName)); 302 } 303 304 void replaceAndErase( 305 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, 306 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 307 Value *New) { 308 if (RemarksEnabled) 309 emitRemark(OptName, TargetName, OREGetter); 310 CS->replaceAllUsesWith(New); 311 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) { 312 BranchInst::Create(II->getNormalDest(), CS.getInstruction()); 313 II->getUnwindDest()->removePredecessor(II->getParent()); 314 } 315 CS->eraseFromParent(); 316 // This use is no longer unsafe. 317 if (NumUnsafeUses) 318 --*NumUnsafeUses; 319 } 320 }; 321 322 // Call site information collected for a specific VTableSlot and possibly a list 323 // of constant integer arguments. The grouping by arguments is handled by the 324 // VTableSlotInfo class. 325 struct CallSiteInfo { 326 /// The set of call sites for this slot. Used during regular LTO and the 327 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any 328 /// call sites that appear in the merged module itself); in each of these 329 /// cases we are directly operating on the call sites at the IR level. 330 std::vector<VirtualCallSite> CallSites; 331 332 // These fields are used during the export phase of ThinLTO and reflect 333 // information collected from function summaries. 334 335 /// Whether any function summary contains an llvm.assume(llvm.type.test) for 336 /// this slot. 337 bool SummaryHasTypeTestAssumeUsers; 338 339 /// CFI-specific: a vector containing the list of function summaries that use 340 /// the llvm.type.checked.load intrinsic and therefore will require 341 /// resolutions for llvm.type.test in order to implement CFI checks if 342 /// devirtualization was unsuccessful. If devirtualization was successful, the 343 /// pass will clear this vector by calling markDevirt(). If at the end of the 344 /// pass the vector is non-empty, we will need to add a use of llvm.type.test 345 /// to each of the function summaries in the vector. 346 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; 347 348 bool isExported() const { 349 return SummaryHasTypeTestAssumeUsers || 350 !SummaryTypeCheckedLoadUsers.empty(); 351 } 352 353 /// As explained in the comment for SummaryTypeCheckedLoadUsers. 354 void markDevirt() { SummaryTypeCheckedLoadUsers.clear(); } 355 }; 356 357 // Call site information collected for a specific VTableSlot. 358 struct VTableSlotInfo { 359 // The set of call sites which do not have all constant integer arguments 360 // (excluding "this"). 361 CallSiteInfo CSInfo; 362 363 // The set of call sites with all constant integer arguments (excluding 364 // "this"), grouped by argument list. 365 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; 366 367 void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses); 368 369 private: 370 CallSiteInfo &findCallSiteInfo(CallSite CS); 371 }; 372 373 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) { 374 std::vector<uint64_t> Args; 375 auto *CI = dyn_cast<IntegerType>(CS.getType()); 376 if (!CI || CI->getBitWidth() > 64 || CS.arg_empty()) 377 return CSInfo; 378 for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) { 379 auto *CI = dyn_cast<ConstantInt>(Arg); 380 if (!CI || CI->getBitWidth() > 64) 381 return CSInfo; 382 Args.push_back(CI->getZExtValue()); 383 } 384 return ConstCSInfo[Args]; 385 } 386 387 void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS, 388 unsigned *NumUnsafeUses) { 389 findCallSiteInfo(CS).CallSites.push_back({VTable, CS, NumUnsafeUses}); 390 } 391 392 struct DevirtModule { 393 Module &M; 394 function_ref<AAResults &(Function &)> AARGetter; 395 396 ModuleSummaryIndex *ExportSummary; 397 const ModuleSummaryIndex *ImportSummary; 398 399 IntegerType *Int8Ty; 400 PointerType *Int8PtrTy; 401 IntegerType *Int32Ty; 402 IntegerType *Int64Ty; 403 IntegerType *IntPtrTy; 404 405 bool RemarksEnabled; 406 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter; 407 408 MapVector<VTableSlot, VTableSlotInfo> CallSlots; 409 410 // This map keeps track of the number of "unsafe" uses of a loaded function 411 // pointer. The key is the associated llvm.type.test intrinsic call generated 412 // by this pass. An unsafe use is one that calls the loaded function pointer 413 // directly. Every time we eliminate an unsafe use (for example, by 414 // devirtualizing it or by applying virtual constant propagation), we 415 // decrement the value stored in this map. If a value reaches zero, we can 416 // eliminate the type check by RAUWing the associated llvm.type.test call with 417 // true. 418 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 419 420 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, 421 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 422 ModuleSummaryIndex *ExportSummary, 423 const ModuleSummaryIndex *ImportSummary) 424 : M(M), AARGetter(AARGetter), ExportSummary(ExportSummary), 425 ImportSummary(ImportSummary), Int8Ty(Type::getInt8Ty(M.getContext())), 426 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 427 Int32Ty(Type::getInt32Ty(M.getContext())), 428 Int64Ty(Type::getInt64Ty(M.getContext())), 429 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), 430 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { 431 assert(!(ExportSummary && ImportSummary)); 432 } 433 434 bool areRemarksEnabled(); 435 436 void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc); 437 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 438 439 void buildTypeIdentifierMap( 440 std::vector<VTableBits> &Bits, 441 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 442 Constant *getPointerAtOffset(Constant *I, uint64_t Offset); 443 bool 444 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 445 const std::set<TypeMemberInfo> &TypeMemberInfos, 446 uint64_t ByteOffset); 447 448 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, 449 bool &IsExported); 450 bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 451 VTableSlotInfo &SlotInfo, 452 WholeProgramDevirtResolution *Res); 453 454 bool tryEvaluateFunctionsWithArgs( 455 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 456 ArrayRef<uint64_t> Args); 457 458 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 459 uint64_t TheRetVal); 460 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 461 CallSiteInfo &CSInfo, 462 WholeProgramDevirtResolution::ByArg *Res); 463 464 // Returns the global symbol name that is used to export information about the 465 // given vtable slot and list of arguments. 466 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, 467 StringRef Name); 468 469 bool shouldExportConstantsAsAbsoluteSymbols(); 470 471 // This function is called during the export phase to create a symbol 472 // definition containing information about the given vtable slot and list of 473 // arguments. 474 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 475 Constant *C); 476 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 477 uint32_t Const, uint32_t &Storage); 478 479 // This function is called during the import phase to create a reference to 480 // the symbol definition created during the export phase. 481 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 482 StringRef Name); 483 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 484 StringRef Name, IntegerType *IntTy, 485 uint32_t Storage); 486 487 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, 488 Constant *UniqueMemberAddr); 489 bool tryUniqueRetValOpt(unsigned BitWidth, 490 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 491 CallSiteInfo &CSInfo, 492 WholeProgramDevirtResolution::ByArg *Res, 493 VTableSlot Slot, ArrayRef<uint64_t> Args); 494 495 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 496 Constant *Byte, Constant *Bit); 497 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 498 VTableSlotInfo &SlotInfo, 499 WholeProgramDevirtResolution *Res, VTableSlot Slot); 500 501 void rebuildGlobal(VTableBits &B); 502 503 // Apply the summary resolution for Slot to all virtual calls in SlotInfo. 504 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); 505 506 // If we were able to eliminate all unsafe uses for a type checked load, 507 // eliminate the associated type tests by replacing them with true. 508 void removeRedundantTypeTests(); 509 510 bool run(); 511 512 // Lower the module using the action and summary passed as command line 513 // arguments. For testing purposes only. 514 static bool runForTesting( 515 Module &M, function_ref<AAResults &(Function &)> AARGetter, 516 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter); 517 }; 518 519 struct WholeProgramDevirt : public ModulePass { 520 static char ID; 521 522 bool UseCommandLine = false; 523 524 ModuleSummaryIndex *ExportSummary; 525 const ModuleSummaryIndex *ImportSummary; 526 527 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) { 528 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 529 } 530 531 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary, 532 const ModuleSummaryIndex *ImportSummary) 533 : ModulePass(ID), ExportSummary(ExportSummary), 534 ImportSummary(ImportSummary) { 535 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry()); 536 } 537 538 bool runOnModule(Module &M) override { 539 if (skipModule(M)) 540 return false; 541 542 auto OREGetter = function_ref<OptimizationRemarkEmitter &(Function *)>(); 543 544 if (UseCommandLine) 545 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter); 546 547 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, ExportSummary, 548 ImportSummary) 549 .run(); 550 } 551 552 void getAnalysisUsage(AnalysisUsage &AU) const override { 553 AU.addRequired<AssumptionCacheTracker>(); 554 AU.addRequired<TargetLibraryInfoWrapperPass>(); 555 } 556 }; 557 558 } // end anonymous namespace 559 560 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt", 561 "Whole program devirtualization", false, false) 562 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 563 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 564 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt", 565 "Whole program devirtualization", false, false) 566 char WholeProgramDevirt::ID = 0; 567 568 ModulePass * 569 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, 570 const ModuleSummaryIndex *ImportSummary) { 571 return new WholeProgramDevirt(ExportSummary, ImportSummary); 572 } 573 574 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 575 ModuleAnalysisManager &AM) { 576 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 577 auto AARGetter = [&](Function &F) -> AAResults & { 578 return FAM.getResult<AAManager>(F); 579 }; 580 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 581 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 582 }; 583 if (!DevirtModule(M, AARGetter, OREGetter, nullptr, nullptr).run()) 584 return PreservedAnalyses::all(); 585 return PreservedAnalyses::none(); 586 } 587 588 bool DevirtModule::runForTesting( 589 Module &M, function_ref<AAResults &(Function &)> AARGetter, 590 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 591 ModuleSummaryIndex Summary; 592 593 // Handle the command-line summary arguments. This code is for testing 594 // purposes only, so we handle errors directly. 595 if (!ClReadSummary.empty()) { 596 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + 597 ": "); 598 auto ReadSummaryFile = 599 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); 600 601 yaml::Input In(ReadSummaryFile->getBuffer()); 602 In >> Summary; 603 ExitOnErr(errorCodeToError(In.error())); 604 } 605 606 bool Changed = 607 DevirtModule( 608 M, AARGetter, OREGetter, 609 ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr, 610 ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr) 611 .run(); 612 613 if (!ClWriteSummary.empty()) { 614 ExitOnError ExitOnErr( 615 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); 616 std::error_code EC; 617 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text); 618 ExitOnErr(errorCodeToError(EC)); 619 620 yaml::Output Out(OS); 621 Out << Summary; 622 } 623 624 return Changed; 625 } 626 627 void DevirtModule::buildTypeIdentifierMap( 628 std::vector<VTableBits> &Bits, 629 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 630 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 631 Bits.reserve(M.getGlobalList().size()); 632 SmallVector<MDNode *, 2> Types; 633 for (GlobalVariable &GV : M.globals()) { 634 Types.clear(); 635 GV.getMetadata(LLVMContext::MD_type, Types); 636 if (Types.empty()) 637 continue; 638 639 VTableBits *&BitsPtr = GVToBits[&GV]; 640 if (!BitsPtr) { 641 Bits.emplace_back(); 642 Bits.back().GV = &GV; 643 Bits.back().ObjectSize = 644 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 645 BitsPtr = &Bits.back(); 646 } 647 648 for (MDNode *Type : Types) { 649 auto TypeID = Type->getOperand(1).get(); 650 651 uint64_t Offset = 652 cast<ConstantInt>( 653 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 654 ->getZExtValue(); 655 656 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 657 } 658 } 659 } 660 661 Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) { 662 if (I->getType()->isPointerTy()) { 663 if (Offset == 0) 664 return I; 665 return nullptr; 666 } 667 668 const DataLayout &DL = M.getDataLayout(); 669 670 if (auto *C = dyn_cast<ConstantStruct>(I)) { 671 const StructLayout *SL = DL.getStructLayout(C->getType()); 672 if (Offset >= SL->getSizeInBytes()) 673 return nullptr; 674 675 unsigned Op = SL->getElementContainingOffset(Offset); 676 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 677 Offset - SL->getElementOffset(Op)); 678 } 679 if (auto *C = dyn_cast<ConstantArray>(I)) { 680 ArrayType *VTableTy = C->getType(); 681 uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType()); 682 683 unsigned Op = Offset / ElemSize; 684 if (Op >= C->getNumOperands()) 685 return nullptr; 686 687 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)), 688 Offset % ElemSize); 689 } 690 return nullptr; 691 } 692 693 bool DevirtModule::tryFindVirtualCallTargets( 694 std::vector<VirtualCallTarget> &TargetsForSlot, 695 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) { 696 for (const TypeMemberInfo &TM : TypeMemberInfos) { 697 if (!TM.Bits->GV->isConstant()) 698 return false; 699 700 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 701 TM.Offset + ByteOffset); 702 if (!Ptr) 703 return false; 704 705 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 706 if (!Fn) 707 return false; 708 709 // We can disregard __cxa_pure_virtual as a possible call target, as 710 // calls to pure virtuals are UB. 711 if (Fn->getName() == "__cxa_pure_virtual") 712 continue; 713 714 TargetsForSlot.push_back({Fn, &TM}); 715 } 716 717 // Give up if we couldn't find any targets. 718 return !TargetsForSlot.empty(); 719 } 720 721 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, 722 Constant *TheFn, bool &IsExported) { 723 auto Apply = [&](CallSiteInfo &CSInfo) { 724 for (auto &&VCallSite : CSInfo.CallSites) { 725 if (RemarksEnabled) 726 VCallSite.emitRemark("single-impl", TheFn->getName(), OREGetter); 727 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast( 728 TheFn, VCallSite.CS.getCalledValue()->getType())); 729 // This use is no longer unsafe. 730 if (VCallSite.NumUnsafeUses) 731 --*VCallSite.NumUnsafeUses; 732 } 733 if (CSInfo.isExported()) { 734 IsExported = true; 735 CSInfo.markDevirt(); 736 } 737 }; 738 Apply(SlotInfo.CSInfo); 739 for (auto &P : SlotInfo.ConstCSInfo) 740 Apply(P.second); 741 } 742 743 bool DevirtModule::trySingleImplDevirt( 744 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 745 VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) { 746 // See if the program contains a single implementation of this virtual 747 // function. 748 Function *TheFn = TargetsForSlot[0].Fn; 749 for (auto &&Target : TargetsForSlot) 750 if (TheFn != Target.Fn) 751 return false; 752 753 // If so, update each call site to call that implementation directly. 754 if (RemarksEnabled) 755 TargetsForSlot[0].WasDevirt = true; 756 757 bool IsExported = false; 758 applySingleImplDevirt(SlotInfo, TheFn, IsExported); 759 if (!IsExported) 760 return false; 761 762 // If the only implementation has local linkage, we must promote to external 763 // to make it visible to thin LTO objects. We can only get here during the 764 // ThinLTO export phase. 765 if (TheFn->hasLocalLinkage()) { 766 std::string NewName = (TheFn->getName() + "$merged").str(); 767 768 // Since we are renaming the function, any comdats with the same name must 769 // also be renamed. This is required when targeting COFF, as the comdat name 770 // must match one of the names of the symbols in the comdat. 771 if (Comdat *C = TheFn->getComdat()) { 772 if (C->getName() == TheFn->getName()) { 773 Comdat *NewC = M.getOrInsertComdat(NewName); 774 NewC->setSelectionKind(C->getSelectionKind()); 775 for (GlobalObject &GO : M.global_objects()) 776 if (GO.getComdat() == C) 777 GO.setComdat(NewC); 778 } 779 } 780 781 TheFn->setLinkage(GlobalValue::ExternalLinkage); 782 TheFn->setVisibility(GlobalValue::HiddenVisibility); 783 TheFn->setName(NewName); 784 } 785 786 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 787 Res->SingleImplName = TheFn->getName(); 788 789 return true; 790 } 791 792 bool DevirtModule::tryEvaluateFunctionsWithArgs( 793 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 794 ArrayRef<uint64_t> Args) { 795 // Evaluate each function and store the result in each target's RetVal 796 // field. 797 for (VirtualCallTarget &Target : TargetsForSlot) { 798 if (Target.Fn->arg_size() != Args.size() + 1) 799 return false; 800 801 Evaluator Eval(M.getDataLayout(), nullptr); 802 SmallVector<Constant *, 2> EvalArgs; 803 EvalArgs.push_back( 804 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 805 for (unsigned I = 0; I != Args.size(); ++I) { 806 auto *ArgTy = dyn_cast<IntegerType>( 807 Target.Fn->getFunctionType()->getParamType(I + 1)); 808 if (!ArgTy) 809 return false; 810 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); 811 } 812 813 Constant *RetVal; 814 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 815 !isa<ConstantInt>(RetVal)) 816 return false; 817 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 818 } 819 return true; 820 } 821 822 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 823 uint64_t TheRetVal) { 824 for (auto Call : CSInfo.CallSites) 825 Call.replaceAndErase( 826 "uniform-ret-val", FnName, RemarksEnabled, OREGetter, 827 ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal)); 828 CSInfo.markDevirt(); 829 } 830 831 bool DevirtModule::tryUniformRetValOpt( 832 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, 833 WholeProgramDevirtResolution::ByArg *Res) { 834 // Uniform return value optimization. If all functions return the same 835 // constant, replace all calls with that constant. 836 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 837 for (const VirtualCallTarget &Target : TargetsForSlot) 838 if (Target.RetVal != TheRetVal) 839 return false; 840 841 if (CSInfo.isExported()) { 842 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 843 Res->Info = TheRetVal; 844 } 845 846 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); 847 if (RemarksEnabled) 848 for (auto &&Target : TargetsForSlot) 849 Target.WasDevirt = true; 850 return true; 851 } 852 853 std::string DevirtModule::getGlobalName(VTableSlot Slot, 854 ArrayRef<uint64_t> Args, 855 StringRef Name) { 856 std::string FullName = "__typeid_"; 857 raw_string_ostream OS(FullName); 858 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; 859 for (uint64_t Arg : Args) 860 OS << '_' << Arg; 861 OS << '_' << Name; 862 return OS.str(); 863 } 864 865 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { 866 Triple T(M.getTargetTriple()); 867 return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) && 868 T.getObjectFormat() == Triple::ELF; 869 } 870 871 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 872 StringRef Name, Constant *C) { 873 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, 874 getGlobalName(Slot, Args, Name), C, &M); 875 GA->setVisibility(GlobalValue::HiddenVisibility); 876 } 877 878 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 879 StringRef Name, uint32_t Const, 880 uint32_t &Storage) { 881 if (shouldExportConstantsAsAbsoluteSymbols()) { 882 exportGlobal( 883 Slot, Args, Name, 884 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); 885 return; 886 } 887 888 Storage = Const; 889 } 890 891 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 892 StringRef Name) { 893 Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty); 894 auto *GV = dyn_cast<GlobalVariable>(C); 895 if (GV) 896 GV->setVisibility(GlobalValue::HiddenVisibility); 897 return C; 898 } 899 900 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 901 StringRef Name, IntegerType *IntTy, 902 uint32_t Storage) { 903 if (!shouldExportConstantsAsAbsoluteSymbols()) 904 return ConstantInt::get(IntTy, Storage); 905 906 Constant *C = importGlobal(Slot, Args, Name); 907 auto *GV = cast<GlobalVariable>(C->stripPointerCasts()); 908 C = ConstantExpr::getPtrToInt(C, IntTy); 909 910 // We only need to set metadata if the global is newly created, in which 911 // case it would not have hidden visibility. 912 if (GV->getMetadata(LLVMContext::MD_absolute_symbol)) 913 return C; 914 915 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { 916 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); 917 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); 918 GV->setMetadata(LLVMContext::MD_absolute_symbol, 919 MDNode::get(M.getContext(), {MinC, MaxC})); 920 }; 921 unsigned AbsWidth = IntTy->getBitWidth(); 922 if (AbsWidth == IntPtrTy->getBitWidth()) 923 SetAbsRange(~0ull, ~0ull); // Full set. 924 else 925 SetAbsRange(0, 1ull << AbsWidth); 926 return C; 927 } 928 929 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 930 bool IsOne, 931 Constant *UniqueMemberAddr) { 932 for (auto &&Call : CSInfo.CallSites) { 933 IRBuilder<> B(Call.CS.getInstruction()); 934 Value *Cmp = 935 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 936 B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr); 937 Cmp = B.CreateZExt(Cmp, Call.CS->getType()); 938 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, 939 Cmp); 940 } 941 CSInfo.markDevirt(); 942 } 943 944 bool DevirtModule::tryUniqueRetValOpt( 945 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 946 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, 947 VTableSlot Slot, ArrayRef<uint64_t> Args) { 948 // IsOne controls whether we look for a 0 or a 1. 949 auto tryUniqueRetValOptFor = [&](bool IsOne) { 950 const TypeMemberInfo *UniqueMember = nullptr; 951 for (const VirtualCallTarget &Target : TargetsForSlot) { 952 if (Target.RetVal == (IsOne ? 1 : 0)) { 953 if (UniqueMember) 954 return false; 955 UniqueMember = Target.TM; 956 } 957 } 958 959 // We should have found a unique member or bailed out by now. We already 960 // checked for a uniform return value in tryUniformRetValOpt. 961 assert(UniqueMember); 962 963 Constant *UniqueMemberAddr = 964 ConstantExpr::getBitCast(UniqueMember->Bits->GV, Int8PtrTy); 965 UniqueMemberAddr = ConstantExpr::getGetElementPtr( 966 Int8Ty, UniqueMemberAddr, 967 ConstantInt::get(Int64Ty, UniqueMember->Offset)); 968 969 if (CSInfo.isExported()) { 970 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 971 Res->Info = IsOne; 972 973 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); 974 } 975 976 // Replace each call with the comparison. 977 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, 978 UniqueMemberAddr); 979 980 // Update devirtualization statistics for targets. 981 if (RemarksEnabled) 982 for (auto &&Target : TargetsForSlot) 983 Target.WasDevirt = true; 984 985 return true; 986 }; 987 988 if (BitWidth == 1) { 989 if (tryUniqueRetValOptFor(true)) 990 return true; 991 if (tryUniqueRetValOptFor(false)) 992 return true; 993 } 994 return false; 995 } 996 997 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 998 Constant *Byte, Constant *Bit) { 999 for (auto Call : CSInfo.CallSites) { 1000 auto *RetType = cast<IntegerType>(Call.CS.getType()); 1001 IRBuilder<> B(Call.CS.getInstruction()); 1002 Value *Addr = 1003 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); 1004 if (RetType->getBitWidth() == 1) { 1005 Value *Bits = B.CreateLoad(Addr); 1006 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 1007 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 1008 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, 1009 OREGetter, IsBitSet); 1010 } else { 1011 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 1012 Value *Val = B.CreateLoad(RetType, ValAddr); 1013 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, 1014 OREGetter, Val); 1015 } 1016 } 1017 CSInfo.markDevirt(); 1018 } 1019 1020 bool DevirtModule::tryVirtualConstProp( 1021 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1022 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1023 // This only works if the function returns an integer. 1024 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 1025 if (!RetType) 1026 return false; 1027 unsigned BitWidth = RetType->getBitWidth(); 1028 if (BitWidth > 64) 1029 return false; 1030 1031 // Make sure that each function is defined, does not access memory, takes at 1032 // least one argument, does not use its first argument (which we assume is 1033 // 'this'), and has the same return type. 1034 // 1035 // Note that we test whether this copy of the function is readnone, rather 1036 // than testing function attributes, which must hold for any copy of the 1037 // function, even a less optimized version substituted at link time. This is 1038 // sound because the virtual constant propagation optimizations effectively 1039 // inline all implementations of the virtual function into each call site, 1040 // rather than using function attributes to perform local optimization. 1041 for (VirtualCallTarget &Target : TargetsForSlot) { 1042 if (Target.Fn->isDeclaration() || 1043 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) != 1044 MAK_ReadNone || 1045 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || 1046 Target.Fn->getReturnType() != RetType) 1047 return false; 1048 } 1049 1050 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { 1051 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 1052 continue; 1053 1054 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; 1055 if (Res) 1056 ResByArg = &Res->ResByArg[CSByConstantArg.first]; 1057 1058 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) 1059 continue; 1060 1061 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, 1062 ResByArg, Slot, CSByConstantArg.first)) 1063 continue; 1064 1065 // Find an allocation offset in bits in all vtables associated with the 1066 // type. 1067 uint64_t AllocBefore = 1068 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 1069 uint64_t AllocAfter = 1070 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 1071 1072 // Calculate the total amount of padding needed to store a value at both 1073 // ends of the object. 1074 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 1075 for (auto &&Target : TargetsForSlot) { 1076 TotalPaddingBefore += std::max<int64_t>( 1077 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 1078 TotalPaddingAfter += std::max<int64_t>( 1079 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 1080 } 1081 1082 // If the amount of padding is too large, give up. 1083 // FIXME: do something smarter here. 1084 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 1085 continue; 1086 1087 // Calculate the offset to the value as a (possibly negative) byte offset 1088 // and (if applicable) a bit offset, and store the values in the targets. 1089 int64_t OffsetByte; 1090 uint64_t OffsetBit; 1091 if (TotalPaddingBefore <= TotalPaddingAfter) 1092 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 1093 OffsetBit); 1094 else 1095 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 1096 OffsetBit); 1097 1098 if (RemarksEnabled) 1099 for (auto &&Target : TargetsForSlot) 1100 Target.WasDevirt = true; 1101 1102 1103 if (CSByConstantArg.second.isExported()) { 1104 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 1105 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, 1106 ResByArg->Byte); 1107 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, 1108 ResByArg->Bit); 1109 } 1110 1111 // Rewrite each call to a load from OffsetByte/OffsetBit. 1112 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); 1113 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 1114 applyVirtualConstProp(CSByConstantArg.second, 1115 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); 1116 } 1117 return true; 1118 } 1119 1120 void DevirtModule::rebuildGlobal(VTableBits &B) { 1121 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 1122 return; 1123 1124 // Align each byte array to pointer width. 1125 unsigned PointerSize = M.getDataLayout().getPointerSize(); 1126 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize)); 1127 B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize)); 1128 1129 // Before was stored in reverse order; flip it now. 1130 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 1131 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 1132 1133 // Build an anonymous global containing the before bytes, followed by the 1134 // original initializer, followed by the after bytes. 1135 auto NewInit = ConstantStruct::getAnon( 1136 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 1137 B.GV->getInitializer(), 1138 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 1139 auto NewGV = 1140 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 1141 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 1142 NewGV->setSection(B.GV->getSection()); 1143 NewGV->setComdat(B.GV->getComdat()); 1144 1145 // Copy the original vtable's metadata to the anonymous global, adjusting 1146 // offsets as required. 1147 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 1148 1149 // Build an alias named after the original global, pointing at the second 1150 // element (the original initializer). 1151 auto Alias = GlobalAlias::create( 1152 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 1153 ConstantExpr::getGetElementPtr( 1154 NewInit->getType(), NewGV, 1155 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 1156 ConstantInt::get(Int32Ty, 1)}), 1157 &M); 1158 Alias->setVisibility(B.GV->getVisibility()); 1159 Alias->takeName(B.GV); 1160 1161 B.GV->replaceAllUsesWith(Alias); 1162 B.GV->eraseFromParent(); 1163 } 1164 1165 bool DevirtModule::areRemarksEnabled() { 1166 const auto &FL = M.getFunctionList(); 1167 if (FL.empty()) 1168 return false; 1169 const Function &Fn = FL.front(); 1170 1171 const auto &BBL = Fn.getBasicBlockList(); 1172 if (BBL.empty()) 1173 return false; 1174 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front()); 1175 return DI.isEnabled(); 1176 } 1177 1178 void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc, 1179 Function *AssumeFunc) { 1180 // Find all virtual calls via a virtual table pointer %p under an assumption 1181 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 1182 // points to a member of the type identifier %md. Group calls by (type ID, 1183 // offset) pair (effectively the identity of the virtual function) and store 1184 // to CallSlots. 1185 DenseSet<Value *> SeenPtrs; 1186 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end(); 1187 I != E;) { 1188 auto CI = dyn_cast<CallInst>(I->getUser()); 1189 ++I; 1190 if (!CI) 1191 continue; 1192 1193 // Search for virtual calls based on %p and add them to DevirtCalls. 1194 SmallVector<DevirtCallSite, 1> DevirtCalls; 1195 SmallVector<CallInst *, 1> Assumes; 1196 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI); 1197 1198 // If we found any, add them to CallSlots. Only do this if we haven't seen 1199 // the vtable pointer before, as it may have been CSE'd with pointers from 1200 // other call sites, and we don't want to process call sites multiple times. 1201 if (!Assumes.empty()) { 1202 Metadata *TypeId = 1203 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 1204 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 1205 if (SeenPtrs.insert(Ptr).second) { 1206 for (DevirtCallSite Call : DevirtCalls) { 1207 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr); 1208 } 1209 } 1210 } 1211 1212 // We no longer need the assumes or the type test. 1213 for (auto Assume : Assumes) 1214 Assume->eraseFromParent(); 1215 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 1216 // may use the vtable argument later. 1217 if (CI->use_empty()) 1218 CI->eraseFromParent(); 1219 } 1220 } 1221 1222 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 1223 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 1224 1225 for (auto I = TypeCheckedLoadFunc->use_begin(), 1226 E = TypeCheckedLoadFunc->use_end(); 1227 I != E;) { 1228 auto CI = dyn_cast<CallInst>(I->getUser()); 1229 ++I; 1230 if (!CI) 1231 continue; 1232 1233 Value *Ptr = CI->getArgOperand(0); 1234 Value *Offset = CI->getArgOperand(1); 1235 Value *TypeIdValue = CI->getArgOperand(2); 1236 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 1237 1238 SmallVector<DevirtCallSite, 1> DevirtCalls; 1239 SmallVector<Instruction *, 1> LoadedPtrs; 1240 SmallVector<Instruction *, 1> Preds; 1241 bool HasNonCallUses = false; 1242 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 1243 HasNonCallUses, CI); 1244 1245 // Start by generating "pessimistic" code that explicitly loads the function 1246 // pointer from the vtable and performs the type check. If possible, we will 1247 // eliminate the load and the type check later. 1248 1249 // If possible, only generate the load at the point where it is used. 1250 // This helps avoid unnecessary spills. 1251 IRBuilder<> LoadB( 1252 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 1253 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 1254 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 1255 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 1256 1257 for (Instruction *LoadedPtr : LoadedPtrs) { 1258 LoadedPtr->replaceAllUsesWith(LoadedValue); 1259 LoadedPtr->eraseFromParent(); 1260 } 1261 1262 // Likewise for the type test. 1263 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 1264 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 1265 1266 for (Instruction *Pred : Preds) { 1267 Pred->replaceAllUsesWith(TypeTestCall); 1268 Pred->eraseFromParent(); 1269 } 1270 1271 // We have already erased any extractvalue instructions that refer to the 1272 // intrinsic call, but the intrinsic may have other non-extractvalue uses 1273 // (although this is unlikely). In that case, explicitly build a pair and 1274 // RAUW it. 1275 if (!CI->use_empty()) { 1276 Value *Pair = UndefValue::get(CI->getType()); 1277 IRBuilder<> B(CI); 1278 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 1279 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 1280 CI->replaceAllUsesWith(Pair); 1281 } 1282 1283 // The number of unsafe uses is initially the number of uses. 1284 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 1285 NumUnsafeUses = DevirtCalls.size(); 1286 1287 // If the function pointer has a non-call user, we cannot eliminate the type 1288 // check, as one of those users may eventually call the pointer. Increment 1289 // the unsafe use count to make sure it cannot reach zero. 1290 if (HasNonCallUses) 1291 ++NumUnsafeUses; 1292 for (DevirtCallSite Call : DevirtCalls) { 1293 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, 1294 &NumUnsafeUses); 1295 } 1296 1297 CI->eraseFromParent(); 1298 } 1299 } 1300 1301 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { 1302 const TypeIdSummary *TidSummary = 1303 ImportSummary->getTypeIdSummary(cast<MDString>(Slot.TypeID)->getString()); 1304 if (!TidSummary) 1305 return; 1306 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); 1307 if (ResI == TidSummary->WPDRes.end()) 1308 return; 1309 const WholeProgramDevirtResolution &Res = ResI->second; 1310 1311 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { 1312 // The type of the function in the declaration is irrelevant because every 1313 // call site will cast it to the correct type. 1314 auto *SingleImpl = M.getOrInsertFunction( 1315 Res.SingleImplName, Type::getVoidTy(M.getContext())); 1316 1317 // This is the import phase so we should not be exporting anything. 1318 bool IsExported = false; 1319 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); 1320 assert(!IsExported); 1321 } 1322 1323 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { 1324 auto I = Res.ResByArg.find(CSByConstantArg.first); 1325 if (I == Res.ResByArg.end()) 1326 continue; 1327 auto &ResByArg = I->second; 1328 // FIXME: We should figure out what to do about the "function name" argument 1329 // to the apply* functions, as the function names are unavailable during the 1330 // importing phase. For now we just pass the empty string. This does not 1331 // impact correctness because the function names are just used for remarks. 1332 switch (ResByArg.TheKind) { 1333 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 1334 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); 1335 break; 1336 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { 1337 Constant *UniqueMemberAddr = 1338 importGlobal(Slot, CSByConstantArg.first, "unique_member"); 1339 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, 1340 UniqueMemberAddr); 1341 break; 1342 } 1343 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { 1344 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", 1345 Int32Ty, ResByArg.Byte); 1346 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, 1347 ResByArg.Bit); 1348 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); 1349 break; 1350 } 1351 default: 1352 break; 1353 } 1354 } 1355 } 1356 1357 void DevirtModule::removeRedundantTypeTests() { 1358 auto True = ConstantInt::getTrue(M.getContext()); 1359 for (auto &&U : NumUnsafeUsesForTypeTest) { 1360 if (U.second == 0) { 1361 U.first->replaceAllUsesWith(True); 1362 U.first->eraseFromParent(); 1363 } 1364 } 1365 } 1366 1367 bool DevirtModule::run() { 1368 Function *TypeTestFunc = 1369 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 1370 Function *TypeCheckedLoadFunc = 1371 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 1372 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 1373 1374 // Normally if there are no users of the devirtualization intrinsics in the 1375 // module, this pass has nothing to do. But if we are exporting, we also need 1376 // to handle any users that appear only in the function summaries. 1377 if (!ExportSummary && 1378 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 1379 AssumeFunc->use_empty()) && 1380 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 1381 return false; 1382 1383 if (TypeTestFunc && AssumeFunc) 1384 scanTypeTestUsers(TypeTestFunc, AssumeFunc); 1385 1386 if (TypeCheckedLoadFunc) 1387 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 1388 1389 if (ImportSummary) { 1390 for (auto &S : CallSlots) 1391 importResolution(S.first, S.second); 1392 1393 removeRedundantTypeTests(); 1394 1395 // The rest of the code is only necessary when exporting or during regular 1396 // LTO, so we are done. 1397 return true; 1398 } 1399 1400 // Rebuild type metadata into a map for easy lookup. 1401 std::vector<VTableBits> Bits; 1402 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 1403 buildTypeIdentifierMap(Bits, TypeIdMap); 1404 if (TypeIdMap.empty()) 1405 return true; 1406 1407 // Collect information from summary about which calls to try to devirtualize. 1408 if (ExportSummary) { 1409 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; 1410 for (auto &P : TypeIdMap) { 1411 if (auto *TypeId = dyn_cast<MDString>(P.first)) 1412 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( 1413 TypeId); 1414 } 1415 1416 for (auto &P : *ExportSummary) { 1417 for (auto &S : P.second.SummaryList) { 1418 auto *FS = dyn_cast<FunctionSummary>(S.get()); 1419 if (!FS) 1420 continue; 1421 // FIXME: Only add live functions. 1422 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 1423 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1424 CallSlots[{MD, VF.Offset}].CSInfo.SummaryHasTypeTestAssumeUsers = 1425 true; 1426 } 1427 } 1428 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 1429 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 1430 CallSlots[{MD, VF.Offset}] 1431 .CSInfo.SummaryTypeCheckedLoadUsers.push_back(FS); 1432 } 1433 } 1434 for (const FunctionSummary::ConstVCall &VC : 1435 FS->type_test_assume_const_vcalls()) { 1436 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1437 CallSlots[{MD, VC.VFunc.Offset}] 1438 .ConstCSInfo[VC.Args] 1439 .SummaryHasTypeTestAssumeUsers = true; 1440 } 1441 } 1442 for (const FunctionSummary::ConstVCall &VC : 1443 FS->type_checked_load_const_vcalls()) { 1444 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 1445 CallSlots[{MD, VC.VFunc.Offset}] 1446 .ConstCSInfo[VC.Args] 1447 .SummaryTypeCheckedLoadUsers.push_back(FS); 1448 } 1449 } 1450 } 1451 } 1452 } 1453 1454 // For each (type, offset) pair: 1455 bool DidVirtualConstProp = false; 1456 std::map<std::string, Function*> DevirtTargets; 1457 for (auto &S : CallSlots) { 1458 // Search each of the members of the type identifier for the virtual 1459 // function implementation at offset S.first.ByteOffset, and add to 1460 // TargetsForSlot. 1461 std::vector<VirtualCallTarget> TargetsForSlot; 1462 if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID], 1463 S.first.ByteOffset)) { 1464 WholeProgramDevirtResolution *Res = nullptr; 1465 if (ExportSummary && isa<MDString>(S.first.TypeID)) 1466 Res = &ExportSummary 1467 ->getOrInsertTypeIdSummary( 1468 cast<MDString>(S.first.TypeID)->getString()) 1469 .WPDRes[S.first.ByteOffset]; 1470 1471 if (!trySingleImplDevirt(TargetsForSlot, S.second, Res) && 1472 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first)) 1473 DidVirtualConstProp = true; 1474 1475 // Collect functions devirtualized at least for one call site for stats. 1476 if (RemarksEnabled) 1477 for (const auto &T : TargetsForSlot) 1478 if (T.WasDevirt) 1479 DevirtTargets[T.Fn->getName()] = T.Fn; 1480 } 1481 1482 // CFI-specific: if we are exporting and any llvm.type.checked.load 1483 // intrinsics were *not* devirtualized, we need to add the resulting 1484 // llvm.type.test intrinsics to the function summaries so that the 1485 // LowerTypeTests pass will export them. 1486 if (ExportSummary && isa<MDString>(S.first.TypeID)) { 1487 auto GUID = 1488 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); 1489 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) 1490 FS->addTypeTest(GUID); 1491 for (auto &CCS : S.second.ConstCSInfo) 1492 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers) 1493 FS->addTypeTest(GUID); 1494 } 1495 } 1496 1497 if (RemarksEnabled) { 1498 // Generate remarks for each devirtualized function. 1499 for (const auto &DT : DevirtTargets) { 1500 Function *F = DT.second; 1501 1502 // In the new pass manager, we can request the optimization 1503 // remark emitter pass on a per-function-basis, which the 1504 // OREGetter will do for us. 1505 // In the old pass manager, this is harder, so we just build 1506 // a optimization remark emitter on the fly, when we need it. 1507 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1508 OptimizationRemarkEmitter *ORE; 1509 if (OREGetter) 1510 ORE = &OREGetter(F); 1511 else { 1512 OwnedORE = make_unique<OptimizationRemarkEmitter>(F); 1513 ORE = OwnedORE.get(); 1514 } 1515 1516 using namespace ore; 1517 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) 1518 << "devirtualized " << NV("FunctionName", F->getName())); 1519 } 1520 } 1521 1522 removeRedundantTypeTests(); 1523 1524 // Rebuild each global we touched as part of virtual constant propagation to 1525 // include the before and after bytes. 1526 if (DidVirtualConstProp) 1527 for (VTableBits &B : Bits) 1528 rebuildGlobal(B); 1529 1530 return true; 1531 } 1532