1 //===-- X86DisassemblerDecoder.cpp - Disassembler decoder -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler.
11 // It contains the implementation of the instruction decoder.
12 // Documentation for the disassembler can be found in X86Disassembler.h.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include <cstdarg> /* for va_*()       */
17 #include <cstdio>  /* for vsnprintf()  */
18 #include <cstdlib> /* for exit()       */
19 #include <cstring> /* for memset()     */
20 
21 #include "X86DisassemblerDecoder.h"
22 
23 using namespace llvm::X86Disassembler;
24 
25 /// Specifies whether a ModR/M byte is needed and (if so) which
26 /// instruction each possible value of the ModR/M byte corresponds to.  Once
27 /// this information is known, we have narrowed down to a single instruction.
28 struct ModRMDecision {
29   uint8_t modrm_type;
30   uint16_t instructionIDs;
31 };
32 
33 /// Specifies which set of ModR/M->instruction tables to look at
34 /// given a particular opcode.
35 struct OpcodeDecision {
36   ModRMDecision modRMDecisions[256];
37 };
38 
39 /// Specifies which opcode->instruction tables to look at given
40 /// a particular context (set of attributes).  Since there are many possible
41 /// contexts, the decoder first uses CONTEXTS_SYM to determine which context
42 /// applies given a specific set of attributes.  Hence there are only IC_max
43 /// entries in this table, rather than 2^(ATTR_max).
44 struct ContextDecision {
45   OpcodeDecision opcodeDecisions[IC_max];
46 };
47 
48 #include "X86GenDisassemblerTables.inc"
49 
50 #ifndef NDEBUG
51 #define debug(s) do { Debug(__FILE__, __LINE__, s); } while (0)
52 #else
53 #define debug(s) do { } while (0)
54 #endif
55 
56 /*
57  * contextForAttrs - Client for the instruction context table.  Takes a set of
58  *   attributes and returns the appropriate decode context.
59  *
60  * @param attrMask  - Attributes, from the enumeration attributeBits.
61  * @return          - The InstructionContext to use when looking up an
62  *                    an instruction with these attributes.
63  */
64 static InstructionContext contextForAttrs(uint16_t attrMask) {
65   return static_cast<InstructionContext>(CONTEXTS_SYM[attrMask]);
66 }
67 
68 /*
69  * modRMRequired - Reads the appropriate instruction table to determine whether
70  *   the ModR/M byte is required to decode a particular instruction.
71  *
72  * @param type        - The opcode type (i.e., how many bytes it has).
73  * @param insnContext - The context for the instruction, as returned by
74  *                      contextForAttrs.
75  * @param opcode      - The last byte of the instruction's opcode, not counting
76  *                      ModR/M extensions and escapes.
77  * @return            - true if the ModR/M byte is required, false otherwise.
78  */
79 static int modRMRequired(OpcodeType type,
80                          InstructionContext insnContext,
81                          uint16_t opcode) {
82   const struct ContextDecision* decision = nullptr;
83 
84   switch (type) {
85   case ONEBYTE:
86     decision = &ONEBYTE_SYM;
87     break;
88   case TWOBYTE:
89     decision = &TWOBYTE_SYM;
90     break;
91   case THREEBYTE_38:
92     decision = &THREEBYTE38_SYM;
93     break;
94   case THREEBYTE_3A:
95     decision = &THREEBYTE3A_SYM;
96     break;
97   case XOP8_MAP:
98     decision = &XOP8_MAP_SYM;
99     break;
100   case XOP9_MAP:
101     decision = &XOP9_MAP_SYM;
102     break;
103   case XOPA_MAP:
104     decision = &XOPA_MAP_SYM;
105     break;
106   }
107 
108   return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
109     modrm_type != MODRM_ONEENTRY;
110 }
111 
112 /*
113  * decode - Reads the appropriate instruction table to obtain the unique ID of
114  *   an instruction.
115  *
116  * @param type        - See modRMRequired().
117  * @param insnContext - See modRMRequired().
118  * @param opcode      - See modRMRequired().
119  * @param modRM       - The ModR/M byte if required, or any value if not.
120  * @return            - The UID of the instruction, or 0 on failure.
121  */
122 static InstrUID decode(OpcodeType type,
123                        InstructionContext insnContext,
124                        uint8_t opcode,
125                        uint8_t modRM) {
126   const struct ModRMDecision* dec = nullptr;
127 
128   switch (type) {
129   case ONEBYTE:
130     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
131     break;
132   case TWOBYTE:
133     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
134     break;
135   case THREEBYTE_38:
136     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
137     break;
138   case THREEBYTE_3A:
139     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
140     break;
141   case XOP8_MAP:
142     dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
143     break;
144   case XOP9_MAP:
145     dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
146     break;
147   case XOPA_MAP:
148     dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
149     break;
150   }
151 
152   switch (dec->modrm_type) {
153   default:
154     debug("Corrupt table!  Unknown modrm_type");
155     return 0;
156   case MODRM_ONEENTRY:
157     return modRMTable[dec->instructionIDs];
158   case MODRM_SPLITRM:
159     if (modFromModRM(modRM) == 0x3)
160       return modRMTable[dec->instructionIDs+1];
161     return modRMTable[dec->instructionIDs];
162   case MODRM_SPLITREG:
163     if (modFromModRM(modRM) == 0x3)
164       return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
165     return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
166   case MODRM_SPLITMISC:
167     if (modFromModRM(modRM) == 0x3)
168       return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
169     return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
170   case MODRM_FULL:
171     return modRMTable[dec->instructionIDs+modRM];
172   }
173 }
174 
175 /*
176  * specifierForUID - Given a UID, returns the name and operand specification for
177  *   that instruction.
178  *
179  * @param uid - The unique ID for the instruction.  This should be returned by
180  *              decode(); specifierForUID will not check bounds.
181  * @return    - A pointer to the specification for that instruction.
182  */
183 static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
184   return &INSTRUCTIONS_SYM[uid];
185 }
186 
187 /*
188  * consumeByte - Uses the reader function provided by the user to consume one
189  *   byte from the instruction's memory and advance the cursor.
190  *
191  * @param insn  - The instruction with the reader function to use.  The cursor
192  *                for this instruction is advanced.
193  * @param byte  - A pointer to a pre-allocated memory buffer to be populated
194  *                with the data read.
195  * @return      - 0 if the read was successful; nonzero otherwise.
196  */
197 static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
198   int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
199 
200   if (!ret)
201     ++(insn->readerCursor);
202 
203   return ret;
204 }
205 
206 /*
207  * lookAtByte - Like consumeByte, but does not advance the cursor.
208  *
209  * @param insn  - See consumeByte().
210  * @param byte  - See consumeByte().
211  * @return      - See consumeByte().
212  */
213 static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
214   return insn->reader(insn->readerArg, byte, insn->readerCursor);
215 }
216 
217 static void unconsumeByte(struct InternalInstruction* insn) {
218   insn->readerCursor--;
219 }
220 
221 #define CONSUME_FUNC(name, type)                                  \
222   static int name(struct InternalInstruction* insn, type* ptr) {  \
223     type combined = 0;                                            \
224     unsigned offset;                                              \
225     for (offset = 0; offset < sizeof(type); ++offset) {           \
226       uint8_t byte;                                               \
227       int ret = insn->reader(insn->readerArg,                     \
228                              &byte,                               \
229                              insn->readerCursor + offset);        \
230       if (ret)                                                    \
231         return ret;                                               \
232       combined = combined | ((uint64_t)byte << (offset * 8));     \
233     }                                                             \
234     *ptr = combined;                                              \
235     insn->readerCursor += sizeof(type);                           \
236     return 0;                                                     \
237   }
238 
239 /*
240  * consume* - Use the reader function provided by the user to consume data
241  *   values of various sizes from the instruction's memory and advance the
242  *   cursor appropriately.  These readers perform endian conversion.
243  *
244  * @param insn    - See consumeByte().
245  * @param ptr     - A pointer to a pre-allocated memory of appropriate size to
246  *                  be populated with the data read.
247  * @return        - See consumeByte().
248  */
249 CONSUME_FUNC(consumeInt8, int8_t)
250 CONSUME_FUNC(consumeInt16, int16_t)
251 CONSUME_FUNC(consumeInt32, int32_t)
252 CONSUME_FUNC(consumeUInt16, uint16_t)
253 CONSUME_FUNC(consumeUInt32, uint32_t)
254 CONSUME_FUNC(consumeUInt64, uint64_t)
255 
256 /*
257  * dbgprintf - Uses the logging function provided by the user to log a single
258  *   message, typically without a carriage-return.
259  *
260  * @param insn    - The instruction containing the logging function.
261  * @param format  - See printf().
262  * @param ...     - See printf().
263  */
264 static void dbgprintf(struct InternalInstruction* insn,
265                       const char* format,
266                       ...) {
267   char buffer[256];
268   va_list ap;
269 
270   if (!insn->dlog)
271     return;
272 
273   va_start(ap, format);
274   (void)vsnprintf(buffer, sizeof(buffer), format, ap);
275   va_end(ap);
276 
277   insn->dlog(insn->dlogArg, buffer);
278 }
279 
280 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
281   if (insn->mode == MODE_64BIT)
282     return prefix >= 0x40 && prefix <= 0x4f;
283   return false;
284 }
285 
286 /*
287  * setPrefixPresent - Marks that a particular prefix is present as mandatory
288  *
289  * @param insn      - The instruction to be marked as having the prefix.
290  * @param prefix    - The prefix that is present.
291  */
292 static void setPrefixPresent(struct InternalInstruction *insn, uint8_t prefix) {
293   uint8_t nextByte;
294   switch (prefix) {
295   case 0xf2:
296   case 0xf3:
297     if (lookAtByte(insn, &nextByte))
298       break;
299     // TODO:
300     //  1. There could be several 0x66
301     //  2. if (nextByte == 0x66) and nextNextByte != 0x0f then
302     //      it's not mandatory prefix
303     //  3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
304     //     0x0f exactly after it to be mandatory prefix
305     if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
306       // The last of 0xf2 /0xf3 is mandatory prefix
307       insn->mandatoryPrefix = prefix;
308     insn->repeatPrefix = prefix;
309     break;
310   case 0x66:
311     if (lookAtByte(insn, &nextByte))
312       break;
313     // 0x66 can't overwrite existing mandatory prefix and should be ignored
314     if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
315       insn->mandatoryPrefix = prefix;
316     break;
317   }
318 }
319 
320 /*
321  * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
322  *   instruction as having them.  Also sets the instruction's default operand,
323  *   address, and other relevant data sizes to report operands correctly.
324  *
325  * @param insn  - The instruction whose prefixes are to be read.
326  * @return      - 0 if the instruction could be read until the end of the prefix
327  *                bytes, and no prefixes conflicted; nonzero otherwise.
328  */
329 static int readPrefixes(struct InternalInstruction* insn) {
330   bool isPrefix = true;
331   uint8_t byte = 0;
332   uint8_t nextByte;
333 
334   dbgprintf(insn, "readPrefixes()");
335 
336   while (isPrefix) {
337     /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
338     if (consumeByte(insn, &byte))
339       break;
340 
341     /*
342      * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
343      * break and let it be disassembled as a normal "instruction".
344      */
345     if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
346       break;
347 
348     if ((byte == 0xf2 || byte == 0xf3) && !lookAtByte(insn, &nextByte)) {
349       /*
350        * If the byte is 0xf2 or 0xf3, and any of the following conditions are
351        * met:
352        * - it is followed by a LOCK (0xf0) prefix
353        * - it is followed by an xchg instruction
354        * then it should be disassembled as a xacquire/xrelease not repne/rep.
355        */
356       if (((nextByte == 0xf0) ||
357            ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
358         insn->xAcquireRelease = true;
359         if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
360           break;
361       }
362       /*
363        * Also if the byte is 0xf3, and the following condition is met:
364        * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
365        *                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
366        * then it should be disassembled as an xrelease not rep.
367        */
368       if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
369                            nextByte == 0xc6 || nextByte == 0xc7)) {
370         insn->xAcquireRelease = true;
371         if (nextByte != 0x90) // PAUSE instruction support
372           break;
373       }
374       if (isREX(insn, nextByte)) {
375         uint8_t nnextByte;
376         // Go to REX prefix after the current one
377         if (consumeByte(insn, &nnextByte))
378           return -1;
379         // We should be able to read next byte after REX prefix
380         if (lookAtByte(insn, &nnextByte))
381           return -1;
382         unconsumeByte(insn);
383       }
384     }
385 
386     switch (byte) {
387     case 0xf0:  /* LOCK */
388     case 0xf2:  /* REPNE/REPNZ */
389     case 0xf3:  /* REP or REPE/REPZ */
390       setPrefixPresent(insn, byte);
391       break;
392     case 0x2e:  /* CS segment override -OR- Branch not taken */
393     case 0x36:  /* SS segment override -OR- Branch taken */
394     case 0x3e:  /* DS segment override */
395     case 0x26:  /* ES segment override */
396     case 0x64:  /* FS segment override */
397     case 0x65:  /* GS segment override */
398       switch (byte) {
399       case 0x2e:
400         insn->segmentOverride = SEG_OVERRIDE_CS;
401         break;
402       case 0x36:
403         insn->segmentOverride = SEG_OVERRIDE_SS;
404         break;
405       case 0x3e:
406         insn->segmentOverride = SEG_OVERRIDE_DS;
407         break;
408       case 0x26:
409         insn->segmentOverride = SEG_OVERRIDE_ES;
410         break;
411       case 0x64:
412         insn->segmentOverride = SEG_OVERRIDE_FS;
413         break;
414       case 0x65:
415         insn->segmentOverride = SEG_OVERRIDE_GS;
416         break;
417       default:
418         debug("Unhandled override");
419         return -1;
420       }
421       setPrefixPresent(insn, byte);
422       break;
423     case 0x66:  /* Operand-size override */
424       insn->hasOpSize = true;
425       setPrefixPresent(insn, byte);
426       break;
427     case 0x67:  /* Address-size override */
428       insn->hasAdSize = true;
429       setPrefixPresent(insn, byte);
430       break;
431     default:    /* Not a prefix byte */
432       isPrefix = false;
433       break;
434     }
435 
436     if (isPrefix)
437       dbgprintf(insn, "Found prefix 0x%hhx", byte);
438   }
439 
440   insn->vectorExtensionType = TYPE_NO_VEX_XOP;
441 
442   if (byte == 0x62) {
443     uint8_t byte1, byte2;
444 
445     if (consumeByte(insn, &byte1)) {
446       dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
447       return -1;
448     }
449 
450     if (lookAtByte(insn, &byte2)) {
451       dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
452       return -1;
453     }
454 
455     if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
456        ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
457       insn->vectorExtensionType = TYPE_EVEX;
458     } else {
459       unconsumeByte(insn); /* unconsume byte1 */
460       unconsumeByte(insn); /* unconsume byte  */
461     }
462 
463     if (insn->vectorExtensionType == TYPE_EVEX) {
464       insn->vectorExtensionPrefix[0] = byte;
465       insn->vectorExtensionPrefix[1] = byte1;
466       if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
467         dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
468         return -1;
469       }
470       if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
471         dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
472         return -1;
473       }
474 
475       /* We simulate the REX prefix for simplicity's sake */
476       if (insn->mode == MODE_64BIT) {
477         insn->rexPrefix = 0x40
478                         | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
479                         | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
480                         | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
481                         | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
482       }
483 
484       dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
485               insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
486               insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
487     }
488   } else if (byte == 0xc4) {
489     uint8_t byte1;
490 
491     if (lookAtByte(insn, &byte1)) {
492       dbgprintf(insn, "Couldn't read second byte of VEX");
493       return -1;
494     }
495 
496     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
497       insn->vectorExtensionType = TYPE_VEX_3B;
498     else
499       unconsumeByte(insn);
500 
501     if (insn->vectorExtensionType == TYPE_VEX_3B) {
502       insn->vectorExtensionPrefix[0] = byte;
503       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
504       consumeByte(insn, &insn->vectorExtensionPrefix[2]);
505 
506       /* We simulate the REX prefix for simplicity's sake */
507 
508       if (insn->mode == MODE_64BIT)
509         insn->rexPrefix = 0x40
510                         | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
511                         | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
512                         | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
513                         | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
514 
515       dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
516                 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
517                 insn->vectorExtensionPrefix[2]);
518     }
519   } else if (byte == 0xc5) {
520     uint8_t byte1;
521 
522     if (lookAtByte(insn, &byte1)) {
523       dbgprintf(insn, "Couldn't read second byte of VEX");
524       return -1;
525     }
526 
527     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
528       insn->vectorExtensionType = TYPE_VEX_2B;
529     else
530       unconsumeByte(insn);
531 
532     if (insn->vectorExtensionType == TYPE_VEX_2B) {
533       insn->vectorExtensionPrefix[0] = byte;
534       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
535 
536       if (insn->mode == MODE_64BIT)
537         insn->rexPrefix = 0x40
538                         | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
539 
540       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
541       default:
542         break;
543       case VEX_PREFIX_66:
544         insn->hasOpSize = true;
545         break;
546       }
547 
548       dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx",
549                 insn->vectorExtensionPrefix[0],
550                 insn->vectorExtensionPrefix[1]);
551     }
552   } else if (byte == 0x8f) {
553     uint8_t byte1;
554 
555     if (lookAtByte(insn, &byte1)) {
556       dbgprintf(insn, "Couldn't read second byte of XOP");
557       return -1;
558     }
559 
560     if ((byte1 & 0x38) != 0x0) /* 0 in these 3 bits is a POP instruction. */
561       insn->vectorExtensionType = TYPE_XOP;
562     else
563       unconsumeByte(insn);
564 
565     if (insn->vectorExtensionType == TYPE_XOP) {
566       insn->vectorExtensionPrefix[0] = byte;
567       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
568       consumeByte(insn, &insn->vectorExtensionPrefix[2]);
569 
570       /* We simulate the REX prefix for simplicity's sake */
571 
572       if (insn->mode == MODE_64BIT)
573         insn->rexPrefix = 0x40
574                         | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
575                         | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
576                         | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
577                         | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
578 
579       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
580       default:
581         break;
582       case VEX_PREFIX_66:
583         insn->hasOpSize = true;
584         break;
585       }
586 
587       dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
588                 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
589                 insn->vectorExtensionPrefix[2]);
590     }
591   } else if (isREX(insn, byte)) {
592     if (lookAtByte(insn, &nextByte))
593       return -1;
594     insn->rexPrefix = byte;
595     dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
596   } else
597     unconsumeByte(insn);
598 
599   if (insn->mode == MODE_16BIT) {
600     insn->registerSize = (insn->hasOpSize ? 4 : 2);
601     insn->addressSize = (insn->hasAdSize ? 4 : 2);
602     insn->displacementSize = (insn->hasAdSize ? 4 : 2);
603     insn->immediateSize = (insn->hasOpSize ? 4 : 2);
604   } else if (insn->mode == MODE_32BIT) {
605     insn->registerSize = (insn->hasOpSize ? 2 : 4);
606     insn->addressSize = (insn->hasAdSize ? 2 : 4);
607     insn->displacementSize = (insn->hasAdSize ? 2 : 4);
608     insn->immediateSize = (insn->hasOpSize ? 2 : 4);
609   } else if (insn->mode == MODE_64BIT) {
610     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
611       insn->registerSize       = 8;
612       insn->addressSize = (insn->hasAdSize ? 4 : 8);
613       insn->displacementSize   = 4;
614       insn->immediateSize      = 4;
615     } else {
616       insn->registerSize = (insn->hasOpSize ? 2 : 4);
617       insn->addressSize = (insn->hasAdSize ? 4 : 8);
618       insn->displacementSize = (insn->hasOpSize ? 2 : 4);
619       insn->immediateSize = (insn->hasOpSize ? 2 : 4);
620     }
621   }
622 
623   return 0;
624 }
625 
626 /*
627  * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
628  *   extended or escape opcodes).
629  *
630  * @param insn  - The instruction whose opcode is to be read.
631  * @return      - 0 if the opcode could be read successfully; nonzero otherwise.
632  */
633 static int readOpcode(struct InternalInstruction* insn) {
634   /* Determine the length of the primary opcode */
635 
636   uint8_t current;
637 
638   dbgprintf(insn, "readOpcode()");
639 
640   insn->opcodeType = ONEBYTE;
641 
642   if (insn->vectorExtensionType == TYPE_EVEX) {
643     switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
644     default:
645       dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
646                 mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
647       return -1;
648     case VEX_LOB_0F:
649       insn->opcodeType = TWOBYTE;
650       return consumeByte(insn, &insn->opcode);
651     case VEX_LOB_0F38:
652       insn->opcodeType = THREEBYTE_38;
653       return consumeByte(insn, &insn->opcode);
654     case VEX_LOB_0F3A:
655       insn->opcodeType = THREEBYTE_3A;
656       return consumeByte(insn, &insn->opcode);
657     }
658   } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
659     switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
660     default:
661       dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
662                 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
663       return -1;
664     case VEX_LOB_0F:
665       insn->opcodeType = TWOBYTE;
666       return consumeByte(insn, &insn->opcode);
667     case VEX_LOB_0F38:
668       insn->opcodeType = THREEBYTE_38;
669       return consumeByte(insn, &insn->opcode);
670     case VEX_LOB_0F3A:
671       insn->opcodeType = THREEBYTE_3A;
672       return consumeByte(insn, &insn->opcode);
673     }
674   } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
675     insn->opcodeType = TWOBYTE;
676     return consumeByte(insn, &insn->opcode);
677   } else if (insn->vectorExtensionType == TYPE_XOP) {
678     switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
679     default:
680       dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
681                 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
682       return -1;
683     case XOP_MAP_SELECT_8:
684       insn->opcodeType = XOP8_MAP;
685       return consumeByte(insn, &insn->opcode);
686     case XOP_MAP_SELECT_9:
687       insn->opcodeType = XOP9_MAP;
688       return consumeByte(insn, &insn->opcode);
689     case XOP_MAP_SELECT_A:
690       insn->opcodeType = XOPA_MAP;
691       return consumeByte(insn, &insn->opcode);
692     }
693   }
694 
695   if (consumeByte(insn, &current))
696     return -1;
697 
698   if (current == 0x0f) {
699     dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
700 
701     if (consumeByte(insn, &current))
702       return -1;
703 
704     if (current == 0x38) {
705       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
706 
707       if (consumeByte(insn, &current))
708         return -1;
709 
710       insn->opcodeType = THREEBYTE_38;
711     } else if (current == 0x3a) {
712       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
713 
714       if (consumeByte(insn, &current))
715         return -1;
716 
717       insn->opcodeType = THREEBYTE_3A;
718     } else {
719       dbgprintf(insn, "Didn't find a three-byte escape prefix");
720 
721       insn->opcodeType = TWOBYTE;
722     }
723   } else if (insn->mandatoryPrefix)
724     // The opcode with mandatory prefix must start with opcode escape.
725     // If not it's legacy repeat prefix
726     insn->mandatoryPrefix = 0;
727 
728   /*
729    * At this point we have consumed the full opcode.
730    * Anything we consume from here on must be unconsumed.
731    */
732 
733   insn->opcode = current;
734 
735   return 0;
736 }
737 
738 static int readModRM(struct InternalInstruction* insn);
739 
740 /*
741  * getIDWithAttrMask - Determines the ID of an instruction, consuming
742  *   the ModR/M byte as appropriate for extended and escape opcodes,
743  *   and using a supplied attribute mask.
744  *
745  * @param instructionID - A pointer whose target is filled in with the ID of the
746  *                        instruction.
747  * @param insn          - The instruction whose ID is to be determined.
748  * @param attrMask      - The attribute mask to search.
749  * @return              - 0 if the ModR/M could be read when needed or was not
750  *                        needed; nonzero otherwise.
751  */
752 static int getIDWithAttrMask(uint16_t* instructionID,
753                              struct InternalInstruction* insn,
754                              uint16_t attrMask) {
755   bool hasModRMExtension;
756 
757   InstructionContext instructionClass = contextForAttrs(attrMask);
758 
759   hasModRMExtension = modRMRequired(insn->opcodeType,
760                                     instructionClass,
761                                     insn->opcode);
762 
763   if (hasModRMExtension) {
764     if (readModRM(insn))
765       return -1;
766 
767     *instructionID = decode(insn->opcodeType,
768                             instructionClass,
769                             insn->opcode,
770                             insn->modRM);
771   } else {
772     *instructionID = decode(insn->opcodeType,
773                             instructionClass,
774                             insn->opcode,
775                             0);
776   }
777 
778   return 0;
779 }
780 
781 /*
782  * is16BitEquivalent - Determines whether two instruction names refer to
783  * equivalent instructions but one is 16-bit whereas the other is not.
784  *
785  * @param orig  - The instruction that is not 16-bit
786  * @param equiv - The instruction that is 16-bit
787  */
788 static bool is16BitEquivalent(const char *orig, const char *equiv) {
789   off_t i;
790 
791   for (i = 0;; i++) {
792     if (orig[i] == '\0' && equiv[i] == '\0')
793       return true;
794     if (orig[i] == '\0' || equiv[i] == '\0')
795       return false;
796     if (orig[i] != equiv[i]) {
797       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
798         continue;
799       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
800         continue;
801       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
802         continue;
803       return false;
804     }
805   }
806 }
807 
808 /*
809  * is64Bit - Determines whether this instruction is a 64-bit instruction.
810  *
811  * @param name - The instruction that is not 16-bit
812  */
813 static bool is64Bit(const char *name) {
814   off_t i;
815 
816   for (i = 0;; ++i) {
817     if (name[i] == '\0')
818       return false;
819     if (name[i] == '6' && name[i+1] == '4')
820       return true;
821   }
822 }
823 
824 /*
825  * getID - Determines the ID of an instruction, consuming the ModR/M byte as
826  *   appropriate for extended and escape opcodes.  Determines the attributes and
827  *   context for the instruction before doing so.
828  *
829  * @param insn  - The instruction whose ID is to be determined.
830  * @return      - 0 if the ModR/M could be read when needed or was not needed;
831  *                nonzero otherwise.
832  */
833 static int getID(struct InternalInstruction* insn, const void *miiArg) {
834   uint16_t attrMask;
835   uint16_t instructionID;
836 
837   dbgprintf(insn, "getID()");
838 
839   attrMask = ATTR_NONE;
840 
841   if (insn->mode == MODE_64BIT)
842     attrMask |= ATTR_64BIT;
843 
844   if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
845     attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
846 
847     if (insn->vectorExtensionType == TYPE_EVEX) {
848       switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
849       case VEX_PREFIX_66:
850         attrMask |= ATTR_OPSIZE;
851         break;
852       case VEX_PREFIX_F3:
853         attrMask |= ATTR_XS;
854         break;
855       case VEX_PREFIX_F2:
856         attrMask |= ATTR_XD;
857         break;
858       }
859 
860       if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
861         attrMask |= ATTR_EVEXKZ;
862       if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
863         attrMask |= ATTR_EVEXB;
864       if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
865         attrMask |= ATTR_EVEXK;
866       if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
867         attrMask |= ATTR_EVEXL;
868       if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
869         attrMask |= ATTR_EVEXL2;
870     } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
871       switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
872       case VEX_PREFIX_66:
873         attrMask |= ATTR_OPSIZE;
874         break;
875       case VEX_PREFIX_F3:
876         attrMask |= ATTR_XS;
877         break;
878       case VEX_PREFIX_F2:
879         attrMask |= ATTR_XD;
880         break;
881       }
882 
883       if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
884         attrMask |= ATTR_VEXL;
885     } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
886       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
887       case VEX_PREFIX_66:
888         attrMask |= ATTR_OPSIZE;
889         break;
890       case VEX_PREFIX_F3:
891         attrMask |= ATTR_XS;
892         break;
893       case VEX_PREFIX_F2:
894         attrMask |= ATTR_XD;
895         break;
896       }
897 
898       if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
899         attrMask |= ATTR_VEXL;
900     } else if (insn->vectorExtensionType == TYPE_XOP) {
901       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
902       case VEX_PREFIX_66:
903         attrMask |= ATTR_OPSIZE;
904         break;
905       case VEX_PREFIX_F3:
906         attrMask |= ATTR_XS;
907         break;
908       case VEX_PREFIX_F2:
909         attrMask |= ATTR_XD;
910         break;
911       }
912 
913       if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
914         attrMask |= ATTR_VEXL;
915     } else {
916       return -1;
917     }
918   } else if (!insn->mandatoryPrefix) {
919     // If we don't have mandatory prefix we should use legacy prefixes here
920     if (insn->hasOpSize && (insn->mode != MODE_16BIT))
921       attrMask |= ATTR_OPSIZE;
922     if (insn->hasAdSize)
923       attrMask |= ATTR_ADSIZE;
924     if (insn->opcodeType == ONEBYTE) {
925       if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
926         // Special support for PAUSE
927         attrMask |= ATTR_XS;
928     } else {
929       if (insn->repeatPrefix == 0xf2)
930         attrMask |= ATTR_XD;
931       else if (insn->repeatPrefix == 0xf3)
932         attrMask |= ATTR_XS;
933     }
934   } else {
935     switch (insn->mandatoryPrefix) {
936     case 0xf2:
937       attrMask |= ATTR_XD;
938       break;
939     case 0xf3:
940       attrMask |= ATTR_XS;
941       break;
942     case 0x66:
943       if (insn->mode != MODE_16BIT)
944         attrMask |= ATTR_OPSIZE;
945       break;
946     case 0x67:
947       attrMask |= ATTR_ADSIZE;
948       break;
949     }
950   }
951 
952   if (insn->rexPrefix & 0x08) {
953     attrMask |= ATTR_REXW;
954     attrMask &= ~ATTR_ADSIZE;
955   }
956 
957   /*
958    * JCXZ/JECXZ need special handling for 16-bit mode because the meaning
959    * of the AdSize prefix is inverted w.r.t. 32-bit mode.
960    */
961   if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE &&
962       insn->opcode == 0xE3)
963     attrMask ^= ATTR_ADSIZE;
964 
965   /*
966    * In 64-bit mode all f64 superscripted opcodes ignore opcode size prefix
967    * CALL/JMP/JCC instructions need to ignore 0x66 and consume 4 bytes
968    */
969 
970   if ((insn->mode == MODE_64BIT) && insn->hasOpSize) {
971     switch (insn->opcode) {
972     case 0xE8:
973     case 0xE9:
974       // Take care of psubsb and other mmx instructions.
975       if (insn->opcodeType == ONEBYTE) {
976         attrMask ^= ATTR_OPSIZE;
977         insn->immediateSize = 4;
978         insn->displacementSize = 4;
979       }
980       break;
981     case 0x82:
982     case 0x83:
983     case 0x84:
984     case 0x85:
985     case 0x86:
986     case 0x87:
987     case 0x88:
988     case 0x89:
989     case 0x8A:
990     case 0x8B:
991     case 0x8C:
992     case 0x8D:
993     case 0x8E:
994     case 0x8F:
995       // Take care of lea and three byte ops.
996       if (insn->opcodeType == TWOBYTE) {
997         attrMask ^= ATTR_OPSIZE;
998         insn->immediateSize = 4;
999         insn->displacementSize = 4;
1000       }
1001       break;
1002     }
1003   }
1004 
1005   if (getIDWithAttrMask(&instructionID, insn, attrMask))
1006     return -1;
1007 
1008   /* The following clauses compensate for limitations of the tables. */
1009 
1010   if (insn->mode != MODE_64BIT &&
1011       insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1012     /*
1013      * The tables can't distinquish between cases where the W-bit is used to
1014      * select register size and cases where its a required part of the opcode.
1015      */
1016     if ((insn->vectorExtensionType == TYPE_EVEX &&
1017          wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1018         (insn->vectorExtensionType == TYPE_VEX_3B &&
1019          wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1020         (insn->vectorExtensionType == TYPE_XOP &&
1021          wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1022 
1023       uint16_t instructionIDWithREXW;
1024       if (getIDWithAttrMask(&instructionIDWithREXW,
1025                             insn, attrMask | ATTR_REXW)) {
1026         insn->instructionID = instructionID;
1027         insn->spec = specifierForUID(instructionID);
1028         return 0;
1029       }
1030 
1031       auto SpecName = GetInstrName(instructionIDWithREXW, miiArg);
1032       // If not a 64-bit instruction. Switch the opcode.
1033       if (!is64Bit(SpecName.data())) {
1034         insn->instructionID = instructionIDWithREXW;
1035         insn->spec = specifierForUID(instructionIDWithREXW);
1036         return 0;
1037       }
1038     }
1039   }
1040 
1041   /*
1042    * Absolute moves need special handling.
1043    * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1044    *  inverted w.r.t.
1045    * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1046    *  any position.
1047    */
1048   if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) {
1049     /* Make sure we observed the prefixes in any position. */
1050     if (insn->hasAdSize)
1051       attrMask |= ATTR_ADSIZE;
1052     if (insn->hasOpSize)
1053       attrMask |= ATTR_OPSIZE;
1054 
1055     /* In 16-bit, invert the attributes. */
1056     if (insn->mode == MODE_16BIT)
1057       attrMask ^= ATTR_ADSIZE | ATTR_OPSIZE;
1058 
1059     if (getIDWithAttrMask(&instructionID, insn, attrMask))
1060       return -1;
1061 
1062     insn->instructionID = instructionID;
1063     insn->spec = specifierForUID(instructionID);
1064     return 0;
1065   }
1066 
1067   if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1068       !(attrMask & ATTR_OPSIZE)) {
1069     /*
1070      * The instruction tables make no distinction between instructions that
1071      * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1072      * particular spot (i.e., many MMX operations).  In general we're
1073      * conservative, but in the specific case where OpSize is present but not
1074      * in the right place we check if there's a 16-bit operation.
1075      */
1076 
1077     const struct InstructionSpecifier *spec;
1078     uint16_t instructionIDWithOpsize;
1079     llvm::StringRef specName, specWithOpSizeName;
1080 
1081     spec = specifierForUID(instructionID);
1082 
1083     if (getIDWithAttrMask(&instructionIDWithOpsize,
1084                           insn,
1085                           attrMask | ATTR_OPSIZE)) {
1086       /*
1087        * ModRM required with OpSize but not present; give up and return version
1088        * without OpSize set
1089        */
1090 
1091       insn->instructionID = instructionID;
1092       insn->spec = spec;
1093       return 0;
1094     }
1095 
1096     specName = GetInstrName(instructionID, miiArg);
1097     specWithOpSizeName = GetInstrName(instructionIDWithOpsize, miiArg);
1098 
1099     if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1100         (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1101       insn->instructionID = instructionIDWithOpsize;
1102       insn->spec = specifierForUID(instructionIDWithOpsize);
1103     } else {
1104       insn->instructionID = instructionID;
1105       insn->spec = spec;
1106     }
1107     return 0;
1108   }
1109 
1110   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1111       insn->rexPrefix & 0x01) {
1112     /*
1113      * NOOP shouldn't decode as NOOP if REX.b is set. Instead
1114      * it should decode as XCHG %r8, %eax.
1115      */
1116 
1117     const struct InstructionSpecifier *spec;
1118     uint16_t instructionIDWithNewOpcode;
1119     const struct InstructionSpecifier *specWithNewOpcode;
1120 
1121     spec = specifierForUID(instructionID);
1122 
1123     /* Borrow opcode from one of the other XCHGar opcodes */
1124     insn->opcode = 0x91;
1125 
1126     if (getIDWithAttrMask(&instructionIDWithNewOpcode,
1127                           insn,
1128                           attrMask)) {
1129       insn->opcode = 0x90;
1130 
1131       insn->instructionID = instructionID;
1132       insn->spec = spec;
1133       return 0;
1134     }
1135 
1136     specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
1137 
1138     /* Change back */
1139     insn->opcode = 0x90;
1140 
1141     insn->instructionID = instructionIDWithNewOpcode;
1142     insn->spec = specWithNewOpcode;
1143 
1144     return 0;
1145   }
1146 
1147   insn->instructionID = instructionID;
1148   insn->spec = specifierForUID(insn->instructionID);
1149 
1150   return 0;
1151 }
1152 
1153 /*
1154  * readSIB - Consumes the SIB byte to determine addressing information for an
1155  *   instruction.
1156  *
1157  * @param insn  - The instruction whose SIB byte is to be read.
1158  * @return      - 0 if the SIB byte was successfully read; nonzero otherwise.
1159  */
1160 static int readSIB(struct InternalInstruction* insn) {
1161   SIBBase sibBaseBase = SIB_BASE_NONE;
1162   uint8_t index, base;
1163 
1164   dbgprintf(insn, "readSIB()");
1165 
1166   if (insn->consumedSIB)
1167     return 0;
1168 
1169   insn->consumedSIB = true;
1170 
1171   switch (insn->addressSize) {
1172   case 2:
1173     dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
1174     return -1;
1175   case 4:
1176     insn->sibIndexBase = SIB_INDEX_EAX;
1177     sibBaseBase = SIB_BASE_EAX;
1178     break;
1179   case 8:
1180     insn->sibIndexBase = SIB_INDEX_RAX;
1181     sibBaseBase = SIB_BASE_RAX;
1182     break;
1183   }
1184 
1185   if (consumeByte(insn, &insn->sib))
1186     return -1;
1187 
1188   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
1189 
1190   if (index == 0x4) {
1191     insn->sibIndex = SIB_INDEX_NONE;
1192   } else {
1193     insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
1194   }
1195 
1196   insn->sibScale = 1 << scaleFromSIB(insn->sib);
1197 
1198   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
1199 
1200   switch (base) {
1201   case 0x5:
1202   case 0xd:
1203     switch (modFromModRM(insn->modRM)) {
1204     case 0x0:
1205       insn->eaDisplacement = EA_DISP_32;
1206       insn->sibBase = SIB_BASE_NONE;
1207       break;
1208     case 0x1:
1209       insn->eaDisplacement = EA_DISP_8;
1210       insn->sibBase = (SIBBase)(sibBaseBase + base);
1211       break;
1212     case 0x2:
1213       insn->eaDisplacement = EA_DISP_32;
1214       insn->sibBase = (SIBBase)(sibBaseBase + base);
1215       break;
1216     case 0x3:
1217       debug("Cannot have Mod = 0b11 and a SIB byte");
1218       return -1;
1219     }
1220     break;
1221   default:
1222     insn->sibBase = (SIBBase)(sibBaseBase + base);
1223     break;
1224   }
1225 
1226   return 0;
1227 }
1228 
1229 /*
1230  * readDisplacement - Consumes the displacement of an instruction.
1231  *
1232  * @param insn  - The instruction whose displacement is to be read.
1233  * @return      - 0 if the displacement byte was successfully read; nonzero
1234  *                otherwise.
1235  */
1236 static int readDisplacement(struct InternalInstruction* insn) {
1237   int8_t d8;
1238   int16_t d16;
1239   int32_t d32;
1240 
1241   dbgprintf(insn, "readDisplacement()");
1242 
1243   if (insn->consumedDisplacement)
1244     return 0;
1245 
1246   insn->consumedDisplacement = true;
1247   insn->displacementOffset = insn->readerCursor - insn->startLocation;
1248 
1249   switch (insn->eaDisplacement) {
1250   case EA_DISP_NONE:
1251     insn->consumedDisplacement = false;
1252     break;
1253   case EA_DISP_8:
1254     if (consumeInt8(insn, &d8))
1255       return -1;
1256     insn->displacement = d8;
1257     break;
1258   case EA_DISP_16:
1259     if (consumeInt16(insn, &d16))
1260       return -1;
1261     insn->displacement = d16;
1262     break;
1263   case EA_DISP_32:
1264     if (consumeInt32(insn, &d32))
1265       return -1;
1266     insn->displacement = d32;
1267     break;
1268   }
1269 
1270   insn->consumedDisplacement = true;
1271   return 0;
1272 }
1273 
1274 /*
1275  * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1276  *   displacement) for an instruction and interprets it.
1277  *
1278  * @param insn  - The instruction whose addressing information is to be read.
1279  * @return      - 0 if the information was successfully read; nonzero otherwise.
1280  */
1281 static int readModRM(struct InternalInstruction* insn) {
1282   uint8_t mod, rm, reg;
1283 
1284   dbgprintf(insn, "readModRM()");
1285 
1286   if (insn->consumedModRM)
1287     return 0;
1288 
1289   if (consumeByte(insn, &insn->modRM))
1290     return -1;
1291   insn->consumedModRM = true;
1292 
1293   mod     = modFromModRM(insn->modRM);
1294   rm      = rmFromModRM(insn->modRM);
1295   reg     = regFromModRM(insn->modRM);
1296 
1297   /*
1298    * This goes by insn->registerSize to pick the correct register, which messes
1299    * up if we're using (say) XMM or 8-bit register operands.  That gets fixed in
1300    * fixupReg().
1301    */
1302   switch (insn->registerSize) {
1303   case 2:
1304     insn->regBase = MODRM_REG_AX;
1305     insn->eaRegBase = EA_REG_AX;
1306     break;
1307   case 4:
1308     insn->regBase = MODRM_REG_EAX;
1309     insn->eaRegBase = EA_REG_EAX;
1310     break;
1311   case 8:
1312     insn->regBase = MODRM_REG_RAX;
1313     insn->eaRegBase = EA_REG_RAX;
1314     break;
1315   }
1316 
1317   reg |= rFromREX(insn->rexPrefix) << 3;
1318   rm  |= bFromREX(insn->rexPrefix) << 3;
1319   if (insn->vectorExtensionType == TYPE_EVEX) {
1320     reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1321     rm  |=  xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1322   }
1323 
1324   insn->reg = (Reg)(insn->regBase + reg);
1325 
1326   switch (insn->addressSize) {
1327   case 2:
1328     insn->eaBaseBase = EA_BASE_BX_SI;
1329 
1330     switch (mod) {
1331     case 0x0:
1332       if (rm == 0x6) {
1333         insn->eaBase = EA_BASE_NONE;
1334         insn->eaDisplacement = EA_DISP_16;
1335         if (readDisplacement(insn))
1336           return -1;
1337       } else {
1338         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1339         insn->eaDisplacement = EA_DISP_NONE;
1340       }
1341       break;
1342     case 0x1:
1343       insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1344       insn->eaDisplacement = EA_DISP_8;
1345       insn->displacementSize = 1;
1346       if (readDisplacement(insn))
1347         return -1;
1348       break;
1349     case 0x2:
1350       insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1351       insn->eaDisplacement = EA_DISP_16;
1352       if (readDisplacement(insn))
1353         return -1;
1354       break;
1355     case 0x3:
1356       insn->eaBase = (EABase)(insn->eaRegBase + rm);
1357       if (readDisplacement(insn))
1358         return -1;
1359       break;
1360     }
1361     break;
1362   case 4:
1363   case 8:
1364     insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1365 
1366     switch (mod) {
1367     case 0x0:
1368       insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1369       // In determining whether RIP-relative mode is used (rm=5),
1370       // or whether a SIB byte is present (rm=4),
1371       // the extension bits (REX.b and EVEX.x) are ignored.
1372       switch (rm & 7) {
1373       case 0x4: // SIB byte is present
1374         insn->eaBase = (insn->addressSize == 4 ?
1375                         EA_BASE_sib : EA_BASE_sib64);
1376         if (readSIB(insn) || readDisplacement(insn))
1377           return -1;
1378         break;
1379       case 0x5: // RIP-relative
1380         insn->eaBase = EA_BASE_NONE;
1381         insn->eaDisplacement = EA_DISP_32;
1382         if (readDisplacement(insn))
1383           return -1;
1384         break;
1385       default:
1386         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1387         break;
1388       }
1389       break;
1390     case 0x1:
1391       insn->displacementSize = 1;
1392       /* FALLTHROUGH */
1393     case 0x2:
1394       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1395       switch (rm & 7) {
1396       case 0x4: // SIB byte is present
1397         insn->eaBase = EA_BASE_sib;
1398         if (readSIB(insn) || readDisplacement(insn))
1399           return -1;
1400         break;
1401       default:
1402         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1403         if (readDisplacement(insn))
1404           return -1;
1405         break;
1406       }
1407       break;
1408     case 0x3:
1409       insn->eaDisplacement = EA_DISP_NONE;
1410       insn->eaBase = (EABase)(insn->eaRegBase + rm);
1411       break;
1412     }
1413     break;
1414   } /* switch (insn->addressSize) */
1415 
1416   return 0;
1417 }
1418 
1419 #define GENERIC_FIXUP_FUNC(name, base, prefix)            \
1420   static uint16_t name(struct InternalInstruction *insn,  \
1421                        OperandType type,                  \
1422                        uint8_t index,                     \
1423                        uint8_t *valid) {                  \
1424     *valid = 1;                                           \
1425     switch (type) {                                       \
1426     default:                                              \
1427       debug("Unhandled register type");                   \
1428       *valid = 0;                                         \
1429       return 0;                                           \
1430     case TYPE_Rv:                                         \
1431       return base + index;                                \
1432     case TYPE_R8:                                         \
1433       if (insn->rexPrefix &&                              \
1434          index >= 4 && index <= 7) {                      \
1435         return prefix##_SPL + (index - 4);                \
1436       } else {                                            \
1437         return prefix##_AL + index;                       \
1438       }                                                   \
1439     case TYPE_R16:                                        \
1440       return prefix##_AX + index;                         \
1441     case TYPE_R32:                                        \
1442       return prefix##_EAX + index;                        \
1443     case TYPE_R64:                                        \
1444       return prefix##_RAX + index;                        \
1445     case TYPE_ZMM:                                        \
1446       return prefix##_ZMM0 + index;                       \
1447     case TYPE_YMM:                                        \
1448       return prefix##_YMM0 + index;                       \
1449     case TYPE_XMM:                                        \
1450       return prefix##_XMM0 + index;                       \
1451     case TYPE_VK:                                         \
1452       if (index > 7)                                      \
1453         *valid = 0;                                       \
1454       return prefix##_K0 + index;                         \
1455     case TYPE_MM64:                                       \
1456       return prefix##_MM0 + (index & 0x7);                \
1457     case TYPE_SEGMENTREG:                                 \
1458       if ((index & 7) > 5)                                \
1459         *valid = 0;                                       \
1460       return prefix##_ES + (index & 7);                   \
1461     case TYPE_DEBUGREG:                                   \
1462       return prefix##_DR0 + index;                        \
1463     case TYPE_CONTROLREG:                                 \
1464       return prefix##_CR0 + index;                        \
1465     case TYPE_BNDR:                                       \
1466       if (index > 3)                                      \
1467         *valid = 0;                                       \
1468       return prefix##_BND0 + index;                       \
1469     case TYPE_MVSIBX:                                     \
1470       return prefix##_XMM0 + index;                       \
1471     case TYPE_MVSIBY:                                     \
1472       return prefix##_YMM0 + index;                       \
1473     case TYPE_MVSIBZ:                                     \
1474       return prefix##_ZMM0 + index;                       \
1475     }                                                     \
1476   }
1477 
1478 /*
1479  * fixup*Value - Consults an operand type to determine the meaning of the
1480  *   reg or R/M field.  If the operand is an XMM operand, for example, an
1481  *   operand would be XMM0 instead of AX, which readModRM() would otherwise
1482  *   misinterpret it as.
1483  *
1484  * @param insn  - The instruction containing the operand.
1485  * @param type  - The operand type.
1486  * @param index - The existing value of the field as reported by readModRM().
1487  * @param valid - The address of a uint8_t.  The target is set to 1 if the
1488  *                field is valid for the register class; 0 if not.
1489  * @return      - The proper value.
1490  */
1491 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase,    MODRM_REG)
1492 GENERIC_FIXUP_FUNC(fixupRMValue,  insn->eaRegBase,  EA_REG)
1493 
1494 /*
1495  * fixupReg - Consults an operand specifier to determine which of the
1496  *   fixup*Value functions to use in correcting readModRM()'ss interpretation.
1497  *
1498  * @param insn  - See fixup*Value().
1499  * @param op    - The operand specifier.
1500  * @return      - 0 if fixup was successful; -1 if the register returned was
1501  *                invalid for its class.
1502  */
1503 static int fixupReg(struct InternalInstruction *insn,
1504                     const struct OperandSpecifier *op) {
1505   uint8_t valid;
1506 
1507   dbgprintf(insn, "fixupReg()");
1508 
1509   switch ((OperandEncoding)op->encoding) {
1510   default:
1511     debug("Expected a REG or R/M encoding in fixupReg");
1512     return -1;
1513   case ENCODING_VVVV:
1514     insn->vvvv = (Reg)fixupRegValue(insn,
1515                                     (OperandType)op->type,
1516                                     insn->vvvv,
1517                                     &valid);
1518     if (!valid)
1519       return -1;
1520     break;
1521   case ENCODING_REG:
1522     insn->reg = (Reg)fixupRegValue(insn,
1523                                    (OperandType)op->type,
1524                                    insn->reg - insn->regBase,
1525                                    &valid);
1526     if (!valid)
1527       return -1;
1528     break;
1529   CASE_ENCODING_RM:
1530     if (insn->eaBase >= insn->eaRegBase) {
1531       insn->eaBase = (EABase)fixupRMValue(insn,
1532                                           (OperandType)op->type,
1533                                           insn->eaBase - insn->eaRegBase,
1534                                           &valid);
1535       if (!valid)
1536         return -1;
1537     }
1538     break;
1539   }
1540 
1541   return 0;
1542 }
1543 
1544 /*
1545  * readOpcodeRegister - Reads an operand from the opcode field of an
1546  *   instruction and interprets it appropriately given the operand width.
1547  *   Handles AddRegFrm instructions.
1548  *
1549  * @param insn  - the instruction whose opcode field is to be read.
1550  * @param size  - The width (in bytes) of the register being specified.
1551  *                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1552  *                RAX.
1553  * @return      - 0 on success; nonzero otherwise.
1554  */
1555 static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1556   dbgprintf(insn, "readOpcodeRegister()");
1557 
1558   if (size == 0)
1559     size = insn->registerSize;
1560 
1561   switch (size) {
1562   case 1:
1563     insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1564                                                   | (insn->opcode & 7)));
1565     if (insn->rexPrefix &&
1566         insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1567         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1568       insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1569                                    + (insn->opcodeRegister - MODRM_REG_AL - 4));
1570     }
1571 
1572     break;
1573   case 2:
1574     insn->opcodeRegister = (Reg)(MODRM_REG_AX
1575                                  + ((bFromREX(insn->rexPrefix) << 3)
1576                                     | (insn->opcode & 7)));
1577     break;
1578   case 4:
1579     insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1580                                  + ((bFromREX(insn->rexPrefix) << 3)
1581                                     | (insn->opcode & 7)));
1582     break;
1583   case 8:
1584     insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1585                                  + ((bFromREX(insn->rexPrefix) << 3)
1586                                     | (insn->opcode & 7)));
1587     break;
1588   }
1589 
1590   return 0;
1591 }
1592 
1593 /*
1594  * readImmediate - Consumes an immediate operand from an instruction, given the
1595  *   desired operand size.
1596  *
1597  * @param insn  - The instruction whose operand is to be read.
1598  * @param size  - The width (in bytes) of the operand.
1599  * @return      - 0 if the immediate was successfully consumed; nonzero
1600  *                otherwise.
1601  */
1602 static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1603   uint8_t imm8;
1604   uint16_t imm16;
1605   uint32_t imm32;
1606   uint64_t imm64;
1607 
1608   dbgprintf(insn, "readImmediate()");
1609 
1610   if (insn->numImmediatesConsumed == 2) {
1611     debug("Already consumed two immediates");
1612     return -1;
1613   }
1614 
1615   if (size == 0)
1616     size = insn->immediateSize;
1617   else
1618     insn->immediateSize = size;
1619   insn->immediateOffset = insn->readerCursor - insn->startLocation;
1620 
1621   switch (size) {
1622   case 1:
1623     if (consumeByte(insn, &imm8))
1624       return -1;
1625     insn->immediates[insn->numImmediatesConsumed] = imm8;
1626     break;
1627   case 2:
1628     if (consumeUInt16(insn, &imm16))
1629       return -1;
1630     insn->immediates[insn->numImmediatesConsumed] = imm16;
1631     break;
1632   case 4:
1633     if (consumeUInt32(insn, &imm32))
1634       return -1;
1635     insn->immediates[insn->numImmediatesConsumed] = imm32;
1636     break;
1637   case 8:
1638     if (consumeUInt64(insn, &imm64))
1639       return -1;
1640     insn->immediates[insn->numImmediatesConsumed] = imm64;
1641     break;
1642   }
1643 
1644   insn->numImmediatesConsumed++;
1645 
1646   return 0;
1647 }
1648 
1649 /*
1650  * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1651  *
1652  * @param insn  - The instruction whose operand is to be read.
1653  * @return      - 0 if the vvvv was successfully consumed; nonzero
1654  *                otherwise.
1655  */
1656 static int readVVVV(struct InternalInstruction* insn) {
1657   dbgprintf(insn, "readVVVV()");
1658 
1659   int vvvv;
1660   if (insn->vectorExtensionType == TYPE_EVEX)
1661     vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1662             vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1663   else if (insn->vectorExtensionType == TYPE_VEX_3B)
1664     vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1665   else if (insn->vectorExtensionType == TYPE_VEX_2B)
1666     vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1667   else if (insn->vectorExtensionType == TYPE_XOP)
1668     vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1669   else
1670     return -1;
1671 
1672   if (insn->mode != MODE_64BIT)
1673     vvvv &= 0x7;
1674 
1675   insn->vvvv = static_cast<Reg>(vvvv);
1676   return 0;
1677 }
1678 
1679 /*
1680  * readMaskRegister - Reads an mask register from the opcode field of an
1681  *   instruction.
1682  *
1683  * @param insn    - The instruction whose opcode field is to be read.
1684  * @return        - 0 on success; nonzero otherwise.
1685  */
1686 static int readMaskRegister(struct InternalInstruction* insn) {
1687   dbgprintf(insn, "readMaskRegister()");
1688 
1689   if (insn->vectorExtensionType != TYPE_EVEX)
1690     return -1;
1691 
1692   insn->writemask =
1693       static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1694   return 0;
1695 }
1696 
1697 /*
1698  * readOperands - Consults the specifier for an instruction and consumes all
1699  *   operands for that instruction, interpreting them as it goes.
1700  *
1701  * @param insn  - The instruction whose operands are to be read and interpreted.
1702  * @return      - 0 if all operands could be read; nonzero otherwise.
1703  */
1704 static int readOperands(struct InternalInstruction* insn) {
1705   int hasVVVV, needVVVV;
1706   int sawRegImm = 0;
1707 
1708   dbgprintf(insn, "readOperands()");
1709 
1710   /* If non-zero vvvv specified, need to make sure one of the operands
1711      uses it. */
1712   hasVVVV = !readVVVV(insn);
1713   needVVVV = hasVVVV && (insn->vvvv != 0);
1714 
1715   for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1716     switch (Op.encoding) {
1717     case ENCODING_NONE:
1718     case ENCODING_SI:
1719     case ENCODING_DI:
1720       break;
1721     CASE_ENCODING_VSIB:
1722       // VSIB can use the V2 bit so check only the other bits.
1723       if (needVVVV)
1724         needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1725       if (readModRM(insn))
1726         return -1;
1727 
1728       // Reject if SIB wasn't used.
1729       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1730         return -1;
1731 
1732       // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1733       if (insn->sibIndex == SIB_INDEX_NONE)
1734         insn->sibIndex = (SIBIndex)4;
1735 
1736       // If EVEX.v2 is set this is one of the 16-31 registers.
1737       if (insn->vectorExtensionType == TYPE_EVEX &&
1738           v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1739         insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1740 
1741       // Adjust the index register to the correct size.
1742       switch ((OperandType)Op.type) {
1743       default:
1744         debug("Unhandled VSIB index type");
1745         return -1;
1746       case TYPE_MVSIBX:
1747         insn->sibIndex = (SIBIndex)(SIB_INDEX_XMM0 +
1748                                     (insn->sibIndex - insn->sibIndexBase));
1749         break;
1750       case TYPE_MVSIBY:
1751         insn->sibIndex = (SIBIndex)(SIB_INDEX_YMM0 +
1752                                     (insn->sibIndex - insn->sibIndexBase));
1753         break;
1754       case TYPE_MVSIBZ:
1755         insn->sibIndex = (SIBIndex)(SIB_INDEX_ZMM0 +
1756                                     (insn->sibIndex - insn->sibIndexBase));
1757         break;
1758       }
1759 
1760       // Apply the AVX512 compressed displacement scaling factor.
1761       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1762         insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1763       break;
1764     case ENCODING_REG:
1765     CASE_ENCODING_RM:
1766       if (readModRM(insn))
1767         return -1;
1768       if (fixupReg(insn, &Op))
1769         return -1;
1770       // Apply the AVX512 compressed displacement scaling factor.
1771       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1772         insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1773       break;
1774     case ENCODING_IB:
1775       if (sawRegImm) {
1776         /* Saw a register immediate so don't read again and instead split the
1777            previous immediate.  FIXME: This is a hack. */
1778         insn->immediates[insn->numImmediatesConsumed] =
1779           insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1780         ++insn->numImmediatesConsumed;
1781         break;
1782       }
1783       if (readImmediate(insn, 1))
1784         return -1;
1785       if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1786         sawRegImm = 1;
1787       break;
1788     case ENCODING_IW:
1789       if (readImmediate(insn, 2))
1790         return -1;
1791       break;
1792     case ENCODING_ID:
1793       if (readImmediate(insn, 4))
1794         return -1;
1795       break;
1796     case ENCODING_IO:
1797       if (readImmediate(insn, 8))
1798         return -1;
1799       break;
1800     case ENCODING_Iv:
1801       if (readImmediate(insn, insn->immediateSize))
1802         return -1;
1803       break;
1804     case ENCODING_Ia:
1805       if (readImmediate(insn, insn->addressSize))
1806         return -1;
1807       break;
1808     case ENCODING_IRC:
1809       insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1810                  lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1811       break;
1812     case ENCODING_RB:
1813       if (readOpcodeRegister(insn, 1))
1814         return -1;
1815       break;
1816     case ENCODING_RW:
1817       if (readOpcodeRegister(insn, 2))
1818         return -1;
1819       break;
1820     case ENCODING_RD:
1821       if (readOpcodeRegister(insn, 4))
1822         return -1;
1823       break;
1824     case ENCODING_RO:
1825       if (readOpcodeRegister(insn, 8))
1826         return -1;
1827       break;
1828     case ENCODING_Rv:
1829       if (readOpcodeRegister(insn, 0))
1830         return -1;
1831       break;
1832     case ENCODING_FP:
1833       break;
1834     case ENCODING_VVVV:
1835       needVVVV = 0; /* Mark that we have found a VVVV operand. */
1836       if (!hasVVVV)
1837         return -1;
1838       if (fixupReg(insn, &Op))
1839         return -1;
1840       break;
1841     case ENCODING_WRITEMASK:
1842       if (readMaskRegister(insn))
1843         return -1;
1844       break;
1845     case ENCODING_DUP:
1846       break;
1847     default:
1848       dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1849       return -1;
1850     }
1851   }
1852 
1853   /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1854   if (needVVVV) return -1;
1855 
1856   return 0;
1857 }
1858 
1859 /*
1860  * decodeInstruction - Reads and interprets a full instruction provided by the
1861  *   user.
1862  *
1863  * @param insn      - A pointer to the instruction to be populated.  Must be
1864  *                    pre-allocated.
1865  * @param reader    - The function to be used to read the instruction's bytes.
1866  * @param readerArg - A generic argument to be passed to the reader to store
1867  *                    any internal state.
1868  * @param logger    - If non-NULL, the function to be used to write log messages
1869  *                    and warnings.
1870  * @param loggerArg - A generic argument to be passed to the logger to store
1871  *                    any internal state.
1872  * @param startLoc  - The address (in the reader's address space) of the first
1873  *                    byte in the instruction.
1874  * @param mode      - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1875  *                    decode the instruction in.
1876  * @return          - 0 if the instruction's memory could be read; nonzero if
1877  *                    not.
1878  */
1879 int llvm::X86Disassembler::decodeInstruction(
1880     struct InternalInstruction *insn, byteReader_t reader,
1881     const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg,
1882     uint64_t startLoc, DisassemblerMode mode) {
1883   memset(insn, 0, sizeof(struct InternalInstruction));
1884 
1885   insn->reader = reader;
1886   insn->readerArg = readerArg;
1887   insn->dlog = logger;
1888   insn->dlogArg = loggerArg;
1889   insn->startLocation = startLoc;
1890   insn->readerCursor = startLoc;
1891   insn->mode = mode;
1892   insn->numImmediatesConsumed = 0;
1893 
1894   if (readPrefixes(insn)       ||
1895       readOpcode(insn)         ||
1896       getID(insn, miiArg)      ||
1897       insn->instructionID == 0 ||
1898       readOperands(insn))
1899     return -1;
1900 
1901   insn->operands = x86OperandSets[insn->spec->operands];
1902 
1903   insn->length = insn->readerCursor - insn->startLocation;
1904 
1905   dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1906             startLoc, insn->readerCursor, insn->length);
1907 
1908   if (insn->length > 15)
1909     dbgprintf(insn, "Instruction exceeds 15-byte limit");
1910 
1911   return 0;
1912 }
1913