1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pass that optimizes call sequences on x86.
11 // Currently, it converts movs of function parameters onto the stack into
12 // pushes. This is beneficial for two main reasons:
13 // 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
14 // 2) It is possible to push memory arguments directly. So, if the
15 //    the transformation is performed pre-reg-alloc, it can help relieve
16 //    register pressure.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "MCTargetDesc/X86BaseInfo.h"
21 #include "X86FrameLowering.h"
22 #include "X86InstrInfo.h"
23 #include "X86MachineFunctionInfo.h"
24 #include "X86RegisterInfo.h"
25 #include "X86Subtarget.h"
26 #include "llvm/ADT/DenseSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCDwarf.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstddef>
47 #include <cstdint>
48 #include <iterator>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "x86-cf-opt"
53 
54 static cl::opt<bool>
55     NoX86CFOpt("no-x86-call-frame-opt",
56                cl::desc("Avoid optimizing x86 call frames for size"),
57                cl::init(false), cl::Hidden);
58 
59 namespace llvm {
60 void initializeX86CallFrameOptimizationPass(PassRegistry &);
61 }
62 
63 namespace {
64 
65 class X86CallFrameOptimization : public MachineFunctionPass {
66 public:
67   X86CallFrameOptimization() : MachineFunctionPass(ID) {
68     initializeX86CallFrameOptimizationPass(
69         *PassRegistry::getPassRegistry());
70   }
71 
72   bool runOnMachineFunction(MachineFunction &MF) override;
73 
74   static char ID;
75 
76 private:
77   // Information we know about a particular call site
78   struct CallContext {
79     CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {}
80 
81     // Iterator referring to the frame setup instruction
82     MachineBasicBlock::iterator FrameSetup;
83 
84     // Actual call instruction
85     MachineInstr *Call = nullptr;
86 
87     // A copy of the stack pointer
88     MachineInstr *SPCopy = nullptr;
89 
90     // The total displacement of all passed parameters
91     int64_t ExpectedDist = 0;
92 
93     // The sequence of storing instructions used to pass the parameters
94     SmallVector<MachineInstr *, 4> ArgStoreVector;
95 
96     // True if this call site has no stack parameters
97     bool NoStackParams = false;
98 
99     // True if this call site can use push instructions
100     bool UsePush = false;
101   };
102 
103   typedef SmallVector<CallContext, 8> ContextVector;
104 
105   bool isLegal(MachineFunction &MF);
106 
107   bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
108 
109   void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
110                        MachineBasicBlock::iterator I, CallContext &Context);
111 
112   void adjustCallSequence(MachineFunction &MF, const CallContext &Context);
113 
114   MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
115                                    unsigned Reg);
116 
117   enum InstClassification { Convert, Skip, Exit };
118 
119   InstClassification classifyInstruction(MachineBasicBlock &MBB,
120                                          MachineBasicBlock::iterator MI,
121                                          const X86RegisterInfo &RegInfo,
122                                          DenseSet<unsigned int> &UsedRegs);
123 
124   StringRef getPassName() const override { return "X86 Optimize Call Frame"; }
125 
126   const X86InstrInfo *TII;
127   const X86FrameLowering *TFL;
128   const X86Subtarget *STI;
129   MachineRegisterInfo *MRI;
130   unsigned SlotSize;
131   unsigned Log2SlotSize;
132 };
133 
134 } // end anonymous namespace
135 char X86CallFrameOptimization::ID = 0;
136 INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE,
137                 "X86 Call Frame Optimization", false, false)
138 
139 // This checks whether the transformation is legal.
140 // Also returns false in cases where it's potentially legal, but
141 // we don't even want to try.
142 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
143   if (NoX86CFOpt.getValue())
144     return false;
145 
146   // Work around LLVM PR30879 (bad interaction between CFO and libunwind)
147   if (STI->isTargetFreeBSD() && STI->is32Bit() &&
148       STI->getTargetTriple().getOSMajorVersion() >= 12)
149     return false;
150 
151   // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
152   // in the compact unwind encoding that Darwin uses. So, bail if there
153   // is a danger of that being generated.
154   if (STI->isTargetDarwin() &&
155       (!MF.getLandingPads().empty() ||
156        (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF))))
157     return false;
158 
159   // It is not valid to change the stack pointer outside the prolog/epilog
160   // on 64-bit Windows.
161   if (STI->isTargetWin64())
162     return false;
163 
164   // You would expect straight-line code between call-frame setup and
165   // call-frame destroy. You would be wrong. There are circumstances (e.g.
166   // CMOV_GR8 expansion of a select that feeds a function call!) where we can
167   // end up with the setup and the destroy in different basic blocks.
168   // This is bad, and breaks SP adjustment.
169   // So, check that all of the frames in the function are closed inside
170   // the same block, and, for good measure, that there are no nested frames.
171   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
172   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
173   for (MachineBasicBlock &BB : MF) {
174     bool InsideFrameSequence = false;
175     for (MachineInstr &MI : BB) {
176       if (MI.getOpcode() == FrameSetupOpcode) {
177         if (InsideFrameSequence)
178           return false;
179         InsideFrameSequence = true;
180       } else if (MI.getOpcode() == FrameDestroyOpcode) {
181         if (!InsideFrameSequence)
182           return false;
183         InsideFrameSequence = false;
184       }
185     }
186 
187     if (InsideFrameSequence)
188       return false;
189   }
190 
191   return true;
192 }
193 
194 // Check whether this transformation is profitable for a particular
195 // function - in terms of code size.
196 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
197                                             ContextVector &CallSeqVector) {
198   // This transformation is always a win when we do not expect to have
199   // a reserved call frame. Under other circumstances, it may be either
200   // a win or a loss, and requires a heuristic.
201   bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects();
202   if (CannotReserveFrame)
203     return true;
204 
205   unsigned StackAlign = TFL->getStackAlignment();
206 
207   int64_t Advantage = 0;
208   for (auto CC : CallSeqVector) {
209     // Call sites where no parameters are passed on the stack
210     // do not affect the cost, since there needs to be no
211     // stack adjustment.
212     if (CC.NoStackParams)
213       continue;
214 
215     if (!CC.UsePush) {
216       // If we don't use pushes for a particular call site,
217       // we pay for not having a reserved call frame with an
218       // additional sub/add esp pair. The cost is ~3 bytes per instruction,
219       // depending on the size of the constant.
220       // TODO: Callee-pop functions should have a smaller penalty, because
221       // an add is needed even with a reserved call frame.
222       Advantage -= 6;
223     } else {
224       // We can use pushes. First, account for the fixed costs.
225       // We'll need a add after the call.
226       Advantage -= 3;
227       // If we have to realign the stack, we'll also need a sub before
228       if (CC.ExpectedDist % StackAlign)
229         Advantage -= 3;
230       // Now, for each push, we save ~3 bytes. For small constants, we actually,
231       // save more (up to 5 bytes), but 3 should be a good approximation.
232       Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
233     }
234   }
235 
236   return Advantage >= 0;
237 }
238 
239 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
240   STI = &MF.getSubtarget<X86Subtarget>();
241   TII = STI->getInstrInfo();
242   TFL = STI->getFrameLowering();
243   MRI = &MF.getRegInfo();
244 
245   const X86RegisterInfo &RegInfo =
246       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
247   SlotSize = RegInfo.getSlotSize();
248   assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
249   Log2SlotSize = Log2_32(SlotSize);
250 
251   if (skipFunction(MF.getFunction()) || !isLegal(MF))
252     return false;
253 
254   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
255 
256   bool Changed = false;
257 
258   ContextVector CallSeqVector;
259 
260   for (auto &MBB : MF)
261     for (auto &MI : MBB)
262       if (MI.getOpcode() == FrameSetupOpcode) {
263         CallContext Context;
264         collectCallInfo(MF, MBB, MI, Context);
265         CallSeqVector.push_back(Context);
266       }
267 
268   if (!isProfitable(MF, CallSeqVector))
269     return false;
270 
271   for (auto CC : CallSeqVector) {
272     if (CC.UsePush) {
273       adjustCallSequence(MF, CC);
274       Changed = true;
275     }
276   }
277 
278   return Changed;
279 }
280 
281 X86CallFrameOptimization::InstClassification
282 X86CallFrameOptimization::classifyInstruction(
283     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
284     const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
285   if (MI == MBB.end())
286     return Exit;
287 
288   // The instructions we actually care about are movs onto the stack or special
289   // cases of constant-stores to stack
290   switch (MI->getOpcode()) {
291     case X86::AND16mi8:
292     case X86::AND32mi8:
293     case X86::AND64mi8: {
294       MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
295       return ImmOp.getImm() == 0 ? Convert : Exit;
296     }
297     case X86::OR16mi8:
298     case X86::OR32mi8:
299     case X86::OR64mi8: {
300       MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
301       return ImmOp.getImm() == -1 ? Convert : Exit;
302     }
303     case X86::MOV32mi:
304     case X86::MOV32mr:
305     case X86::MOV64mi32:
306     case X86::MOV64mr:
307       return Convert;
308   }
309 
310   // Not all calling conventions have only stack MOVs between the stack
311   // adjust and the call.
312 
313   // We want to tolerate other instructions, to cover more cases.
314   // In particular:
315   // a) PCrel calls, where we expect an additional COPY of the basereg.
316   // b) Passing frame-index addresses.
317   // c) Calling conventions that have inreg parameters. These generate
318   //    both copies and movs into registers.
319   // To avoid creating lots of special cases, allow any instruction
320   // that does not write into memory, does not def or use the stack
321   // pointer, and does not def any register that was used by a preceding
322   // push.
323   // (Reading from memory is allowed, even if referenced through a
324   // frame index, since these will get adjusted properly in PEI)
325 
326   // The reason for the last condition is that the pushes can't replace
327   // the movs in place, because the order must be reversed.
328   // So if we have a MOV32mr that uses EDX, then an instruction that defs
329   // EDX, and then the call, after the transformation the push will use
330   // the modified version of EDX, and not the original one.
331   // Since we are still in SSA form at this point, we only need to
332   // make sure we don't clobber any *physical* registers that were
333   // used by an earlier mov that will become a push.
334 
335   if (MI->isCall() || MI->mayStore())
336     return Exit;
337 
338   for (const MachineOperand &MO : MI->operands()) {
339     if (!MO.isReg())
340       continue;
341     unsigned int Reg = MO.getReg();
342     if (!RegInfo.isPhysicalRegister(Reg))
343       continue;
344     if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
345       return Exit;
346     if (MO.isDef()) {
347       for (unsigned int U : UsedRegs)
348         if (RegInfo.regsOverlap(Reg, U))
349           return Exit;
350     }
351   }
352 
353   return Skip;
354 }
355 
356 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
357                                                MachineBasicBlock &MBB,
358                                                MachineBasicBlock::iterator I,
359                                                CallContext &Context) {
360   // Check that this particular call sequence is amenable to the
361   // transformation.
362   const X86RegisterInfo &RegInfo =
363       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
364 
365   // We expect to enter this at the beginning of a call sequence
366   assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
367   MachineBasicBlock::iterator FrameSetup = I++;
368   Context.FrameSetup = FrameSetup;
369 
370   // How much do we adjust the stack? This puts an upper bound on
371   // the number of parameters actually passed on it.
372   unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize;
373 
374   // A zero adjustment means no stack parameters
375   if (!MaxAdjust) {
376     Context.NoStackParams = true;
377     return;
378   }
379 
380   // Skip over DEBUG_VALUE.
381   // For globals in PIC mode, we can have some LEAs here. Skip them as well.
382   // TODO: Extend this to something that covers more cases.
383   while (I->getOpcode() == X86::LEA32r || I->isDebugValue())
384     ++I;
385 
386   unsigned StackPtr = RegInfo.getStackRegister();
387   auto StackPtrCopyInst = MBB.end();
388   // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
389   // register.  If it's there, use that virtual register as stack pointer
390   // instead. Also, we need to locate this instruction so that we can later
391   // safely ignore it while doing the conservative processing of the call chain.
392   // The COPY can be located anywhere between the call-frame setup
393   // instruction and its first use. We use the call instruction as a boundary
394   // because it is usually cheaper to check if an instruction is a call than
395   // checking if an instruction uses a register.
396   for (auto J = I; !J->isCall(); ++J)
397     if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() &&
398         J->getOperand(1).getReg() == StackPtr) {
399       StackPtrCopyInst = J;
400       Context.SPCopy = &*J++;
401       StackPtr = Context.SPCopy->getOperand(0).getReg();
402       break;
403     }
404 
405   // Scan the call setup sequence for the pattern we're looking for.
406   // We only handle a simple case - a sequence of store instructions that
407   // push a sequence of stack-slot-aligned values onto the stack, with
408   // no gaps between them.
409   if (MaxAdjust > 4)
410     Context.ArgStoreVector.resize(MaxAdjust, nullptr);
411 
412   DenseSet<unsigned int> UsedRegs;
413 
414   for (InstClassification Classification = Skip; Classification != Exit; ++I) {
415     // If this is the COPY of the stack pointer, it's ok to ignore.
416     if (I == StackPtrCopyInst)
417       continue;
418     Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs);
419     if (Classification != Convert)
420       continue;
421     // We know the instruction has a supported store opcode.
422     // We only want movs of the form:
423     // mov imm/reg, k(%StackPtr)
424     // If we run into something else, bail.
425     // Note that AddrBaseReg may, counter to its name, not be a register,
426     // but rather a frame index.
427     // TODO: Support the fi case. This should probably work now that we
428     // have the infrastructure to track the stack pointer within a call
429     // sequence.
430     if (!I->getOperand(X86::AddrBaseReg).isReg() ||
431         (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
432         !I->getOperand(X86::AddrScaleAmt).isImm() ||
433         (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
434         (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
435         (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
436         !I->getOperand(X86::AddrDisp).isImm())
437       return;
438 
439     int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
440     assert(StackDisp >= 0 &&
441            "Negative stack displacement when passing parameters");
442 
443     // We really don't want to consider the unaligned case.
444     if (StackDisp & (SlotSize - 1))
445       return;
446     StackDisp >>= Log2SlotSize;
447 
448     assert((size_t)StackDisp < Context.ArgStoreVector.size() &&
449            "Function call has more parameters than the stack is adjusted for.");
450 
451     // If the same stack slot is being filled twice, something's fishy.
452     if (Context.ArgStoreVector[StackDisp] != nullptr)
453       return;
454     Context.ArgStoreVector[StackDisp] = &*I;
455 
456     for (const MachineOperand &MO : I->uses()) {
457       if (!MO.isReg())
458         continue;
459       unsigned int Reg = MO.getReg();
460       if (RegInfo.isPhysicalRegister(Reg))
461         UsedRegs.insert(Reg);
462     }
463   }
464 
465   --I;
466 
467   // We now expect the end of the sequence. If we stopped early,
468   // or reached the end of the block without finding a call, bail.
469   if (I == MBB.end() || !I->isCall())
470     return;
471 
472   Context.Call = &*I;
473   if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode())
474     return;
475 
476   // Now, go through the vector, and see that we don't have any gaps,
477   // but only a series of storing instructions.
478   auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end();
479   for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
480     if (*MMI == nullptr)
481       break;
482 
483   // If the call had no parameters, do nothing
484   if (MMI == Context.ArgStoreVector.begin())
485     return;
486 
487   // We are either at the last parameter, or a gap.
488   // Make sure it's not a gap
489   for (; MMI != MME; ++MMI)
490     if (*MMI != nullptr)
491       return;
492 
493   Context.UsePush = true;
494 }
495 
496 void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
497                                                   const CallContext &Context) {
498   // Ok, we can in fact do the transformation for this call.
499   // Do not remove the FrameSetup instruction, but adjust the parameters.
500   // PEI will end up finalizing the handling of this.
501   MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
502   MachineBasicBlock &MBB = *(FrameSetup->getParent());
503   TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist);
504 
505   DebugLoc DL = FrameSetup->getDebugLoc();
506   bool Is64Bit = STI->is64Bit();
507   // Now, iterate through the vector in reverse order, and replace the store to
508   // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
509   // replace uses.
510   for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
511     MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx];
512     MachineOperand PushOp = Store->getOperand(X86::AddrNumOperands);
513     MachineBasicBlock::iterator Push = nullptr;
514     unsigned PushOpcode;
515     switch (Store->getOpcode()) {
516     default:
517       llvm_unreachable("Unexpected Opcode!");
518     case X86::AND16mi8:
519     case X86::AND32mi8:
520     case X86::AND64mi8:
521     case X86::OR16mi8:
522     case X86::OR32mi8:
523     case X86::OR64mi8:
524     case X86::MOV32mi:
525     case X86::MOV64mi32:
526       PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32;
527       // If the operand is a small (8-bit) immediate, we can use a
528       // PUSH instruction with a shorter encoding.
529       // Note that isImm() may fail even though this is a MOVmi, because
530       // the operand can also be a symbol.
531       if (PushOp.isImm()) {
532         int64_t Val = PushOp.getImm();
533         if (isInt<8>(Val))
534           PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8;
535       }
536       Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp);
537       break;
538     case X86::MOV32mr:
539     case X86::MOV64mr: {
540       unsigned int Reg = PushOp.getReg();
541 
542       // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
543       // in preparation for the PUSH64. The upper 32 bits can be undef.
544       if (Is64Bit && Store->getOpcode() == X86::MOV32mr) {
545         unsigned UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
546         Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
547         BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
548         BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
549             .addReg(UndefReg)
550             .add(PushOp)
551             .addImm(X86::sub_32bit);
552       }
553 
554       // If PUSHrmm is not slow on this target, try to fold the source of the
555       // push into the instruction.
556       bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();
557 
558       // Check that this is legal to fold. Right now, we're extremely
559       // conservative about that.
560       MachineInstr *DefMov = nullptr;
561       if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
562         PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
563         Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));
564 
565         unsigned NumOps = DefMov->getDesc().getNumOperands();
566         for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
567           Push->addOperand(DefMov->getOperand(i));
568 
569         DefMov->eraseFromParent();
570       } else {
571         PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
572         Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
573                    .addReg(Reg)
574                    .getInstr();
575       }
576       break;
577     }
578     }
579 
580     // For debugging, when using SP-based CFA, we need to adjust the CFA
581     // offset after each push.
582     // TODO: This is needed only if we require precise CFA.
583     if (!TFL->hasFP(MF))
584       TFL->BuildCFI(
585           MBB, std::next(Push), DL,
586           MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));
587 
588     MBB.erase(Store);
589   }
590 
591   // The stack-pointer copy is no longer used in the call sequences.
592   // There should not be any other users, but we can't commit to that, so:
593   if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
594     Context.SPCopy->eraseFromParent();
595 
596   // Once we've done this, we need to make sure PEI doesn't assume a reserved
597   // frame.
598   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
599   FuncInfo->setHasPushSequences(true);
600 }
601 
602 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
603     MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
604   // Do an extremely restricted form of load folding.
605   // ISel will often create patterns like:
606   // movl    4(%edi), %eax
607   // movl    8(%edi), %ecx
608   // movl    12(%edi), %edx
609   // movl    %edx, 8(%esp)
610   // movl    %ecx, 4(%esp)
611   // movl    %eax, (%esp)
612   // call
613   // Get rid of those with prejudice.
614   if (!TargetRegisterInfo::isVirtualRegister(Reg))
615     return nullptr;
616 
617   // Make sure this is the only use of Reg.
618   if (!MRI->hasOneNonDBGUse(Reg))
619     return nullptr;
620 
621   MachineInstr &DefMI = *MRI->getVRegDef(Reg);
622 
623   // Make sure the def is a MOV from memory.
624   // If the def is in another block, give up.
625   if ((DefMI.getOpcode() != X86::MOV32rm &&
626        DefMI.getOpcode() != X86::MOV64rm) ||
627       DefMI.getParent() != FrameSetup->getParent())
628     return nullptr;
629 
630   // Make sure we don't have any instructions between DefMI and the
631   // push that make folding the load illegal.
632   for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I)
633     if (I->isLoadFoldBarrier())
634       return nullptr;
635 
636   return &DefMI;
637 }
638 
639 FunctionPass *llvm::createX86CallFrameOptimization() {
640   return new X86CallFrameOptimization();
641 }
642