1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a transformation that attaches !callees metadata to 11 // indirect call sites. For a given call site, the metadata, if present, 12 // indicates the set of functions the call site could possibly target at 13 // run-time. This metadata is added to indirect call sites when the set of 14 // possible targets can be determined by analysis and is known to be small. The 15 // analysis driving the transformation is similar to constant propagation and 16 // makes uses of the generic sparse propagation solver. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/CalledValuePropagation.h" 21 #include "llvm/Analysis/SparsePropagation.h" 22 #include "llvm/Analysis/ValueLatticeUtils.h" 23 #include "llvm/IR/InstVisitor.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/Transforms/IPO.h" 26 using namespace llvm; 27 28 #define DEBUG_TYPE "called-value-propagation" 29 30 /// The maximum number of functions to track per lattice value. Once the number 31 /// of functions a call site can possibly target exceeds this threshold, it's 32 /// lattice value becomes overdefined. The number of possible lattice values is 33 /// bounded by Ch(F, M), where F is the number of functions in the module and M 34 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We 35 /// likely can't do anything useful for call sites with a large number of 36 /// possible targets, anyway. 37 static cl::opt<unsigned> MaxFunctionsPerValue( 38 "cvp-max-functions-per-value", cl::Hidden, cl::init(4), 39 cl::desc("The maximum number of functions to track per lattice value")); 40 41 namespace { 42 /// To enable interprocedural analysis, we assign LLVM values to the following 43 /// groups. The register group represents SSA registers, the return group 44 /// represents the return values of functions, and the memory group represents 45 /// in-memory values. An LLVM Value can technically be in more than one group. 46 /// It's necessary to distinguish these groups so we can, for example, track a 47 /// global variable separately from the value stored at its location. 48 enum class IPOGrouping { Register, Return, Memory }; 49 50 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings. 51 using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>; 52 53 /// The lattice value type used by our custom lattice function. It holds the 54 /// lattice state, and a set of functions. 55 class CVPLatticeVal { 56 public: 57 /// The states of the lattice values. Only the FunctionSet state is 58 /// interesting. It indicates the set of functions to which an LLVM value may 59 /// refer. 60 enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked }; 61 62 /// Comparator for sorting the functions set. We want to keep the order 63 /// deterministic for testing, etc. 64 struct Compare { 65 bool operator()(const Function *LHS, const Function *RHS) const { 66 return LHS->getName() < RHS->getName(); 67 } 68 }; 69 70 CVPLatticeVal() : LatticeState(Undefined) {} 71 CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {} 72 CVPLatticeVal(std::vector<Function *> &&Functions) 73 : LatticeState(FunctionSet), Functions(std::move(Functions)) { 74 assert(std::is_sorted(this->Functions.begin(), this->Functions.end(), 75 Compare())); 76 } 77 78 /// Get a reference to the functions held by this lattice value. The number 79 /// of functions will be zero for states other than FunctionSet. 80 const std::vector<Function *> &getFunctions() const { 81 return Functions; 82 } 83 84 /// Returns true if the lattice value is in the FunctionSet state. 85 bool isFunctionSet() const { return LatticeState == FunctionSet; } 86 87 bool operator==(const CVPLatticeVal &RHS) const { 88 return LatticeState == RHS.LatticeState && Functions == RHS.Functions; 89 } 90 91 bool operator!=(const CVPLatticeVal &RHS) const { 92 return LatticeState != RHS.LatticeState || Functions != RHS.Functions; 93 } 94 95 private: 96 /// Holds the state this lattice value is in. 97 CVPLatticeStateTy LatticeState; 98 99 /// Holds functions indicating the possible targets of call sites. This set 100 /// is empty for lattice values in the undefined, overdefined, and untracked 101 /// states. The maximum size of the set is controlled by 102 /// MaxFunctionsPerValue. Since most LLVM values are expected to be in 103 /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be 104 /// small and efficiently copyable. 105 // FIXME: This could be a TinyPtrVector and/or merge with LatticeState. 106 std::vector<Function *> Functions; 107 }; 108 109 /// The custom lattice function used by the generic sparse propagation solver. 110 /// It handles merging lattice values and computing new lattice values for 111 /// constants, arguments, values returned from trackable functions, and values 112 /// located in trackable global variables. It also computes the lattice values 113 /// that change as a result of executing instructions. 114 class CVPLatticeFunc 115 : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> { 116 public: 117 CVPLatticeFunc() 118 : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined), 119 CVPLatticeVal(CVPLatticeVal::Overdefined), 120 CVPLatticeVal(CVPLatticeVal::Untracked)) {} 121 122 /// Compute and return a CVPLatticeVal for the given CVPLatticeKey. 123 CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override { 124 switch (Key.getInt()) { 125 case IPOGrouping::Register: 126 if (isa<Instruction>(Key.getPointer())) { 127 return getUndefVal(); 128 } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) { 129 if (canTrackArgumentsInterprocedurally(A->getParent())) 130 return getUndefVal(); 131 } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) { 132 return computeConstant(C); 133 } 134 return getOverdefinedVal(); 135 case IPOGrouping::Memory: 136 case IPOGrouping::Return: 137 if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) { 138 if (canTrackGlobalVariableInterprocedurally(GV)) 139 return computeConstant(GV->getInitializer()); 140 } else if (auto *F = cast<Function>(Key.getPointer())) 141 if (canTrackReturnsInterprocedurally(F)) 142 return getUndefVal(); 143 } 144 return getOverdefinedVal(); 145 } 146 147 /// Merge the two given lattice values. The interesting cases are merging two 148 /// FunctionSet values and a FunctionSet value with an Undefined value. For 149 /// these cases, we simply union the function sets. If the size of the union 150 /// is greater than the maximum functions we track, the merged value is 151 /// overdefined. 152 CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override { 153 if (X == getOverdefinedVal() || Y == getOverdefinedVal()) 154 return getOverdefinedVal(); 155 if (X == getUndefVal() && Y == getUndefVal()) 156 return getUndefVal(); 157 std::vector<Function *> Union; 158 std::set_union(X.getFunctions().begin(), X.getFunctions().end(), 159 Y.getFunctions().begin(), Y.getFunctions().end(), 160 std::back_inserter(Union), CVPLatticeVal::Compare{}); 161 if (Union.size() > MaxFunctionsPerValue) 162 return getOverdefinedVal(); 163 return CVPLatticeVal(std::move(Union)); 164 } 165 166 /// Compute the lattice values that change as a result of executing the given 167 /// instruction. The changed values are stored in \p ChangedValues. We handle 168 /// just a few kinds of instructions since we're only propagating values that 169 /// can be called. 170 void ComputeInstructionState( 171 Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 172 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override { 173 switch (I.getOpcode()) { 174 case Instruction::Call: 175 return visitCallSite(cast<CallInst>(&I), ChangedValues, SS); 176 case Instruction::Invoke: 177 return visitCallSite(cast<InvokeInst>(&I), ChangedValues, SS); 178 case Instruction::Load: 179 return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS); 180 case Instruction::Ret: 181 return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS); 182 case Instruction::Select: 183 return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS); 184 case Instruction::Store: 185 return visitStore(*cast<StoreInst>(&I), ChangedValues, SS); 186 default: 187 return visitInst(I, ChangedValues, SS); 188 } 189 } 190 191 /// Print the given CVPLatticeVal to the specified stream. 192 void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override { 193 if (LV == getUndefVal()) 194 OS << "Undefined "; 195 else if (LV == getOverdefinedVal()) 196 OS << "Overdefined"; 197 else if (LV == getUntrackedVal()) 198 OS << "Untracked "; 199 else 200 OS << "FunctionSet"; 201 } 202 203 /// Print the given CVPLatticeKey to the specified stream. 204 void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override { 205 if (Key.getInt() == IPOGrouping::Register) 206 OS << "<reg> "; 207 else if (Key.getInt() == IPOGrouping::Memory) 208 OS << "<mem> "; 209 else if (Key.getInt() == IPOGrouping::Return) 210 OS << "<ret> "; 211 if (isa<Function>(Key.getPointer())) 212 OS << Key.getPointer()->getName(); 213 else 214 OS << *Key.getPointer(); 215 } 216 217 /// We collect a set of indirect calls when visiting call sites. This method 218 /// returns a reference to that set. 219 SmallPtrSetImpl<Instruction *> &getIndirectCalls() { return IndirectCalls; } 220 221 private: 222 /// Holds the indirect calls we encounter during the analysis. We will attach 223 /// metadata to these calls after the analysis indicating the functions the 224 /// calls can possibly target. 225 SmallPtrSet<Instruction *, 32> IndirectCalls; 226 227 /// Compute a new lattice value for the given constant. The constant, after 228 /// stripping any pointer casts, should be a Function. We ignore null 229 /// pointers as an optimization, since calling these values is undefined 230 /// behavior. 231 CVPLatticeVal computeConstant(Constant *C) { 232 if (isa<ConstantPointerNull>(C)) 233 return CVPLatticeVal(CVPLatticeVal::FunctionSet); 234 if (auto *F = dyn_cast<Function>(C->stripPointerCasts())) 235 return CVPLatticeVal({F}); 236 return getOverdefinedVal(); 237 } 238 239 /// Handle return instructions. The function's return state is the merge of 240 /// the returned value state and the function's return state. 241 void visitReturn(ReturnInst &I, 242 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 243 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 244 Function *F = I.getParent()->getParent(); 245 if (F->getReturnType()->isVoidTy()) 246 return; 247 auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register); 248 auto RetF = CVPLatticeKey(F, IPOGrouping::Return); 249 ChangedValues[RetF] = 250 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); 251 } 252 253 /// Handle call sites. The state of a called function's formal arguments is 254 /// the merge of the argument state with the call sites corresponding actual 255 /// argument state. The call site state is the merge of the call site state 256 /// with the returned value state of the called function. 257 void visitCallSite(CallSite CS, 258 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 259 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 260 Function *F = CS.getCalledFunction(); 261 Instruction *I = CS.getInstruction(); 262 auto RegI = CVPLatticeKey(I, IPOGrouping::Register); 263 264 // If this is an indirect call, save it so we can quickly revisit it when 265 // attaching metadata. 266 if (!F) 267 IndirectCalls.insert(I); 268 269 // If we can't track the function's return values, there's nothing to do. 270 if (!F || !canTrackReturnsInterprocedurally(F)) { 271 // Void return, No need to create and update CVPLattice state as no one 272 // can use it. 273 if (I->getType()->isVoidTy()) 274 return; 275 ChangedValues[RegI] = getOverdefinedVal(); 276 return; 277 } 278 279 // Inform the solver that the called function is executable, and perform 280 // the merges for the arguments and return value. 281 SS.MarkBlockExecutable(&F->front()); 282 auto RetF = CVPLatticeKey(F, IPOGrouping::Return); 283 for (Argument &A : F->args()) { 284 auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register); 285 auto RegActual = 286 CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register); 287 ChangedValues[RegFormal] = 288 MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual)); 289 } 290 291 // Void return, No need to create and update CVPLattice state as no one can 292 // use it. 293 if (I->getType()->isVoidTy()) 294 return; 295 296 ChangedValues[RegI] = 297 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); 298 } 299 300 /// Handle select instructions. The select instruction state is the merge the 301 /// true and false value states. 302 void visitSelect(SelectInst &I, 303 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 304 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 305 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); 306 auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register); 307 auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register); 308 ChangedValues[RegI] = 309 MergeValues(SS.getValueState(RegT), SS.getValueState(RegF)); 310 } 311 312 /// Handle load instructions. If the pointer operand of the load is a global 313 /// variable, we attempt to track the value. The loaded value state is the 314 /// merge of the loaded value state with the global variable state. 315 void visitLoad(LoadInst &I, 316 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 317 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 318 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); 319 if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) { 320 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); 321 ChangedValues[RegI] = 322 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); 323 } else { 324 ChangedValues[RegI] = getOverdefinedVal(); 325 } 326 } 327 328 /// Handle store instructions. If the pointer operand of the store is a 329 /// global variable, we attempt to track the value. The global variable state 330 /// is the merge of the stored value state with the global variable state. 331 void visitStore(StoreInst &I, 332 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 333 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 334 auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand()); 335 if (!GV) 336 return; 337 auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register); 338 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); 339 ChangedValues[MemGV] = 340 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); 341 } 342 343 /// Handle all other instructions. All other instructions are marked 344 /// overdefined. 345 void visitInst(Instruction &I, 346 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, 347 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { 348 // Simply bail if this instruction has no user. 349 if (I.use_empty()) 350 return; 351 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); 352 ChangedValues[RegI] = getOverdefinedVal(); 353 } 354 }; 355 } // namespace 356 357 namespace llvm { 358 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver 359 /// must translate between LatticeKeys and LLVM Values when adding Values to 360 /// its work list and inspecting the state of control-flow related values. 361 template <> struct LatticeKeyInfo<CVPLatticeKey> { 362 static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) { 363 return Key.getPointer(); 364 } 365 static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) { 366 return CVPLatticeKey(V, IPOGrouping::Register); 367 } 368 }; 369 } // namespace llvm 370 371 static bool runCVP(Module &M) { 372 // Our custom lattice function and generic sparse propagation solver. 373 CVPLatticeFunc Lattice; 374 SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice); 375 376 // For each function in the module, if we can't track its arguments, let the 377 // generic solver assume it is executable. 378 for (Function &F : M) 379 if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F)) 380 Solver.MarkBlockExecutable(&F.front()); 381 382 // Solver our custom lattice. In doing so, we will also build a set of 383 // indirect call sites. 384 Solver.Solve(); 385 386 // Attach metadata to the indirect call sites that were collected indicating 387 // the set of functions they can possibly target. 388 bool Changed = false; 389 MDBuilder MDB(M.getContext()); 390 for (Instruction *C : Lattice.getIndirectCalls()) { 391 CallSite CS(C); 392 auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register); 393 CVPLatticeVal LV = Solver.getExistingValueState(RegI); 394 if (!LV.isFunctionSet() || LV.getFunctions().empty()) 395 continue; 396 MDNode *Callees = MDB.createCallees(LV.getFunctions()); 397 C->setMetadata(LLVMContext::MD_callees, Callees); 398 Changed = true; 399 } 400 401 return Changed; 402 } 403 404 PreservedAnalyses CalledValuePropagationPass::run(Module &M, 405 ModuleAnalysisManager &) { 406 runCVP(M); 407 return PreservedAnalyses::all(); 408 } 409 410 namespace { 411 class CalledValuePropagationLegacyPass : public ModulePass { 412 public: 413 static char ID; 414 415 void getAnalysisUsage(AnalysisUsage &AU) const override { 416 AU.setPreservesAll(); 417 } 418 419 CalledValuePropagationLegacyPass() : ModulePass(ID) { 420 initializeCalledValuePropagationLegacyPassPass( 421 *PassRegistry::getPassRegistry()); 422 } 423 424 bool runOnModule(Module &M) override { 425 if (skipModule(M)) 426 return false; 427 return runCVP(M); 428 } 429 }; 430 } // namespace 431 432 char CalledValuePropagationLegacyPass::ID = 0; 433 INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation", 434 "Called Value Propagation", false, false) 435 436 ModulePass *llvm::createCalledValuePropagationPass() { 437 return new CalledValuePropagationLegacyPass(); 438 } 439