1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass looks for equivalent functions that are mergable and folds them. 11 // 12 // A hash is computed from the function, based on its type and number of 13 // basic blocks. 14 // 15 // Once all hashes are computed, we perform an expensive equality comparison 16 // on each function pair. This takes n^2/2 comparisons per bucket, so it's 17 // important that the hash function be high quality. The equality comparison 18 // iterates through each instruction in each basic block. 19 // 20 // When a match is found the functions are folded. If both functions are 21 // overridable, we move the functionality into a new internal function and 22 // leave two overridable thunks to it. 23 // 24 //===----------------------------------------------------------------------===// 25 // 26 // Future work: 27 // 28 // * virtual functions. 29 // 30 // Many functions have their address taken by the virtual function table for 31 // the object they belong to. However, as long as it's only used for a lookup 32 // and call, this is irrelevant, and we'd like to fold such functions. 33 // 34 // * switch from n^2 pair-wise comparisons to an n-way comparison for each 35 // bucket. 36 // 37 // * be smarter about bitcasts. 38 // 39 // In order to fold functions, we will sometimes add either bitcast instructions 40 // or bitcast constant expressions. Unfortunately, this can confound further 41 // analysis since the two functions differ where one has a bitcast and the 42 // other doesn't. We should learn to look through bitcasts. 43 // 44 //===----------------------------------------------------------------------===// 45 46 #define DEBUG_TYPE "mergefunc" 47 #include "llvm/Transforms/IPO.h" 48 #include "llvm/ADT/DenseSet.h" 49 #include "llvm/ADT/FoldingSet.h" 50 #include "llvm/ADT/SmallSet.h" 51 #include "llvm/ADT/Statistic.h" 52 #include "llvm/ADT/STLExtras.h" 53 #include "llvm/Constants.h" 54 #include "llvm/InlineAsm.h" 55 #include "llvm/Instructions.h" 56 #include "llvm/LLVMContext.h" 57 #include "llvm/Module.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/CallSite.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/IRBuilder.h" 63 #include "llvm/Support/ValueHandle.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetData.h" 66 #include <vector> 67 using namespace llvm; 68 69 STATISTIC(NumFunctionsMerged, "Number of functions merged"); 70 71 namespace { 72 /// MergeFunctions finds functions which will generate identical machine code, 73 /// by considering all pointer types to be equivalent. Once identified, 74 /// MergeFunctions will fold them by replacing a call to one to a call to a 75 /// bitcast of the other. 76 /// 77 class MergeFunctions : public ModulePass { 78 public: 79 static char ID; 80 MergeFunctions() : ModulePass(ID) {} 81 82 bool runOnModule(Module &M); 83 84 private: 85 /// MergeTwoFunctions - Merge two equivalent functions. Upon completion, G 86 /// may be deleted, or may be converted into a thunk. In either case, it 87 /// should never be visited again. 88 void MergeTwoFunctions(Function *F, Function *G) const; 89 90 /// WriteThunk - Replace G with a simple tail call to bitcast(F). Also 91 /// replace direct uses of G with bitcast(F). 92 void WriteThunk(Function *F, Function *G) const; 93 94 TargetData *TD; 95 }; 96 } 97 98 char MergeFunctions::ID = 0; 99 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false); 100 101 ModulePass *llvm::createMergeFunctionsPass() { 102 return new MergeFunctions(); 103 } 104 105 namespace { 106 /// FunctionComparator - Compares two functions to determine whether or not 107 /// they will generate machine code with the same behaviour. TargetData is 108 /// used if available. The comparator always fails conservatively (erring on the 109 /// side of claiming that two functions are different). 110 class FunctionComparator { 111 public: 112 FunctionComparator(const TargetData *TD, const Function *F1, 113 const Function *F2) 114 : F1(F1), F2(F2), TD(TD), IDMap1Count(0), IDMap2Count(0) {} 115 116 /// Compare - test whether the two functions have equivalent behaviour. 117 bool Compare(); 118 119 private: 120 /// Compare - test whether two basic blocks have equivalent behaviour. 121 bool Compare(const BasicBlock *BB1, const BasicBlock *BB2); 122 123 /// Enumerate - Assign or look up previously assigned numbers for the two 124 /// values, and return whether the numbers are equal. Numbers are assigned in 125 /// the order visited. 126 bool Enumerate(const Value *V1, const Value *V2); 127 128 /// isEquivalentOperation - Compare two Instructions for equivalence, similar 129 /// to Instruction::isSameOperationAs but with modifications to the type 130 /// comparison. 131 bool isEquivalentOperation(const Instruction *I1, 132 const Instruction *I2) const; 133 134 /// isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic. 135 bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2); 136 bool isEquivalentGEP(const GetElementPtrInst *GEP1, 137 const GetElementPtrInst *GEP2) { 138 return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2)); 139 } 140 141 /// isEquivalentType - Compare two Types, treating all pointer types as equal. 142 bool isEquivalentType(const Type *Ty1, const Type *Ty2) const; 143 144 // The two functions undergoing comparison. 145 const Function *F1, *F2; 146 147 const TargetData *TD; 148 149 typedef DenseMap<const Value *, unsigned long> IDMap; 150 IDMap Map1, Map2; 151 unsigned long IDMap1Count, IDMap2Count; 152 }; 153 } 154 155 /// isEquivalentType - any two pointers in the same address space are 156 /// equivalent. Otherwise, standard type equivalence rules apply. 157 bool FunctionComparator::isEquivalentType(const Type *Ty1, 158 const Type *Ty2) const { 159 if (Ty1 == Ty2) 160 return true; 161 if (Ty1->getTypeID() != Ty2->getTypeID()) 162 return false; 163 164 switch(Ty1->getTypeID()) { 165 default: 166 llvm_unreachable("Unknown type!"); 167 // Fall through in Release mode. 168 case Type::IntegerTyID: 169 case Type::OpaqueTyID: 170 // Ty1 == Ty2 would have returned true earlier. 171 return false; 172 173 case Type::VoidTyID: 174 case Type::FloatTyID: 175 case Type::DoubleTyID: 176 case Type::X86_FP80TyID: 177 case Type::FP128TyID: 178 case Type::PPC_FP128TyID: 179 case Type::LabelTyID: 180 case Type::MetadataTyID: 181 return true; 182 183 case Type::PointerTyID: { 184 const PointerType *PTy1 = cast<PointerType>(Ty1); 185 const PointerType *PTy2 = cast<PointerType>(Ty2); 186 return PTy1->getAddressSpace() == PTy2->getAddressSpace(); 187 } 188 189 case Type::StructTyID: { 190 const StructType *STy1 = cast<StructType>(Ty1); 191 const StructType *STy2 = cast<StructType>(Ty2); 192 if (STy1->getNumElements() != STy2->getNumElements()) 193 return false; 194 195 if (STy1->isPacked() != STy2->isPacked()) 196 return false; 197 198 for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) { 199 if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i))) 200 return false; 201 } 202 return true; 203 } 204 205 case Type::FunctionTyID: { 206 const FunctionType *FTy1 = cast<FunctionType>(Ty1); 207 const FunctionType *FTy2 = cast<FunctionType>(Ty2); 208 if (FTy1->getNumParams() != FTy2->getNumParams() || 209 FTy1->isVarArg() != FTy2->isVarArg()) 210 return false; 211 212 if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType())) 213 return false; 214 215 for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) { 216 if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i))) 217 return false; 218 } 219 return true; 220 } 221 222 case Type::ArrayTyID: { 223 const ArrayType *ATy1 = cast<ArrayType>(Ty1); 224 const ArrayType *ATy2 = cast<ArrayType>(Ty2); 225 return ATy1->getNumElements() == ATy2->getNumElements() && 226 isEquivalentType(ATy1->getElementType(), ATy2->getElementType()); 227 } 228 229 case Type::VectorTyID: { 230 const VectorType *VTy1 = cast<VectorType>(Ty1); 231 const VectorType *VTy2 = cast<VectorType>(Ty2); 232 return VTy1->getNumElements() == VTy2->getNumElements() && 233 isEquivalentType(VTy1->getElementType(), VTy2->getElementType()); 234 } 235 } 236 } 237 238 /// isEquivalentOperation - determine whether the two operations are the same 239 /// except that pointer-to-A and pointer-to-B are equivalent. This should be 240 /// kept in sync with Instruction::isSameOperationAs. 241 bool FunctionComparator::isEquivalentOperation(const Instruction *I1, 242 const Instruction *I2) const { 243 if (I1->getOpcode() != I2->getOpcode() || 244 I1->getNumOperands() != I2->getNumOperands() || 245 !isEquivalentType(I1->getType(), I2->getType()) || 246 !I1->hasSameSubclassOptionalData(I2)) 247 return false; 248 249 // We have two instructions of identical opcode and #operands. Check to see 250 // if all operands are the same type 251 for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i) 252 if (!isEquivalentType(I1->getOperand(i)->getType(), 253 I2->getOperand(i)->getType())) 254 return false; 255 256 // Check special state that is a part of some instructions. 257 if (const LoadInst *LI = dyn_cast<LoadInst>(I1)) 258 return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() && 259 LI->getAlignment() == cast<LoadInst>(I2)->getAlignment(); 260 if (const StoreInst *SI = dyn_cast<StoreInst>(I1)) 261 return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() && 262 SI->getAlignment() == cast<StoreInst>(I2)->getAlignment(); 263 if (const CmpInst *CI = dyn_cast<CmpInst>(I1)) 264 return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate(); 265 if (const CallInst *CI = dyn_cast<CallInst>(I1)) 266 return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() && 267 CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() && 268 CI->getAttributes().getRawPointer() == 269 cast<CallInst>(I2)->getAttributes().getRawPointer(); 270 if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1)) 271 return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() && 272 CI->getAttributes().getRawPointer() == 273 cast<InvokeInst>(I2)->getAttributes().getRawPointer(); 274 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) { 275 if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices()) 276 return false; 277 for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i) 278 if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i]) 279 return false; 280 return true; 281 } 282 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) { 283 if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices()) 284 return false; 285 for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i) 286 if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i]) 287 return false; 288 return true; 289 } 290 291 return true; 292 } 293 294 /// isEquivalentGEP - determine whether two GEP operations perform the same 295 /// underlying arithmetic. 296 bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1, 297 const GEPOperator *GEP2) { 298 // When we have target data, we can reduce the GEP down to the value in bytes 299 // added to the address. 300 if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) { 301 SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end()); 302 SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end()); 303 uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(), 304 Indices1.data(), Indices1.size()); 305 uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(), 306 Indices2.data(), Indices2.size()); 307 return Offset1 == Offset2; 308 } 309 310 if (GEP1->getPointerOperand()->getType() != 311 GEP2->getPointerOperand()->getType()) 312 return false; 313 314 if (GEP1->getNumOperands() != GEP2->getNumOperands()) 315 return false; 316 317 for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) { 318 if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i))) 319 return false; 320 } 321 322 return true; 323 } 324 325 /// Enumerate - Compare two values used by the two functions under pair-wise 326 /// comparison. If this is the first time the values are seen, they're added to 327 /// the mapping so that we will detect mismatches on next use. 328 bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) { 329 // Check for function @f1 referring to itself and function @f2 referring to 330 // itself, or referring to each other, or both referring to either of them. 331 // They're all equivalent if the two functions are otherwise equivalent. 332 if (V1 == F1 && V2 == F2) 333 return true; 334 if (V1 == F2 && V2 == F1) 335 return true; 336 337 // TODO: constant expressions with GEP or references to F1 or F2. 338 if (isa<Constant>(V1)) 339 return V1 == V2; 340 341 if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) { 342 const InlineAsm *IA1 = cast<InlineAsm>(V1); 343 const InlineAsm *IA2 = cast<InlineAsm>(V2); 344 return IA1->getAsmString() == IA2->getAsmString() && 345 IA1->getConstraintString() == IA2->getConstraintString(); 346 } 347 348 unsigned long &ID1 = Map1[V1]; 349 if (!ID1) 350 ID1 = ++IDMap1Count; 351 352 unsigned long &ID2 = Map2[V2]; 353 if (!ID2) 354 ID2 = ++IDMap2Count; 355 356 return ID1 == ID2; 357 } 358 359 /// Compare - test whether two basic blocks have equivalent behaviour. 360 bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) { 361 BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end(); 362 BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end(); 363 364 do { 365 if (!Enumerate(F1I, F2I)) 366 return false; 367 368 if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) { 369 const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I); 370 if (!GEP2) 371 return false; 372 373 if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand())) 374 return false; 375 376 if (!isEquivalentGEP(GEP1, GEP2)) 377 return false; 378 } else { 379 if (!isEquivalentOperation(F1I, F2I)) 380 return false; 381 382 assert(F1I->getNumOperands() == F2I->getNumOperands()); 383 for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) { 384 Value *OpF1 = F1I->getOperand(i); 385 Value *OpF2 = F2I->getOperand(i); 386 387 if (!Enumerate(OpF1, OpF2)) 388 return false; 389 390 if (OpF1->getValueID() != OpF2->getValueID() || 391 !isEquivalentType(OpF1->getType(), OpF2->getType())) 392 return false; 393 } 394 } 395 396 ++F1I, ++F2I; 397 } while (F1I != F1E && F2I != F2E); 398 399 return F1I == F1E && F2I == F2E; 400 } 401 402 /// Compare - test whether the two functions have equivalent behaviour. 403 bool FunctionComparator::Compare() { 404 // We need to recheck everything, but check the things that weren't included 405 // in the hash first. 406 407 if (F1->getAttributes() != F2->getAttributes()) 408 return false; 409 410 if (F1->hasGC() != F2->hasGC()) 411 return false; 412 413 if (F1->hasGC() && F1->getGC() != F2->getGC()) 414 return false; 415 416 if (F1->hasSection() != F2->hasSection()) 417 return false; 418 419 if (F1->hasSection() && F1->getSection() != F2->getSection()) 420 return false; 421 422 if (F1->isVarArg() != F2->isVarArg()) 423 return false; 424 425 // TODO: if it's internal and only used in direct calls, we could handle this 426 // case too. 427 if (F1->getCallingConv() != F2->getCallingConv()) 428 return false; 429 430 if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType())) 431 return false; 432 433 assert(F1->arg_size() == F2->arg_size() && 434 "Identical functions have a different number of args."); 435 436 // Visit the arguments so that they get enumerated in the order they're 437 // passed in. 438 for (Function::const_arg_iterator f1i = F1->arg_begin(), 439 f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) { 440 if (!Enumerate(f1i, f2i)) 441 llvm_unreachable("Arguments repeat"); 442 } 443 444 // We do a CFG-ordered walk since the actual ordering of the blocks in the 445 // linked list is immaterial. Our walk starts at the entry block for both 446 // functions, then takes each block from each terminator in order. As an 447 // artifact, this also means that unreachable blocks are ignored. 448 SmallVector<const BasicBlock *, 8> F1BBs, F2BBs; 449 SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1. 450 451 F1BBs.push_back(&F1->getEntryBlock()); 452 F2BBs.push_back(&F2->getEntryBlock()); 453 454 VisitedBBs.insert(F1BBs[0]); 455 while (!F1BBs.empty()) { 456 const BasicBlock *F1BB = F1BBs.pop_back_val(); 457 const BasicBlock *F2BB = F2BBs.pop_back_val(); 458 459 if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB)) 460 return false; 461 462 const TerminatorInst *F1TI = F1BB->getTerminator(); 463 const TerminatorInst *F2TI = F2BB->getTerminator(); 464 465 assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors()); 466 for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) { 467 if (!VisitedBBs.insert(F1TI->getSuccessor(i))) 468 continue; 469 470 F1BBs.push_back(F1TI->getSuccessor(i)); 471 F2BBs.push_back(F2TI->getSuccessor(i)); 472 } 473 } 474 return true; 475 } 476 477 /// WriteThunk - Replace G with a simple tail call to bitcast(F). Also replace 478 /// direct uses of G with bitcast(F). 479 void MergeFunctions::WriteThunk(Function *F, Function *G) const { 480 if (!G->mayBeOverridden()) { 481 // Redirect direct callers of G to F. 482 Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType()); 483 for (Value::use_iterator UI = G->use_begin(), UE = G->use_end(); 484 UI != UE;) { 485 Value::use_iterator TheIter = UI; 486 ++UI; 487 CallSite CS(*TheIter); 488 if (CS && CS.isCallee(TheIter)) 489 TheIter.getUse().set(BitcastF); 490 } 491 } 492 493 // If G was internal then we may have replaced all uses if G with F. If so, 494 // stop here and delete G. There's no need for a thunk. 495 if (G->hasLocalLinkage() && G->use_empty()) { 496 G->eraseFromParent(); 497 return; 498 } 499 500 Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "", 501 G->getParent()); 502 BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG); 503 IRBuilder<false> Builder(BB); 504 505 SmallVector<Value *, 16> Args; 506 unsigned i = 0; 507 const FunctionType *FFTy = F->getFunctionType(); 508 for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end(); 509 AI != AE; ++AI) { 510 Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i))); 511 ++i; 512 } 513 514 CallInst *CI = Builder.CreateCall(F, Args.begin(), Args.end()); 515 CI->setTailCall(); 516 CI->setCallingConv(F->getCallingConv()); 517 if (NewG->getReturnType()->isVoidTy()) { 518 Builder.CreateRetVoid(); 519 } else { 520 Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType())); 521 } 522 523 NewG->copyAttributesFrom(G); 524 NewG->takeName(G); 525 G->replaceAllUsesWith(NewG); 526 G->eraseFromParent(); 527 } 528 529 /// MergeTwoFunctions - Merge two equivalent functions. Upon completion, 530 /// Function G is deleted. 531 void MergeFunctions::MergeTwoFunctions(Function *F, Function *G) const { 532 if (F->isWeakForLinker()) { 533 assert(G->isWeakForLinker()); 534 535 // Make them both thunks to the same internal function. 536 Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "", 537 F->getParent()); 538 H->copyAttributesFrom(F); 539 H->takeName(F); 540 F->replaceAllUsesWith(H); 541 542 unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment()); 543 544 WriteThunk(F, G); 545 WriteThunk(F, H); 546 547 F->setAlignment(MaxAlignment); 548 F->setLinkage(GlobalValue::InternalLinkage); 549 } else { 550 WriteThunk(F, G); 551 } 552 553 ++NumFunctionsMerged; 554 } 555 556 static unsigned ProfileFunction(const Function *F) { 557 const FunctionType *FTy = F->getFunctionType(); 558 559 FoldingSetNodeID ID; 560 ID.AddInteger(F->size()); 561 ID.AddInteger(F->getCallingConv()); 562 ID.AddBoolean(F->hasGC()); 563 ID.AddBoolean(FTy->isVarArg()); 564 ID.AddInteger(FTy->getReturnType()->getTypeID()); 565 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 566 ID.AddInteger(FTy->getParamType(i)->getTypeID()); 567 return ID.ComputeHash(); 568 } 569 570 class ComparableFunction { 571 public: 572 ComparableFunction(Function *Func, TargetData *TD) 573 : Func(Func), Hash(ProfileFunction(Func)), TD(TD) {} 574 575 AssertingVH<Function> const Func; 576 const unsigned Hash; 577 TargetData * const TD; 578 }; 579 580 struct MergeFunctionsEqualityInfo { 581 static ComparableFunction *getEmptyKey() { 582 return reinterpret_cast<ComparableFunction*>(0); 583 } 584 static ComparableFunction *getTombstoneKey() { 585 return reinterpret_cast<ComparableFunction*>(-1); 586 } 587 static unsigned getHashValue(const ComparableFunction *CF) { 588 return CF->Hash; 589 } 590 static bool isEqual(const ComparableFunction *LHS, 591 const ComparableFunction *RHS) { 592 if (LHS == RHS) 593 return true; 594 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 595 RHS == getEmptyKey() || RHS == getTombstoneKey()) 596 return false; 597 assert(LHS->TD == RHS->TD && "Comparing functions for different targets"); 598 return FunctionComparator(LHS->TD, LHS->Func, RHS->Func).Compare(); 599 } 600 }; 601 602 bool MergeFunctions::runOnModule(Module &M) { 603 typedef DenseSet<ComparableFunction *, MergeFunctionsEqualityInfo> FnSetType; 604 605 bool Changed = false; 606 TD = getAnalysisIfAvailable<TargetData>(); 607 608 std::vector<Function *> Funcs; 609 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 610 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage()) 611 Funcs.push_back(F); 612 } 613 614 bool LocalChanged; 615 do { 616 LocalChanged = false; 617 618 FnSetType FnSet; 619 for (unsigned i = 0, e = Funcs.size(); i != e;) { 620 Function *F = Funcs[i]; 621 ComparableFunction *NewF = new ComparableFunction(F, TD); 622 std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF); 623 if (!Result.second) { 624 ComparableFunction *&OldF = *Result.first; 625 assert(OldF && "Expected a hash collision"); 626 627 // NewF will be deleted in favour of OldF unless NewF is strong and 628 // OldF is weak in which case swap them to keep the strong definition. 629 630 if (OldF->Func->isWeakForLinker() && !NewF->Func->isWeakForLinker()) 631 std::swap(OldF, NewF); 632 633 DEBUG(dbgs() << " " << OldF->Func->getName() << " == " 634 << NewF->Func->getName() << '\n'); 635 636 Funcs.erase(Funcs.begin() + i); 637 --e; 638 639 Function *DeleteF = NewF->Func; 640 delete NewF; 641 MergeTwoFunctions(OldF->Func, DeleteF); 642 LocalChanged = true; 643 Changed = true; 644 } else { 645 ++i; 646 } 647 } 648 DeleteContainerPointers(FnSet); 649 } while (LocalChanged); 650 651 return Changed; 652 } 653