1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief This file implements a register stacking pass. 12 /// 13 /// This pass reorders instructions to put register uses and defs in an order 14 /// such that they form single-use expression trees. Registers fitting this form 15 /// are then marked as "stackified", meaning references to them are replaced by 16 /// "push" and "pop" from the value stack. 17 /// 18 /// This is primarily a code size optimization, since temporary values on the 19 /// value stack don't need to be named. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 24 #include "WebAssembly.h" 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "WebAssemblyUtilities.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/CodeGen/LiveIntervals.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-reg-stackify" 41 42 namespace { 43 class WebAssemblyRegStackify final : public MachineFunctionPass { 44 StringRef getPassName() const override { 45 return "WebAssembly Register Stackify"; 46 } 47 48 void getAnalysisUsage(AnalysisUsage &AU) const override { 49 AU.setPreservesCFG(); 50 AU.addRequired<AAResultsWrapperPass>(); 51 AU.addRequired<MachineDominatorTree>(); 52 AU.addRequired<LiveIntervals>(); 53 AU.addPreserved<MachineBlockFrequencyInfo>(); 54 AU.addPreserved<SlotIndexes>(); 55 AU.addPreserved<LiveIntervals>(); 56 AU.addPreservedID(LiveVariablesID); 57 AU.addPreserved<MachineDominatorTree>(); 58 MachineFunctionPass::getAnalysisUsage(AU); 59 } 60 61 bool runOnMachineFunction(MachineFunction &MF) override; 62 63 public: 64 static char ID; // Pass identification, replacement for typeid 65 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 66 }; 67 } // end anonymous namespace 68 69 char WebAssemblyRegStackify::ID = 0; 70 FunctionPass *llvm::createWebAssemblyRegStackify() { 71 return new WebAssemblyRegStackify(); 72 } 73 74 // Decorate the given instruction with implicit operands that enforce the 75 // expression stack ordering constraints for an instruction which is on 76 // the expression stack. 77 static void ImposeStackOrdering(MachineInstr *MI) { 78 // Write the opaque VALUE_STACK register. 79 if (!MI->definesRegister(WebAssembly::VALUE_STACK)) 80 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 81 /*isDef=*/true, 82 /*isImp=*/true)); 83 84 // Also read the opaque VALUE_STACK register. 85 if (!MI->readsRegister(WebAssembly::VALUE_STACK)) 86 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 87 /*isDef=*/false, 88 /*isImp=*/true)); 89 } 90 91 // Convert an IMPLICIT_DEF instruction into an instruction which defines 92 // a constant zero value. 93 static void ConvertImplicitDefToConstZero(MachineInstr *MI, 94 MachineRegisterInfo &MRI, 95 const TargetInstrInfo *TII, 96 MachineFunction &MF) { 97 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); 98 99 const auto *RegClass = 100 MRI.getRegClass(MI->getOperand(0).getReg()); 101 if (RegClass == &WebAssembly::I32RegClass) { 102 MI->setDesc(TII->get(WebAssembly::CONST_I32)); 103 MI->addOperand(MachineOperand::CreateImm(0)); 104 } else if (RegClass == &WebAssembly::I64RegClass) { 105 MI->setDesc(TII->get(WebAssembly::CONST_I64)); 106 MI->addOperand(MachineOperand::CreateImm(0)); 107 } else if (RegClass == &WebAssembly::F32RegClass) { 108 MI->setDesc(TII->get(WebAssembly::CONST_F32)); 109 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 110 Type::getFloatTy(MF.getFunction().getContext()))); 111 MI->addOperand(MachineOperand::CreateFPImm(Val)); 112 } else if (RegClass == &WebAssembly::F64RegClass) { 113 MI->setDesc(TII->get(WebAssembly::CONST_F64)); 114 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 115 Type::getDoubleTy(MF.getFunction().getContext()))); 116 MI->addOperand(MachineOperand::CreateFPImm(Val)); 117 } else { 118 llvm_unreachable("Unexpected reg class"); 119 } 120 } 121 122 // Determine whether a call to the callee referenced by 123 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 124 // effects. 125 static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read, 126 bool &Write, bool &Effects, bool &StackPointer) { 127 // All calls can use the stack pointer. 128 StackPointer = true; 129 130 const MachineOperand &MO = MI.getOperand(CalleeOpNo); 131 if (MO.isGlobal()) { 132 const Constant *GV = MO.getGlobal(); 133 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 134 if (!GA->isInterposable()) 135 GV = GA->getAliasee(); 136 137 if (const Function *F = dyn_cast<Function>(GV)) { 138 if (!F->doesNotThrow()) 139 Effects = true; 140 if (F->doesNotAccessMemory()) 141 return; 142 if (F->onlyReadsMemory()) { 143 Read = true; 144 return; 145 } 146 } 147 } 148 149 // Assume the worst. 150 Write = true; 151 Read = true; 152 Effects = true; 153 } 154 155 // Determine whether MI reads memory, writes memory, has side effects, 156 // and/or uses the stack pointer value. 157 static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, 158 bool &Write, bool &Effects, bool &StackPointer) { 159 assert(!MI.isPosition()); 160 assert(!MI.isTerminator()); 161 162 if (MI.isDebugValue()) 163 return; 164 165 // Check for loads. 166 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) 167 Read = true; 168 169 // Check for stores. 170 if (MI.mayStore()) { 171 Write = true; 172 173 // Check for stores to __stack_pointer. 174 for (auto MMO : MI.memoperands()) { 175 const MachinePointerInfo &MPI = MMO->getPointerInfo(); 176 if (MPI.V.is<const PseudoSourceValue *>()) { 177 auto PSV = MPI.V.get<const PseudoSourceValue *>(); 178 if (const ExternalSymbolPseudoSourceValue *EPSV = 179 dyn_cast<ExternalSymbolPseudoSourceValue>(PSV)) 180 if (StringRef(EPSV->getSymbol()) == "__stack_pointer") { 181 StackPointer = true; 182 } 183 } 184 } 185 } else if (MI.hasOrderedMemoryRef()) { 186 switch (MI.getOpcode()) { 187 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 188 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 189 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 190 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 191 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 192 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 193 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 194 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 195 // These instruction have hasUnmodeledSideEffects() returning true 196 // because they trap on overflow and invalid so they can't be arbitrarily 197 // moved, however hasOrderedMemoryRef() interprets this plus their lack 198 // of memoperands as having a potential unknown memory reference. 199 break; 200 default: 201 // Record volatile accesses, unless it's a call, as calls are handled 202 // specially below. 203 if (!MI.isCall()) { 204 Write = true; 205 Effects = true; 206 } 207 break; 208 } 209 } 210 211 // Check for side effects. 212 if (MI.hasUnmodeledSideEffects()) { 213 switch (MI.getOpcode()) { 214 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 215 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 216 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 217 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 218 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 219 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 220 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 221 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 222 // These instructions have hasUnmodeledSideEffects() returning true 223 // because they trap on overflow and invalid so they can't be arbitrarily 224 // moved, however in the specific case of register stackifying, it is safe 225 // to move them because overflow and invalid are Undefined Behavior. 226 break; 227 default: 228 Effects = true; 229 break; 230 } 231 } 232 233 // Analyze calls. 234 if (MI.isCall()) { 235 switch (MI.getOpcode()) { 236 case WebAssembly::CALL_VOID: 237 case WebAssembly::CALL_INDIRECT_VOID: 238 QueryCallee(MI, 0, Read, Write, Effects, StackPointer); 239 break; 240 case WebAssembly::CALL_I32: case WebAssembly::CALL_I64: 241 case WebAssembly::CALL_F32: case WebAssembly::CALL_F64: 242 case WebAssembly::CALL_INDIRECT_I32: case WebAssembly::CALL_INDIRECT_I64: 243 case WebAssembly::CALL_INDIRECT_F32: case WebAssembly::CALL_INDIRECT_F64: 244 QueryCallee(MI, 1, Read, Write, Effects, StackPointer); 245 break; 246 default: 247 llvm_unreachable("unexpected call opcode"); 248 } 249 } 250 } 251 252 // Test whether Def is safe and profitable to rematerialize. 253 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, 254 const WebAssemblyInstrInfo *TII) { 255 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); 256 } 257 258 // Identify the definition for this register at this point. This is a 259 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 260 // LiveIntervals to handle complex cases. 261 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert, 262 const MachineRegisterInfo &MRI, 263 const LiveIntervals &LIS) 264 { 265 // Most registers are in SSA form here so we try a quick MRI query first. 266 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 267 return Def; 268 269 // MRI doesn't know what the Def is. Try asking LIS. 270 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 271 LIS.getInstructionIndex(*Insert))) 272 return LIS.getInstructionFromIndex(ValNo->def); 273 274 return nullptr; 275 } 276 277 // Test whether Reg, as defined at Def, has exactly one use. This is a 278 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 279 // to handle complex cases. 280 static bool HasOneUse(unsigned Reg, MachineInstr *Def, 281 MachineRegisterInfo &MRI, MachineDominatorTree &MDT, 282 LiveIntervals &LIS) { 283 // Most registers are in SSA form here so we try a quick MRI query first. 284 if (MRI.hasOneUse(Reg)) 285 return true; 286 287 bool HasOne = false; 288 const LiveInterval &LI = LIS.getInterval(Reg); 289 const VNInfo *DefVNI = LI.getVNInfoAt( 290 LIS.getInstructionIndex(*Def).getRegSlot()); 291 assert(DefVNI); 292 for (auto &I : MRI.use_nodbg_operands(Reg)) { 293 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 294 if (Result.valueIn() == DefVNI) { 295 if (!Result.isKill()) 296 return false; 297 if (HasOne) 298 return false; 299 HasOne = true; 300 } 301 } 302 return HasOne; 303 } 304 305 // Test whether it's safe to move Def to just before Insert. 306 // TODO: Compute memory dependencies in a way that doesn't require always 307 // walking the block. 308 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 309 // more precise. 310 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 311 AliasAnalysis &AA, const MachineRegisterInfo &MRI) { 312 assert(Def->getParent() == Insert->getParent()); 313 314 // Check for register dependencies. 315 SmallVector<unsigned, 4> MutableRegisters; 316 for (const MachineOperand &MO : Def->operands()) { 317 if (!MO.isReg() || MO.isUndef()) 318 continue; 319 unsigned Reg = MO.getReg(); 320 321 // If the register is dead here and at Insert, ignore it. 322 if (MO.isDead() && Insert->definesRegister(Reg) && 323 !Insert->readsRegister(Reg)) 324 continue; 325 326 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 327 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 328 // from moving down, and we've already checked for that. 329 if (Reg == WebAssembly::ARGUMENTS) 330 continue; 331 // If the physical register is never modified, ignore it. 332 if (!MRI.isPhysRegModified(Reg)) 333 continue; 334 // Otherwise, it's a physical register with unknown liveness. 335 return false; 336 } 337 338 // If one of the operands isn't in SSA form, it has different values at 339 // different times, and we need to make sure we don't move our use across 340 // a different def. 341 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 342 MutableRegisters.push_back(Reg); 343 } 344 345 bool Read = false, Write = false, Effects = false, StackPointer = false; 346 Query(*Def, AA, Read, Write, Effects, StackPointer); 347 348 // If the instruction does not access memory and has no side effects, it has 349 // no additional dependencies. 350 bool HasMutableRegisters = !MutableRegisters.empty(); 351 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 352 return true; 353 354 // Scan through the intervening instructions between Def and Insert. 355 MachineBasicBlock::const_iterator D(Def), I(Insert); 356 for (--I; I != D; --I) { 357 bool InterveningRead = false; 358 bool InterveningWrite = false; 359 bool InterveningEffects = false; 360 bool InterveningStackPointer = false; 361 Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, 362 InterveningStackPointer); 363 if (Effects && InterveningEffects) 364 return false; 365 if (Read && InterveningWrite) 366 return false; 367 if (Write && (InterveningRead || InterveningWrite)) 368 return false; 369 if (StackPointer && InterveningStackPointer) 370 return false; 371 372 for (unsigned Reg : MutableRegisters) 373 for (const MachineOperand &MO : I->operands()) 374 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 375 return false; 376 } 377 378 return true; 379 } 380 381 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 382 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 383 const MachineBasicBlock &MBB, 384 const MachineRegisterInfo &MRI, 385 const MachineDominatorTree &MDT, 386 LiveIntervals &LIS, 387 WebAssemblyFunctionInfo &MFI) { 388 const LiveInterval &LI = LIS.getInterval(Reg); 389 390 const MachineInstr *OneUseInst = OneUse.getParent(); 391 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 392 393 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 394 if (&Use == &OneUse) 395 continue; 396 397 const MachineInstr *UseInst = Use.getParent(); 398 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 399 400 if (UseVNI != OneUseVNI) 401 continue; 402 403 const MachineInstr *OneUseInst = OneUse.getParent(); 404 if (UseInst == OneUseInst) { 405 // Another use in the same instruction. We need to ensure that the one 406 // selected use happens "before" it. 407 if (&OneUse > &Use) 408 return false; 409 } else { 410 // Test that the use is dominated by the one selected use. 411 while (!MDT.dominates(OneUseInst, UseInst)) { 412 // Actually, dominating is over-conservative. Test that the use would 413 // happen after the one selected use in the stack evaluation order. 414 // 415 // This is needed as a consequence of using implicit get_locals for 416 // uses and implicit set_locals for defs. 417 if (UseInst->getDesc().getNumDefs() == 0) 418 return false; 419 const MachineOperand &MO = UseInst->getOperand(0); 420 if (!MO.isReg()) 421 return false; 422 unsigned DefReg = MO.getReg(); 423 if (!TargetRegisterInfo::isVirtualRegister(DefReg) || 424 !MFI.isVRegStackified(DefReg)) 425 return false; 426 assert(MRI.hasOneUse(DefReg)); 427 const MachineOperand &NewUse = *MRI.use_begin(DefReg); 428 const MachineInstr *NewUseInst = NewUse.getParent(); 429 if (NewUseInst == OneUseInst) { 430 if (&OneUse > &NewUse) 431 return false; 432 break; 433 } 434 UseInst = NewUseInst; 435 } 436 } 437 } 438 return true; 439 } 440 441 /// Get the appropriate tee opcode for the given register class. 442 static unsigned GetTeeOpcode(const TargetRegisterClass *RC) { 443 if (RC == &WebAssembly::I32RegClass) 444 return WebAssembly::TEE_I32; 445 if (RC == &WebAssembly::I64RegClass) 446 return WebAssembly::TEE_I64; 447 if (RC == &WebAssembly::F32RegClass) 448 return WebAssembly::TEE_F32; 449 if (RC == &WebAssembly::F64RegClass) 450 return WebAssembly::TEE_F64; 451 if (RC == &WebAssembly::V128RegClass) 452 return WebAssembly::TEE_V128; 453 llvm_unreachable("Unexpected register class"); 454 } 455 456 // Shrink LI to its uses, cleaning up LI. 457 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 458 if (LIS.shrinkToUses(&LI)) { 459 SmallVector<LiveInterval*, 4> SplitLIs; 460 LIS.splitSeparateComponents(LI, SplitLIs); 461 } 462 } 463 464 /// A single-use def in the same block with no intervening memory or register 465 /// dependencies; move the def down and nest it with the current instruction. 466 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand& Op, 467 MachineInstr *Def, 468 MachineBasicBlock &MBB, 469 MachineInstr *Insert, LiveIntervals &LIS, 470 WebAssemblyFunctionInfo &MFI, 471 MachineRegisterInfo &MRI) { 472 DEBUG(dbgs() << "Move for single use: "; Def->dump()); 473 474 MBB.splice(Insert, &MBB, Def); 475 LIS.handleMove(*Def); 476 477 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 478 // No one else is using this register for anything so we can just stackify 479 // it in place. 480 MFI.stackifyVReg(Reg); 481 } else { 482 // The register may have unrelated uses or defs; create a new register for 483 // just our one def and use so that we can stackify it. 484 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 485 Def->getOperand(0).setReg(NewReg); 486 Op.setReg(NewReg); 487 488 // Tell LiveIntervals about the new register. 489 LIS.createAndComputeVirtRegInterval(NewReg); 490 491 // Tell LiveIntervals about the changes to the old register. 492 LiveInterval &LI = LIS.getInterval(Reg); 493 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 494 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 495 /*RemoveDeadValNo=*/true); 496 497 MFI.stackifyVReg(NewReg); 498 499 DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 500 } 501 502 ImposeStackOrdering(Def); 503 return Def; 504 } 505 506 /// A trivially cloneable instruction; clone it and nest the new copy with the 507 /// current instruction. 508 static MachineInstr *RematerializeCheapDef( 509 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 510 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 511 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 512 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 513 DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 514 DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 515 516 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 517 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 518 Op.setReg(NewReg); 519 MachineInstr *Clone = &*std::prev(Insert); 520 LIS.InsertMachineInstrInMaps(*Clone); 521 LIS.createAndComputeVirtRegInterval(NewReg); 522 MFI.stackifyVReg(NewReg); 523 ImposeStackOrdering(Clone); 524 525 DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 526 527 // Shrink the interval. 528 bool IsDead = MRI.use_empty(Reg); 529 if (!IsDead) { 530 LiveInterval &LI = LIS.getInterval(Reg); 531 ShrinkToUses(LI, LIS); 532 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 533 } 534 535 // If that was the last use of the original, delete the original. 536 if (IsDead) { 537 DEBUG(dbgs() << " - Deleting original\n"); 538 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 539 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 540 LIS.removeInterval(Reg); 541 LIS.RemoveMachineInstrFromMaps(Def); 542 Def.eraseFromParent(); 543 } 544 545 return Clone; 546 } 547 548 /// A multiple-use def in the same block with no intervening memory or register 549 /// dependencies; move the def down, nest it with the current instruction, and 550 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 551 /// this: 552 /// 553 /// Reg = INST ... // Def 554 /// INST ..., Reg, ... // Insert 555 /// INST ..., Reg, ... 556 /// INST ..., Reg, ... 557 /// 558 /// to this: 559 /// 560 /// DefReg = INST ... // Def (to become the new Insert) 561 /// TeeReg, Reg = TEE_... DefReg 562 /// INST ..., TeeReg, ... // Insert 563 /// INST ..., Reg, ... 564 /// INST ..., Reg, ... 565 /// 566 /// with DefReg and TeeReg stackified. This eliminates a get_local from the 567 /// resulting code. 568 static MachineInstr *MoveAndTeeForMultiUse( 569 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 570 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 571 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 572 DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 573 574 // Move Def into place. 575 MBB.splice(Insert, &MBB, Def); 576 LIS.handleMove(*Def); 577 578 // Create the Tee and attach the registers. 579 const auto *RegClass = MRI.getRegClass(Reg); 580 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 581 unsigned DefReg = MRI.createVirtualRegister(RegClass); 582 MachineOperand &DefMO = Def->getOperand(0); 583 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 584 TII->get(GetTeeOpcode(RegClass)), TeeReg) 585 .addReg(Reg, RegState::Define) 586 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 587 Op.setReg(TeeReg); 588 DefMO.setReg(DefReg); 589 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 590 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 591 592 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 593 LiveInterval &LI = LIS.getInterval(Reg); 594 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 595 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 596 I->start = TeeIdx; 597 ValNo->def = TeeIdx; 598 ShrinkToUses(LI, LIS); 599 600 // Finish stackifying the new regs. 601 LIS.createAndComputeVirtRegInterval(TeeReg); 602 LIS.createAndComputeVirtRegInterval(DefReg); 603 MFI.stackifyVReg(DefReg); 604 MFI.stackifyVReg(TeeReg); 605 ImposeStackOrdering(Def); 606 ImposeStackOrdering(Tee); 607 608 DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 609 DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 610 return Def; 611 } 612 613 namespace { 614 /// A stack for walking the tree of instructions being built, visiting the 615 /// MachineOperands in DFS order. 616 class TreeWalkerState { 617 typedef MachineInstr::mop_iterator mop_iterator; 618 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 619 typedef iterator_range<mop_reverse_iterator> RangeTy; 620 SmallVector<RangeTy, 4> Worklist; 621 622 public: 623 explicit TreeWalkerState(MachineInstr *Insert) { 624 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 625 if (Range.begin() != Range.end()) 626 Worklist.push_back(reverse(Range)); 627 } 628 629 bool Done() const { return Worklist.empty(); } 630 631 MachineOperand &Pop() { 632 RangeTy &Range = Worklist.back(); 633 MachineOperand &Op = *Range.begin(); 634 Range = drop_begin(Range, 1); 635 if (Range.begin() == Range.end()) 636 Worklist.pop_back(); 637 assert((Worklist.empty() || 638 Worklist.back().begin() != Worklist.back().end()) && 639 "Empty ranges shouldn't remain in the worklist"); 640 return Op; 641 } 642 643 /// Push Instr's operands onto the stack to be visited. 644 void PushOperands(MachineInstr *Instr) { 645 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 646 if (Range.begin() != Range.end()) 647 Worklist.push_back(reverse(Range)); 648 } 649 650 /// Some of Instr's operands are on the top of the stack; remove them and 651 /// re-insert them starting from the beginning (because we've commuted them). 652 void ResetTopOperands(MachineInstr *Instr) { 653 assert(HasRemainingOperands(Instr) && 654 "Reseting operands should only be done when the instruction has " 655 "an operand still on the stack"); 656 Worklist.back() = reverse(Instr->explicit_uses()); 657 } 658 659 /// Test whether Instr has operands remaining to be visited at the top of 660 /// the stack. 661 bool HasRemainingOperands(const MachineInstr *Instr) const { 662 if (Worklist.empty()) 663 return false; 664 const RangeTy &Range = Worklist.back(); 665 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 666 } 667 668 /// Test whether the given register is present on the stack, indicating an 669 /// operand in the tree that we haven't visited yet. Moving a definition of 670 /// Reg to a point in the tree after that would change its value. 671 /// 672 /// This is needed as a consequence of using implicit get_locals for 673 /// uses and implicit set_locals for defs. 674 bool IsOnStack(unsigned Reg) const { 675 for (const RangeTy &Range : Worklist) 676 for (const MachineOperand &MO : Range) 677 if (MO.isReg() && MO.getReg() == Reg) 678 return true; 679 return false; 680 } 681 }; 682 683 /// State to keep track of whether commuting is in flight or whether it's been 684 /// tried for the current instruction and didn't work. 685 class CommutingState { 686 /// There are effectively three states: the initial state where we haven't 687 /// started commuting anything and we don't know anything yet, the tenative 688 /// state where we've commuted the operands of the current instruction and are 689 /// revisting it, and the declined state where we've reverted the operands 690 /// back to their original order and will no longer commute it further. 691 bool TentativelyCommuting; 692 bool Declined; 693 694 /// During the tentative state, these hold the operand indices of the commuted 695 /// operands. 696 unsigned Operand0, Operand1; 697 698 public: 699 CommutingState() : TentativelyCommuting(false), Declined(false) {} 700 701 /// Stackification for an operand was not successful due to ordering 702 /// constraints. If possible, and if we haven't already tried it and declined 703 /// it, commute Insert's operands and prepare to revisit it. 704 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 705 const WebAssemblyInstrInfo *TII) { 706 if (TentativelyCommuting) { 707 assert(!Declined && 708 "Don't decline commuting until you've finished trying it"); 709 // Commuting didn't help. Revert it. 710 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 711 TentativelyCommuting = false; 712 Declined = true; 713 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 714 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 715 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 716 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 717 // Tentatively commute the operands and try again. 718 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 719 TreeWalker.ResetTopOperands(Insert); 720 TentativelyCommuting = true; 721 Declined = false; 722 } 723 } 724 } 725 726 /// Stackification for some operand was successful. Reset to the default 727 /// state. 728 void Reset() { 729 TentativelyCommuting = false; 730 Declined = false; 731 } 732 }; 733 } // end anonymous namespace 734 735 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 736 DEBUG(dbgs() << "********** Register Stackifying **********\n" 737 "********** Function: " 738 << MF.getName() << '\n'); 739 740 bool Changed = false; 741 MachineRegisterInfo &MRI = MF.getRegInfo(); 742 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 743 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 744 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 745 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 746 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 747 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 748 749 // Disable the TEE optimization if we aren't doing direct wasm object 750 // emission, because lowering TEE to TEE_LOCAL is done in the ExplicitLocals 751 // pass, which is also disabled. 752 bool UseTee = true; 753 if (MF.getSubtarget<WebAssemblySubtarget>() 754 .getTargetTriple().isOSBinFormatELF()) 755 UseTee = false; 756 757 // Walk the instructions from the bottom up. Currently we don't look past 758 // block boundaries, and the blocks aren't ordered so the block visitation 759 // order isn't significant, but we may want to change this in the future. 760 for (MachineBasicBlock &MBB : MF) { 761 // Don't use a range-based for loop, because we modify the list as we're 762 // iterating over it and the end iterator may change. 763 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 764 MachineInstr *Insert = &*MII; 765 // Don't nest anything inside an inline asm, because we don't have 766 // constraints for $push inputs. 767 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 768 continue; 769 770 // Ignore debugging intrinsics. 771 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 772 continue; 773 774 // Iterate through the inputs in reverse order, since we'll be pulling 775 // operands off the stack in LIFO order. 776 CommutingState Commuting; 777 TreeWalkerState TreeWalker(Insert); 778 while (!TreeWalker.Done()) { 779 MachineOperand &Op = TreeWalker.Pop(); 780 781 // We're only interested in explicit virtual register operands. 782 if (!Op.isReg()) 783 continue; 784 785 unsigned Reg = Op.getReg(); 786 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 787 assert(!Op.isImplicit() && 788 "explicit_uses() should only iterate over explicit operands"); 789 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 790 continue; 791 792 // Identify the definition for this register at this point. 793 MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS); 794 if (!Def) 795 continue; 796 797 // Don't nest an INLINE_ASM def into anything, because we don't have 798 // constraints for $pop outputs. 799 if (Def->getOpcode() == TargetOpcode::INLINEASM) 800 continue; 801 802 // Argument instructions represent live-in registers and not real 803 // instructions. 804 if (WebAssembly::isArgument(*Def)) 805 continue; 806 807 // Decide which strategy to take. Prefer to move a single-use value 808 // over cloning it, and prefer cloning over introducing a tee. 809 // For moving, we require the def to be in the same block as the use; 810 // this makes things simpler (LiveIntervals' handleMove function only 811 // supports intra-block moves) and it's MachineSink's job to catch all 812 // the sinking opportunities anyway. 813 bool SameBlock = Def->getParent() == &MBB; 814 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, MRI) && 815 !TreeWalker.IsOnStack(Reg); 816 if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) { 817 Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 818 } else if (ShouldRematerialize(*Def, AA, TII)) { 819 Insert = 820 RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(), 821 LIS, MFI, MRI, TII, TRI); 822 } else if (UseTee && CanMove && 823 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { 824 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 825 MRI, TII); 826 } else { 827 // We failed to stackify the operand. If the problem was ordering 828 // constraints, Commuting may be able to help. 829 if (!CanMove && SameBlock) 830 Commuting.MaybeCommute(Insert, TreeWalker, TII); 831 // Proceed to the next operand. 832 continue; 833 } 834 835 // If the instruction we just stackified is an IMPLICIT_DEF, convert it 836 // to a constant 0 so that the def is explicit, and the push/pop 837 // correspondence is maintained. 838 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) 839 ConvertImplicitDefToConstZero(Insert, MRI, TII, MF); 840 841 // We stackified an operand. Add the defining instruction's operands to 842 // the worklist stack now to continue to build an ever deeper tree. 843 Commuting.Reset(); 844 TreeWalker.PushOperands(Insert); 845 } 846 847 // If we stackified any operands, skip over the tree to start looking for 848 // the next instruction we can build a tree on. 849 if (Insert != &*MII) { 850 ImposeStackOrdering(&*MII); 851 MII = MachineBasicBlock::iterator(Insert).getReverse(); 852 Changed = true; 853 } 854 } 855 } 856 857 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 858 // that it never looks like a use-before-def. 859 if (Changed) { 860 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 861 for (MachineBasicBlock &MBB : MF) 862 MBB.addLiveIn(WebAssembly::VALUE_STACK); 863 } 864 865 #ifndef NDEBUG 866 // Verify that pushes and pops are performed in LIFO order. 867 SmallVector<unsigned, 0> Stack; 868 for (MachineBasicBlock &MBB : MF) { 869 for (MachineInstr &MI : MBB) { 870 if (MI.isDebugValue()) 871 continue; 872 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 873 if (!MO.isReg()) 874 continue; 875 unsigned Reg = MO.getReg(); 876 877 if (MFI.isVRegStackified(Reg)) { 878 if (MO.isDef()) 879 Stack.push_back(Reg); 880 else 881 assert(Stack.pop_back_val() == Reg && 882 "Register stack pop should be paired with a push"); 883 } 884 } 885 } 886 // TODO: Generalize this code to support keeping values on the stack across 887 // basic block boundaries. 888 assert(Stack.empty() && 889 "Register stack pushes and pops should be balanced"); 890 } 891 #endif 892 893 return Changed; 894 } 895