1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass promotes "by reference" arguments to be "by value" arguments. In 11 // practice, this means looking for internal functions that have pointer 12 // arguments. If it can prove, through the use of alias analysis, that an 13 // argument is *only* loaded, then it can pass the value into the function 14 // instead of the address of the value. This can cause recursive simplification 15 // of code and lead to the elimination of allocas (especially in C++ template 16 // code like the STL). 17 // 18 // This pass also handles aggregate arguments that are passed into a function, 19 // scalarizing them if the elements of the aggregate are only loaded. Note that 20 // by default it refuses to scalarize aggregates which would require passing in 21 // more than three operands to the function, because passing thousands of 22 // operands for a large array or structure is unprofitable! This limit can be 23 // configured or disabled, however. 24 // 25 // Note that this transformation could also be done for arguments that are only 26 // stored to (returning the value instead), but does not currently. This case 27 // would be best handled when and if LLVM begins supporting multiple return 28 // values from functions. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/Transforms/IPO/ArgumentPromotion.h" 33 #include "llvm/ADT/DepthFirstIterator.h" 34 #include "llvm/ADT/None.h" 35 #include "llvm/ADT/Optional.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/ADT/SmallPtrSet.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/ADT/StringExtras.h" 41 #include "llvm/ADT/Twine.h" 42 #include "llvm/Analysis/AliasAnalysis.h" 43 #include "llvm/Analysis/AssumptionCache.h" 44 #include "llvm/Analysis/BasicAliasAnalysis.h" 45 #include "llvm/Analysis/CGSCCPassManager.h" 46 #include "llvm/Analysis/CallGraph.h" 47 #include "llvm/Analysis/CallGraphSCCPass.h" 48 #include "llvm/Analysis/LazyCallGraph.h" 49 #include "llvm/Analysis/Loads.h" 50 #include "llvm/Analysis/MemoryLocation.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Analysis/TargetTransformInfo.h" 53 #include "llvm/IR/Argument.h" 54 #include "llvm/IR/Attributes.h" 55 #include "llvm/IR/BasicBlock.h" 56 #include "llvm/IR/CFG.h" 57 #include "llvm/IR/CallSite.h" 58 #include "llvm/IR/Constants.h" 59 #include "llvm/IR/DataLayout.h" 60 #include "llvm/IR/DerivedTypes.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/InstrTypes.h" 63 #include "llvm/IR/Instruction.h" 64 #include "llvm/IR/Instructions.h" 65 #include "llvm/IR/Metadata.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/IPO.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cstdint> 80 #include <functional> 81 #include <iterator> 82 #include <map> 83 #include <set> 84 #include <string> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "argpromotion" 91 92 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted"); 93 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); 94 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted"); 95 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated"); 96 97 /// A vector used to hold the indices of a single GEP instruction 98 using IndicesVector = std::vector<uint64_t>; 99 100 /// DoPromotion - This method actually performs the promotion of the specified 101 /// arguments, and returns the new function. At this point, we know that it's 102 /// safe to do so. 103 static Function * 104 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote, 105 SmallPtrSetImpl<Argument *> &ByValArgsToTransform, 106 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>> 107 ReplaceCallSite) { 108 // Start by computing a new prototype for the function, which is the same as 109 // the old function, but has modified arguments. 110 FunctionType *FTy = F->getFunctionType(); 111 std::vector<Type *> Params; 112 113 using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>; 114 115 // ScalarizedElements - If we are promoting a pointer that has elements 116 // accessed out of it, keep track of which elements are accessed so that we 117 // can add one argument for each. 118 // 119 // Arguments that are directly loaded will have a zero element value here, to 120 // handle cases where there are both a direct load and GEP accesses. 121 std::map<Argument *, ScalarizeTable> ScalarizedElements; 122 123 // OriginalLoads - Keep track of a representative load instruction from the 124 // original function so that we can tell the alias analysis implementation 125 // what the new GEP/Load instructions we are inserting look like. 126 // We need to keep the original loads for each argument and the elements 127 // of the argument that are accessed. 128 std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads; 129 130 // Attribute - Keep track of the parameter attributes for the arguments 131 // that we are *not* promoting. For the ones that we do promote, the parameter 132 // attributes are lost 133 SmallVector<AttributeSet, 8> ArgAttrVec; 134 AttributeList PAL = F->getAttributes(); 135 136 // First, determine the new argument list 137 unsigned ArgNo = 0; 138 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 139 ++I, ++ArgNo) { 140 if (ByValArgsToTransform.count(&*I)) { 141 // Simple byval argument? Just add all the struct element types. 142 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 143 StructType *STy = cast<StructType>(AgTy); 144 Params.insert(Params.end(), STy->element_begin(), STy->element_end()); 145 ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(), 146 AttributeSet()); 147 ++NumByValArgsPromoted; 148 } else if (!ArgsToPromote.count(&*I)) { 149 // Unchanged argument 150 Params.push_back(I->getType()); 151 ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo)); 152 } else if (I->use_empty()) { 153 // Dead argument (which are always marked as promotable) 154 ++NumArgumentsDead; 155 156 // There may be remaining metadata uses of the argument for things like 157 // llvm.dbg.value. Replace them with undef. 158 I->replaceAllUsesWith(UndefValue::get(I->getType())); 159 } else { 160 // Okay, this is being promoted. This means that the only uses are loads 161 // or GEPs which are only used by loads 162 163 // In this table, we will track which indices are loaded from the argument 164 // (where direct loads are tracked as no indices). 165 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 166 for (User *U : I->users()) { 167 Instruction *UI = cast<Instruction>(U); 168 Type *SrcTy; 169 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 170 SrcTy = L->getType(); 171 else 172 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType(); 173 IndicesVector Indices; 174 Indices.reserve(UI->getNumOperands() - 1); 175 // Since loads will only have a single operand, and GEPs only a single 176 // non-index operand, this will record direct loads without any indices, 177 // and gep+loads with the GEP indices. 178 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end(); 179 II != IE; ++II) 180 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); 181 // GEPs with a single 0 index can be merged with direct loads 182 if (Indices.size() == 1 && Indices.front() == 0) 183 Indices.clear(); 184 ArgIndices.insert(std::make_pair(SrcTy, Indices)); 185 LoadInst *OrigLoad; 186 if (LoadInst *L = dyn_cast<LoadInst>(UI)) 187 OrigLoad = L; 188 else 189 // Take any load, we will use it only to update Alias Analysis 190 OrigLoad = cast<LoadInst>(UI->user_back()); 191 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad; 192 } 193 194 // Add a parameter to the function for each element passed in. 195 for (const auto &ArgIndex : ArgIndices) { 196 // not allowed to dereference ->begin() if size() is 0 197 Params.push_back(GetElementPtrInst::getIndexedType( 198 cast<PointerType>(I->getType()->getScalarType())->getElementType(), 199 ArgIndex.second)); 200 ArgAttrVec.push_back(AttributeSet()); 201 assert(Params.back()); 202 } 203 204 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty()) 205 ++NumArgumentsPromoted; 206 else 207 ++NumAggregatesPromoted; 208 } 209 } 210 211 Type *RetTy = FTy->getReturnType(); 212 213 // Construct the new function type using the new arguments. 214 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); 215 216 // Create the new function body and insert it into the module. 217 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(), 218 F->getName()); 219 NF->copyAttributesFrom(F); 220 221 // Patch the pointer to LLVM function in debug info descriptor. 222 NF->setSubprogram(F->getSubprogram()); 223 F->setSubprogram(nullptr); 224 225 LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n" 226 << "From: " << *F); 227 228 // Recompute the parameter attributes list based on the new arguments for 229 // the function. 230 NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(), 231 PAL.getRetAttributes(), ArgAttrVec)); 232 ArgAttrVec.clear(); 233 234 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 235 NF->takeName(F); 236 237 // Loop over all of the callers of the function, transforming the call sites 238 // to pass in the loaded pointers. 239 // 240 SmallVector<Value *, 16> Args; 241 while (!F->use_empty()) { 242 CallSite CS(F->user_back()); 243 assert(CS.getCalledFunction() == F); 244 Instruction *Call = CS.getInstruction(); 245 const AttributeList &CallPAL = CS.getAttributes(); 246 247 // Loop over the operands, inserting GEP and loads in the caller as 248 // appropriate. 249 CallSite::arg_iterator AI = CS.arg_begin(); 250 ArgNo = 0; 251 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 252 ++I, ++AI, ++ArgNo) 253 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 254 Args.push_back(*AI); // Unmodified argument 255 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); 256 } else if (ByValArgsToTransform.count(&*I)) { 257 // Emit a GEP and load for each element of the struct. 258 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 259 StructType *STy = cast<StructType>(AgTy); 260 Value *Idxs[2] = { 261 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr}; 262 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 263 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 264 Value *Idx = GetElementPtrInst::Create( 265 STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call); 266 // TODO: Tell AA about the new values? 267 Args.push_back(new LoadInst(Idx, Idx->getName() + ".val", Call)); 268 ArgAttrVec.push_back(AttributeSet()); 269 } 270 } else if (!I->use_empty()) { 271 // Non-dead argument: insert GEPs and loads as appropriate. 272 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 273 // Store the Value* version of the indices in here, but declare it now 274 // for reuse. 275 std::vector<Value *> Ops; 276 for (const auto &ArgIndex : ArgIndices) { 277 Value *V = *AI; 278 LoadInst *OrigLoad = 279 OriginalLoads[std::make_pair(&*I, ArgIndex.second)]; 280 if (!ArgIndex.second.empty()) { 281 Ops.reserve(ArgIndex.second.size()); 282 Type *ElTy = V->getType(); 283 for (auto II : ArgIndex.second) { 284 // Use i32 to index structs, and i64 for others (pointers/arrays). 285 // This satisfies GEP constraints. 286 Type *IdxTy = 287 (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext()) 288 : Type::getInt64Ty(F->getContext())); 289 Ops.push_back(ConstantInt::get(IdxTy, II)); 290 // Keep track of the type we're currently indexing. 291 if (auto *ElPTy = dyn_cast<PointerType>(ElTy)) 292 ElTy = ElPTy->getElementType(); 293 else 294 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II); 295 } 296 // And create a GEP to extract those indices. 297 V = GetElementPtrInst::Create(ArgIndex.first, V, Ops, 298 V->getName() + ".idx", Call); 299 Ops.clear(); 300 } 301 // Since we're replacing a load make sure we take the alignment 302 // of the previous load. 303 LoadInst *newLoad = new LoadInst(V, V->getName() + ".val", Call); 304 newLoad->setAlignment(OrigLoad->getAlignment()); 305 // Transfer the AA info too. 306 AAMDNodes AAInfo; 307 OrigLoad->getAAMetadata(AAInfo); 308 newLoad->setAAMetadata(AAInfo); 309 310 Args.push_back(newLoad); 311 ArgAttrVec.push_back(AttributeSet()); 312 } 313 } 314 315 // Push any varargs arguments on the list. 316 for (; AI != CS.arg_end(); ++AI, ++ArgNo) { 317 Args.push_back(*AI); 318 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); 319 } 320 321 SmallVector<OperandBundleDef, 1> OpBundles; 322 CS.getOperandBundlesAsDefs(OpBundles); 323 324 CallSite NewCS; 325 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 326 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 327 Args, OpBundles, "", Call); 328 } else { 329 auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call); 330 NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind()); 331 NewCS = NewCall; 332 } 333 NewCS.setCallingConv(CS.getCallingConv()); 334 NewCS.setAttributes( 335 AttributeList::get(F->getContext(), CallPAL.getFnAttributes(), 336 CallPAL.getRetAttributes(), ArgAttrVec)); 337 NewCS->setDebugLoc(Call->getDebugLoc()); 338 uint64_t W; 339 if (Call->extractProfTotalWeight(W)) 340 NewCS->setProfWeight(W); 341 Args.clear(); 342 ArgAttrVec.clear(); 343 344 // Update the callgraph to know that the callsite has been transformed. 345 if (ReplaceCallSite) 346 (*ReplaceCallSite)(CS, NewCS); 347 348 if (!Call->use_empty()) { 349 Call->replaceAllUsesWith(NewCS.getInstruction()); 350 NewCS->takeName(Call); 351 } 352 353 // Finally, remove the old call from the program, reducing the use-count of 354 // F. 355 Call->eraseFromParent(); 356 } 357 358 const DataLayout &DL = F->getParent()->getDataLayout(); 359 360 // Since we have now created the new function, splice the body of the old 361 // function right into the new function, leaving the old rotting hulk of the 362 // function empty. 363 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); 364 365 // Loop over the argument list, transferring uses of the old arguments over to 366 // the new arguments, also transferring over the names as well. 367 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 368 I2 = NF->arg_begin(); 369 I != E; ++I) { 370 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { 371 // If this is an unmodified argument, move the name and users over to the 372 // new version. 373 I->replaceAllUsesWith(&*I2); 374 I2->takeName(&*I); 375 ++I2; 376 continue; 377 } 378 379 if (ByValArgsToTransform.count(&*I)) { 380 // In the callee, we create an alloca, and store each of the new incoming 381 // arguments into the alloca. 382 Instruction *InsertPt = &NF->begin()->front(); 383 384 // Just add all the struct element types. 385 Type *AgTy = cast<PointerType>(I->getType())->getElementType(); 386 Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr, 387 I->getParamAlignment(), "", InsertPt); 388 StructType *STy = cast<StructType>(AgTy); 389 Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 390 nullptr}; 391 392 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 393 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); 394 Value *Idx = GetElementPtrInst::Create( 395 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i), 396 InsertPt); 397 I2->setName(I->getName() + "." + Twine(i)); 398 new StoreInst(&*I2++, Idx, InsertPt); 399 } 400 401 // Anything that used the arg should now use the alloca. 402 I->replaceAllUsesWith(TheAlloca); 403 TheAlloca->takeName(&*I); 404 405 // If the alloca is used in a call, we must clear the tail flag since 406 // the callee now uses an alloca from the caller. 407 for (User *U : TheAlloca->users()) { 408 CallInst *Call = dyn_cast<CallInst>(U); 409 if (!Call) 410 continue; 411 Call->setTailCall(false); 412 } 413 continue; 414 } 415 416 if (I->use_empty()) 417 continue; 418 419 // Otherwise, if we promoted this argument, then all users are load 420 // instructions (or GEPs with only load users), and all loads should be 421 // using the new argument that we added. 422 ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; 423 424 while (!I->use_empty()) { 425 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) { 426 assert(ArgIndices.begin()->second.empty() && 427 "Load element should sort to front!"); 428 I2->setName(I->getName() + ".val"); 429 LI->replaceAllUsesWith(&*I2); 430 LI->eraseFromParent(); 431 LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() 432 << "' in function '" << F->getName() << "'\n"); 433 } else { 434 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back()); 435 IndicesVector Operands; 436 Operands.reserve(GEP->getNumIndices()); 437 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 438 II != IE; ++II) 439 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue()); 440 441 // GEPs with a single 0 index can be merged with direct loads 442 if (Operands.size() == 1 && Operands.front() == 0) 443 Operands.clear(); 444 445 Function::arg_iterator TheArg = I2; 446 for (ScalarizeTable::iterator It = ArgIndices.begin(); 447 It->second != Operands; ++It, ++TheArg) { 448 assert(It != ArgIndices.end() && "GEP not handled??"); 449 } 450 451 std::string NewName = I->getName(); 452 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 453 NewName += "." + utostr(Operands[i]); 454 } 455 NewName += ".val"; 456 TheArg->setName(NewName); 457 458 LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() 459 << "' of function '" << NF->getName() << "'\n"); 460 461 // All of the uses must be load instructions. Replace them all with 462 // the argument specified by ArgNo. 463 while (!GEP->use_empty()) { 464 LoadInst *L = cast<LoadInst>(GEP->user_back()); 465 L->replaceAllUsesWith(&*TheArg); 466 L->eraseFromParent(); 467 } 468 GEP->eraseFromParent(); 469 } 470 } 471 472 // Increment I2 past all of the arguments added for this promoted pointer. 473 std::advance(I2, ArgIndices.size()); 474 } 475 476 return NF; 477 } 478 479 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that 480 /// all callees pass in a valid pointer for the specified function argument. 481 static bool allCallersPassInValidPointerForArgument(Argument *Arg) { 482 Function *Callee = Arg->getParent(); 483 const DataLayout &DL = Callee->getParent()->getDataLayout(); 484 485 unsigned ArgNo = Arg->getArgNo(); 486 487 // Look at all call sites of the function. At this point we know we only have 488 // direct callees. 489 for (User *U : Callee->users()) { 490 CallSite CS(U); 491 assert(CS && "Should only have direct calls!"); 492 493 if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL)) 494 return false; 495 } 496 return true; 497 } 498 499 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size 500 /// that is greater than or equal to the size of prefix, and each of the 501 /// elements in Prefix is the same as the corresponding elements in Longer. 502 /// 503 /// This means it also returns true when Prefix and Longer are equal! 504 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) { 505 if (Prefix.size() > Longer.size()) 506 return false; 507 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); 508 } 509 510 /// Checks if Indices, or a prefix of Indices, is in Set. 511 static bool prefixIn(const IndicesVector &Indices, 512 std::set<IndicesVector> &Set) { 513 std::set<IndicesVector>::iterator Low; 514 Low = Set.upper_bound(Indices); 515 if (Low != Set.begin()) 516 Low--; 517 // Low is now the last element smaller than or equal to Indices. This means 518 // it points to a prefix of Indices (possibly Indices itself), if such 519 // prefix exists. 520 // 521 // This load is safe if any prefix of its operands is safe to load. 522 return Low != Set.end() && isPrefix(*Low, Indices); 523 } 524 525 /// Mark the given indices (ToMark) as safe in the given set of indices 526 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there 527 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe 528 /// already. Furthermore, any indices that Indices is itself a prefix of, are 529 /// removed from Safe (since they are implicitely safe because of Indices now). 530 static void markIndicesSafe(const IndicesVector &ToMark, 531 std::set<IndicesVector> &Safe) { 532 std::set<IndicesVector>::iterator Low; 533 Low = Safe.upper_bound(ToMark); 534 // Guard against the case where Safe is empty 535 if (Low != Safe.begin()) 536 Low--; 537 // Low is now the last element smaller than or equal to Indices. This 538 // means it points to a prefix of Indices (possibly Indices itself), if 539 // such prefix exists. 540 if (Low != Safe.end()) { 541 if (isPrefix(*Low, ToMark)) 542 // If there is already a prefix of these indices (or exactly these 543 // indices) marked a safe, don't bother adding these indices 544 return; 545 546 // Increment Low, so we can use it as a "insert before" hint 547 ++Low; 548 } 549 // Insert 550 Low = Safe.insert(Low, ToMark); 551 ++Low; 552 // If there we're a prefix of longer index list(s), remove those 553 std::set<IndicesVector>::iterator End = Safe.end(); 554 while (Low != End && isPrefix(ToMark, *Low)) { 555 std::set<IndicesVector>::iterator Remove = Low; 556 ++Low; 557 Safe.erase(Remove); 558 } 559 } 560 561 /// isSafeToPromoteArgument - As you might guess from the name of this method, 562 /// it checks to see if it is both safe and useful to promote the argument. 563 /// This method limits promotion of aggregates to only promote up to three 564 /// elements of the aggregate in order to avoid exploding the number of 565 /// arguments passed in. 566 static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca, 567 AAResults &AAR, unsigned MaxElements) { 568 using GEPIndicesSet = std::set<IndicesVector>; 569 570 // Quick exit for unused arguments 571 if (Arg->use_empty()) 572 return true; 573 574 // We can only promote this argument if all of the uses are loads, or are GEP 575 // instructions (with constant indices) that are subsequently loaded. 576 // 577 // Promoting the argument causes it to be loaded in the caller 578 // unconditionally. This is only safe if we can prove that either the load 579 // would have happened in the callee anyway (ie, there is a load in the entry 580 // block) or the pointer passed in at every call site is guaranteed to be 581 // valid. 582 // In the former case, invalid loads can happen, but would have happened 583 // anyway, in the latter case, invalid loads won't happen. This prevents us 584 // from introducing an invalid load that wouldn't have happened in the 585 // original code. 586 // 587 // This set will contain all sets of indices that are loaded in the entry 588 // block, and thus are safe to unconditionally load in the caller. 589 // 590 // This optimization is also safe for InAlloca parameters, because it verifies 591 // that the address isn't captured. 592 GEPIndicesSet SafeToUnconditionallyLoad; 593 594 // This set contains all the sets of indices that we are planning to promote. 595 // This makes it possible to limit the number of arguments added. 596 GEPIndicesSet ToPromote; 597 598 // If the pointer is always valid, any load with first index 0 is valid. 599 if (isByValOrInAlloca || allCallersPassInValidPointerForArgument(Arg)) 600 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); 601 602 // First, iterate the entry block and mark loads of (geps of) arguments as 603 // safe. 604 BasicBlock &EntryBlock = Arg->getParent()->front(); 605 // Declare this here so we can reuse it 606 IndicesVector Indices; 607 for (Instruction &I : EntryBlock) 608 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 609 Value *V = LI->getPointerOperand(); 610 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 611 V = GEP->getPointerOperand(); 612 if (V == Arg) { 613 // This load actually loads (part of) Arg? Check the indices then. 614 Indices.reserve(GEP->getNumIndices()); 615 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); 616 II != IE; ++II) 617 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) 618 Indices.push_back(CI->getSExtValue()); 619 else 620 // We found a non-constant GEP index for this argument? Bail out 621 // right away, can't promote this argument at all. 622 return false; 623 624 // Indices checked out, mark them as safe 625 markIndicesSafe(Indices, SafeToUnconditionallyLoad); 626 Indices.clear(); 627 } 628 } else if (V == Arg) { 629 // Direct loads are equivalent to a GEP with a single 0 index. 630 markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); 631 } 632 } 633 634 // Now, iterate all uses of the argument to see if there are any uses that are 635 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. 636 SmallVector<LoadInst *, 16> Loads; 637 IndicesVector Operands; 638 for (Use &U : Arg->uses()) { 639 User *UR = U.getUser(); 640 Operands.clear(); 641 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { 642 // Don't hack volatile/atomic loads 643 if (!LI->isSimple()) 644 return false; 645 Loads.push_back(LI); 646 // Direct loads are equivalent to a GEP with a zero index and then a load. 647 Operands.push_back(0); 648 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { 649 if (GEP->use_empty()) { 650 // Dead GEP's cause trouble later. Just remove them if we run into 651 // them. 652 GEP->eraseFromParent(); 653 // TODO: This runs the above loop over and over again for dead GEPs 654 // Couldn't we just do increment the UI iterator earlier and erase the 655 // use? 656 return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR, 657 MaxElements); 658 } 659 660 // Ensure that all of the indices are constants. 661 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e; 662 ++i) 663 if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) 664 Operands.push_back(C->getSExtValue()); 665 else 666 return false; // Not a constant operand GEP! 667 668 // Ensure that the only users of the GEP are load instructions. 669 for (User *GEPU : GEP->users()) 670 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { 671 // Don't hack volatile/atomic loads 672 if (!LI->isSimple()) 673 return false; 674 Loads.push_back(LI); 675 } else { 676 // Other uses than load? 677 return false; 678 } 679 } else { 680 return false; // Not a load or a GEP. 681 } 682 683 // Now, see if it is safe to promote this load / loads of this GEP. Loading 684 // is safe if Operands, or a prefix of Operands, is marked as safe. 685 if (!prefixIn(Operands, SafeToUnconditionallyLoad)) 686 return false; 687 688 // See if we are already promoting a load with these indices. If not, check 689 // to make sure that we aren't promoting too many elements. If so, nothing 690 // to do. 691 if (ToPromote.find(Operands) == ToPromote.end()) { 692 if (MaxElements > 0 && ToPromote.size() == MaxElements) { 693 LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '" 694 << Arg->getName() 695 << "' because it would require adding more " 696 << "than " << MaxElements 697 << " arguments to the function.\n"); 698 // We limit aggregate promotion to only promoting up to a fixed number 699 // of elements of the aggregate. 700 return false; 701 } 702 ToPromote.insert(std::move(Operands)); 703 } 704 } 705 706 if (Loads.empty()) 707 return true; // No users, this is a dead argument. 708 709 // Okay, now we know that the argument is only used by load instructions and 710 // it is safe to unconditionally perform all of them. Use alias analysis to 711 // check to see if the pointer is guaranteed to not be modified from entry of 712 // the function to each of the load instructions. 713 714 // Because there could be several/many load instructions, remember which 715 // blocks we know to be transparent to the load. 716 df_iterator_default_set<BasicBlock *, 16> TranspBlocks; 717 718 for (LoadInst *Load : Loads) { 719 // Check to see if the load is invalidated from the start of the block to 720 // the load itself. 721 BasicBlock *BB = Load->getParent(); 722 723 MemoryLocation Loc = MemoryLocation::get(Load); 724 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod)) 725 return false; // Pointer is invalidated! 726 727 // Now check every path from the entry block to the load for transparency. 728 // To do this, we perform a depth first search on the inverse CFG from the 729 // loading block. 730 for (BasicBlock *P : predecessors(BB)) { 731 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) 732 if (AAR.canBasicBlockModify(*TranspBB, Loc)) 733 return false; 734 } 735 } 736 737 // If the path from the entry of the function to each load is free of 738 // instructions that potentially invalidate the load, we can make the 739 // transformation! 740 return true; 741 } 742 743 /// Checks if a type could have padding bytes. 744 static bool isDenselyPacked(Type *type, const DataLayout &DL) { 745 // There is no size information, so be conservative. 746 if (!type->isSized()) 747 return false; 748 749 // If the alloc size is not equal to the storage size, then there are padding 750 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. 751 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) 752 return false; 753 754 if (!isa<CompositeType>(type)) 755 return true; 756 757 // For homogenous sequential types, check for padding within members. 758 if (SequentialType *seqTy = dyn_cast<SequentialType>(type)) 759 return isDenselyPacked(seqTy->getElementType(), DL); 760 761 // Check for padding within and between elements of a struct. 762 StructType *StructTy = cast<StructType>(type); 763 const StructLayout *Layout = DL.getStructLayout(StructTy); 764 uint64_t StartPos = 0; 765 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { 766 Type *ElTy = StructTy->getElementType(i); 767 if (!isDenselyPacked(ElTy, DL)) 768 return false; 769 if (StartPos != Layout->getElementOffsetInBits(i)) 770 return false; 771 StartPos += DL.getTypeAllocSizeInBits(ElTy); 772 } 773 774 return true; 775 } 776 777 /// Checks if the padding bytes of an argument could be accessed. 778 static bool canPaddingBeAccessed(Argument *arg) { 779 assert(arg->hasByValAttr()); 780 781 // Track all the pointers to the argument to make sure they are not captured. 782 SmallPtrSet<Value *, 16> PtrValues; 783 PtrValues.insert(arg); 784 785 // Track all of the stores. 786 SmallVector<StoreInst *, 16> Stores; 787 788 // Scan through the uses recursively to make sure the pointer is always used 789 // sanely. 790 SmallVector<Value *, 16> WorkList; 791 WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end()); 792 while (!WorkList.empty()) { 793 Value *V = WorkList.back(); 794 WorkList.pop_back(); 795 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { 796 if (PtrValues.insert(V).second) 797 WorkList.insert(WorkList.end(), V->user_begin(), V->user_end()); 798 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { 799 Stores.push_back(Store); 800 } else if (!isa<LoadInst>(V)) { 801 return true; 802 } 803 } 804 805 // Check to make sure the pointers aren't captured 806 for (StoreInst *Store : Stores) 807 if (PtrValues.count(Store->getValueOperand())) 808 return true; 809 810 return false; 811 } 812 813 static bool areFunctionArgsABICompatible( 814 const Function &F, const TargetTransformInfo &TTI, 815 SmallPtrSetImpl<Argument *> &ArgsToPromote, 816 SmallPtrSetImpl<Argument *> &ByValArgsToTransform) { 817 for (const Use &U : F.uses()) { 818 CallSite CS(U.getUser()); 819 const Function *Caller = CS.getCaller(); 820 const Function *Callee = CS.getCalledFunction(); 821 if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) || 822 !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform)) 823 return false; 824 } 825 return true; 826 } 827 828 /// PromoteArguments - This method checks the specified function to see if there 829 /// are any promotable arguments and if it is safe to promote the function (for 830 /// example, all callers are direct). If safe to promote some arguments, it 831 /// calls the DoPromotion method. 832 static Function * 833 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter, 834 unsigned MaxElements, 835 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>> 836 ReplaceCallSite, 837 const TargetTransformInfo &TTI) { 838 // Don't perform argument promotion for naked functions; otherwise we can end 839 // up removing parameters that are seemingly 'not used' as they are referred 840 // to in the assembly. 841 if(F->hasFnAttribute(Attribute::Naked)) 842 return nullptr; 843 844 // Make sure that it is local to this module. 845 if (!F->hasLocalLinkage()) 846 return nullptr; 847 848 // Don't promote arguments for variadic functions. Adding, removing, or 849 // changing non-pack parameters can change the classification of pack 850 // parameters. Frontends encode that classification at the call site in the 851 // IR, while in the callee the classification is determined dynamically based 852 // on the number of registers consumed so far. 853 if (F->isVarArg()) 854 return nullptr; 855 856 // First check: see if there are any pointer arguments! If not, quick exit. 857 SmallVector<Argument *, 16> PointerArgs; 858 for (Argument &I : F->args()) 859 if (I.getType()->isPointerTy()) 860 PointerArgs.push_back(&I); 861 if (PointerArgs.empty()) 862 return nullptr; 863 864 // Second check: make sure that all callers are direct callers. We can't 865 // transform functions that have indirect callers. Also see if the function 866 // is self-recursive and check that target features are compatible. 867 bool isSelfRecursive = false; 868 for (Use &U : F->uses()) { 869 CallSite CS(U.getUser()); 870 // Must be a direct call. 871 if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) 872 return nullptr; 873 874 // Can't change signature of musttail callee 875 if (CS.isMustTailCall()) 876 return nullptr; 877 878 if (CS.getInstruction()->getParent()->getParent() == F) 879 isSelfRecursive = true; 880 } 881 882 // Can't change signature of musttail caller 883 // FIXME: Support promoting whole chain of musttail functions 884 for (BasicBlock &BB : *F) 885 if (BB.getTerminatingMustTailCall()) 886 return nullptr; 887 888 const DataLayout &DL = F->getParent()->getDataLayout(); 889 890 AAResults &AAR = AARGetter(*F); 891 892 // Check to see which arguments are promotable. If an argument is promotable, 893 // add it to ArgsToPromote. 894 SmallPtrSet<Argument *, 8> ArgsToPromote; 895 SmallPtrSet<Argument *, 8> ByValArgsToTransform; 896 for (Argument *PtrArg : PointerArgs) { 897 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); 898 899 // Replace sret attribute with noalias. This reduces register pressure by 900 // avoiding a register copy. 901 if (PtrArg->hasStructRetAttr()) { 902 unsigned ArgNo = PtrArg->getArgNo(); 903 F->removeParamAttr(ArgNo, Attribute::StructRet); 904 F->addParamAttr(ArgNo, Attribute::NoAlias); 905 for (Use &U : F->uses()) { 906 CallSite CS(U.getUser()); 907 CS.removeParamAttr(ArgNo, Attribute::StructRet); 908 CS.addParamAttr(ArgNo, Attribute::NoAlias); 909 } 910 } 911 912 // If this is a byval argument, and if the aggregate type is small, just 913 // pass the elements, which is always safe, if the passed value is densely 914 // packed or if we can prove the padding bytes are never accessed. This does 915 // not apply to inalloca. 916 bool isSafeToPromote = 917 PtrArg->hasByValAttr() && 918 (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg)); 919 if (isSafeToPromote) { 920 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 921 if (MaxElements > 0 && STy->getNumElements() > MaxElements) { 922 LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '" 923 << PtrArg->getName() 924 << "' because it would require adding more" 925 << " than " << MaxElements 926 << " arguments to the function.\n"); 927 continue; 928 } 929 930 // If all the elements are single-value types, we can promote it. 931 bool AllSimple = true; 932 for (const auto *EltTy : STy->elements()) { 933 if (!EltTy->isSingleValueType()) { 934 AllSimple = false; 935 break; 936 } 937 } 938 939 // Safe to transform, don't even bother trying to "promote" it. 940 // Passing the elements as a scalar will allow sroa to hack on 941 // the new alloca we introduce. 942 if (AllSimple) { 943 ByValArgsToTransform.insert(PtrArg); 944 continue; 945 } 946 } 947 } 948 949 // If the argument is a recursive type and we're in a recursive 950 // function, we could end up infinitely peeling the function argument. 951 if (isSelfRecursive) { 952 if (StructType *STy = dyn_cast<StructType>(AgTy)) { 953 bool RecursiveType = false; 954 for (const auto *EltTy : STy->elements()) { 955 if (EltTy == PtrArg->getType()) { 956 RecursiveType = true; 957 break; 958 } 959 } 960 if (RecursiveType) 961 continue; 962 } 963 } 964 965 // Otherwise, see if we can promote the pointer to its value. 966 if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR, 967 MaxElements)) 968 ArgsToPromote.insert(PtrArg); 969 } 970 971 // No promotable pointer arguments. 972 if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 973 return nullptr; 974 975 if (!areFunctionArgsABICompatible(*F, TTI, ArgsToPromote, 976 ByValArgsToTransform)) 977 return nullptr; 978 979 return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite); 980 } 981 982 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C, 983 CGSCCAnalysisManager &AM, 984 LazyCallGraph &CG, 985 CGSCCUpdateResult &UR) { 986 bool Changed = false, LocalChange; 987 988 // Iterate until we stop promoting from this SCC. 989 do { 990 LocalChange = false; 991 992 for (LazyCallGraph::Node &N : C) { 993 Function &OldF = N.getFunction(); 994 995 FunctionAnalysisManager &FAM = 996 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 997 // FIXME: This lambda must only be used with this function. We should 998 // skip the lambda and just get the AA results directly. 999 auto AARGetter = [&](Function &F) -> AAResults & { 1000 assert(&F == &OldF && "Called with an unexpected function!"); 1001 return FAM.getResult<AAManager>(F); 1002 }; 1003 1004 const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF); 1005 Function *NewF = 1006 promoteArguments(&OldF, AARGetter, MaxElements, None, TTI); 1007 if (!NewF) 1008 continue; 1009 LocalChange = true; 1010 1011 // Directly substitute the functions in the call graph. Note that this 1012 // requires the old function to be completely dead and completely 1013 // replaced by the new function. It does no call graph updates, it merely 1014 // swaps out the particular function mapped to a particular node in the 1015 // graph. 1016 C.getOuterRefSCC().replaceNodeFunction(N, *NewF); 1017 OldF.eraseFromParent(); 1018 } 1019 1020 Changed |= LocalChange; 1021 } while (LocalChange); 1022 1023 if (!Changed) 1024 return PreservedAnalyses::all(); 1025 1026 return PreservedAnalyses::none(); 1027 } 1028 1029 namespace { 1030 1031 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. 1032 struct ArgPromotion : public CallGraphSCCPass { 1033 // Pass identification, replacement for typeid 1034 static char ID; 1035 1036 explicit ArgPromotion(unsigned MaxElements = 3) 1037 : CallGraphSCCPass(ID), MaxElements(MaxElements) { 1038 initializeArgPromotionPass(*PassRegistry::getPassRegistry()); 1039 } 1040 1041 void getAnalysisUsage(AnalysisUsage &AU) const override { 1042 AU.addRequired<AssumptionCacheTracker>(); 1043 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1044 AU.addRequired<TargetTransformInfoWrapperPass>(); 1045 getAAResultsAnalysisUsage(AU); 1046 CallGraphSCCPass::getAnalysisUsage(AU); 1047 } 1048 1049 bool runOnSCC(CallGraphSCC &SCC) override; 1050 1051 private: 1052 using llvm::Pass::doInitialization; 1053 1054 bool doInitialization(CallGraph &CG) override; 1055 1056 /// The maximum number of elements to expand, or 0 for unlimited. 1057 unsigned MaxElements; 1058 }; 1059 1060 } // end anonymous namespace 1061 1062 char ArgPromotion::ID = 0; 1063 1064 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", 1065 "Promote 'by reference' arguments to scalars", false, 1066 false) 1067 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1068 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1069 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1070 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1071 INITIALIZE_PASS_END(ArgPromotion, "argpromotion", 1072 "Promote 'by reference' arguments to scalars", false, false) 1073 1074 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) { 1075 return new ArgPromotion(MaxElements); 1076 } 1077 1078 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { 1079 if (skipSCC(SCC)) 1080 return false; 1081 1082 // Get the callgraph information that we need to update to reflect our 1083 // changes. 1084 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 1085 1086 LegacyAARGetter AARGetter(*this); 1087 1088 bool Changed = false, LocalChange; 1089 1090 // Iterate until we stop promoting from this SCC. 1091 do { 1092 LocalChange = false; 1093 // Attempt to promote arguments from all functions in this SCC. 1094 for (CallGraphNode *OldNode : SCC) { 1095 Function *OldF = OldNode->getFunction(); 1096 if (!OldF) 1097 continue; 1098 1099 auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) { 1100 Function *Caller = OldCS.getInstruction()->getParent()->getParent(); 1101 CallGraphNode *NewCalleeNode = 1102 CG.getOrInsertFunction(NewCS.getCalledFunction()); 1103 CallGraphNode *CallerNode = CG[Caller]; 1104 CallerNode->replaceCallEdge(OldCS, NewCS, NewCalleeNode); 1105 }; 1106 1107 const TargetTransformInfo &TTI = 1108 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF); 1109 if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements, 1110 {ReplaceCallSite}, TTI)) { 1111 LocalChange = true; 1112 1113 // Update the call graph for the newly promoted function. 1114 CallGraphNode *NewNode = CG.getOrInsertFunction(NewF); 1115 NewNode->stealCalledFunctionsFrom(OldNode); 1116 if (OldNode->getNumReferences() == 0) 1117 delete CG.removeFunctionFromModule(OldNode); 1118 else 1119 OldF->setLinkage(Function::ExternalLinkage); 1120 1121 // And updat ethe SCC we're iterating as well. 1122 SCC.ReplaceNode(OldNode, NewNode); 1123 } 1124 } 1125 // Remember that we changed something. 1126 Changed |= LocalChange; 1127 } while (LocalChange); 1128 1129 return Changed; 1130 } 1131 1132 bool ArgPromotion::doInitialization(CallGraph &CG) { 1133 return CallGraphSCCPass::doInitialization(CG); 1134 } 1135