1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for equivalent functions that are mergable and folds them.
11 //
12 // A hash is computed from the function, based on its type and number of
13 // basic blocks.
14 //
15 // Once all hashes are computed, we perform an expensive equality comparison
16 // on each function pair. This takes n^2/2 comparisons per bucket, so it's
17 // important that the hash function be high quality. The equality comparison
18 // iterates through each instruction in each basic block.
19 //
20 // When a match is found the functions are folded. If both functions are
21 // overridable, we move the functionality into a new internal function and
22 // leave two overridable thunks to it.
23 //
24 //===----------------------------------------------------------------------===//
25 //
26 // Future work:
27 //
28 // * virtual functions.
29 //
30 // Many functions have their address taken by the virtual function table for
31 // the object they belong to. However, as long as it's only used for a lookup
32 // and call, this is irrelevant, and we'd like to fold such functions.
33 //
34 // * switch from n^2 pair-wise comparisons to an n-way comparison for each
35 // bucket.
36 //
37 // * be smarter about bitcasts.
38 //
39 // In order to fold functions, we will sometimes add either bitcast instructions
40 // or bitcast constant expressions. Unfortunately, this can confound further
41 // analysis since the two functions differ where one has a bitcast and the
42 // other doesn't. We should learn to look through bitcasts.
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #define DEBUG_TYPE "mergefunc"
47 #include "llvm/Transforms/IPO.h"
48 #include "llvm/ADT/DenseSet.h"
49 #include "llvm/ADT/FoldingSet.h"
50 #include "llvm/ADT/SmallSet.h"
51 #include "llvm/ADT/Statistic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/Constants.h"
54 #include "llvm/InlineAsm.h"
55 #include "llvm/Instructions.h"
56 #include "llvm/LLVMContext.h"
57 #include "llvm/Module.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/CallSite.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/IRBuilder.h"
63 #include "llvm/Support/ValueHandle.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetData.h"
66 #include <vector>
67 using namespace llvm;
68 
69 STATISTIC(NumFunctionsMerged, "Number of functions merged");
70 
71 namespace {
72   /// MergeFunctions finds functions which will generate identical machine code,
73   /// by considering all pointer types to be equivalent. Once identified,
74   /// MergeFunctions will fold them by replacing a call to one to a call to a
75   /// bitcast of the other.
76   ///
77   class MergeFunctions : public ModulePass {
78   public:
79     static char ID;
80     MergeFunctions() : ModulePass(ID) {}
81 
82     bool runOnModule(Module &M);
83 
84   private:
85     /// MergeTwoFunctions - Merge two equivalent functions. Upon completion, G
86     /// may be deleted, or may be converted into a thunk. In either case, it
87     /// should never be visited again.
88     void MergeTwoFunctions(Function *F, Function *G) const;
89 
90     /// WriteThunk - Replace G with a simple tail call to bitcast(F). Also
91     /// replace direct uses of G with bitcast(F).
92     void WriteThunk(Function *F, Function *G) const;
93 
94     TargetData *TD;
95   };
96 }
97 
98 char MergeFunctions::ID = 0;
99 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false);
100 
101 ModulePass *llvm::createMergeFunctionsPass() {
102   return new MergeFunctions();
103 }
104 
105 namespace {
106 /// FunctionComparator - Compares two functions to determine whether or not
107 /// they will generate machine code with the same behaviour. TargetData is
108 /// used if available. The comparator always fails conservatively (erring on the
109 /// side of claiming that two functions are different).
110 class FunctionComparator {
111 public:
112   FunctionComparator(const TargetData *TD, const Function *F1,
113                      const Function *F2)
114     : F1(F1), F2(F2), TD(TD), IDMap1Count(0), IDMap2Count(0) {}
115 
116   /// Compare - test whether the two functions have equivalent behaviour.
117   bool Compare();
118 
119 private:
120   /// Compare - test whether two basic blocks have equivalent behaviour.
121   bool Compare(const BasicBlock *BB1, const BasicBlock *BB2);
122 
123   /// Enumerate - Assign or look up previously assigned numbers for the two
124   /// values, and return whether the numbers are equal. Numbers are assigned in
125   /// the order visited.
126   bool Enumerate(const Value *V1, const Value *V2);
127 
128   /// isEquivalentOperation - Compare two Instructions for equivalence, similar
129   /// to Instruction::isSameOperationAs but with modifications to the type
130   /// comparison.
131   bool isEquivalentOperation(const Instruction *I1,
132                              const Instruction *I2) const;
133 
134   /// isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic.
135   bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
136   bool isEquivalentGEP(const GetElementPtrInst *GEP1,
137                        const GetElementPtrInst *GEP2) {
138     return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
139   }
140 
141   /// isEquivalentType - Compare two Types, treating all pointer types as equal.
142   bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
143 
144   // The two functions undergoing comparison.
145   const Function *F1, *F2;
146 
147   const TargetData *TD;
148 
149   typedef DenseMap<const Value *, unsigned long> IDMap;
150   IDMap Map1, Map2;
151   unsigned long IDMap1Count, IDMap2Count;
152 };
153 }
154 
155 /// isEquivalentType - any two pointers in the same address space are
156 /// equivalent. Otherwise, standard type equivalence rules apply.
157 bool FunctionComparator::isEquivalentType(const Type *Ty1,
158                                           const Type *Ty2) const {
159   if (Ty1 == Ty2)
160     return true;
161   if (Ty1->getTypeID() != Ty2->getTypeID())
162     return false;
163 
164   switch(Ty1->getTypeID()) {
165   default:
166     llvm_unreachable("Unknown type!");
167     // Fall through in Release mode.
168   case Type::IntegerTyID:
169   case Type::OpaqueTyID:
170     // Ty1 == Ty2 would have returned true earlier.
171     return false;
172 
173   case Type::VoidTyID:
174   case Type::FloatTyID:
175   case Type::DoubleTyID:
176   case Type::X86_FP80TyID:
177   case Type::FP128TyID:
178   case Type::PPC_FP128TyID:
179   case Type::LabelTyID:
180   case Type::MetadataTyID:
181     return true;
182 
183   case Type::PointerTyID: {
184     const PointerType *PTy1 = cast<PointerType>(Ty1);
185     const PointerType *PTy2 = cast<PointerType>(Ty2);
186     return PTy1->getAddressSpace() == PTy2->getAddressSpace();
187   }
188 
189   case Type::StructTyID: {
190     const StructType *STy1 = cast<StructType>(Ty1);
191     const StructType *STy2 = cast<StructType>(Ty2);
192     if (STy1->getNumElements() != STy2->getNumElements())
193       return false;
194 
195     if (STy1->isPacked() != STy2->isPacked())
196       return false;
197 
198     for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
199       if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
200         return false;
201     }
202     return true;
203   }
204 
205   case Type::FunctionTyID: {
206     const FunctionType *FTy1 = cast<FunctionType>(Ty1);
207     const FunctionType *FTy2 = cast<FunctionType>(Ty2);
208     if (FTy1->getNumParams() != FTy2->getNumParams() ||
209         FTy1->isVarArg() != FTy2->isVarArg())
210       return false;
211 
212     if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
213       return false;
214 
215     for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
216       if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
217         return false;
218     }
219     return true;
220   }
221 
222   case Type::ArrayTyID: {
223     const ArrayType *ATy1 = cast<ArrayType>(Ty1);
224     const ArrayType *ATy2 = cast<ArrayType>(Ty2);
225     return ATy1->getNumElements() == ATy2->getNumElements() &&
226            isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
227   }
228 
229   case Type::VectorTyID: {
230     const VectorType *VTy1 = cast<VectorType>(Ty1);
231     const VectorType *VTy2 = cast<VectorType>(Ty2);
232     return VTy1->getNumElements() == VTy2->getNumElements() &&
233            isEquivalentType(VTy1->getElementType(), VTy2->getElementType());
234   }
235   }
236 }
237 
238 /// isEquivalentOperation - determine whether the two operations are the same
239 /// except that pointer-to-A and pointer-to-B are equivalent. This should be
240 /// kept in sync with Instruction::isSameOperationAs.
241 bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
242                                                const Instruction *I2) const {
243   if (I1->getOpcode() != I2->getOpcode() ||
244       I1->getNumOperands() != I2->getNumOperands() ||
245       !isEquivalentType(I1->getType(), I2->getType()) ||
246       !I1->hasSameSubclassOptionalData(I2))
247     return false;
248 
249   // We have two instructions of identical opcode and #operands.  Check to see
250   // if all operands are the same type
251   for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
252     if (!isEquivalentType(I1->getOperand(i)->getType(),
253                           I2->getOperand(i)->getType()))
254       return false;
255 
256   // Check special state that is a part of some instructions.
257   if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
258     return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
259            LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
260   if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
261     return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
262            SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
263   if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
264     return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
265   if (const CallInst *CI = dyn_cast<CallInst>(I1))
266     return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
267            CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
268            CI->getAttributes().getRawPointer() ==
269              cast<CallInst>(I2)->getAttributes().getRawPointer();
270   if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
271     return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
272            CI->getAttributes().getRawPointer() ==
273              cast<InvokeInst>(I2)->getAttributes().getRawPointer();
274   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
275     if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
276       return false;
277     for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
278       if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
279         return false;
280     return true;
281   }
282   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
283     if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
284       return false;
285     for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
286       if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
287         return false;
288     return true;
289   }
290 
291   return true;
292 }
293 
294 /// isEquivalentGEP - determine whether two GEP operations perform the same
295 /// underlying arithmetic.
296 bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
297                                          const GEPOperator *GEP2) {
298   // When we have target data, we can reduce the GEP down to the value in bytes
299   // added to the address.
300   if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
301     SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
302     SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
303     uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
304                                             Indices1.data(), Indices1.size());
305     uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
306                                             Indices2.data(), Indices2.size());
307     return Offset1 == Offset2;
308   }
309 
310   if (GEP1->getPointerOperand()->getType() !=
311       GEP2->getPointerOperand()->getType())
312     return false;
313 
314   if (GEP1->getNumOperands() != GEP2->getNumOperands())
315     return false;
316 
317   for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
318     if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
319       return false;
320   }
321 
322   return true;
323 }
324 
325 /// Enumerate - Compare two values used by the two functions under pair-wise
326 /// comparison. If this is the first time the values are seen, they're added to
327 /// the mapping so that we will detect mismatches on next use.
328 bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) {
329   // Check for function @f1 referring to itself and function @f2 referring to
330   // itself, or referring to each other, or both referring to either of them.
331   // They're all equivalent if the two functions are otherwise equivalent.
332   if (V1 == F1 && V2 == F2)
333     return true;
334   if (V1 == F2 && V2 == F1)
335     return true;
336 
337   // TODO: constant expressions with GEP or references to F1 or F2.
338   if (isa<Constant>(V1))
339     return V1 == V2;
340 
341   if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) {
342     const InlineAsm *IA1 = cast<InlineAsm>(V1);
343     const InlineAsm *IA2 = cast<InlineAsm>(V2);
344     return IA1->getAsmString() == IA2->getAsmString() &&
345            IA1->getConstraintString() == IA2->getConstraintString();
346   }
347 
348   unsigned long &ID1 = Map1[V1];
349   if (!ID1)
350     ID1 = ++IDMap1Count;
351 
352   unsigned long &ID2 = Map2[V2];
353   if (!ID2)
354     ID2 = ++IDMap2Count;
355 
356   return ID1 == ID2;
357 }
358 
359 /// Compare - test whether two basic blocks have equivalent behaviour.
360 bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) {
361   BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
362   BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
363 
364   do {
365     if (!Enumerate(F1I, F2I))
366       return false;
367 
368     if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
369       const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
370       if (!GEP2)
371         return false;
372 
373       if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
374         return false;
375 
376       if (!isEquivalentGEP(GEP1, GEP2))
377         return false;
378     } else {
379       if (!isEquivalentOperation(F1I, F2I))
380         return false;
381 
382       assert(F1I->getNumOperands() == F2I->getNumOperands());
383       for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
384         Value *OpF1 = F1I->getOperand(i);
385         Value *OpF2 = F2I->getOperand(i);
386 
387         if (!Enumerate(OpF1, OpF2))
388           return false;
389 
390         if (OpF1->getValueID() != OpF2->getValueID() ||
391             !isEquivalentType(OpF1->getType(), OpF2->getType()))
392           return false;
393       }
394     }
395 
396     ++F1I, ++F2I;
397   } while (F1I != F1E && F2I != F2E);
398 
399   return F1I == F1E && F2I == F2E;
400 }
401 
402 /// Compare - test whether the two functions have equivalent behaviour.
403 bool FunctionComparator::Compare() {
404   // We need to recheck everything, but check the things that weren't included
405   // in the hash first.
406 
407   if (F1->getAttributes() != F2->getAttributes())
408     return false;
409 
410   if (F1->hasGC() != F2->hasGC())
411     return false;
412 
413   if (F1->hasGC() && F1->getGC() != F2->getGC())
414     return false;
415 
416   if (F1->hasSection() != F2->hasSection())
417     return false;
418 
419   if (F1->hasSection() && F1->getSection() != F2->getSection())
420     return false;
421 
422   if (F1->isVarArg() != F2->isVarArg())
423     return false;
424 
425   // TODO: if it's internal and only used in direct calls, we could handle this
426   // case too.
427   if (F1->getCallingConv() != F2->getCallingConv())
428     return false;
429 
430   if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
431     return false;
432 
433   assert(F1->arg_size() == F2->arg_size() &&
434          "Identical functions have a different number of args.");
435 
436   // Visit the arguments so that they get enumerated in the order they're
437   // passed in.
438   for (Function::const_arg_iterator f1i = F1->arg_begin(),
439          f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
440     if (!Enumerate(f1i, f2i))
441       llvm_unreachable("Arguments repeat");
442   }
443 
444   // We do a CFG-ordered walk since the actual ordering of the blocks in the
445   // linked list is immaterial. Our walk starts at the entry block for both
446   // functions, then takes each block from each terminator in order. As an
447   // artifact, this also means that unreachable blocks are ignored.
448   SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
449   SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
450 
451   F1BBs.push_back(&F1->getEntryBlock());
452   F2BBs.push_back(&F2->getEntryBlock());
453 
454   VisitedBBs.insert(F1BBs[0]);
455   while (!F1BBs.empty()) {
456     const BasicBlock *F1BB = F1BBs.pop_back_val();
457     const BasicBlock *F2BB = F2BBs.pop_back_val();
458 
459     if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB))
460       return false;
461 
462     const TerminatorInst *F1TI = F1BB->getTerminator();
463     const TerminatorInst *F2TI = F2BB->getTerminator();
464 
465     assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
466     for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
467       if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
468         continue;
469 
470       F1BBs.push_back(F1TI->getSuccessor(i));
471       F2BBs.push_back(F2TI->getSuccessor(i));
472     }
473   }
474   return true;
475 }
476 
477 /// WriteThunk - Replace G with a simple tail call to bitcast(F). Also replace
478 /// direct uses of G with bitcast(F).
479 void MergeFunctions::WriteThunk(Function *F, Function *G) const {
480   if (!G->mayBeOverridden()) {
481     // Redirect direct callers of G to F.
482     Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
483     for (Value::use_iterator UI = G->use_begin(), UE = G->use_end();
484          UI != UE;) {
485       Value::use_iterator TheIter = UI;
486       ++UI;
487       CallSite CS(*TheIter);
488       if (CS && CS.isCallee(TheIter))
489         TheIter.getUse().set(BitcastF);
490     }
491   }
492 
493   // If G was internal then we may have replaced all uses if G with F. If so,
494   // stop here and delete G. There's no need for a thunk.
495   if (G->hasLocalLinkage() && G->use_empty()) {
496     G->eraseFromParent();
497     return;
498   }
499 
500   Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
501                                     G->getParent());
502   BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
503   IRBuilder<false> Builder(BB);
504 
505   SmallVector<Value *, 16> Args;
506   unsigned i = 0;
507   const FunctionType *FFTy = F->getFunctionType();
508   for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
509        AI != AE; ++AI) {
510     Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
511     ++i;
512   }
513 
514   CallInst *CI = Builder.CreateCall(F, Args.begin(), Args.end());
515   CI->setTailCall();
516   CI->setCallingConv(F->getCallingConv());
517   if (NewG->getReturnType()->isVoidTy()) {
518     Builder.CreateRetVoid();
519   } else {
520     Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
521   }
522 
523   NewG->copyAttributesFrom(G);
524   NewG->takeName(G);
525   G->replaceAllUsesWith(NewG);
526   G->eraseFromParent();
527 }
528 
529 /// MergeTwoFunctions - Merge two equivalent functions. Upon completion,
530 /// Function G is deleted.
531 void MergeFunctions::MergeTwoFunctions(Function *F, Function *G) const {
532   if (F->isWeakForLinker()) {
533     assert(G->isWeakForLinker());
534 
535     // Make them both thunks to the same internal function.
536     Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
537                                    F->getParent());
538     H->copyAttributesFrom(F);
539     H->takeName(F);
540     F->replaceAllUsesWith(H);
541 
542     unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
543 
544     WriteThunk(F, G);
545     WriteThunk(F, H);
546 
547     F->setAlignment(MaxAlignment);
548     F->setLinkage(GlobalValue::InternalLinkage);
549   } else {
550     WriteThunk(F, G);
551   }
552 
553   ++NumFunctionsMerged;
554 }
555 
556 static unsigned ProfileFunction(const Function *F) {
557   const FunctionType *FTy = F->getFunctionType();
558 
559   FoldingSetNodeID ID;
560   ID.AddInteger(F->size());
561   ID.AddInteger(F->getCallingConv());
562   ID.AddBoolean(F->hasGC());
563   ID.AddBoolean(FTy->isVarArg());
564   ID.AddInteger(FTy->getReturnType()->getTypeID());
565   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
566     ID.AddInteger(FTy->getParamType(i)->getTypeID());
567   return ID.ComputeHash();
568 }
569 
570 class ComparableFunction {
571 public:
572   ComparableFunction(Function *Func, TargetData *TD)
573     : Func(Func), Hash(ProfileFunction(Func)), TD(TD) {}
574 
575   AssertingVH<Function> const Func;
576   const unsigned Hash;
577   TargetData * const TD;
578 };
579 
580 struct MergeFunctionsEqualityInfo {
581   static ComparableFunction *getEmptyKey() {
582     return reinterpret_cast<ComparableFunction*>(0);
583   }
584   static ComparableFunction *getTombstoneKey() {
585     return reinterpret_cast<ComparableFunction*>(-1);
586   }
587   static unsigned getHashValue(const ComparableFunction *CF) {
588     return CF->Hash;
589   }
590   static bool isEqual(const ComparableFunction *LHS,
591                       const ComparableFunction *RHS) {
592     if (LHS == RHS)
593       return true;
594     if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
595         RHS == getEmptyKey() || RHS == getTombstoneKey())
596       return false;
597     assert(LHS->TD == RHS->TD && "Comparing functions for different targets");
598     return FunctionComparator(LHS->TD, LHS->Func, RHS->Func).Compare();
599   }
600 };
601 
602 bool MergeFunctions::runOnModule(Module &M) {
603   typedef DenseSet<ComparableFunction *, MergeFunctionsEqualityInfo> FnSetType;
604 
605   bool Changed = false;
606   TD = getAnalysisIfAvailable<TargetData>();
607 
608   std::vector<Function *> Funcs;
609   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
610     if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage())
611       Funcs.push_back(F);
612   }
613 
614   bool LocalChanged;
615   do {
616     LocalChanged = false;
617 
618     FnSetType FnSet;
619     for (unsigned i = 0, e = Funcs.size(); i != e;) {
620       Function *F = Funcs[i];
621       ComparableFunction *NewF = new ComparableFunction(F, TD);
622       std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
623       if (!Result.second) {
624         ComparableFunction *&OldF = *Result.first;
625         assert(OldF && "Expected a hash collision");
626 
627         // NewF will be deleted in favour of OldF unless NewF is strong and
628         // OldF is weak in which case swap them to keep the strong definition.
629 
630         if (OldF->Func->isWeakForLinker() && !NewF->Func->isWeakForLinker())
631           std::swap(OldF, NewF);
632 
633         DEBUG(dbgs() << "  " << OldF->Func->getName() << " == "
634                      << NewF->Func->getName() << '\n');
635 
636 	Funcs.erase(Funcs.begin() + i);
637 	--e;
638 
639         Function *DeleteF = NewF->Func;
640         delete NewF;
641         MergeTwoFunctions(OldF->Func, DeleteF);
642 	LocalChanged = true;
643         Changed = true;
644       } else {
645 	++i;
646       }
647     }
648     DeleteContainerPointers(FnSet);
649   } while (LocalChanged);
650 
651   return Changed;
652 }
653