1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a pass that optimizes call sequences on x86. 11 // Currently, it converts movs of function parameters onto the stack into 12 // pushes. This is beneficial for two main reasons: 13 // 1) The push instruction encoding is much smaller than a stack-ptr-based mov. 14 // 2) It is possible to push memory arguments directly. So, if the 15 // the transformation is performed pre-reg-alloc, it can help relieve 16 // register pressure. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "MCTargetDesc/X86BaseInfo.h" 21 #include "X86FrameLowering.h" 22 #include "X86InstrInfo.h" 23 #include "X86MachineFunctionInfo.h" 24 #include "X86RegisterInfo.h" 25 #include "X86Subtarget.h" 26 #include "llvm/ADT/DenseSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/MC/MCDwarf.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstddef> 47 #include <cstdint> 48 #include <iterator> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "x86-cf-opt" 53 54 static cl::opt<bool> 55 NoX86CFOpt("no-x86-call-frame-opt", 56 cl::desc("Avoid optimizing x86 call frames for size"), 57 cl::init(false), cl::Hidden); 58 59 namespace llvm { 60 void initializeX86CallFrameOptimizationPass(PassRegistry &); 61 } 62 63 namespace { 64 65 class X86CallFrameOptimization : public MachineFunctionPass { 66 public: 67 X86CallFrameOptimization() : MachineFunctionPass(ID) { 68 initializeX86CallFrameOptimizationPass( 69 *PassRegistry::getPassRegistry()); 70 } 71 72 bool runOnMachineFunction(MachineFunction &MF) override; 73 74 static char ID; 75 76 private: 77 // Information we know about a particular call site 78 struct CallContext { 79 CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {} 80 81 // Iterator referring to the frame setup instruction 82 MachineBasicBlock::iterator FrameSetup; 83 84 // Actual call instruction 85 MachineInstr *Call = nullptr; 86 87 // A copy of the stack pointer 88 MachineInstr *SPCopy = nullptr; 89 90 // The total displacement of all passed parameters 91 int64_t ExpectedDist = 0; 92 93 // The sequence of storing instructions used to pass the parameters 94 SmallVector<MachineInstr *, 4> ArgStoreVector; 95 96 // True if this call site has no stack parameters 97 bool NoStackParams = false; 98 99 // True if this call site can use push instructions 100 bool UsePush = false; 101 }; 102 103 typedef SmallVector<CallContext, 8> ContextVector; 104 105 bool isLegal(MachineFunction &MF); 106 107 bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap); 108 109 void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB, 110 MachineBasicBlock::iterator I, CallContext &Context); 111 112 void adjustCallSequence(MachineFunction &MF, const CallContext &Context); 113 114 MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup, 115 unsigned Reg); 116 117 enum InstClassification { Convert, Skip, Exit }; 118 119 InstClassification classifyInstruction(MachineBasicBlock &MBB, 120 MachineBasicBlock::iterator MI, 121 const X86RegisterInfo &RegInfo, 122 DenseSet<unsigned int> &UsedRegs); 123 124 StringRef getPassName() const override { return "X86 Optimize Call Frame"; } 125 126 const X86InstrInfo *TII; 127 const X86FrameLowering *TFL; 128 const X86Subtarget *STI; 129 MachineRegisterInfo *MRI; 130 unsigned SlotSize; 131 unsigned Log2SlotSize; 132 }; 133 134 } // end anonymous namespace 135 char X86CallFrameOptimization::ID = 0; 136 INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE, 137 "X86 Call Frame Optimization", false, false) 138 139 // This checks whether the transformation is legal. 140 // Also returns false in cases where it's potentially legal, but 141 // we don't even want to try. 142 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) { 143 if (NoX86CFOpt.getValue()) 144 return false; 145 146 // Work around LLVM PR30879 (bad interaction between CFO and libunwind) 147 if (STI->isTargetFreeBSD() && STI->is32Bit() && 148 STI->getTargetTriple().getOSMajorVersion() >= 12) 149 return false; 150 151 // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset 152 // in the compact unwind encoding that Darwin uses. So, bail if there 153 // is a danger of that being generated. 154 if (STI->isTargetDarwin() && 155 (!MF.getLandingPads().empty() || 156 (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF)))) 157 return false; 158 159 // It is not valid to change the stack pointer outside the prolog/epilog 160 // on 64-bit Windows. 161 if (STI->isTargetWin64()) 162 return false; 163 164 // You would expect straight-line code between call-frame setup and 165 // call-frame destroy. You would be wrong. There are circumstances (e.g. 166 // CMOV_GR8 expansion of a select that feeds a function call!) where we can 167 // end up with the setup and the destroy in different basic blocks. 168 // This is bad, and breaks SP adjustment. 169 // So, check that all of the frames in the function are closed inside 170 // the same block, and, for good measure, that there are no nested frames. 171 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 172 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 173 for (MachineBasicBlock &BB : MF) { 174 bool InsideFrameSequence = false; 175 for (MachineInstr &MI : BB) { 176 if (MI.getOpcode() == FrameSetupOpcode) { 177 if (InsideFrameSequence) 178 return false; 179 InsideFrameSequence = true; 180 } else if (MI.getOpcode() == FrameDestroyOpcode) { 181 if (!InsideFrameSequence) 182 return false; 183 InsideFrameSequence = false; 184 } 185 } 186 187 if (InsideFrameSequence) 188 return false; 189 } 190 191 return true; 192 } 193 194 // Check whether this transformation is profitable for a particular 195 // function - in terms of code size. 196 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF, 197 ContextVector &CallSeqVector) { 198 // This transformation is always a win when we do not expect to have 199 // a reserved call frame. Under other circumstances, it may be either 200 // a win or a loss, and requires a heuristic. 201 bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects(); 202 if (CannotReserveFrame) 203 return true; 204 205 unsigned StackAlign = TFL->getStackAlignment(); 206 207 int64_t Advantage = 0; 208 for (auto CC : CallSeqVector) { 209 // Call sites where no parameters are passed on the stack 210 // do not affect the cost, since there needs to be no 211 // stack adjustment. 212 if (CC.NoStackParams) 213 continue; 214 215 if (!CC.UsePush) { 216 // If we don't use pushes for a particular call site, 217 // we pay for not having a reserved call frame with an 218 // additional sub/add esp pair. The cost is ~3 bytes per instruction, 219 // depending on the size of the constant. 220 // TODO: Callee-pop functions should have a smaller penalty, because 221 // an add is needed even with a reserved call frame. 222 Advantage -= 6; 223 } else { 224 // We can use pushes. First, account for the fixed costs. 225 // We'll need a add after the call. 226 Advantage -= 3; 227 // If we have to realign the stack, we'll also need a sub before 228 if (CC.ExpectedDist % StackAlign) 229 Advantage -= 3; 230 // Now, for each push, we save ~3 bytes. For small constants, we actually, 231 // save more (up to 5 bytes), but 3 should be a good approximation. 232 Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3; 233 } 234 } 235 236 return Advantage >= 0; 237 } 238 239 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) { 240 STI = &MF.getSubtarget<X86Subtarget>(); 241 TII = STI->getInstrInfo(); 242 TFL = STI->getFrameLowering(); 243 MRI = &MF.getRegInfo(); 244 245 const X86RegisterInfo &RegInfo = 246 *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo()); 247 SlotSize = RegInfo.getSlotSize(); 248 assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size"); 249 Log2SlotSize = Log2_32(SlotSize); 250 251 if (skipFunction(MF.getFunction()) || !isLegal(MF)) 252 return false; 253 254 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 255 256 bool Changed = false; 257 258 ContextVector CallSeqVector; 259 260 for (auto &MBB : MF) 261 for (auto &MI : MBB) 262 if (MI.getOpcode() == FrameSetupOpcode) { 263 CallContext Context; 264 collectCallInfo(MF, MBB, MI, Context); 265 CallSeqVector.push_back(Context); 266 } 267 268 if (!isProfitable(MF, CallSeqVector)) 269 return false; 270 271 for (auto CC : CallSeqVector) { 272 if (CC.UsePush) { 273 adjustCallSequence(MF, CC); 274 Changed = true; 275 } 276 } 277 278 return Changed; 279 } 280 281 X86CallFrameOptimization::InstClassification 282 X86CallFrameOptimization::classifyInstruction( 283 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 284 const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) { 285 if (MI == MBB.end()) 286 return Exit; 287 288 // The instructions we actually care about are movs onto the stack or special 289 // cases of constant-stores to stack 290 switch (MI->getOpcode()) { 291 case X86::AND16mi8: 292 case X86::AND32mi8: 293 case X86::AND64mi8: { 294 MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands); 295 return ImmOp.getImm() == 0 ? Convert : Exit; 296 } 297 case X86::OR16mi8: 298 case X86::OR32mi8: 299 case X86::OR64mi8: { 300 MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands); 301 return ImmOp.getImm() == -1 ? Convert : Exit; 302 } 303 case X86::MOV32mi: 304 case X86::MOV32mr: 305 case X86::MOV64mi32: 306 case X86::MOV64mr: 307 return Convert; 308 } 309 310 // Not all calling conventions have only stack MOVs between the stack 311 // adjust and the call. 312 313 // We want to tolerate other instructions, to cover more cases. 314 // In particular: 315 // a) PCrel calls, where we expect an additional COPY of the basereg. 316 // b) Passing frame-index addresses. 317 // c) Calling conventions that have inreg parameters. These generate 318 // both copies and movs into registers. 319 // To avoid creating lots of special cases, allow any instruction 320 // that does not write into memory, does not def or use the stack 321 // pointer, and does not def any register that was used by a preceding 322 // push. 323 // (Reading from memory is allowed, even if referenced through a 324 // frame index, since these will get adjusted properly in PEI) 325 326 // The reason for the last condition is that the pushes can't replace 327 // the movs in place, because the order must be reversed. 328 // So if we have a MOV32mr that uses EDX, then an instruction that defs 329 // EDX, and then the call, after the transformation the push will use 330 // the modified version of EDX, and not the original one. 331 // Since we are still in SSA form at this point, we only need to 332 // make sure we don't clobber any *physical* registers that were 333 // used by an earlier mov that will become a push. 334 335 if (MI->isCall() || MI->mayStore()) 336 return Exit; 337 338 for (const MachineOperand &MO : MI->operands()) { 339 if (!MO.isReg()) 340 continue; 341 unsigned int Reg = MO.getReg(); 342 if (!RegInfo.isPhysicalRegister(Reg)) 343 continue; 344 if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister())) 345 return Exit; 346 if (MO.isDef()) { 347 for (unsigned int U : UsedRegs) 348 if (RegInfo.regsOverlap(Reg, U)) 349 return Exit; 350 } 351 } 352 353 return Skip; 354 } 355 356 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF, 357 MachineBasicBlock &MBB, 358 MachineBasicBlock::iterator I, 359 CallContext &Context) { 360 // Check that this particular call sequence is amenable to the 361 // transformation. 362 const X86RegisterInfo &RegInfo = 363 *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo()); 364 365 // We expect to enter this at the beginning of a call sequence 366 assert(I->getOpcode() == TII->getCallFrameSetupOpcode()); 367 MachineBasicBlock::iterator FrameSetup = I++; 368 Context.FrameSetup = FrameSetup; 369 370 // How much do we adjust the stack? This puts an upper bound on 371 // the number of parameters actually passed on it. 372 unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize; 373 374 // A zero adjustment means no stack parameters 375 if (!MaxAdjust) { 376 Context.NoStackParams = true; 377 return; 378 } 379 380 // Skip over DEBUG_VALUE. 381 // For globals in PIC mode, we can have some LEAs here. Skip them as well. 382 // TODO: Extend this to something that covers more cases. 383 while (I->getOpcode() == X86::LEA32r || I->isDebugValue()) 384 ++I; 385 386 unsigned StackPtr = RegInfo.getStackRegister(); 387 auto StackPtrCopyInst = MBB.end(); 388 // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual 389 // register. If it's there, use that virtual register as stack pointer 390 // instead. Also, we need to locate this instruction so that we can later 391 // safely ignore it while doing the conservative processing of the call chain. 392 // The COPY can be located anywhere between the call-frame setup 393 // instruction and its first use. We use the call instruction as a boundary 394 // because it is usually cheaper to check if an instruction is a call than 395 // checking if an instruction uses a register. 396 for (auto J = I; !J->isCall(); ++J) 397 if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() && 398 J->getOperand(1).getReg() == StackPtr) { 399 StackPtrCopyInst = J; 400 Context.SPCopy = &*J++; 401 StackPtr = Context.SPCopy->getOperand(0).getReg(); 402 break; 403 } 404 405 // Scan the call setup sequence for the pattern we're looking for. 406 // We only handle a simple case - a sequence of store instructions that 407 // push a sequence of stack-slot-aligned values onto the stack, with 408 // no gaps between them. 409 if (MaxAdjust > 4) 410 Context.ArgStoreVector.resize(MaxAdjust, nullptr); 411 412 DenseSet<unsigned int> UsedRegs; 413 414 for (InstClassification Classification = Skip; Classification != Exit; ++I) { 415 // If this is the COPY of the stack pointer, it's ok to ignore. 416 if (I == StackPtrCopyInst) 417 continue; 418 Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs); 419 if (Classification != Convert) 420 continue; 421 // We know the instruction has a supported store opcode. 422 // We only want movs of the form: 423 // mov imm/reg, k(%StackPtr) 424 // If we run into something else, bail. 425 // Note that AddrBaseReg may, counter to its name, not be a register, 426 // but rather a frame index. 427 // TODO: Support the fi case. This should probably work now that we 428 // have the infrastructure to track the stack pointer within a call 429 // sequence. 430 if (!I->getOperand(X86::AddrBaseReg).isReg() || 431 (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) || 432 !I->getOperand(X86::AddrScaleAmt).isImm() || 433 (I->getOperand(X86::AddrScaleAmt).getImm() != 1) || 434 (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) || 435 (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) || 436 !I->getOperand(X86::AddrDisp).isImm()) 437 return; 438 439 int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm(); 440 assert(StackDisp >= 0 && 441 "Negative stack displacement when passing parameters"); 442 443 // We really don't want to consider the unaligned case. 444 if (StackDisp & (SlotSize - 1)) 445 return; 446 StackDisp >>= Log2SlotSize; 447 448 assert((size_t)StackDisp < Context.ArgStoreVector.size() && 449 "Function call has more parameters than the stack is adjusted for."); 450 451 // If the same stack slot is being filled twice, something's fishy. 452 if (Context.ArgStoreVector[StackDisp] != nullptr) 453 return; 454 Context.ArgStoreVector[StackDisp] = &*I; 455 456 for (const MachineOperand &MO : I->uses()) { 457 if (!MO.isReg()) 458 continue; 459 unsigned int Reg = MO.getReg(); 460 if (RegInfo.isPhysicalRegister(Reg)) 461 UsedRegs.insert(Reg); 462 } 463 } 464 465 --I; 466 467 // We now expect the end of the sequence. If we stopped early, 468 // or reached the end of the block without finding a call, bail. 469 if (I == MBB.end() || !I->isCall()) 470 return; 471 472 Context.Call = &*I; 473 if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode()) 474 return; 475 476 // Now, go through the vector, and see that we don't have any gaps, 477 // but only a series of storing instructions. 478 auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end(); 479 for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize) 480 if (*MMI == nullptr) 481 break; 482 483 // If the call had no parameters, do nothing 484 if (MMI == Context.ArgStoreVector.begin()) 485 return; 486 487 // We are either at the last parameter, or a gap. 488 // Make sure it's not a gap 489 for (; MMI != MME; ++MMI) 490 if (*MMI != nullptr) 491 return; 492 493 Context.UsePush = true; 494 } 495 496 void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF, 497 const CallContext &Context) { 498 // Ok, we can in fact do the transformation for this call. 499 // Do not remove the FrameSetup instruction, but adjust the parameters. 500 // PEI will end up finalizing the handling of this. 501 MachineBasicBlock::iterator FrameSetup = Context.FrameSetup; 502 MachineBasicBlock &MBB = *(FrameSetup->getParent()); 503 TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist); 504 505 DebugLoc DL = FrameSetup->getDebugLoc(); 506 bool Is64Bit = STI->is64Bit(); 507 // Now, iterate through the vector in reverse order, and replace the store to 508 // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to 509 // replace uses. 510 for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) { 511 MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx]; 512 MachineOperand PushOp = Store->getOperand(X86::AddrNumOperands); 513 MachineBasicBlock::iterator Push = nullptr; 514 unsigned PushOpcode; 515 switch (Store->getOpcode()) { 516 default: 517 llvm_unreachable("Unexpected Opcode!"); 518 case X86::AND16mi8: 519 case X86::AND32mi8: 520 case X86::AND64mi8: 521 case X86::OR16mi8: 522 case X86::OR32mi8: 523 case X86::OR64mi8: 524 case X86::MOV32mi: 525 case X86::MOV64mi32: 526 PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32; 527 // If the operand is a small (8-bit) immediate, we can use a 528 // PUSH instruction with a shorter encoding. 529 // Note that isImm() may fail even though this is a MOVmi, because 530 // the operand can also be a symbol. 531 if (PushOp.isImm()) { 532 int64_t Val = PushOp.getImm(); 533 if (isInt<8>(Val)) 534 PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8; 535 } 536 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp); 537 break; 538 case X86::MOV32mr: 539 case X86::MOV64mr: { 540 unsigned int Reg = PushOp.getReg(); 541 542 // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg 543 // in preparation for the PUSH64. The upper 32 bits can be undef. 544 if (Is64Bit && Store->getOpcode() == X86::MOV32mr) { 545 unsigned UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass); 546 Reg = MRI->createVirtualRegister(&X86::GR64RegClass); 547 BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg); 548 BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg) 549 .addReg(UndefReg) 550 .add(PushOp) 551 .addImm(X86::sub_32bit); 552 } 553 554 // If PUSHrmm is not slow on this target, try to fold the source of the 555 // push into the instruction. 556 bool SlowPUSHrmm = STI->isAtom() || STI->isSLM(); 557 558 // Check that this is legal to fold. Right now, we're extremely 559 // conservative about that. 560 MachineInstr *DefMov = nullptr; 561 if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) { 562 PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm; 563 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)); 564 565 unsigned NumOps = DefMov->getDesc().getNumOperands(); 566 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) 567 Push->addOperand(DefMov->getOperand(i)); 568 569 DefMov->eraseFromParent(); 570 } else { 571 PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r; 572 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)) 573 .addReg(Reg) 574 .getInstr(); 575 } 576 break; 577 } 578 } 579 580 // For debugging, when using SP-based CFA, we need to adjust the CFA 581 // offset after each push. 582 // TODO: This is needed only if we require precise CFA. 583 if (!TFL->hasFP(MF)) 584 TFL->BuildCFI( 585 MBB, std::next(Push), DL, 586 MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize)); 587 588 MBB.erase(Store); 589 } 590 591 // The stack-pointer copy is no longer used in the call sequences. 592 // There should not be any other users, but we can't commit to that, so: 593 if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg())) 594 Context.SPCopy->eraseFromParent(); 595 596 // Once we've done this, we need to make sure PEI doesn't assume a reserved 597 // frame. 598 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 599 FuncInfo->setHasPushSequences(true); 600 } 601 602 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush( 603 MachineBasicBlock::iterator FrameSetup, unsigned Reg) { 604 // Do an extremely restricted form of load folding. 605 // ISel will often create patterns like: 606 // movl 4(%edi), %eax 607 // movl 8(%edi), %ecx 608 // movl 12(%edi), %edx 609 // movl %edx, 8(%esp) 610 // movl %ecx, 4(%esp) 611 // movl %eax, (%esp) 612 // call 613 // Get rid of those with prejudice. 614 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 615 return nullptr; 616 617 // Make sure this is the only use of Reg. 618 if (!MRI->hasOneNonDBGUse(Reg)) 619 return nullptr; 620 621 MachineInstr &DefMI = *MRI->getVRegDef(Reg); 622 623 // Make sure the def is a MOV from memory. 624 // If the def is in another block, give up. 625 if ((DefMI.getOpcode() != X86::MOV32rm && 626 DefMI.getOpcode() != X86::MOV64rm) || 627 DefMI.getParent() != FrameSetup->getParent()) 628 return nullptr; 629 630 // Make sure we don't have any instructions between DefMI and the 631 // push that make folding the load illegal. 632 for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I) 633 if (I->isLoadFoldBarrier()) 634 return nullptr; 635 636 return &DefMI; 637 } 638 639 FunctionPass *llvm::createX86CallFrameOptimization() { 640 return new X86CallFrameOptimization(); 641 } 642