1 //===- AggressiveInstCombine.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the aggressive expression pattern combiner classes. 11 // Currently, it handles expression patterns for: 12 // * Truncate instruction 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" 17 #include "AggressiveInstCombineInternal.h" 18 #include "llvm-c/Initialization.h" 19 #include "llvm-c/Transforms/AggressiveInstCombine.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/LegacyPassManager.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 using namespace llvm; 32 using namespace PatternMatch; 33 34 #define DEBUG_TYPE "aggressive-instcombine" 35 36 namespace { 37 /// Contains expression pattern combiner logic. 38 /// This class provides both the logic to combine expression patterns and 39 /// combine them. It differs from InstCombiner class in that each pattern 40 /// combiner runs only once as opposed to InstCombine's multi-iteration, 41 /// which allows pattern combiner to have higher complexity than the O(1) 42 /// required by the instruction combiner. 43 class AggressiveInstCombinerLegacyPass : public FunctionPass { 44 public: 45 static char ID; // Pass identification, replacement for typeid 46 47 AggressiveInstCombinerLegacyPass() : FunctionPass(ID) { 48 initializeAggressiveInstCombinerLegacyPassPass( 49 *PassRegistry::getPassRegistry()); 50 } 51 52 void getAnalysisUsage(AnalysisUsage &AU) const override; 53 54 /// Run all expression pattern optimizations on the given /p F function. 55 /// 56 /// \param F function to optimize. 57 /// \returns true if the IR is changed. 58 bool runOnFunction(Function &F) override; 59 }; 60 } // namespace 61 62 /// Match a pattern for a bitwise rotate operation that partially guards 63 /// against undefined behavior by branching around the rotation when the shift 64 /// amount is 0. 65 static bool foldGuardedRotateToFunnelShift(Instruction &I) { 66 if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2) 67 return false; 68 69 // As with the one-use checks below, this is not strictly necessary, but we 70 // are being cautious to avoid potential perf regressions on targets that 71 // do not actually have a rotate instruction (where the funnel shift would be 72 // expanded back into math/shift/logic ops). 73 if (!isPowerOf2_32(I.getType()->getScalarSizeInBits())) 74 return false; 75 76 // Match V to funnel shift left/right and capture the source operand and 77 // shift amount in X and Y. 78 auto matchRotate = [](Value *V, Value *&X, Value *&Y) { 79 Value *L0, *L1, *R0, *R1; 80 unsigned Width = V->getType()->getScalarSizeInBits(); 81 auto Sub = m_Sub(m_SpecificInt(Width), m_Value(R1)); 82 83 // rotate_left(X, Y) == (X << Y) | (X >> (Width - Y)) 84 auto RotL = m_OneUse( 85 m_c_Or(m_Shl(m_Value(L0), m_Value(L1)), m_LShr(m_Value(R0), Sub))); 86 if (RotL.match(V) && L0 == R0 && L1 == R1) { 87 X = L0; 88 Y = L1; 89 return Intrinsic::fshl; 90 } 91 92 // rotate_right(X, Y) == (X >> Y) | (X << (Width - Y)) 93 auto RotR = m_OneUse( 94 m_c_Or(m_LShr(m_Value(L0), m_Value(L1)), m_Shl(m_Value(R0), Sub))); 95 if (RotR.match(V) && L0 == R0 && L1 == R1) { 96 X = L0; 97 Y = L1; 98 return Intrinsic::fshr; 99 } 100 101 return Intrinsic::not_intrinsic; 102 }; 103 104 // One phi operand must be a rotate operation, and the other phi operand must 105 // be the source value of that rotate operation: 106 // phi [ rotate(RotSrc, RotAmt), RotBB ], [ RotSrc, GuardBB ] 107 PHINode &Phi = cast<PHINode>(I); 108 Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1); 109 Value *RotSrc, *RotAmt; 110 Intrinsic::ID IID = matchRotate(P0, RotSrc, RotAmt); 111 if (IID == Intrinsic::not_intrinsic || RotSrc != P1) { 112 IID = matchRotate(P1, RotSrc, RotAmt); 113 if (IID == Intrinsic::not_intrinsic || RotSrc != P0) 114 return false; 115 assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) && 116 "Pattern must match funnel shift left or right"); 117 } 118 119 // The incoming block with our source operand must be the "guard" block. 120 // That must contain a cmp+branch to avoid the rotate when the shift amount 121 // is equal to 0. The other incoming block is the block with the rotate. 122 BasicBlock *GuardBB = Phi.getIncomingBlock(RotSrc == P1); 123 BasicBlock *RotBB = Phi.getIncomingBlock(RotSrc != P1); 124 Instruction *TermI = GuardBB->getTerminator(); 125 BasicBlock *TrueBB, *FalseBB; 126 ICmpInst::Predicate Pred; 127 if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(RotAmt), m_ZeroInt()), TrueBB, 128 FalseBB))) 129 return false; 130 131 BasicBlock *PhiBB = Phi.getParent(); 132 if (Pred != CmpInst::ICMP_EQ || TrueBB != PhiBB || FalseBB != RotBB) 133 return false; 134 135 // We matched a variation of this IR pattern: 136 // GuardBB: 137 // %cmp = icmp eq i32 %RotAmt, 0 138 // br i1 %cmp, label %PhiBB, label %RotBB 139 // RotBB: 140 // %sub = sub i32 32, %RotAmt 141 // %shr = lshr i32 %X, %sub 142 // %shl = shl i32 %X, %RotAmt 143 // %rot = or i32 %shr, %shl 144 // br label %PhiBB 145 // PhiBB: 146 // %cond = phi i32 [ %rot, %RotBB ], [ %X, %GuardBB ] 147 // --> 148 // llvm.fshl.i32(i32 %X, i32 %RotAmt) 149 IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt()); 150 Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType()); 151 Phi.replaceAllUsesWith(Builder.CreateCall(F, {RotSrc, RotSrc, RotAmt})); 152 return true; 153 } 154 155 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and 156 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain 157 /// of 'and' ops, then we also need to capture the fact that we saw an 158 /// "and X, 1", so that's an extra return value for that case. 159 struct MaskOps { 160 Value *Root; 161 APInt Mask; 162 bool MatchAndChain; 163 bool FoundAnd1; 164 165 MaskOps(unsigned BitWidth, bool MatchAnds) 166 : Root(nullptr), Mask(APInt::getNullValue(BitWidth)), 167 MatchAndChain(MatchAnds), FoundAnd1(false) {} 168 }; 169 170 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a 171 /// chain of 'and' or 'or' instructions looking for shift ops of a common source 172 /// value. Examples: 173 /// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8) 174 /// returns { X, 0x129 } 175 /// and (and (X >> 1), 1), (X >> 4) 176 /// returns { X, 0x12 } 177 static bool matchAndOrChain(Value *V, MaskOps &MOps) { 178 Value *Op0, *Op1; 179 if (MOps.MatchAndChain) { 180 // Recurse through a chain of 'and' operands. This requires an extra check 181 // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere 182 // in the chain to know that all of the high bits are cleared. 183 if (match(V, m_And(m_Value(Op0), m_One()))) { 184 MOps.FoundAnd1 = true; 185 return matchAndOrChain(Op0, MOps); 186 } 187 if (match(V, m_And(m_Value(Op0), m_Value(Op1)))) 188 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); 189 } else { 190 // Recurse through a chain of 'or' operands. 191 if (match(V, m_Or(m_Value(Op0), m_Value(Op1)))) 192 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); 193 } 194 195 // We need a shift-right or a bare value representing a compare of bit 0 of 196 // the original source operand. 197 Value *Candidate; 198 uint64_t BitIndex = 0; 199 if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex)))) 200 Candidate = V; 201 202 // Initialize result source operand. 203 if (!MOps.Root) 204 MOps.Root = Candidate; 205 206 // The shift constant is out-of-range? This code hasn't been simplified. 207 if (BitIndex >= MOps.Mask.getBitWidth()) 208 return false; 209 210 // Fill in the mask bit derived from the shift constant. 211 MOps.Mask.setBit(BitIndex); 212 return MOps.Root == Candidate; 213 } 214 215 /// Match patterns that correspond to "any-bits-set" and "all-bits-set". 216 /// These will include a chain of 'or' or 'and'-shifted bits from a 217 /// common source value: 218 /// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0 219 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask 220 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns 221 /// that differ only with a final 'not' of the result. We expect that final 222 /// 'not' to be folded with the compare that we create here (invert predicate). 223 static bool foldAnyOrAllBitsSet(Instruction &I) { 224 // The 'any-bits-set' ('or' chain) pattern is simpler to match because the 225 // final "and X, 1" instruction must be the final op in the sequence. 226 bool MatchAllBitsSet; 227 if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value()))) 228 MatchAllBitsSet = true; 229 else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One()))) 230 MatchAllBitsSet = false; 231 else 232 return false; 233 234 MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet); 235 if (MatchAllBitsSet) { 236 if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1) 237 return false; 238 } else { 239 if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps)) 240 return false; 241 } 242 243 // The pattern was found. Create a masked compare that replaces all of the 244 // shift and logic ops. 245 IRBuilder<> Builder(&I); 246 Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask); 247 Value *And = Builder.CreateAnd(MOps.Root, Mask); 248 Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask) 249 : Builder.CreateIsNotNull(And); 250 Value *Zext = Builder.CreateZExt(Cmp, I.getType()); 251 I.replaceAllUsesWith(Zext); 252 return true; 253 } 254 255 /// This is the entry point for folds that could be implemented in regular 256 /// InstCombine, but they are separated because they are not expected to 257 /// occur frequently and/or have more than a constant-length pattern match. 258 static bool foldUnusualPatterns(Function &F, DominatorTree &DT) { 259 bool MadeChange = false; 260 for (BasicBlock &BB : F) { 261 // Ignore unreachable basic blocks. 262 if (!DT.isReachableFromEntry(&BB)) 263 continue; 264 // Do not delete instructions under here and invalidate the iterator. 265 // Walk the block backwards for efficiency. We're matching a chain of 266 // use->defs, so we're more likely to succeed by starting from the bottom. 267 // Also, we want to avoid matching partial patterns. 268 // TODO: It would be more efficient if we removed dead instructions 269 // iteratively in this loop rather than waiting until the end. 270 for (Instruction &I : make_range(BB.rbegin(), BB.rend())) { 271 MadeChange |= foldAnyOrAllBitsSet(I); 272 MadeChange |= foldGuardedRotateToFunnelShift(I); 273 } 274 } 275 276 // We're done with transforms, so remove dead instructions. 277 if (MadeChange) 278 for (BasicBlock &BB : F) 279 SimplifyInstructionsInBlock(&BB); 280 281 return MadeChange; 282 } 283 284 /// This is the entry point for all transforms. Pass manager differences are 285 /// handled in the callers of this function. 286 static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) { 287 bool MadeChange = false; 288 const DataLayout &DL = F.getParent()->getDataLayout(); 289 TruncInstCombine TIC(TLI, DL, DT); 290 MadeChange |= TIC.run(F); 291 MadeChange |= foldUnusualPatterns(F, DT); 292 return MadeChange; 293 } 294 295 void AggressiveInstCombinerLegacyPass::getAnalysisUsage( 296 AnalysisUsage &AU) const { 297 AU.setPreservesCFG(); 298 AU.addRequired<DominatorTreeWrapperPass>(); 299 AU.addRequired<TargetLibraryInfoWrapperPass>(); 300 AU.addPreserved<AAResultsWrapperPass>(); 301 AU.addPreserved<BasicAAWrapperPass>(); 302 AU.addPreserved<DominatorTreeWrapperPass>(); 303 AU.addPreserved<GlobalsAAWrapperPass>(); 304 } 305 306 bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) { 307 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 308 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 309 return runImpl(F, TLI, DT); 310 } 311 312 PreservedAnalyses AggressiveInstCombinePass::run(Function &F, 313 FunctionAnalysisManager &AM) { 314 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 315 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 316 if (!runImpl(F, TLI, DT)) { 317 // No changes, all analyses are preserved. 318 return PreservedAnalyses::all(); 319 } 320 // Mark all the analyses that instcombine updates as preserved. 321 PreservedAnalyses PA; 322 PA.preserveSet<CFGAnalyses>(); 323 PA.preserve<AAManager>(); 324 PA.preserve<GlobalsAA>(); 325 return PA; 326 } 327 328 char AggressiveInstCombinerLegacyPass::ID = 0; 329 INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass, 330 "aggressive-instcombine", 331 "Combine pattern based expressions", false, false) 332 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 333 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 334 INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine", 335 "Combine pattern based expressions", false, false) 336 337 // Initialization Routines 338 void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) { 339 initializeAggressiveInstCombinerLegacyPassPass(Registry); 340 } 341 342 void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) { 343 initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R)); 344 } 345 346 FunctionPass *llvm::createAggressiveInstCombinerPass() { 347 return new AggressiveInstCombinerLegacyPass(); 348 } 349 350 void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) { 351 unwrap(PM)->add(createAggressiveInstCombinerPass()); 352 } 353